Trustworthy Commodity Computation and Communication

Enables dynamic, "transient trust" security policies for achieving the appropriate availability of highly sensitive information during emergencies in the face of determined adversaries.

Accomplishments

- Concept of operation
 - Multilevel-secure (MLS) multi-use handheld device
 - Different functional contexts correspond to different user roles:
 - Everyday and emergency
 - Normal or trusted
 - Support inter-context secure sharing of information
 - Trustworthy security architecture that can support dynamic security policies and services
 - Core building blocks
 - Security-aware processor extensions
 - Least privilege separation kernel
 - Trusted security services
 - Secure operating-system services
 - Trusted path application

SecureCore Software Architecture

<table>
<thead>
<tr>
<th>Layer</th>
<th>Functions and Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trusted Path Application</td>
<td>Trusted Path interface to security-critical services</td>
</tr>
<tr>
<td>SCOS</td>
<td>Application/Management, Identification and Authentication Operating System Services</td>
</tr>
<tr>
<td>SCSS</td>
<td>MLS Support and Interpretation, Resource Virtualization, Object Management, Focus Management, Trusted Channel Management, Inter-Partition Rounding</td>
</tr>
<tr>
<td>LP/SP</td>
<td>Partitioning of Resources, Resource Management, TAR Enforcement, Partitioning Scheduling, Cross-Partition and Inter-Process Communication</td>
</tr>
</tbody>
</table>

Concept of Operation

- SecureCore
 - Trusted Path Application
 - SCOS
 - SCSS
 - LP/SP

Functional Prototype Design

- Three partitions
 - Software-emulated SIP module
 - LPSK utilizes hardware security mechanisms
 - Segmentation
 - CIC gates
 - Hardware privilege levels
 - Task state management
 - SCSS and LPSK co-locate in same privilege level
 - Secure Attention Key (SAK)
 - Keyboard input
 - Focus switch via SAK
 - Simple crypto key management application

SP HW Architecture

- User-mode: enables controlled and secure access to user's secrets
- Authority mode: enables transient, policy-controlled access to third-party protected information, remotely
- Reduced mode: for use in low power applications

Contributing Members

(Alphabetically ordered)

Ganesh Bhaskara*, Paul Clark*, Timothy Levin*, Thuy Nguyen*, Mark Orwat*, David Shifflett*, Timothy Vidas*

Princeton University, Naval Postgraduate School, Information Science Institute/USC

NSF Grant No. CNS-0430487, CNS-0430566 and CNS-0430598