How much randomness do you need to generate $N = pq$?

- To generate a random k-bit prime you need $\approx k^2$ secret bits
- Hence, megabits of secret randomness to get an RSA key (expensive!)
- Pseudorandomness is good, but how do you get the seed?
 (e.g., Blum-Blum-Shub PRG needs N as part of seed)

Result 1: Any OWF with k-bit output needs only a k-bit input
(RSA keys from short secrets)

Result 2: If the OWF is regular, get a PRG with a short seed
(BBS PRG with a short seed)

New approach
- Expand input using 2-wise independent hashing
- Replace secret randomness with public randomness

Research Impact
- Replaces ad hoc key gen tools with a provable simple solution
- First linear-seed-length PRG from nonpermutations

OWF Result:
if $h: k \text{ bits} \rightarrow n \text{ bits}$ is 2-wise indep function and $f: k \text{ bits} \rightarrow n \text{ bits}$ is one-way, then $f(h(x))$ is one-way even given the randomness used to choose h.

Proof technique: compare $(h, f(h(x)))$ to $(h, f(y))$. These are not statistically close, but probabilities of events are polynomially related (“domination”).

Optimality:
we prove that at least n total input bits and k secret input bits are necessary (assuming black-box reductions).

PRG Result:
if f is regular (every output is equally likely), then randomized iteration of $f(h(x))$ gives a PRG with seed length $2n + O(k \log k)$ bits, of which only k are secret. Seed length is linear if $k = O(n/\log n)$.