Intrusion-Tolerant Dissemination

Kim P. Kihlstrom, Westmont College
http://starfish.westmont.edu/

Gossip-Based Communication Protocol for Survivability in Large-Scale Systems

Problem
With increased demand for Web Services has come a heightened need for scalable wide-area communication systems. The need for trust in such systems and the vulnerability of such systems to attack provide motivation to develop protocols that are intrusion-tolerant and able to provide critical services even during an attack or in the presence of arbitrary faults, errors, and accidents.

Starting Point: Gossip-Based Protocol
- Scalable
 - P2P interaction model
 - Self-organizing
 - Decentralized
 - Size of local view O(log N)
- Reliable
 - Resilient to link and node crash faults
 - Randomized to tolerate random unreliability

End Result: Intrusion-Tolerant Protocol
Developed a new intrusion-tolerant gossip-based communication system that is resilient to arbitrary (Byzantine) faults and malicious attacks.

Approach and Impact

<table>
<thead>
<tr>
<th>Approach</th>
<th>Research Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Modular transformation technique</td>
<td>• Crash-tolerant protocol → intrusion-tolerant protocol</td>
</tr>
<tr>
<td>• Chain of heartbeat messages</td>
<td>• One signature covers many application messages</td>
</tr>
</tbody>
</table>

We employed a modular approach to the design, and built on prior work that generalizes the transformation of crash-tolerant protocols to Byzantine-tolerant protocols.

Our protocol avoids the need for signatures on application messages by making use of a novel message chaining technique to achieve efficient and secure message delivery.

A national surveillance system such as the one shown above would require a communication protocol that is intrusion-tolerant as well as scalable and reliable.