Project Goals
- Traffic-aware firewall configuration optimization
- Framework for evaluating heuristic optimization techniques

Existing Challenges
- Dependency among rules
- Position-dependent rule weight

Our Approach

Dependency disentanglement

Find disjoint partitions with efficient set operations on rules. The weight of these partitions are not position-dependent.

With efficient set representation of firewall rules, FireOpt can effectively disentangle rules into disjoint partitions.

Approach and Impact

<table>
<thead>
<tr>
<th>New approach</th>
<th>Research Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Rule dependency disentanglement</td>
<td>• Improved firewall performance</td>
</tr>
<tr>
<td>• Partition-based traffic profile</td>
<td>• Framework for evaluating ad hoc techniques</td>
</tr>
<tr>
<td>• Partition-based ILP</td>
<td></td>
</tr>
</tbody>
</table>

Technical Discussion

Traffic-aware optimization for firewall configurations can improve the performance of existing firewalls with little cost. Several heuristics have been proposed but none of them can achieve the true optimality because of a) over-conservative rule dependency constraint and b) position-dependent.

FireOpt presents an optimization framework that
1. Disentangle rules into disjoint partitions,
2. Measures partition-based traffic profile, and
3. Formulate an integer linear program.

FireOpt not only finds provable optimality but also provides a framework to evaluate other heuristics.

Results

FireOpt achieves provable optimality for rule-based configuration optimization.