Analyzing Confidentiality for Programs

For programs such as J2ME midlets for mobile devices, a central correctness requirement concerns confidentiality of data that the user wants to keep secret. We formalize this requirement as conditional confidentiality, and develop an automated verification technique for establishing it.

Confidentiality: A property \(F \) is confidential if for every execution \(r \) of the program, there exists an execution \(r' \) such that 1) \(r \) and \(r' \) appear equivalent to the observer, and 2) they disagree on the truth of \(F \).

Application area: Midlets

Midlets are small Java programs designed for enhancing features of mobile devices. When downloading a third-party midlet, the user would like some guarantee that the midlet does not leak confidential data.

```java
public Vector<String> phoneBook;
public String number;
public int selected;

public void sendEvent() {
    phoneBook = getPhoneBook();
    selected = chooseReceiver();

    number = phoneBook.elementAt(selected);
    if ((number == null) | (number == "")) {
        // output error
    } else {
        String message = inputMessage();
        sendMessage(number, message);
    }
}
```

The phone number from the phone book should not leak.

Approach and Impact

<table>
<thead>
<tr>
<th>New approach</th>
<th>Research Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Framework for specifying and verifying secrecy.</td>
<td>• Algorithmic verification of secrecy and time properties for finite state systems and protocols. Example: “Agent A does not reveal x (a secret) until agent B reveals y (a password).”</td>
</tr>
<tr>
<td>• Finite state systems: model checking algorithms for logics for temporal logics for confidentiality.</td>
<td>• Program analyzer for a fragment of Java.</td>
</tr>
<tr>
<td>• For programs, a method based on computing both over- and under-approximation. (We show that both are necessary).</td>
<td>• Verifier can operate in two modes: small embedded tool running on the device, or an offline tool that verifies midlets.</td>
</tr>
</tbody>
</table>

Midlets are third-party programs, often downloaded from the internet. They have legitimate reasons to access data on the mobile device (such as the list of contacts or a phone book), and a legitimate reason to send messages, be it text messages (SMS), emails or http requests. Therefore, there is a question of how to ensure that a given (possibly malicious) midlet does not leak confidential information. The problem cannot be solved by simply prohibiting input of sensitive data or general outputs without limiting the functionality of the midlet.

Bounded programs are programs for which an upper bound on the number of iterations can be computed statically for each loop. For this type of programs, our method produces a logical formula that characterizes the confidentiality requirement, and we identify syntactic restrictions under which its validity can be decided by existing decision procedures.

For programs that are not bounded, our method uses invariants (which can be user supplied or automatically discovered) for over-approximations, coupled with under-approximations via loop unrolling.

Logics for specifying secrecy: CTL\(\mu\)-calculus - expressive logics for safety, liveness and information flow properties. Richer models that capture enough information for information flow properties: trees with path equivalences. Model-checking algorithms: for fragments of CTL\(\mu\)-calculus that are expressive enough to capture the properties of interest, the model-checking problem is PSPACE-complete (EXPTIME-complete).

Secrecy preserving refinement: is a strengthening of the classical trace-based refinement so that the implementation leaks a secret only if the specification also leaks it. We developed a simulation based proof technique for secrecy-preserving refinement. This result shows that existing refinement checkers can be used to check preservation of secrecy.

CT-T: Resource-guided Implementation of Secure Embedded Software

Rajeev Alur, Pavol Černý, Andre Scedrov, Steve Zdancewic
University of Pennsylvania

NSF Cyber Trust Principal Investigators Meeting

March 16-18, 2008
New Haven, CT