Enabling Collaborative Self-healing Software Systems (5-24218)

Angelos D. Keromytis (PI)
Gail Kaiser, Salvatore J. Stolfo (co-PIs)
Kangkook Jee, Stelios Sidiroglou (GRAs)

Abstract

- The propensity for widespread destruction has made software monocultures synonymous with “bad idea” in the software vernacular.
- We attempt to redefine the term by exploiting the homogeneity and scale that define large software monocultures to improve overall security and reliability.
- We introduce and explore the concept of Application Communities: collections of large numbers of independent instances of the same application.
- Members of an application community share the burden of monitoring for flaws and attacks, and notify the rest of the community when such are detected.

Approach

- Vulnerability/Alert dissemination using P2P (Peer-to-Peer) framework
- Nodes can individually verify the validity of alerts/vulnerabilities
- To enable an AC to scale to thousands of nodes, we introduce an efficient hierarchical dissemination infrastructure.
- Support for a variety of host-based monitoring tools
- Automatic selection of transport mechanism (direct, bit-torrent, etc.) based on size of alert/vulnerability.

Information sharing in P2P (Peer-to-Peer) framework

- Example protocol exchange: Publish/subscribe mechanism

Patch certification procedure

- AC supports the following certification mechanisms:
 - Delegation of certification to trusted entity
 - Peer rating
 - Voting for the credibility

Support for Bit-Torrent Transfer

- Information can be shared by either direct P2P transfer or Bit-torrent transfer
- Decision based on size of the information, number of agents interested (popularity) and the bandwidth of underlying network