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Abstract The routing of traffic between Internet domains,
or Autonomous Systems(ASes), a task known asinterdo-
main routing, is currently handled by the Border Gateway
Protocol (BGP) [21]. Using BGP, ASes can apply semanti-
cally rich routing policies to choose interdomain routes in
a distributed fashion. This expressiveness in routing-policy
choice supports domains’ autonomy in network operations
and in business decisions, but it comes at a price: The in-
teraction of locally defined routing policies can lead to un-
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expected global anomalies, including route oscillations or
overall protocol divergence (see,e.g., [24]). Networking re-
searchers have addressed this problem by devising constrai-
nts on policies that guarantee BGP convergence without un-
duly limiting expressiveness and autonomy (see,e.g., [9,
11]).

In addition to taking this engineering or “protocol-
design” approach, researchers have approached interdomain
routing from an economic or “mechanism-design” point of
view. It is known that lowest-cost-path (LCP) routing can be
implemented in an incentive-compatible, BGP-compatible
manner [4, 22] but that several other natural classes of poli-
cies cannot [3, 6]. In this paper, we present the first exam-
ple of a class of interdomain-routing policies that is more
general than LCP routing and for which BGP itself is both
incentive-compatible and guaranteed to converge. We also
present several steps toward a general theory of incentive-
compatible, BGP-compatible interdomain routing.

Keywords interdomain-routing protocols· BGP · algorith-
mic mechanism design· routing policies

CR Subject Classification C.2.2· C.2.6· G.2.2
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1 Introduction

1.1 Interdomain routing

The Internet comprises many separate administrative doma-
ins known asAutonomous Systems(ASes). Routing occurs
on two levels, intradomain and interdomain, implemented
by two different sets of protocols. Intradomain-routing pro-
tocols, such as OSPF [19], compute routes within a single
AS. Interdomain routing, currently handled by the Border
Gateway Protocol (BGP) [21], computes routes between dif-
ferent ASes. For many years, interdomain routing has been
studied by computer scientists from an engineering or “pro-
tocol-design” perspective, and, more recently, it has been
studied from an economic or “mechanism-design” perspec-
tive as well. Combining algorithmic and economic consid-
erations in the study of interdomain routing is very natural,
because the many separate domains that make up the Inter-
net really are independent economic agents that execute a
distributed algorithm in order to choose routes.

In their seminal paper [20], Nisan and Ronen gave the
following formulation of interdomain routing as a mechan-
ism-design problem: Each AS incurs a per-packetcost for
carrying traffic, where the cost represents the additional load
imposed on the internal AS network by this traffic. To com-
pensate for these incurred costs, each AS is given apay-
mentfor carryingtransit traffic, which is traffic neither orig-
inating from nor destined for that AS. It is through these
costs and payments that consideration of “incentive com-
patibility” was introduced to the interdomain-routing frame-
work, which, as currently realized by BGP, does not explic-
itly consider incentives. The goal in [20] was to optimize the
use of network bandwidth by routing packets alonglowest-
cost paths(LCPs) and to do so with atruthful mechanism
that can be computed inpolynomial time. Nisan and Ronen
observed that the Vickrey-Clarke-Groves (VCG) mechan-
ism, well known to be truthful, solves the LCP mechanism-
design problem and can be computed in polynomial time.

Many researchers have followed up on Nisan and Ro-
nen’s original work, including Feigenbaum, Papadimitriou,
Sami, and Shenker [4], who showed that lowest-cost paths
and VCG payments could be computed in a “BGP-compati-
ble” fashion,i.e., computed by a distributed algorithm that
requires fairly small modifications to the (already univer-
sally deployed) Border Gateway Protocol.

Although it was viewed as a step forward in our under-
standing of the interplay of engineering, algorithmics, and
economics in interdomain routing, the work in [4] was by
no means a fully satisfactory solution. In particular, one of
the valuable features of BGP is that it allows ASes to choose
interdomain routes according to semantically rich policies
that meet their operational and business requirements; LCP
routing is just one example of a valid policy, and, in prac-

tice, many ASes do not use it [1]. Thus, it is natural to ask
whether more expressive interdomain-routingpolicies admit
truthful, BGP-compatible computation of routes and pay-
ments. Previous work on this question was discouraging,
producing only negative results,i.e., proofs that various nat-
ural classes of policies did not admit such computation; we
give pointers to some examples in Subsec. 1.4 below.

In this paper, we continue the work begun in [4] and give
the first positive result along these lines by exhibiting a nat-
ural class of routing policies strictly more general than LCP
for which routes and payments can be computed in a truth-
ful, BGP-compatible manner.A fortiori, we exhibit such a
class for which BGP itself is guaranteed to converge and is
incentive-compatible.

1.2 Routes and Policies

We now give a short and informal explanation of the inter-
domain-routing problem so that we can state our main re-
sults in Subsec. 1.3 below. The problem is presented more
formally and in considerably more detail in Sec. 2.

An interdomain-routing instance consists of anAS graph
G and a set ofrouting policies. In the vertex set ofG, there
are n source nodes{1, . . . ,n} and adestination node d6∈
{1, . . . ,n}, each representing an AS. Each source ASi has
a routing policy, in part given by a real-valued functionvi

defined on the set of routes (i.e., simple paths) fromi to d
in G. The value that source ASi assigns to routeR captures
the desirability, fromi’s point of view, of packets’ traveling
from i to d along R. For example, in an instance of LCP
routing,vi(R) =−cost(R), for all i andR.

In a path-vector routing protocol, of which BGP is an
example, a confluent tree of routes tod is built up, round by
round, as nodes passroute announcementsto their neigh-
bors. In round 1, the process is begun by the destinationd,
which announces its existence to its neighbors; each neigh-
bor i of d now has a route to the destination that consists of
the one link(i,d). In subsequent rounds, a nodei that has a
routeR to d may announce orexport Rto a neighborj; if
node j does not appear inR, then j at this point has a route
throughi to d, which we denote by( j, i)R. It is important
to note thati need not informj of every route tod that it
knows about; if it does not exportR to j, then i is said to
havefiltered Rwith respect toj. As the protocol proceeds,
each ASindependentlychooses from the routes that have
been announced to it, and the hope is that these choices will
converge on a stable tree of routes tod.

From a mechanism-design point of view, a natural goal
is a path-vector routing protocol that buildswelfare-maxi-
mizingrouting trees,i.e., those for which the sum, over all
source nodesi, of the valuationsvi(Ri) is as large as possible,
whereRi is the unique route fromi to d in the final tree.
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1.3 Our Results

In this paper, we show that welfare-maximizing route com-
putation is feasible for routing policies that are more ex-
pressive than LCP. We identify three properties that together
form a sufficient constraint on policies to permit the com-
putation of welfare-maximizing routes by any path-vector
protocol (including BGP):

1. Policy consistency: Thenext hopof a route is the source
AS’s immediate neighbor along that route. An AS has
a next-hop policyif it chooses among available routes
to a destination based solely on the routes’ next hops.
Next-hop policies capture an essential feature of inter-
domain routing as it is currently done: An AS cannot
control packet forwarding beyond the neighboring AS
to which it initially sends the packets. For this reason,
many researchers have studied next-hop policies in or-
der to gain insight into the behavior of interdomain pro-
tocols [6, 13, 24].Policy consistency, one of the three
properties that together comprise our sufficient condition
for welfare maximization, is a generalization of next-hop
policies. Note that, although next-hop policies have been
a natural and fruitful topic of research, they are not suffi-
cient for practical use; it has been shown that uncoordi-
nated and unconstrained local configuration of next-hop
policies can produce route instability [13,24].

2. Consistent filtering: As explained in Subsec. 1.2, ASes
need not announce to their neighbors all of their known
routes to a given destination; instead, an ASi may en-
gage in export filtering with respect to its neighborj by
not announcing a routeR to j, i.e., not offering to j the
option of sending traffic tod along the route( j, i)R. In
order to guarantee welfare maximization, we do not al-
low ASes to engage in arbitrary export filtering. Specif-
ically, the second part of our sufficient condition is that,
for all pairs i and j of neighboring ASes,i filters con-
sistentlywith respect toj, meaning that it only filters
out routes that it values less than those it announces: Ifi
does not announce routeR to j, thenvi(R) < vi(Q), for
all routesQ that i does announce toj.

3. No dispute wheel: Gao and Rexford [9] proposed con-
straints on policies that guarantee route stability with-
out global coordination. They assume that two types of
business relationships exist between neighboring pairs
of ASes:customer-provider, in which one AS purchases
connectivity from another, andpeering, in which two
ASes agree to carry transit traffic to and from each oth-
er’s customers,e.g., to shortcut routes through providers.
These relationships accurately represent today’s com-
mercial Internet (see [16]), and they naturally induce
route preferences. Gao and Rexford formalized these
preferences (we review the formalization in Subsec. 4.1)
and proved that they induce stable routing if there are

no customer-provider cycles, i.e., if no AS is an indirect
customer of itself.No dispute wheel, the third constitu-
ent property of our sufficient condition, is a well studied
generalization of the Gao-Rexford constraints [13].

Conversely, we show that, if any of these three properties
does not hold, theprice of anarchy[17]—a measure of how
far the computed routing tree is from welfare-maximizing—
for path-vector routing is unbounded.

One important implication of our sufficient condition is
that ASes cannot do any better than executing BGP, pro-
vided that valuation functions are non-negative (or, equiv-
alently, that ASes always prefer participating in the result-
ing routing tree to not participating in it). In such cases,
payments are not needed to incentivize AS participation in
route computation (see [7]). Indeed, no changes to BGP are
needed at all.

In some cases, it may be necessary to incentivize ASes
to participate by paying them; for example, “backbone car-
riers” that are in the business of carrying transit traffic be-
tween local networks may need to be paid to do so. Equiv-
alently, valuation functions may assign negative values to
some routes. We give a positive result for this case by pre-
senting the first example of a class of policies that is more
general than LCP and that admits incentive-compatible and
BGP-compatible computation of both routes and payments:
next-hop policies that obey the Gao-Rexford conditions. We
use the term “BGP-compatible” to mean that the protocol
has the same basic structure as BGP and that it is space-
efficient, in that it requires only a modest increase to the
storage requirement of the standard BGP; the protocol that
we present does, however, require the enhancement of BGP
with signature and payment capabilities. This is consistent
with the use of “BGP-compatible” in [4].

The policy-consistency, consistent-filtering, and no-dis-
pute-wheel properties are presented in detail in Sec. 3. Our
algorithm to compute routes and payments is presented in
Sec. 4.

1.4 Related Work

The networking-research community’s study of BGP was
begun by Varadhanet al. [24], who showed that completely
unconstrained routing policies can result inprotocol diver-
gence, i.e., protocol executions that do not produce a sta-
ble routing tree that all source ASes would continue to use,
given the alternative routes available to them. This funda-
mental observation led to the formulation of stable routing
as an NP search problem [13], the formulation of path-vector
protocols as a distributed-computational model [12], and the
search for constraints on policies,e.g., the Gao-Rexford con-
straints [9] and generalizations thereof [8], that guarantee
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BGP convergence. Griffinet al. [11] provide the most gen-
eral formulation to date of path-vector protocol properties
and inherent tradeoffs among them. These and other works
by the networking-research community formulate the ASes’
policies as ordinal preferences on available routes: IfR and
Q are routes available to source ASi, theni’s policy deter-
mines whether it prefersR to Q or vice versabut does not
assign numerical values toR andQ.

As explained in Subsec. 1.1, Nisan and Ronen [20] for-
mulated the interdomain-routing problem as a mechanism-
design problem, and Feigenbaumet al. [4] added to this
formulation considerations of distributed computation and
BGP compatibility. The mechanism-design formulation en-
tailed the generalization from policies that capture ordinal
preferences to those that capture cardinal preferences. For
the LCP case, welfare-maximizing, incentive-compatible al-
gorithms were obtained in both centralized [20] and dis-
tributed [4] computational models, leading naturally to the
question addressed in this paper,i.e., whether such algo-
rithms could be found for more general classes of routing
policies. This question was answered in the negative for gen-
eral policy routing [6], “subjective-cost” policy routing[3],
“forbidden-set” policy routing [3], and unconstrained next-
hop routing [6]. More precisely, it is shown in [6] that wel-
fare-maximizing routing trees for unconstrained next-hop
policies can be found by a polynomial-time centralized al-
gorithm but not by an efficient distributed algorithm. As ex-
plained in Subsec. 1.3, we present herein the first positive
answer to this basic open question from [4,20].

After our results were presented in preliminary form [5],
Feigenbaum, Schapira, and Shenker [7] used our main result
to prove that BGP is incentive-compatible even in the pres-
ence of coalitions of manipulating nodes. Levin, Schapira,
and Zohar [18] showed that following BGP may not be in-
centive-compatible under the simpler assumption that the
Gao-Rexford conditions hold but that following a “secure”
version of BGP (in which nodes cannot lie about the pres-
ence of nonexistent routes) is incentive-compatible under
Gao-Rexford. Goldberget al. [10] showed that the security
property in [18] may not suffice to prevent lying during route
computation when nodes’ utilities are based on the amount
of traffic they transit on behalf of others in addition to the
route they are assigned in the final routing tree.

2 Technical Preliminaries

We begin this section by formally defining the interdomain-
routing problem and providing some useful notation. We
then review the Border Gateway Protocol (BGP), the stan-
dard protocol used for interdomain routing today.

2.1 Welfare-Maximizing Route Allocation

In the interdomain-routing problem, we are given an AS
graphG = (N,L) that describes the network topology. The
set of nodesN corresponds to the ASes in the graph. Be-
cause routes are computed independently for each destina-
tion, without loss of generality, we assume thatN consists
of n source nodes{1, . . . ,n} and a destination noded. The
set of linksL corresponds to connections between ASes. Let
Li ⊂ 2L be the set of allsimpleroutes (i.e., routes with no
loops) fromi to d in G.

An instanceI = (G,P,V ) of the interdomain-routing
problem is defined by an AS graphG, a set ofpermitted
routesP(i) = Pi ⊂ Li for each nodei ∈ [n], and thevalua-
tion functionV (i) = vi : Pi → R of each node. Every setPi

contains the paths inLi that are not removed from consider-
ation by eitheri itself or i’s neighbors. Every valuation func-
tion vi specifies the “monetary value” of each routeR∈ Pi

from nodei. We assume thatvi( /0) = 0, i.e., no route is worth
nothing, and that, for all pairs of routesR1 andR2 through
different neighboring nodes,vi(R1) 6= vi(R2), i.e., there are
no ties in valuations.1 The routing policyof each nodei is
thus captured byvi andPi : The only routes considered fori
are those inPi , and preference among these routes is given
by the valuation functionvi .

The goal is to allocate to each source nodei ∈ [n] a route
Ri ∈ Pi . The resultingroute allocation Td = {R1, . . . ,Rn}

should form a confluent tree to the destinationd. Further-
more, we are interested in route allocations that maximize
the “total social welfare” of the nodes,i.e., we want to find
an allocation satisfying

Td = argmaxT={R1,...,Rn}

n

∑
i=1

vi(Ri).

Incentive compatibility is introduced into this problem
by attempting to incentivize truthful behavior. In particular,
a nodei may have to be given some paymentsi(Td) for its
contribution to the routing treeTd.

We define theutility functionof each nodei, ui : ∏i P
i →

R, to beui(Td) = vi(Ri)+ si(Td). Although the global goal
is to maximize the total social welfare, every rational nodei
would only be interested in maximizing its own utility, even
if this comes at the expense of not achieving the global goal.
An algorithm (protocol) istruthful if it is in the best interest
of each node to reveal its true valuation function to the al-
gorithm. An algorithm isincentive-compatible(with respect
to some notion of equilibrium) if it is in the best interest

1 This assumption is consistent with BGP and the model of interdo-
main routing in [13]: Because at most one route can be installed in a
router’s forwarding table to each destination, nodes have some deter-
ministic way to break ties,e.g., based on the next hop’s IP address; so,
valuations can be adjusted accordingly to match this. However, because
only one route per neighbor is considered at a time, ties in valuation are
permitted for routes through the same neighboring node.
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Fig. 1 Route computation using BGP.

of each node to comply with all the algorithm’s instructions
(with respect to the same notion of equilibrium); compli-
ance includes, but is not limited to, providing truthful input
of valuation functions.

A distributed model such as ours poses an inherently
different challenge for the design of incentive-compatible
mechanisms (see [4, 22]) than a centralized one. This is be-
cause the computation is performed by the strategic agents
themselves and not by a reliable third party. In this paper, we
focus on achieving incentive compatibility inex-post Nash
equilibrium, which has been argued to be most appropri-
ate for distributed-mechanism computation [22]; using this
concept enables the consideration of several forms of ra-
tional manipulation other than lying about inputs (see Sub-
sec. 4.4.2 for a detailed discussion).

We are interested in efficient, distributed, and incentive-
compatible welfare-maximizing algorithms for the interdo-
main-routing problem. We require our algorithms to assume
no prior knowledge of the nodes of the topology of the net-
work.

2.2 Routing Notation

First, we present some notation for the representation of
routes. Asimpleroute is a finite sequence of consecutive
links from a source node to the destination node that con-
tains no loops (cycles).All routes in this paper are simple
unless stated otherwise.We say that nodei is in routeR (or
write i ∈ R) if i participates in one of the links inR.

If R is a route fromj (its source) to the destinationd,
andi is a node that is not inR and is adjacent toj in G, we
denote by(i, j)R the route that has(i, j) as a first link and

then followsR to the destination. We call this anextension
of R (to i). If j andk are intermediate nodes on a routeR, we
denote byR[ j ,k] the subpath ofR from j to k.

Throughout this paper, we will consider sub-instances of
the interdomain-routing problem obtained by removing one
node from the AS graphG. For every nodei, we denote by
G−i the subgraph ofG that contains all nodes inN excepti
and all links inL except thosei participates in. We can now
defineI−i = (G−i ,V ′,P ′) to be a sub-instance of the origi-
nal interdomain-routing instanceI , in which theASgraph is
G−i and, for each nodej 6= i, P ′( j) = {R∈ P( j) | i 6∈ R},
i.e., any route containingi is removed from the permitted-
route set ofj, andV ′( j) isV ( j) restricted to the sub-domain
P ′( j), i.e., the valuation of a permitted route inI−i is iden-
tical to the valuation of that route inI . We denote byT−i

d a
welfare-maximizing route allocation forI−i .

2.3 Overview of BGP

The Border Gateway Protocol (BGP) [21] belongs to the
family of path-vector protocols, the abstract properties of
which were studied in [12]. A sketch of how BGP computes
routes is shown in Fig. 1. The basic idea is that a routing tree
to a given destination is built, hop-by-hop, as knowledge of
how to reach that destination propagates through the net-
work. Communication between nodes takes place through
update messagesthat announce chosen routes.

The process is initialized when some destination ASd
announces itself to its neighbors by sending update mes-
sages. Then, each nodei iteratively establishes routes tod
by:
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1. importing, via update messages, routes tod chosen by
neighbors2 and storing the routes in arouting table;

2. choosing the best route fromi to d (through a neighbor
of i) among those available in the routing table based on
local routing policy; and

3. if there is a change toi’s best route, exporting the newly
selected route to all ofi’s neighbors using update mes-
sages.3

At any given time, each node’s (internally stored) routing
table contains the route updates received from its neighbors,
and each node is assigned at most one best route based on
its policy. (A node may not have a best route if it has not yet
received any updates or if its neighbors havewithdrawntheir
routes,e.g., because of network failures). We assume that the
network is asynchronous; so, it is possible that the network
delays the arrival of update messages along selective links.

Path-vector routing has several advantages. First, as the
only routes considered are those announced by neighbors,
the protocol enforces that the route choices form a confluent
tree. Second, each node is able to maintain its autonomy by
making its route choice based on local, expressive routing
policies. Third, changes in the network due to the addition
or subtraction of nodes or links can be announced through
update messages, and routers can use alternate routes stored
in the routing table to adapt quickly. Fourth, because entire
paths are announced, nodes can check for loops and exclude
them from routing tables.

Because BGP is currently the standard protocol for Inter-
net interdomain routing, we desire algorithms that areBGP-
compatible, i.e., that can be implemented using only small
modifications to BGP; in particular, we are interested in al-
gorithms that can be implemented using a message struc-
ture similar to BGP and that operate without a significant
increase in the size or number of messages.

3 A Sufficient Condition for Incentive Compatibility

Path-vector protocols like BGP function much like an iter-
ative game, because, at each step of the protocol, ASes ex-
amine the routes chosen by their neighbors and make local
decisions as to which routes are best. Convergence to some
equilibrium is thus an implicit goal of the protocol. We say
that a route allocation isstableif no node prefers changing
its allocated route to a different route that follows one of its
neighbors’ allocated routes. A stable route allocation canbe
regarded as a Nash equilibrium.

Definition 1 A route allocationTd = {R1, ...,Rn} is stable
iff, for every nodei,

vi(Ri) = argmax{(i, j)Rj∈Pi | (i, j)∈L∧ i /∈Rj}
vi((i, j)Rj );

2 Some neighbors may refuse to announce particular routes.
3 Again, nodes may not announce certain routes to certain neigh-

bors.

i.e., the routeRi allocated to each nodei is the most highly-
valued route consistent with the routes allocated to nodei’s
neighbors.

However, a stable route allocation that is reached by lo-
cal, selfish decision making may not be welfare maximizing.
Theprice of anarchy[17], formally defined as follows, mea-
sures how bad selfish computation can be.

Definition 2 In an instanceI , let

Wselfish= min
stableTd={R1,...,Rn}

n

∑
i=1

vi(Ri)

be the minimum total social welfare obtained by a stable
routing tree, and let

Wopt = max
Td={R1,...,Rn}

n

∑
i=1

vi(Ri)

be the maximum total social welfare (over all routing trees).
Theprice of anarchyof path-vector routing onI is Wopt

Wselfish
.

To design a welfare-maximizing path-vector protocol—a
distributed protocol in which decisions are made locally and
selfishly—we must find conditions under which the price of
anarchy is 1. We develop such a condition in the remainder
of this section.

3.1 Policy Consistency

Our interdomain-routing problem is an optimization prob-
lem in which each node assignscardinal preferences to the
different routes,i.e., the magnitude of valuation difference
between routes is meaningful. However, BGP’s local decis-
ion-making finds a stable route allocation based onordinal
preferences at each node—although operators can assign in-
teger preferences to each route, only the rank ordering in-
duced by those preferences at each node is relevant to BGP’s
decision process. This does not suffice, because the value of
BGP’s allocation,i.e., the sum of the each node’s valuation
of the route assigned by BGP, can be much lower than that
of the optimal route allocation (that maximizes that sum).

Fig. 2 shows an instance for which this is true. Assume
α > 0. Observe that the unique stable route allocation is
{1d,2d,31d,431d}. However, the optimal route allocation
is {1d,2d,32d,432d}. This allocation will never be cho-
sen by local decisions, because node 3 would prefer rout-
ing through node 1, a route that is always available for it to
choose. The price of anarchy in this example, 1+ 1

399α, is
thus arbitrarily large.

To overcome this problem, we introduce thepolicy-
consistencyproperty, which helps to ensure that the opti-
mal route allocation is stable. Informally, a nodei is policy-
consistent with an adjacent nodej if there are no two routes
to d starting with(i, j) such thati and j disagree about which
route is more preferred.
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Fig. 2 A routing instance without policy consistency.

Definition 3 Let i and j be adjacent nodes inG. We say that
i is policy-consistentwith node j iff, for every two routes
Q andR permitted atj with extensions permitted ati (i.e.,
{Q,R} ⊂ P j and{(i, j)Q,(i, j)R} ⊂ Pi):

if v j(Q)> v j(R), thenvi((i, j)Q) > vi((i, j)R).

Definition 4 An instance is policy-consistent (“policy con-
sistency holds”) iff, for every two adjacent nodesi and j, i
is policy-consistent withj.

One common example of policy consistency isnext-hop
valuations, in which nodes only consider the immediate nei-
ghbor along a route:

Definition 5 For nodei ∈ [n], define neighbors(i) = { j ∈
N | (i, j) ∈ L}, i.e., the set of nodes adjacent toi. If R′ ∈ L j

is a simple route from source nodej, and R= (i, j)R′ is
its extension to nodei, then define thenext hopon R to be
next(R) = j; i.e., the next hop of a route is the source node’s
neighbor on that route.

Definition 6 Nodei ∈ [n] has anext-hop valuation function
vi iff there exists a functionfi : neighbors(i) → R≥0 such
that, for every routeR∈ Pi , vi(R) = f (next(R)); i.e., the val-
uation of a route depends only on its next hop.

If all nodes have next-hop valuation functions, we say
that “the instance uses next-hop policies.” Note that, while
appearing simple, next-hop policies are semantically rich
enough to permit global routing instability (see Subsec. 3.3).

Another example of policy-consistent valuations areme-
tric-based valuations(defined in [12]):

Definition 7 Let δ : L→R>0 be a positive real-valued func-
tion that specifies the “length” of each link (a “metric” func-
tion). A valuation functionv that is based onδ is one in
whichv(Q)> v(R) iff ∑l∈Q δ (l) < ∑l∈Rδ (l).

It is easy to see that, if all nodes’ valuations are based
on the same underlying metric functionδ , then the network
is policy-consistent. In particular, ifδ (l) = 1 for every link
l , then this is precisely the well known shortest-path-routing
problem.

d

1

2 3

4

5

f5(4) = 2+α
f5(1) = 1

543d /∈ P5

f4(3) = 2

f4(2) = 1

f4(5) = 0
f1(d) = 1

f1(5) = 0

f2(d) = 1

f2(4) = 0

f3(d) = 1

f3(4) = 0

Fig. 3 Next-hop policies without consistent filtering. (Because all
nodes have next-hop valuation functions, the valuations here are simply
written as mappings from neighbors to values, consistent with Def. 6.)

3.2 Consistent Filtering

In traditional formulations of interdomain routing, nodesare
allowed tofilter routes arbitrarily when exporting updates to
or importing updates from neighbors,i.e., nodes can arbi-
trarily remove paths from consideration (restrictingPi).

Arbitrary filtering is rarely considered in the welfare-
maximizing formulation of interdomain routing. Like the
lack of policy consistency, arbitrary filtering can make the
price of anarchy unbounded, because a node may value a
route that is filtered by a neighbor much more than any other
route available. This is the case in Fig. 3, an instance with
next-hop policies (which are policy-consistent) and only one
stable route allocation. (Again, assumeα > 0.) Although
node 5 generally prefers routing through node 4, the path
543d is filtered. If node 4 chooses to route through node
2, node 5 can route through node 4, and this leads to the
optimal route allocation,{1d,2d,3d,42d,542d}. However,
this allocation is not stable, because node 4 prefers routing
through node 3. This prevents node 5 from routing through
node 4, causing node 5 to choose the only available route re-
maining, which goes through node 1. Thus the unique stable
route allocation is{1d,2d,3d,43d,51d}. The price of anar-
chy in this example is 1+ 1

6α, which can grow arbitrarily
large asα → ∞.

In order to achieve our objective of welfare maximiza-
tion, we require that nodes not filter routes arbitrarily. Ifa
node filters a route, it must value that route less than any
route that is not filtered—this is calledconsistent filtering.

Definition 8 Nodei filters consistentlywith respect to (ad-
jacent) nodej iff any routeR that is filtered fromi to j (R is
permitted ati but its extension toj is simple but not permit-
ted at j, i.e., R∈ Pi , ( j, i)R∈ L j , and( j, i)R /∈ P j ) is valued
less highly ati than any route not filtered fromi to j, i.e.,
vi(R)< vi(Q) for all routesQ∈ Pi such that( j, i)Q∈ P j .



8

We say that an instance “filters consistently” if every
node filters consistently with respect to every other adjacent
node.

Remark 1The isotonicityproperty studied by Sobrinho in
[23] for its relationship to optimal routing essentially com-
bines policy consistency and consistent filtering.

3.3 Robustness and Dispute Wheels

Although BGP attempts to find a stable route allocation, it
may not always do so; the hope is that the distributed, inde-
pendent route choices over time approach a confluent rout-
ing tree that does not keep changing. Unfortunately, it has
been shown that anomalous interaction of local policies can
induce protocol oscillation, causing routes to change indef-
initely [24]. Therefore, an important desideratum for path-
vector protocols like BGP is convergence:

Definition 9 We say that a path-vector protocolconverges
on an instance of the interdomain-routing problem if, for ev-
ery initial route allocation and for every sequence of nodes
taking turns updating, there exists some time after which a
stable route allocation (see Def. 1 is reached,i.e., the route
chosen by each node never changes.

Even though BGP may converge when all nodes and
links are functioning, it may diverge after failures introduce
topology changes. We call the desirable property of guaran-
teed convergence even in the presence of failuresrobustness,
which is formally defined as follows:

Definition 10 An instance of the interdomain-routing prob-
lem is robustiff, for every sub-instance obtained by remov-
ing any set of nodes and links from the original graph, there
exists a unique stable route allocation to which a path-vector
protocol converges from any initial route allocation.

Previous work has studied the effects of routing policies
on robustness, and there is an inherent trade-off in achieving
the desired autonomy and policy expressiveness at a local
level and robustness at a global level [11]. Early work con-
jectured that only shortest-paths routing might be provably
robust [24]. However, Griffin, Shepherd, and Wilfong [13]
presented a sufficient condition on policies that guarantees
robust convergence while allowing policies broader than
shortest-path routing.

This condition is calledno dispute wheel. A dispute
wheel is essentially a representation of a set of nodes and
their routing policies (i.e., ordinal preferences on paths) that
induce a routing anomaly. Any instance on which BGP di-
verges or nondeterministically converges contains a dispute
wheel; without a dispute wheel, BGP converges to a unique,
stable route allocation on the instance and every
sub-instance.

i−1

c

Q

Q

M

i

i

i+1

a b

w

w

d

i

i+1

M

wi−1

i−1

Q

Fig. 4 A dispute wheel. Dashed lines represent routes while solid lines
represent edges; the black nodes are pivots.

1 2

d

v2(2d) = 0

v2(21d) = 1+αv1(12d) = 1

v1(1d) = 0

Fig. 5 A routing instance with a dispute wheel.

Definition 11 An instance contains adispute wheel(see
Fig. 4) iff there exists a sequence ofpivot nodes
w0, . . . ,wm−1 such that for all 0≤ i ≤ m (interpret subscripts
modulom):

1. there exists aspoke route Qi ∈ Pwi ;
2. there exists arim route Mi from wi to wi+1 such that

MiQi+1 ∈ Pwi ; and
3. vwi (Qi)< vwi (MiQi+1).

Fig. 5 shows a routing instance (DISAGREE, from [13])
with policies that induce a dispute wheel. This instance has
two stable route allocations:{1d,21d} and{12d,2d}. Be-
cause the network is asynchronous, the timing of update
messages may cause BGP to converge to either of these so-
lutions or oscillate between them [13]. This anomaly is char-
acterized by the dispute wheel with pivot nodes 1 and 2, each
having the direct route tod as a spoke route and the edge to
the other pivot as a rim route. The price of anarchy in this
example is(1+α), which can be arbitrarily bad.

The absence of a dispute wheel is, in fact, the broadest-
known sufficient condition for stability and robustness. In
the design of an incentive-compatible routing mechanism,
we want to ensure that our BGP-based routing algorithm
does reach a stable tree in some equilibrium. We now show
that, in the presence of policy consistency and consistent fil-
tering, having no dispute wheel in the valuations is equiva-
lent to robustness. We note that this is the first known nec-
essary and sufficient condition for robustness.

Theorem 1 A policy-consistent instance that filters consis-
tently is robust iff it contains no dispute wheel.
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Proof The sufficient condition (the “if” direction) is a spe-
cific case of the main theorem in [13], which states that an
instance containing no dispute wheel is robust.

To prove the necessary condition (the “only if” direc-
tion), we show that any policy-consistent instance that fil-
ters consistently containing a dispute wheel must also con-
tain adispute ring, which is a dispute wheel containing no
repeated nodes on its rim. Feamster, Johari, and Balakrish-
nan [2] showed that an instance containing a dispute ring is
not robust.

Assume we have an instance containing a dispute wheel.
If the dispute wheel is a dispute ring, we are done; therefore,
assume that nodex appears at least twice on the rim, and let
Mi andM j be two of the rim routes containingx. If x appears
as a pivot node, then letx= i+1 orx= j +1 as appropriate,
so the rim route leads tox; we note thatx= i+1 implies that
Mi [x,i+1] is empty (likewise forx= j +1 andM j [x, j+1]). If x
is not a pivot, assume the next hops ofx on Mi andM j are
not the same; if they are the same, take the next hop as the
repeated nodex being considered. Without loss of general-
ity, let vx(Mi [x,i+1]Qi+1)< vx(M j [x, j+1]Q j+1). Then, for each
nodey∈ Ri [i,x] (starting with the node closest tox), consis-
tent filtering implies thatMi [y,x]M j [x, j+1]Q j+1 ∈Py, and pol-
icy consistency then implies thatvy(Mi [y,x]M j [x, j+1]Q j+1) >

vy(Mi [y,i+1]Qi+1). Therefore, we can contract the dispute
wheel atx by replacing the rim routesMi ,Mi+1, . . . ,M j with
the single rim routeMi [i,x]M j [x, j+1]; this removes one appear-
ance of any nodes appearing in bothMi andM j , in particular,
the second appearance ofx. Repeatedly applying this proce-
dure generates a dispute ring. ⊓⊔

3.4 Local and Global Optimality

The above subsections presented negative results for wel-
fare-maximizing routing when any one of three properties—
policy consistency, consistent filtering, or robustness—is ab-
sent. We now turn to a positive result derived from the inter-
esting relationship among these three properties. Recall that,
if an instance is robust, then it has a unique stable route al-
location. The following theorem states that, if all three prop-
erties hold, then this unique route allocation is globally op-
timal (i.e., it maximizes the total social welfare).

Theorem 2 In any robust, policy-consistent instance that
filters consistently, there exists a unique stable route allo-
cation Td that is optimal (welfare maximizing),i.e.,

Td = argmaxT={R1,...,Rn}

n

∑
i=1

vi(Ri).

Proof We will use the following lemma in the proof of the
theorem.

Lemma 1 If T = {R1, . . . ,Rn} is a globally optimal alloca-
tion for an instance with policy consistency and consistent
filtering, then T is stable.

Proof (of Lem. 1)Assume by contradiction thatT is not sta-
ble; then, by Def. 1, there are two adjacent nodesi and j such
that

vi(Ri)< vi((i, j)Rj ). (1)

Let k be a node such that next(Rk) = i. Becausek is policy
consistent withi, and becausei andk filter consistently, (1)
implies that

vk(Rk)< vk((k, i)(i, j)Rj );

by induction, this is also true for every nodek′ with next
hop k in T, etc., so that every nodeu routing throughi in
T prefers the routeRu[u,i](i, j)Rj to Ru. Note that we have
identified a route allocation in whichi and all nodes rout-
ing throughi are strictly better off, and all nodes not routing
throughi are unaffected. This new allocation has higher total
social welfare thanT; however, this contradicts the optimal-
ity of T. Thus, our assumption must be incorrect, andT must
therefore be stable. ⊓⊔

We are now ready to prove Thm. 2. LetT be some op-
timal route allocation. By Lem. 1, because of policy consis-
tency and consistent filtering,T is stable. However, because
of robustness, there is only one stable allocationTd [13].
Therefore,T = Td, and the unique stable allocation is also
optimal. ⊓⊔

A locally optimal route allocation is one in which nodes
are assigned their most valued routes. Such a route alloca-
tion would best satisfy selfish nodes interested in maximiz-
ing their own—as opposed to the total—welfare.

Definition 12 A route allocationTd = {R1, . . . ,Rn} is lo-
cally optimal iff, for every nodei, Ri = argmaxR∈Pi vi(R),
i.e., every nodei is allocated its highest-valued route.

The following theorem shows that the combination of
robustness, policy consistency, and consistent filtering en-
sures not only global optimality but local optimality as well.

Theorem 3 In a robust, policy-consistent instance that fil-
ters consistently, any globally optimal, stable route alloca-
tion is also locally optimal.

Proof We follow a proof technique of [23]. Consider a node
m∈ N. Let R= ukuk−1 . . .ui . . .u0 be some simple route in
Puk, such thatuk = m andu0 = d. By induction, we show
for eachui ∈ R thatSi, the route for nodeui in the globally
optimal allocationTd, is at least as good asRi =R[ui ,d]. When
i = m we get thatSm is at least as good asR; becauseR and
mwere chosen arbitrarily, we prove local optimality ofTd.
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Base case.i = 0. The induction hypothesis is trivially true,
because the only route is the empty one.

Induction step.Assume that the induction hypothesis is true
for ui−1, i.e.,

vui−1(Si−1)> vui−1(Ri−1 = ui−1ui−2 . . .d). (2)

Note thatui does not lie onRi−1, or R would not be simple.
Case I.Assumeui /∈ Si−1. Then extendSi−1 andRi−1

along the edge(ui ,ui−1). Consistent filtering ensures that
(ui ,ui−1)Si−1 ∈ Pui ; thus, from (2) and policy consistency,
we have

vui ((ui ,ui−1)Si−1)> vui (Ri = uiui−1ui−2 . . .d). (3)

Td is stable; so,Si is at least as good as any other route atui ;
in particular,

vui (Si)> vui ((ui ,ui−1)Si−1). (4)

Combining (3) and (4) gives

vui (Si)> vui (Ri),

which is the induction statement forui .
Case II.Assumeui ∈Si−1. In this case we cannot use the

policy consistency argument as in case I, because extending
Si−1 to ui creates a loop.

Suppose the induction statement forui is not true:
vui (Ri)> vui (Si). We can then create a dispute wheel of size
m= 2, following Def. 11, in which the pivot nodes arew0 =

ui−1 andw1 = ui . Let the spoke route fromw0 beQ0 = Ri−1

and let the spoke route fromw1 beQ1 = Si−1[ui ,d] (recall the
case-II assumption thatui ∈Si−1). Let the rim routeM0 from
w0 to w1 beSi−1[ui−1,ui ]

, and let the rim routeM1 from w1 to
w0 be the edge(ui ,ui−1).

The first condition in Def. 11 is satisfied becauseQ0 and
Q1 are permitted routes by assumption. The second condi-
tion is satisfied becauseM0Q1 =Si−1, which is permitted be-
cause it is the globally allocated route forui−1, andM1Q0 =

Ri , which is permitted by assumption. The third condition is
satisfied for w0 because vw0(M0Q1) = vui−1(Si−1) >

vui−1(Ri−1) = vw0(Q0) by the induction hypothesis forui−1.
Finally, note thatSi = Si−1[ui ,d] = Q1, because the globally
optimal route allocation is consistent (andui ∈ Si−1); there-
fore, our assumption that the induction statement is not true
exactly translates to the third dispute-wheel condition for
w1: vw1(M1Q0) = vui (Ri)> vui (Si) = vw1(Q1).

The presence of a dispute wheel contradicts our assump-
tion of robustness because of Thm. 1; this must mean the in-
duction statement is indeed true forui . (Recall there are no
ties in valuations.) ⊓⊔

Remark 2Global and local optimality also hold for sub-
instances. If any of the three properties (robustness, policy
consistency, consistent filtering) hold in an instance, they
also hold in all sub-instances. Thus, all sub-instances of an
instance satisfying the requirements of Thm. 2 and Thm. 3
also satisfy the requirements of these theorems.

The above result shows that BGP,with no modifications
or payments, converges to the unique welfare-maximizing
routing tree when nodes consistently filter and valuations
are policy-consistent and do not induce a dispute wheel. In
other words, nodes cannot do any better than executing BGP,
except in the case when nodes would prefer not to partici-
pate in the routing tree (i.e., some node has a negative val-
uation for the route it is allocated in the tree). Feigenbaum,
Schapira, and Shenker [7] used this result (from a a pre-
liminary version of this paper [5]) to prove that, for a sub-
class of dispute-wheel-free, policy-consistent, nonnegative
valuations, BGP is incentive-compatible in collusion-proof
ex-post Nash equilibrium. We deal with the case of negative
valuations in the next section by presenting a modification to
BGP that computes payments required to incentivize nodes
to behave truthfully.

4 A BGP-Compatible, Incentive-Compatible Algorithm
for Negative Valuations

Payments may be required to incentive participation if nodes
have negative valuations on routes. We now present an in-
centive-compatible, BGP-compatible algorithm to compute
routes and payments in the case of valuation functions that
may assume negative values. As explained in Sec. 1, we use
the termBGP-compatibleto mean that the algorithm has the
same basic structure as BGP and that it is “space-efficient,”
in that it requires only a modest increase to the storage re-
quirement of the original BGP. (This is consistent with use
of the term in [4].)

Previously, a positive result in the presence of negative
valuations was known only for LCP policies [4]. Here we
expand the class of policies that admits a positive result:
next-hop routing that obeys the Gao-Rexford conditions for
global stability.

4.1 Policies for the Commercial Internet

Next-hop policies (Def. 6) are those in which AS route pref-
erences are based only on the neighbor to which packets are
forwarded. It has been studied in the interdomain-routing lit-
erature, because it captures the property that, in today’s stan-
dard IP forwarding, an AS does not control a packet once it
has been delivered to a neighboring AS. Although it is a
conceptually simple class of policies, it is sematically rich
enough to permit global routing instability [24], and it does
not permit incentive-compatible, BGP-compatible, welfare-
maximizing routing [6]. Thus, in this paper, we start with
next-hop routing and add additional restrictions to obtaina
positive result. The additional restrictions that we add have
been studied previously; none is introduced here for the first
time.
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One well studied set of constraints assumes that a busi-
ness hierarchy underlies the AS graph and that policies are
based on the economic nature of this hierarchy. Huston’s
study of the commercial Internet [16] suggests two types
of business relationships that characterize AS inter-connec-
tions: Pairs of neighboring nodes have either acustomer-
provideror apeeringrelationship. Customers pay their pro-
vider nodes for connectivity—access to Internet destinations
through the provider’s links and announcement of customer
destinations to the rest of the Internet. Peers are nodes that
find it mutually advantageous to exchange traffic for free,
e.g., to shortcut routes through providers. A node can be
in many different relationships simultaneously: It can be a
customer of one or more nodes, a provider to others, and a
peer to yet other nodes. These agreements are assumed to
be longer-term contracts that are formed because of various
external factors,e.g., the traffic pattern between two nodes.

Intuitively, these business relationships naturally induce
routing policies. Gao and Rexford [9] formally modeled
these relationships and policies with the following three con-
ditions.

No customer-provider cycles:Let GCP be the digraph with
the same set of nodes as the AS graphG and with a di-
rected edge from every customer to its provider. We de-
mand that there be no directed cycles in this graph. If this
requirement is met, we say that “the AS graph contains no
customer-provider cycles.” This demand is a natural eco-
nomic assumption, because, if there is a cycle inGCP, then
a node is indirectly its own provider.

Prefer customers to peers and providers:A customer
route is a route in which the next-hop AS is a customer.
Provider andpeer routesare defined similarly. We require
that nodes always prefer (i.e., assign a higher value to) cus-
tomer routes over peer and provider routes. This has an eco-
nomic justification given the financial agreements underly-
ing the business relationships: Providers want to maintain
traffic flow along links for which they are paid, and cus-
tomers want traffic along routes they announce (otherwise,
they would not announce them).

Provide transit services only to customers:Nodes do not
always carrytransit traffic—traffic that originates and ter-
minates at hosts outside the node. An AS is obligated (by
financial agreements) to carry transit traffic to and from its
customers, but it does not carry transit traffic among only
providers and peers, because it receives no payment for do-
ing so. Therefore, we require that nodes announce only cus-
tomer routes to their providers and peers but announceall of
their routes to their customers.

Using the terminology and notation of Sec. 2, we for-
mally define the Gao-Rexford conditions as follows:

Definition 13 TheGao-Rexford conditionshold iff the AS
graph contains no customer-provider cycles, and, for

all nodesi ∈ [n], the following hold for all pairs of nodes
{ j,k} ⊂ neighbors(i) and for all pairs of routes{Rj ,Rk} ⊂

Pi such that next(Rj) = j and next(Rk) = k:

1. If j is a customer andk is not, thenvi(Rj)> vi(Rk).
2. If neither j nor k is a customer, then( j, i)Rk /∈ P j and

(k, i)Rj /∈ Pk, becausei does not exportRk to j or Rj

to k. If j is a customer, then, whateveri’s relationship
to k, Rj is exported tok, andRk is exported toj. Thus,
if j is a customer,(k, i)Rj ∈ Pk if permitted byk, and
( j, i)Rk ∈ P j if permitted by j.

The Gao-Rexford conditions limit the types of routes
available to ASes. Specifically, if a nodei receives a route
announcement from one of its customers, then every AS on
that route is a provider of its next hop on that route.4 This is
because ASes export only customer routes to their providers.
If R is a customer route ati with next hopj, then j must have
announced the route toi, its provider; thus,Rmust be a cus-
tomer route atj. This argument can then be applied induc-
tively alongR, implying thatRconsists entirely of provider-
customer links.

It was proven in [9] that, if all nodes obey the Gao-
Rexford conditions, enforced naturally by Internet econom-
ics, BGP predictably converges to a stable routing tree, even
after node and link failures. Later work [8] showed that the
Gao-Rexford conditions imply the no-dispute-wheel prop-
erty introduced by [13] and reviewed earlier in Subsec. 3.3.
In addition, the Gao-Rexford conditions enforce consistent
filtering: All routes are announced to customers, and only
non-customer routes (which are valued less than customer
routes) are filtered to peers and providers. These remarks—
along with the property that next-hop policies are policy-
consistent (see Subsec. 3.1)—prove the following proposi-
tion, which states that the policies outlined in this subsection
satisfy the requirements of Thms. 1–3.

Proposition 1 An instance with next-hop policies that obey
the Gao-Rexford conditions is policy-consistent, filters con-
sistently, and has no dispute wheel.

4.2 The Algorithm

The following algorithm is an extension to BGP that com-
putes routes and payments for incentive-compatible, wel-
fare-maximizing routing when policies are next-hop based
and obey the Gao-Rexford conditions.

4.2.1 High-Level Overview

The mechanism implemented by the algorithm belongs to
the Vickrey-Clarke-Groves (VCG) family of mechanisms,

4 This property is similar to thevalley-freeproperty described in [8].



12

just as previous routing mechanisms have (e.g., the algo-
rithms in [20] and [4]). The payments issued by this mechan-
ism essentially compensate each node for its contribution to
the routing tree; intuitively, this can be determined by con-
sidering the best routing tree available when that node is not
present in the AS graph (i.e., when it refuses to carry any
transit traffic). Although this can trivially be done by run-
ning BGPn additional times—on then AS graphs obtained
by removing each ofn nodes from the original—our algo-
rithm accomplishes this by modifying a single run of BGP.
The payments and their analysis are discussed more fully in
Subsec. 4.3 below.

The algorithm computes best routes in essentially the
same manner as BGP, but it adds extra information to up-
date messages so that nodes can compute the mechanism’s
payments once the routes have been determined. This infor-
mation is also stored in nodes’ routing tables, requiring one
extra bit of storage for every transit AS on an imported route.
These bits are used to determine the next hop of the bestk-
avoiding route—the best route inI−k, i.e., for the instance
in which nodek does not participate—for every transit node
k on the best route for each node inI . These next hops are
used directly in computing payments and can be stored us-
ing one extra row in the routing table, denotedLi below. The
extra bit per transit node in each row of the routing table and
the extra row used to store the next hops require a constant-
factor increase in the space complexity of the original BGP;
a similar amount of extra storage was used by the algorithm
described in [4] for lowest-cost-path routing and satisfiesthe
condition of “BGP compatibility” put forth in that paper.

The dynamics of the algorithm can be summarized as
follows. Computation of best routes andk-avoiding next
hops is triggered when nodes receive update messages, just
as in BGP (see Subsec. 2.3). Update-message processing is
divided into two cases: (I) the message is from the most val-
ued neighbor that has yet sent a message, in which case the
route contained in the message is chosen as the best route;
and (II) the message is not from the most valued neighbor
that has yet sent a message, in which case the extra bits in
the message are used to update the choices of the bestk-
avoiding next hops. Unlike BGP, if nodex chooses nodey
as its next hop, an update message is still sent fromx back
to y; this extra message is used to convey availability toy of
k-avoiding routes throughx and is processed using case (II).

4.2.2 Input and Output

Input: An instance of the interdomain-routing problem with
next-hop policies obeying the Gao-Rexford conditions. As
in Def. 6, we assume that each nodei ∈ [n] has a function
fi : neighbors(i)→ R≥0, such thatvi(R) = fi(next(R)).

Output: A route allocationTd = {R1, . . . ,Rn} that forms a
confluent tree tod, such that the tree maximizes the total
social welfare,i.e.,

Td = argmaxT={R′
1,...,R

′
n}

n

∑
i=1

vi(R
′
i),

and a paymentsi to each nodei.

4.2.3 Communication and Storage

Structure of Update Messages:An update messagemsent
by nodei contains a routeRm∈Pi and, for every transit node
k∈Rm (k /∈ {i,d}), a bitBm(k). Bm(k) = 1 if i has, in its rout-
ing table, ak-avoiding route tod, i.e., some permitted route
R∈Pi such thatk /∈R. These bits are used to populate the list
Li , defined below, that is used to compute the mechanism’s
payments.

Storage at Each Node:Each nodei has a routing tableYi

indexed by neighbors ofi. If j ∈ neighbors(i), then letYi( j)
be the most recent update message sent by nodej, so that at
most one announced route is stored per neighbor. Initially,
Yi( j) = /0 for all j. Each nodei also has a listLi , defined as
follows: Assume the current best route ati is Ri ; if k ∈ Ri

is a transit node (k /∈ {i,d}), thenLi(k) = next(R′), the next
hop on the bestk-avoiding routeR′ in i’s routing table.Li(k)
will be used, at the end of the algorithm, to compute the
component of the payment to nodek that is attributable to
nodei, denotedsi

k. Fig. 6 shows an example of the storage
at each node.

4.2.4 Execution of the Algorithm

Start: AS d sends update messagem= (d, /0) to all neigh-
bors.

Update-Message Processing:Let m= (Rm,Bm) be the up-
date message received at nodei from j ∈ neighbors(i). If
(i, j)Rm /∈ Pi and next(Rm) 6= i (the route is not permitted),
then discard the message. Otherwise,(i, j)Rm ∈ Pi

or next(Rm) = i, and the update message should be stored
in the routing table so thatYi( j) = (Rm,Bm).

(Case I)Suppose that the update message is received
from the most valued neighbor so far,i.e., next(Rm) 6= i and

fi( j) = max
{ j ′∈neighbors(i)|Yi( j) 6= /0}

fi( j ′).

Then, eitherRm is a new best route tod (i.e., Rm is the new
Ri) or the neighbor exportingRm has an updated bit vector
Bm. ResetLi to empty and, for eachk ∈ Rm such thatk 6=

d, do the following to repopulateLi : If Bm(k) = 1, then set
Li(k) = j (if node j has ak-avoiding route, then it is recorded
as the best next hop whenk cannot be used for transit); if
Bm(k) = 0 ork= j, then:
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Dest. Valuation L5(4) = 1 L5(3) = 4 → Lz: bestk-avoiding next-hop ASes for transitk on the best route

d v5(43d) = 2+α AS 4 AS 3 → R4, the route chosen by neighbor AS 4;the current best route
B4(3) = 1 → B4, the bit vector sent with update from neighbor 4

d v5(1d) = 1 AS 1 → R1, the route chosen by neighbor AS 1
→ B1, the bit vector sent with update from neighbor 1, is empty

Fig. 6 An example routing table for node 5 in Fig. 2 using the algorithm from Subsec. 4.2. (Assume in Fig. 2 that no routes are filtered and that
all links are customer-provider links, where the AS with thegreater number is the provider.)

1. LetA= neighbors(i)−{ j} and let

a= argmax{a′∈A|Yi(a′) 6= /0} fi(a
′)

be the most valued node inA. Let (Ra,Ba) =Yi(a) be the
routing-table entry fora.

2. If k /∈ Ra, then setLi(k) = a.
3. If not,k∈ Ra. If Ba(k) = 1, then setLi(k) = a.
4. If Li(k) has still not been set, then repeat at (1) with

A= A−{a}. Discontinue repeat ifA= {a}, i.e., if there
would be no nodes left inA.

Finally, setRi = (i, j)Rm. (Becausej is the most valued nei-
ghbor to send an update so far, its route is the best route so
far.)

(Case II)Suppose that the update message’s sourcej is
not the most valued neighbor that has communicated so far,
i.e., next(Rm) = i or

fi( j) 6= max
{ j ′∈neighbors(i)|Yi( j) 6= /0}

fi( j ′).

For each current transit nodek∈Ri (k /∈ {i,d}), setLi(k) = j
if j has ak-avoiding route andj is more valued thanLi(k),
the current bestk-avoiding next hop;i.e.:

1. fi( j) > fi(Li(k)); and either
2a. k∈ Rm andBm(k) = 1; or
2b. k /∈ Rm.

If any changes were made toLi in either of the cases
above (including any time case I was triggered), then send
update messagesm′ = (Ri ,B′

m) to all neighbors ofi, where
B′

m(k) = 1 if Li(k) 6= /0 (there is ak-avoiding route known)
and B′

m(k) = 0 if Li(k) = /0 (there is nok-avoiding route
known). (If Ri is a non-customer route and neighborn is
also a non-customer, then the update message( /0, /0) should
be sent to comply with the Gao-Rexford conditions, imply-
ing a withdrawal of the previous route. Note that, in Lem. 2
below, we prove that a withdrawal will never happen.)

Payment Computation: Once the algorithm converges,
each node i can compute thepayment component
si
k = fi(next(Ri))− fi(Li(k)) for every transit nodek ∈ Ri

(k /∈ {i,d}), which is the component of the total payment to
k that is attributable toi. The total payment to each nodek
is then the sum of all the payment components tok: sk =

∑i 6=k si
k.

In the following subsection we analyze the algorithm
presented above and discuss its properties.

4.3 Convergence, Optimality, and BGP Compatibility

We now show that, on instances that obey the Gao-Rexford
conditions, and where all source nodes have next-hop poli-
cies, the following properties hold for the algorithm in Sub-
sec. 4.2:

1. It converges,i.e., there exists a time after which route
choices have settled on a unique, stable route allocation
(in the sense of Def. 1).

2. It outputs a route allocation that optimizes the social
welfare.

3. It is BGP-compatible, in the sense that it entails only a
constant-factor increase in space complexity over BGP.
To show this we establish that our algorithm requires
only slight modification to BGP messages (with a lim-
ited increase in message size).

4.3.1 Convergence

Theorem 4 The algorithm in Subsec. 4.2 is robust on in-
stances with next-hop policies that obey the Gao-Rexford
conditions,i.e., it converges in finite time to a unique, stable
route allocation.

Proof This theorem follows from more general results dis-
cussed in Sec. 3. In the algorithm, routes are chosen exactly
as they are in BGP; by Prop. 1 and Thm. 1, the theorem
statement is true for BGP on the instances being consid-
ered. However, the update-message dynamics of the algo-
rithm differ from BGP in two ways, and we must reconcile
these differences for the result to apply to the algorithm.

The first difference is the lack of withdrawal messages
in the algorithm. In both the algorithm and in BGP, an up-
date message is sent fromi to j when a new best route is
chosen ati. In BGP, this message either (1) contains the
new route (if i can export its choice toj), or (2) contains
a withdrawal (if i cannot export its choice toj). In the al-
gorithm, (1) still occurs, but (2) does not. However, the fol-
lowing lemma shows that this is irrelevant: For valuations
obeying the Gao-Rexford conditions, withdrawal messages
are never sent.

Lemma 2 If, at some time, node a sends node i an update
message(Rm,Bm) such that Rm 6= /0, i.e., node a exports a
route to node i, and we assume there are no failures, then
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at any future time, there will exist a route Ra in i’s routing
table, such thatnext(Ra) = a.

Informally, this lemma means that once a node exports
a usable route to a neighbor (where “usable” means allowed
by the Gao-Rexford conditions), any route chosen by the
node will be a usable route for that neighbor. Therefore,
route withdrawals are unnecessary; routes are only replaced
with new (usable) routes.

Proof (of Lem. 2)Changes to the routing table are update-
driven. A change, due to a new update or withdrawal, will
only be sent ifa switches fromRm to some other routeRa.
We must show that, in this case, an update message withRa

is sent toi, and a withdrawal is not sent.
If a is a provider ofi, thena will export Ra to i. There-

fore, we can assume, without loss of generality, thata is a
peer or customer ofi; thenRm must be a customer route of
a, or it would not have been sent toi. If a switches toRa

becauseva(Ra) > va(Rm), thenRa must also be a customer
route, and it will be exported toi. If not, thenRm must have
been withdrawn. (If it was replaced, next-hop policies dic-
tate thatva(Ra) = va(Rm), and that route will be exported
to i.) In this case, its customerc = next(Rm) switched to a
route that was filtered; but, this new route must be a non-
customer route atc. Because it is less valued than the cus-
tomer routeRm[c,d], that switch must have also happened be-
cause of a withdrawal, and these same arguments apply. This
could continue downstream tod, but the last link must be a
customer route that is always available; this leads to a con-
tradiction. ⊓⊔

Given Lem. 2, the convergence to a stable route alloca-
tion implied by Thm. 1 for BGP also applies to our algorithm
instances that obey the policy restrictions in Subsec. 4.1,be-
cause the dynamics of route choices made by our algorithm
(for the original instanceI ) are the same as BGP.

The second difference is that the algorithm sends ad-
ditional messages to find next hops in sub-instancesI−k,
wherek∈ [n]. In particular, update messages are sent when-
ever the availability ofk-avoiding routes changes (i.e., some
change in the listLi). These messages are not used in BGP;
so, to prove that the algorithm converges, we must show that
they eventually stop as well.

First, note that the Gao-Rexford conditions hold for sub-
instances if they hold for the original instance; therefore, a
unique, stable routing tree exists for each sub-instance, and
route withdrawals are unnecessary. Second, because valua-
tions are next-hop based, only the availability of ak-avoid-
ing route through a given neighbor needs to be known, not
the route itself. (This is why the algorithm only sends a bit
vector of availability.) But, because routes are never with-
drawn, once a neighbor indicates that ak-avoiding route
is available, ak-avoiding route through that neighbor will
always be available. Because there are a finite number of

neighbors,k-avoiding-route availability can improve only
a finite number of times. Thus, at some point along every
edge, update messages will no longer be sent.

This means the algorithm will converge on the instances
considered, and, by Prop. 1 and Thm. 1, its output is the
unique, stable route allocation. ⊓⊔

4.3.2 Welfare Maximization

Theorem 5 The routing tree Td output by the algorithm in
Subsec. 4.2 maximizes the total social welfare on instances
with next-hop policies that obey the Gao-Rexford conditions.

Proof This result also follows from more general results
presented in Sec. 3. By Prop. 1 and Thm. 2, the unique stable
route allocation is welfare-maximizing. By Thm. 4, the algo-
rithm is robust on instances with next-hop policies that obey
the Gao-Rexford conditions; thus, it converges and outputs
that unique stable route allocation. ⊓⊔

4.3.3 BGP Compatibility

We are left with showing that the algorithm is BGP-compat-
ible. In addition to the routing-table storage required by the
original BGP, this algorithm requires, at nodei, storage of:

1. the bitBm( j) for every j ∈ Rm sent in an update message
m stored ati; and

2. the next hops on the currently best knownk-avoiding
routes for everyk∈ Ri , whereRi is the current best route
to d.

This requires one additional bit per transit AS, per row (i.e.,
per update message) in the routing table and one additional
row to store the next hops. This amounts to a constant-factor
increase in space complexity and fulfills our requirements
for BGP compatibility.

4.4 Incentive Compatibility

We now prove that our algorithm is incentive-compatible.
We first prove this result in a restricted, centralized model
and then use it to prove incentive compatibility in a more
general, distributed model.

4.4.1 Centralized Model

To prove that our algorithm is incentive-compatible in ex-
post Nash equilibrium, we first consider the following cen-
tralized (and unrealistic) model. The nodes are communicat-
ing directly with some trusted central entity (“the mechan-
ism”). Each node reports its valuation function to the mech-
anism, which then runs the algorithm in Subsec. 4.2, sim-
ulating the nodes’ actions, to compute the route allocation
and the nodes’ payments.
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Classical results in microeconomic theory (see [14]) es-
tablish thatVickrey-Clarke-Groves(VCG) payments guar-
antee the strongest possible result for this centralized model:
truthful reporting by all nodes leads to adominant-strategy
equilibrium. That is, a rational node’s best strategy is to re-
port its true preferencesregardlessof the valuation functions
reported by the other nodes. Hence, a node need not make
any assumptions about the other nodes’ behavior or have any
a priori knowledge about their preferences. Intuitively, the
VCG payment to each nodei is the increase in the social
welfare of the other nodes caused byi’s participation in the
algorithm.

In the language of microeconomic theory, a centralized
algorithm in which truth telling is a dominant-strategy equi-
librium is calledstrategyproof. We prove that our algorithm
is strategyproof by showing that it is a member of the VCG
class.

Theorem 6 The algorithm in Subsec. 4.2 is strategyproof.

VCG payments are expressible as

pk = ∑
i 6=k

vi(Ri)−hk(T
−k
d ), (5)

in whichhk(·) is an arbitrary function ofT−k
d . Note that this

implies that every strategic agent’s payment must depend
solely on the other agents.

We define the payment to each node to be

sk = ∑
i 6=k

vi(Ri)−∑
i 6=k

vi(R
−k
i ), (6)

whereRi is the route allocated toi in Td, andR−k
i is the route

allocated toi in T−k
d . Note that, if

hk(T
−k
d ) = ∑

i 6=k

vi(R
−k
i )

in (5), thenpk = sk.
The key observation is that these payments can be “bro-

ken down” into components computed by the different nodes
(in a distributed fashion). Loosely speaking, nodei’s com-
ponent in the payment to nodej corresponds toj ’s contribu-
tion to i’s welfare—the difference in the valuesi assigns to
the paths he gets with and withoutj. These components are
computed during the algorithm, and the final payment is the
sum of payment components computed once the algorithm
converges.

Definition 14 Thepayment componentfor j attributable to
i is

si
j = vi(Ri)− vi(R

− j
i ),

and thepaymentto each nodek is

sk = ∑
i 6= j

si
k.

It is easy to verify that the paymentsk in Def. 14 is the
same as that in (6).

Payment components must be computed for transit
nodes only; if j is not a transit node oni’s best route,i.e.,
j /∈ Ri , thenRi = R− j

i , andsi
j = 0. We now show that, at the

end of the algorithm, each nodei has enough information
to computesi

j for all transit nodesj. Because preferences
are next-hop based,si

j = vi(Ri)− fi (Li( j)), where fi is the
next-hop valuation as in Def. 6. Thus, Thm. 6 will follow
from the fact thatLi( j) is the next hop of the bestj-avoiding
route computed by the algorithm, which we prove in Thm. 7.

Theorem 7 For every source node i, the node Li(k) in the
algorithm in Subsec. 4.2 is the next hop of the optimal route
for i in G−k.

Proof We shall require the following four lemmas.

Lemma 3 If j is the optimal next hop for i, and, for some
k ∈ [n], j has a k-avoiding route, then the next hop of the
optimal k-avoiding route at i is also j.

This lemma justifies the step in the algorithm that immedi-
ately setsk-avoiding next hops whenever an update message
containing a new best route is received.

Proof (of Lem. 3)By Thm. 3, if j is the optimal next hop,
then

j = argmaxa∈neighbors(a) fi(a).

Therefore, ifj has ak-avoiding routeR for somek∈ [n], then
vi(R) = fi( j) ≥ fi(next(R′)) for all otherk-avoiding routes
R′. Thus j is also the next hop of the optimalk-avoiding
route ati. ⊓⊔

Lemma 4 If node i has not received an update message
from neighbor a, then either node a’s route in I−k (for any
k ∈ [n]) cannot be exported to i, or node a has no route in
I−k.

This lemma means that neighbors withk-avoiding routes
permitted ati will send update messages toi; information
from neighbors that do not send update messages toi is ir-
relevant in computing payment components.

Proof (of Lem. 4)If a is routing throughi, thena will send
an update message if it has anyk-avoiding routes available.
Thus, without loss of generality, we can assume thata is not
routing throughi.

If a has not sent an update message toi because it has not
learned any paths tod, thena also has nok-avoiding routes
to d.

The remaining case is thata has not sent an update mes-
sage toi because it cannot announce its routeRa to i. In this
case,i must not be a customer ofa, and next(Ra) is also not
a customer ofa. If k /∈ Ra, thenRa is a k-avoiding route,
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but a cannot export it toi because next(Ra) and i are both
non-customers.

If k∈Ra, thena may choose a different routeR−k
a in I−k.

If R−k
a is a non-customer route, then it is still unusable byi,

which explains who no update was sent. IfR−k
a is a customer

route, then it must not be available toa whenk is present;
otherwise,a would choose it over the non-customer route
Ra. But this is not possible, because every link(u,w) ∈ R−k

a
is a customer link, including the last link tod. This means
that the route must be exported up the chain of providers to
nodea at all times, which leads to a contradiction; therefore,
R−k

a cannot be a customer route at nodea, which makes it
unusable by nodei. ⊓⊔

Lemma 5 If k /∈ Ra (the route allocated to a by the algo-
rithm for the original instance I) and(i,a)Ra ∈Pi , then there
exists a route R−k

a ∈ Pa such that(i,a)R−k
a ∈ Pi for the sub-

instance I−k.

This lemma addresses availability ofk-avoiding routes.
Although a node may choose ak-avoiding route as its best
route for I , it may be that downstream changes prevent it
from choosing that route in the sub-instanceI−k; in fact, it
is possible that nok-avoiding route is available. This lemma
excludes this possibility. The algorithm uses this fact to pop-
ulate the listsLi .

Proof (of Lem. 5)If no node j ∈ Ra chooses a different
path (other thanRj ) when k is not present, thenRa itself
is a k-avoiding path usable byi. If some downstream node
j switches to a different pathR′

j whenk is removed, then
the pathRa[a, j ]R

′
j should be usable ati, unless it is filtered

somewhere betweenj andi.
Assume this happens. The relationships among nodes

betweenj andi have not changed: Because these nodes orig-
inally propagatedRj , they would also propagateR′

j ; there-
fore, j itself must filterR′

j . This means thatR′
j must be a non-

customer route, and the node upstream ofj towardsa must
also be a non-customer. But becauseRj was not filtered, it
must be a customer route. Becausev j(Rj) > v j(R′

j) in this
case,j would never have switched toR′

j upon removal ofk
unlessRj was filtered downstream ofj. However, this same
argument applies to all downstream nodes (which must all
be customers); because the last link adjacent tod must be
a customer link and the direct route is always exported, this
leads to a contradiction. ⊓⊔

Lemma 6 Given some fixed k, it is not possible to have
Li(k) = j and Lj(k) = i at the same time.

In the algorithm, nodes send theirk-avoiding-route avail-
ability to their neighbors. This lemma precludes the possi-
bility that two nodes choose each other as theirk-avoiding
next hop.

Proof (of Lem. 6)If i is a customer ofj, then the only routes
exported to j are customer routes. Therefore, ifi exports
a k-avoiding routeR to j such that j considers( j, i)R its
bestk-avoiding route,R is a customer route ati. This im-
plies fi(next(R))> fi( j); so,Li(k) 6= j. The same argument
works, by symmetry, ifj is a customer ofi.

If i and j are peers, then the only routes they export
to each other are customer routes. Assume that each node
chooses the other as a bestk-avoiding next hop; then each
must have a customer route exported to the other. But those
customers would be better choices fork-avoiding next hops,
contradicting the assumption. ⊓⊔

We are now ready to prove Thm. 7. We have already
shown that the algorithm converges and that, when it does,
the route choice is optimal; thus, every nodei receives a
route through its most highly valued neighborj. From
Lem. 2, we know that, oncei learns a route throughj, it
always has a current update message fromj; update mes-
sages are sent whenever a change to the best route or the
bestk-avoiding next hop (for anyk) occurs.

For eachk, consider the entryLi(k) that is in the list
when the algorithm converges. These entries have been pop-
ulated in the following way.Li(k) = j if B j(k) = 1 or k /∈
(i, j)Rj ; i.e., Li(k) = j if j has ak-avoiding route. By Lem. 3,
if j has ak-avoiding route for somek, then this entryLi(k)
is optimal.

If B j(k) = 0 andk ∈ (i, j)Rj , then j does not have ak-
avoiding route. In this case, the algorithm setsLi(k) to be
the most valued neighborm that has sent an update message
(Rm,Bm) in which eitherk /∈Rm orBm(k)= 1. First, we show
that the algorithm chooses the most valued neighbor; then
we show that the neighbor has ak-avoiding route.

By Lem. 4, we must only consider neighbors that send
update messages as candidates for the optimalk-avoiding
next hop; thus, the algorithm is not excluding viable choices
by examining update messages alone. The entry forLi(k)
is set in either case I or case II of the algorithm. If set in
case I, the entry is the most valued neighbor because the
latest update messages are scanned in decreasing order of
valuation; the scan is accurate because case I resetsLi and
then examines the most recent update messages. If set in
case II, the entry is the most valued becauseLi(k) is only set
when an update message is received from a neighbor more
valued than the previousLi(k), which was either set by a
case-I or case-II message; thus, at convergence, the entry
will represent the most valued neighbor with ak-avoiding
route.

By Lem. 5, if k /∈ Rm, thenm must have ak-avoiding
route usable byi, and the algorithm does not need to scan
Bm. If Bm(k) = 1, the update message fromm itself states
thatm has ak-avoiding route. Therefore, the neighbor cho-
sen forLi(k) certainly has ak-avoiding route.



17

Finally, Lem. 6 and the Gao-Rexford conditions assure
us that the next hops chosen at different nodes do not create
routing loops; thus they are consistent with a tree. ⊓⊔

4.4.2 Distributed Model

We have thus far considered a centralized model in which
nodes report valuations to a trusted mechanism that then
computes the route allocation and payments. We now turn
our attention to the distributed model, in which the com-
putation is executed by the strategic agents themselves (in
our case, the ASes). The distributed model is strictly less
restrictive than the centralized model above. As in the cen-
tralized case, a node can pretend to have another valuation
function, simply by following the specification of the al-
gorithm as if its valuation function were different. How-
ever, in the distributed model, a node also has other forms
of “manipulation” available to it: making bogus route an-
nouncements to other nodes, announcing inconsistent infor-
mation to different neighbors, inconsistently filtering, and
more. Thus, incentive compatibility in the distributed model
requires stronger assumptions than in the centralized model.

The techniques and assumptions we use to prove incen-
tive compatibility in the distributed model follow closelythe
work of Shneidman and Parkes [22]. We show that a node
cannot benefit by deviating from the information-revelation,
communication, and computational actions it is instructed
to perform by the protocol.5 We assume an environment in
which there exists auniquetrusted node called “the bank”
that functions as a non-strategic accounting and charging in-
frastructure, communicates with the strategic source nodes
across the network, and can enforce penalties when it detects
a problem. The only modification needed to the algorithm is
requiring that all communication between the bank and the
nodes be signed and receive signed acknowledgments. With
this minor modification, we are able to prove that our dis-
tributed algorithm is incentive-compatible inex-post Nash
equilibrium.

An ex-post Nash equilibrium is a robust solution con-
cept: In such an equilibrium, no single node would devi-
ate from the algorithm even if it knew the other nodes’ pri-
vate valuations.6 In the context of interdomain routing, this
means that no AS would deviate from the algorithm even if
it knew the other ASes’ routing policies.

We now define ex-post Nash equilibrium in the context
of interdomain routing; see [22] for a general game-theoretic
definition. LetA be an algorithm and letv= (v1, . . . ,vn) be

5 These three properties are called IC-, CC-, and AC-compatibility
in [22].

6 The ex-post Nash equilibrium concept is strictly stronger than the
well known Nash-equilibrium concept. A Nash-equilibrium-oriented
implementation of our algorithm would have to assume that every node
is familiar with the preferences of all other nodes. This assumption is
unrealistic in interdomain routing.

ann-tuple of nodes’ valuation functions. Letv−i denote the
tuple of all valuations except that of nodei. LetoA

i (v) denote
i’s outcome (route and payment) when all nodes (includ-
ing i) executeA and their valuations are as inv. Finally, let
OA

i (v−i) denote the set of outcomes (routes and payments)
thati can achieve if allothernodes executeA and their valu-
ations are as inv−i (i.e., all outcomes that nodei can obtain
via “manipulations”).

Definition 15 An algorithmA is incentive-compatible in ex-
post Nash equilibriumif, for all v,

∀o∈ OA
i (v−i), ui(o

A
i (v))≥ ui(o).

Thus, ifA is incentive-compatible in ex-post Nash equi-
librium, then each AS is best off (i.e., its utility is weakly
highest) by followingA whenever all other ASes followA,
regardlessof the routing policies of the other ASes. Shnei-
dman and Parkes [22] view the need to settle for an ex-
post Nash equilibrium in the distributed model (instead of a
dominant-strategy equilibrium, as in the centralized model)
as “the cost of distributing mechanism computation across a
network.”

Theorem 8 The modified algorithm (with signed communi-
cation) is incentive-compatible in ex-post Nash equilibrium.

Proof Consider the following three components of nodes’
actions as prescribed by a distributed algorithm:

1. Information-revelation actions: These are the subset
of the algorithm’s prescribed actions from which the de-
viation of a node is equivalent to that node’s executing
the algorithm with a different valuation function.

2. Message-passing actions:These are the subset of the
algorithm’s prescribed actions that instruct the node to
pass a message from one neighbor to another (e.g., pass-
ing messages from other nodes to the bank).

3. Computational actions: These are the subset of the al-
gorithm’s prescribed actions that instruct the node to par-
ticipate in the algorithm’s calculations (e.g., computing
the payment components).

We will use the following proposition in our proof.

Proposition 2 (Shneidman and Parkes [22]) An algorithm
A is incentive-compatible in ex-post Nash (in the distributed
model) if the following three conditions hold:

1. A is strategyproof in the centralized model;
2. Each node is always best off when it executes the mess-

age-passing actions prescribed by A (regardless of that
node’s information-revelation and computational ac-
tions);

3. Each node is always best off when it executes the com-
putational actions prescribed by A (regardless of that
node’s information-revelation and message-passing ac-
tions).
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We now show that our algorithm in Subsec. 4.2, mod-
ified with signed communication, meets the requirements
of Prop. 2. Thm. 6 establishes that our algorithm is strat-
egyproof in the centralized model. Thus, we are left with
showing that a node is never incentivized to deviate from
the prescribed message-passing and computational actions
(regardless of its other actions).

We first consider message-passing actions. Observe that
the only message-passing actions in our algorithm are those
in which a node forwards messages from another node to the
bank. Because these messages are signed, the node cannot
change the messages’ contents; thus, the only form of devi-
ation available to it is dropping the messages. However, re-
call that all communication between the bank and the nodes
must be paired with signed acknowledgments, and that the
bank is capable of penalizing nodes when detecting devia-
tions. Thus, a node is never incentivized not to follow the
suggested message-passing actions.

We next consider the computational actions, which, in
our algorithm, are the computation of the payment compo-
nents. Because each nodea only computes payment com-
ponents for other nodes, and because these payment com-
ponents have no bearing ona’s route allocation and pay-
ment, nodea is never incentivized not to follow the sug-
gested computational actions.

Hence, the three conditions of Prop. 2 hold for our mod-
ified algorithm, and Thm. 8 follows. ⊓⊔

5 Conclusions and Open Questions

In this paper, we addressed the problem of incentive-com-
patible, welfare-maximizing interdomain routing. We pre-
sented welfare-maximizing, incentive-compatible and BGP-
compatible mechanisms for a class of routing policies that
is more general than LCP routing, thus answering an open
question from [4,20]. Additionally, we derived general con-
ditions that are sufficient for designing incentive-compat-
ible, welfare-maximizing protocols for more general classes
of routing policies. It would be interesting to find other nat-
ural classes of valuations for which BGP-compatible mech-
anisms exist, especially in the case of negative valuations.

There are many other issues that remain unresolved and
call for further research. One such issue is that of designing
distributed BGP-compatible mechanisms that obtaingood
approximationsof the total social welfare. A first step to-
wards the design of BGP-compatible approximation mecha-
nisms would be a nontrivial characterization of routing poli-
cies for which the price of anarchy is low.

Introducing incentive compatibility into the inter-
domain-routing problem involves paying ASes for their par-
ticipation in the algorithm when valuations may be nega-
tive. The way these payments are computed leads to many

interesting questions: How can we make sure that the ASes
are not overpaid for the transit services they provide? (VCG
mechanisms are often criticized in the literature for overpay-
ing the strategic agents.) In our formulation, the ASes do not
pay each other but are paid bythe bank(as in [22]). Is it pos-
sible to get rid of the bank and have ASes pay other ASes
directly for transit services rendered?

A distributed model such as ours poses an inherently
different challenge for the design of incentive-compatible
mechanisms that involve payments than a centralized one
(see [4, 22]). This is because the computation is performed
by the strategic agents themselves and not by a reliable third
party. We reconcile the strategic model and the distributed
computational model by using techniques similar to those
in [22]. In particular, we use cryptographic signing. Is it pos-
sible to reconcile the two models without having to resort to
this technique?

Finally, the question of optimal communication com-
plexity for the computation of routes and payments remains
open. We have stressed space complexity in this paper, but
there may be an increase over BGP in the number of update
messages sent by our algorithms. This is because our algo-
rithms have an additional condition that triggers sending an
update message, namely, any change to the best knownk-
avoiding route (or next hop), for any transit nodek on the
current best path. Update messages are not sent for this rea-
son in the original BGP. Although the message complexity
of our algorithms is not unreasonable with respect to BGP’s
worst-case performance, the optimal number of messages
needed to compute payments in addition to routes is cur-
rently unknown.
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dos,É., Vazirani, V. (eds.)Algorithmic Game Theory, pp. 363–
384. Cambridge University Press (2007)

8. Gao, L., Griffin, T. G., Rexford, J.: Inherently Safe Backup Rout-
ing with BGP. InProc. 20th IEEE International Conference on
Computer Communications (INFOCOM’01), pp. 547–556. IEEE
Computer Society (2001)

9. Gao, L., Rexford, J.: Stable Internet Routing without Global Co-
ordination.IEEE/ACM Trans. Networking9(6):681–692 (2001)

10. Goldberg, S., Halevi, S., Jaggard, A. D., Ramachandran,V.,
Wright, R. N.: Rationality and Traffic Attraction: Incentives for
Honest Path Announcements in BGP. InProc. 14th ACM Con-
ference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication (SIGCOMM’08), pp. 267–278.
ACM Press (2008)

11. Griffin, T. G., Jaggard, A. D., Ramachandran, V.: Design Prin-
ciples of Policy Languages for Path Vector Protocols. InProc.
9th ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM’03),
pp. 61–72. ACM Press (2003)

12. Griffin, T. G., Shepherd, F. B., Wilfong, G.: Policy Disputes in
Path Vector Protocols. InProc. 7th International Conference on
Network Protocols (ICNP’99), pp. 21–30. IEEE Computer Soci-
ety (1999)

13. Griffin, T. G., Shepherd, F. B., Wilfong, G.: The Stable Paths
Problem and Interdomain Routing.IEEE/ACM Trans. Networking
10(2):232–243 (2002)

14. Green, J., Laffont, J.: Incentives in Public Decision Making. In
Studies in Public Economics, vol. 1, pp. 65–78. North Holland,
Amsterdam (1979)

15. Hershberger, J., Suri, S.: Vickrey Prices and Shortest Paths: What
is an edge worth? InProc. 42nd IEEE Symposium on Foundations
of Computer Science (FOCS’01), pp. 129–140. IEEE Computer
Society (2001)

16. Huston, G.: Interconnection, Peering, and Settlements. In Proc.
9th Internet Global Summit (INET’99). The Internet Society
(1999)

17. Koutsoupias, E., Papadimitriou, C. H.: Worst-Case Equilibria.
Comp. Sci. Review3(2):65–69 (2009)

18. Levin, H., Schapira, M., Zohar, A.: Interdomain Routingand
Games. InProc. 40th ACM Symposium on Theory of Computing
(STOC’08), pp. 57–66. ACM Press (2008)

19. Moy, J.: Open Shortest Pouting First (OSPF) version 2. RFC
2328. Internet Engineering Task Force (1998)

20. Nisan, N., Ronen, A.: Algorithmic Mechanism Design.Games
and Economic Behavior35(1,2):166–196 (2001)

21. Rekhter, Y., Li, T.: A Border Gateway Protocol (BGP-4). RFC
4271. Internet Engineering Task Force (2006)

22. Shneidman, J., Parkes, D. C.: Specification Faithfulness in Net-
works with Rational Nodes. InProc. 23rd ACM Symposium
on Principles of Distributed Computing (PODC’04), pp. 88–97.
ACM Press (2004)

23. Sobrinho, J. L.: An Algebraic Theory of Dynamic Network Rout-
ing. IEEE/ACM Trans. Networking13(5):1160–1173 (2005)

24. Varadhan, K., Govindan, R., Estrin, D.: Persistent Route Oscil-
lations in Interdomain Routing.Computer Networks32(1):1–16
(2000)


