
Appendix L: Advanced Concepts
on Address Translation

Abhishek Bhattacharjee
Department of Computer Science, Rutgers University

September 11, 2018

Locality is a principle of nature. Caching works because our brains organize in-
formation by localities.
– Peter Denning, pioneer of virtual memory and program locality analysis.

1 Introduction
In previous chapters, we discussed the concepts of virtual memory and address transla-
tion. We also discussed how modern computer architectures support these abstractions.
This appendix presents a detailed treatment of hardware support for address translation.

Address translation hardware is designed to maximize system performance and
minimize power/energy consumption. However, these attributes have to be balanced
with the need to support a programmable virtual memory interface for software devel-
opers [4, 17, 20, 30, 31]. After all, virtual memory was originally conceived to make
programming easy. It achieves this by allowing programmers to reason about how their
data structures map to a flat and linear virtual address space, eschewing the complexity
of the physical address space which is made up of an assortment of memory and storage
devices. This separation of virtual and physical memory addresses has become so vital
to the success of computing that we tend not to even think of the existence of the virtual
memory abstraction when writing code today. And yet, imagine what would happen in
its absence. Programmers would have to carefully reason about the capacities of device
memory and storage in order to write correct code. Code written for one system would
have to be refactored to port over to another system with different memory/storage con-
figurations. Multiprogramming and security would be compromised because program
would be able to overwrite the memory image of another.

For all these reasons, processor vendors and software developers are willing to
pay an area/performance/energy ”tax” to enjoy the benefits of virtual memory. This
”tax” is realized in the form of dedicated address translation hardware structures like
TLB caches (and other hardware) that we discuss in this appendix. Our goal is to
build intuition on how best to realize this hardware in as high-performance but also
area-efficient a way as possible. A recurring theme in this appendix is our focus on
real-world hardware available on commercial microprocessors today.

1



Conven&onal		
Address	Transla&on	

Modern	
Address	Transla&on	

Core	
	
	
	
	

iTLB	 dTLB	

Private	
Caches	

Shared	
Caches	

Core	
	
	
	
	
	
	
	

iTLB	 dTLB	

Private	
Caches	

L2	TLB	 PTW	

MMU	$	 nTLB	

Core	
	
	
	
	
	
	
	

iTLB	 dTLB	

Private	
Caches	

L2	TLB	 PTW	

MMU	$	 nTLB	

Figure 1: The evolution of address translation hardware from the conventional case (used circa
’90s) to what is commercially available today. Address translation structures are shown in pat-
terned blue boxes. Although private and shared caches are not dedicated address translation
structures, they do cache entries from the page table.

2 Address Translation on Modern Chips
Figure 1 illustrates the evolution of address translation hardware over several processor
generations. We refer to address translation hardware historically seen on uniproces-
sors in the ’90s as ”conventional” hardware, and contrast this against the more ”mod-
ern” multi-core hardware used today.

Figure 1 shows that in the conventional case (similar to today), vendors used to im-
plement separate TLBs for instructions and data; i.e., iTLBs and dTLBs. Additionally,
hardware caches, made up of an assortment of L1, L2, etc., caches for data and instruc-
tions, were also used to store frequently-used entries from the page table. Unlike TLBs,
in which entries store information about a single virtual-to-physical page translation,
cache lines store information about multiple virtual-to-physical page translations. This
is because cache lines are typically bigger than page table entries. For example, x86-64
systems with 64-byte cache lines typically store translations for 8 adjacent virtual pages
since each page table entry is 8 bytes. An important question in address translation de-
sign is the following – who handles TLB misses when they occur? The traditional
approach would interrupt the operating system (OS) upon a TLB miss, at which point
the OS would run a lightweight interrupt handler to ”walk” the page table, find the
desired page table entry, and install it in the iTLB or dTLB, depending on whether the
memory reference was to an instruction or data [42, 44].

Modern address translation hardware has come a long way since these early de-
signs. Figure 1 shows that today, we can expect to see more sophisticated address

2



translation hardware. Key components are:

� Separate L1 TLBs for instructions and data. Although not shown, these struc-
tures tend to be further split into separate L1 TLBs for different page sizes. As we
discuss in subsequent sections, modern OSes support multiple page sizes (e.g.,
x86-64 systems support 4KB, 2MB, and 1GB pages) but it is difficult to build
a set-associative L1 TLB that can concurrently support translations for multiple
page sizes [29, 61, 62, 78, 84, 85].

� Unified L2 TLBs that can cache translations for instructions and data [21,
53]. Modern processors occasionally support a limited set of page sizes con-
currently in this L2 TLB (unlike in L1 TLBs, where it is challenging to support
multiple page sizes concurrently in a single structure) [29]. For example, mod-
ern Intel and AMD x86-64 systems implement L2 TLBs that can simultaneously
support 4KB and 2MB pages, but not 1GB pages. Although L2 TLBs are unified
for data and instructions, they still remain private to individual cores.

� Hardware page table walkers (PTWs) that are used to handle TLB misses
without invoking the OS. In the traditional approach without hardware PTWs,
the processor was expected to context switch to the OS on every TLB miss,
interrupting user-level execution, flushing the pipeline, and polluting caches [42,
44]. In contrast, modern hardware PTWs obviate the need for all these expensive
mechanisms. In fact, hardware PTWs also enable two more optimizations to
hide TLB miss latencies: (1) they can overlap page table walks with independent
instructions executing on the processor (as per out-of-order execution strategies
like scoreboarding or Tomasulo’s algorithm); and (2) they can be designed to
service multiple TLB misses concurrently [11, 64, 66–68].

� Memory management unit (MMU) caches that are used to accelerate TLB
misses [10, 16]. MMU caches are a relatively new addition to the address trans-
lation hardware stack, and are targeted at x86- and ARM-style page tables. On
these systems, page tables are implemented as forward-mapped multi-level radix
trees rather than as linear page tables. MMU caches store page translations from
non-leaf entries of these page tables are used to accelerate page table walks.

� Nested TLBs are specialized TLB structures aimed at supporting cloud en-
vironments running virtual machines [15, 93]. Since these environments suf-
fer from particularly high address translation overhead, processor vendors build
dedicated TLBs to support their complex page table structures. Virtualization is
a topic that requires a detailed treatment in its own right and is hence out of the
scope of this appendix – we point interested readers to relevant papers on this
topic [15, 20, 93].

� Hardware caches caches page table entries. Some architectures like SPARC
use special software structures called Translation Storage Buffers (TSBs) to aid
page table entry caching in the processor caches. We describe TSBs in subse-
quent sections [21–23].

3



L1	dTLBs	
4KB	pages:	64-entry,	4-way	

set-associa2ve	L1	TLB;		
1	cycle	access;	

9	cycle	miss	penalty.	

2MB	pages:	32-entry,	4-way	
set-associa2ve	L1	TLB;	

1	cycle	access;	
9	cycle	miss	penalty.	

1GB	pages:	4-entry,	fully-
associa2ve	L1	TLB;	
1	cycle	access;	

9	cycle	miss	penalty.	

Unified	L2	TLBs	
4KB/2MB	pages:	1536-entry,	
12-way	set	associa2ve	L2	TLB;		

14	cycle	access.		

1GB	pages:	16-entry,	4-way	
set-	associa2ve	L2	TLB;	

1	cycle	access;	
9	cycle	miss	penalty.	

PTWs	
Supports	4	concurrent		

TLB	misses.	

Others	
MMU	$:	32-entry,	
fully-associa2ve;		
1	cycle	access.	

nTLB:	16-entry,	fully-
associa2ve;	1	cycle	access	
(from	microbenchmark).	

	

L1	iTLBs	
4KB	pages:	128-entry,	8-
way	set-associa2ve	L1	TLB;		

1	cycle	access;	
9	cycle	miss	penalty.	

2MB	pages:	16-entry,	
fully-associa2ve	L1	TLB;	

1	cycle	access;	
9	cycle	miss	penalty.	

Figure 2: Parameters of the addess translation hardware available on Intel’s Skylake chips as
of 2018. While the parameters for most of these hardware structures are public, the nested TLB
sizes are inferred based on experiments we ran using microbenchmarks designed to identify each
hardware structure’s capacity and associativity.

While the particular configuration parameters of these parts of the address transla-
tion stack can vary across architectures, we provide some insight on their relative sizes
and latencies for Intel’s Skylake chip. Figure 2 quantifies the capacities, organizations,
and access latencies of the various system TLBs, hardware page table walkers, MMU
caches, and nested TLBs. The remainder of this appendix is dedicated to performing a
deep dive on each of these hardware structures.

3 L1 TLBs
Modern processors implement a group of split L1 TLBs for instructions and data, sep-
arated by page size.

3.1 Separate I and D TLBs
There are several reasons that processor vendors opt to employ separate L1 TLBs for
instructions and data. First, modern superscalar out-of-order pipelines can require sev-
eral concurrent instruction and data virtual-to-physical translations per cycle. Imple-
menting separate iTLBs and dTLBs reduces the chances of pipeline hazards due to
contention at the TLB from limited port count (and other similar constraints). Sec-
ond, instructions and data exhibit different locality of reference or reuse attributes.
For example, it is well known that programs generally have much smaller portions of
their memory footprint dedicated to instructions than to data. At the same time, in-
struction references are more ”critical” to performance; i.e., while data references can

4



generally be overlapped by independent streams of instructions because of out-of-order
capabilities, instruction references are often on the critical path of pipeline execution.
Therefore, instruction TLB misses can have a particularly pernicious impact on perfor-
mance. For these reasons, it is difficult – although not impossible – to design a single
TLB structure with the appropriate replacement/allocation policy to manage the needs
of instruction and data references. Consequently, processors vendors opt for separate
iTLBs and dTLBs [20].

One implication of split L1 TLBs is that vendors can use different policies among
the TLB resources when supporting simultaneous multithreading (or hyperthreading)
in hardware. Because of the criticality of instruction references to overall performance,
processor vendors typically implement statically partitioned iTLBs for different simul-
taneous hardware threads [40, 41]. Consider, for example, Intel’s Skylake architec-
ture, where the 128-entry L1 iTLBs are statically partitioned across the two threads
when two-way hyperthreading is enabled. In this case, each thread is guaranteed 64 in-
struction TLB entries, preventing fairness problems that would arise in a dynamically
partitioned scheme if one thread had a bigger instruction footprint than the other. In
contrast, dTLBs are typically partitioned dynamically among simultaneous hardware
threads or hyperthreads [40, 41]. The rationale is that different threads may have dif-
ferent memory footprints dedicated to their heaps/stacks, and adapting a common pool
of TLB resources dynamically among the competing threads may make better overall
use of the structure. For this reason, Intel’s Skylake architecture dynamically partitions
the L1 dTLB among hyperthreads.

3.2 Separate L1 TLBs for Different Page Sizes
L1 TLBs must be fast and energy-efficient. Performance is desirable as TLBs reside on
the critical L1 datapath of pipelines. This means that they are usually built in a simple
manner that meets timing constraints, with lookup and miss handling characteristics
that are amenable to speed. Additionally, energy-efficiency is desirable as TLBs can
consume a considerable – as much as 15% –of processor energy [13, 18, 29].

Consequently, L1 TLBs are usually realized with set-associative RAM or CAM
structures rather than fully-associative ones. However, set-associativity poses correct-
ness challenges with respect to large pages or superpages. Large pages are commonly
employed by most OSes today. The motivation for large pages is that they enable
greater effective TLB capacity. For example, a single TLB entry on x86-64 systems
can support a 4KB page but with large page support, the same entry can be used to
support a 2MB or 1GB large page instead. Large pages can dramatically reduce the
frequency of TLB misses [29, 68, 84, 85].

However, supporting multiple page sizes also complicates the design of set-associat-
ive TLBs. The reason is that different page sizes require a different number of page
offset bits. For example, on x86-64 systems, 4KB baseline pages require 12 page off-
set bits, 2MB large pages require 21 page offset bits, while 1GB large pages require
30 page offset bits. To reduce conflict misses in set-associative TLBs, we wish to use
the least significant bits of the virtual page number. This means that for a TLB with 8
sets, for example, we would want to use bits 14-12 for 4KB pages and bits 23-21 for
2MB pages as the TLB index. To do this, we need to know the page offset bits (i.e., the

5



Figure 3:Parallel lookups of set-associative split TLBs for all page sizes. The bits in blue (bits
12 and 13) are used to select among the four sets in the TLB for 4KB pages; the bit in red (bit
21) is used to select between the two sets in the TLB for 2MB pages; the bit in black (bit 30) is
used to select between the two entries in the direct-mapped TLB for 1GB pages.

page size) of the desired translation atlookup time. This presents a chicken-and-egg
problem since the page size is usually knownafteraddress translation [29, 61, 78].

To side-step this issue, processor vendors implement separate L1 TLBs for differ-
ent page sizes (in contrast, L2 TLBs are typically architected with hardware support
to accomodate multiple page sizes, as we discuss in subsequent sections). As detailed
in Figure 2, Intel Skylake chips maintain separate L1 TLBs for 4KB, 2MB, and 1GB
pages. Translations are inserted into the ”right” TLB on misses. In other words, TLB
misses trigger page table walks. After the translation is found, hardware in the MMU
identi�es the page size of the desired translation. Subsequently, the translation is en-
tered in the appropriate L1 TLB. For example, if the translation is to a 4KB page, it is
�lled into the 4KB page L1 TLB. A translation can be placed in only one of the split
L1 TLBs.

On a memory reference, all L1 TLBs are looked up in parallel. Figure 3 shows how
this proceeds for an x86-64 system with 4KB, 2MB, and 1GB pages. The hardware is
designed to extract bits from the virtual address (shown in the red box at the top) that
are more signi�cant than the various page offset bits. In other words, bits 13 and 12
(which are more signi�cant than the 12 bits used to determine addresses within 4KB
ranges) are used as an index into the 4KB page TLB. In tandem, bit 21 (which is more
signi�cant than the 21 bits used to determine addresses within 2MB ranges) is used to
select between the two sets in the 2MB page TLB. Similar logic is used to look up the
1GB page TLB in parallel.

The lookup operation in Figure 3 has two possible outcomes. One is that the de-
sired translation is absent from all L1 TLBs. This prompts a lookup into the L2 TLB

6



hierarchy, which we further describe in Section 4. The other possibility is that the de-
sired translation is cached in the L1 TLBs. If this is the case, the translation will be
cached in onlyoneof these split TLBs. Hence, a lookup can hit in only one L1 TLB.

Q&A 1
Q1. Suppose that a CPU is executing a program where the bulk of the data accesses
(or the ”working set” of the program) are to a memory region that is 10GB in size.
Moreover, suppose that the CPU runs the Linux OS, which can generate multiple page
sizes. Let us perform some back of the envelope calculations for how the TLBs should
be sized.

(Q1a) If the OS can generate only 4KB pages for the working set of our program, how
should we size our split L1 TLBs?

(Q1b) Suppose the OS can generate a mix of 4KB and 2MB pages for the working set
of our program. Furthermore, suppose that 80% of the working set is with 2MB pages,
while the remainder is with 4KB pages. How should we size split L1 TLBs?

(Q1c) Suppose the OS can only generate 1GB pages. How should we size split L1
TLBs?

A1. The general approach to sizing TLBs is to consider the size of atypicalprogram's
memory footprint, or its working set size. In this exercise, we sidestep the question of
a typical program, and focus on the one program whose details are provided.

(A1a) If the OS generates only 4KB pages, the working set can be covered by 10GB�
4KB or 2621440 pages. This would require (an infeasibly large) 2621440-entry TLB.

(A1b) Based on the distribution of pages, 80% of 10GB or 8GB is covered using 2MB
pages. This means that we need 8GB� 2MB or 1024 entries in our 2MB page L1
TLB. We also need 2GB� 4KB or 524288 entries in our 4KB page L1 TLB.

(A1c) Finally, if the OS generates 1GB pages, we can just use a 10-entry 1GB page L1
TLB to cover the working set of 10GB.

Note that split TLBs do not have to be sized equivalently. In fact, processor vendors
usually devote the least area to 1GB page TLBs, more area to 2MB page TLBs, and
the most area to 4KB page TLBs. The reason is that TLBs for the smallest page size
require commensurately more entries to cover the same size of memory as TLBs for a
larger page size. Processor vendors typically size TLBs for the worst case – i.e., 4KB
page TLBs are sized assuming that the OS will be unable to generate 2MB or 1GB
pages for typical workloads the system is expected to run. This is why, as shown in
Figure 2, TLB sizes (especially L2 TLBs, which we subsequently discuss) have now
become fairly large in terms of the number of entries.

Q&A 2
Q2. Suppose we use 64-entry, 4-way set-associative L1 TLBs for 4KB pages, 2MB
pages, and 1GB pages. Would all the TLBs require the same area to implement? As-

7



sume an x86-64 architecture for the processor on which these TLBs are implemented.

A2. Entries in TLBs for larger pages require fewer bits to implement. This is because
larger pages have longer page offsets than baseline pages. Therefore each TLB entry's
tag and data �elds can have a reduced bit-width. Speci�cally, our 64-entry, 4-way
TLBs implement 16 sets and therefore require 4 index bits. Consider TLBs for 4KB
pages – virtual page numbers require 52 bits of tag space and 52 bits of data in the TLB
entries. Since the index requires 4 bits, this means that each entry in the 4KB page TLB
has 48-bit tags and 52-bit data �elds. In contrast, 2MB pages have 21-bit page offsets,
meaning that virtual and physical page numbers are 43 bits each. Therefore, each 2MB
page TLB requires 39-bit tags (43 bits - 4 bits for the index) and 43-bit data �elds. In
other words, each 2MB page TLB entry requires 18 fewer tag/data bits than each 4KB
page TLB entry. Similarly, each 1GB page TLB entry requires 18 fewer tag/data bits
than each 2MB page TLB entry.

4 L2 TLBs

Section 3 discussed the L1 TLB layer in modern microprocessors. We now shift our
attention to the uni�ed L2 TLB. L2 TLBs usually maintain both instructions and data,
but remain private to each core (although recent studies have begun exploring the ben-
e�ts of L2 TLBs shared among cores [21, 23, 83]). In assessing how to build uni�ed
L2 TLBs, there are several important attributes to consider:

Access time:This is an important attribute and is equal to the sum of the traversal time
of the interconnect between the L1 and L2 TLBs and the access time of the RAM/CAM
array used to physically realize the L2 TLB [14, 21]. In general, the bigger the L2
TLB, the longer the interconnect traversal and array access times. For example, Intel's
Skylake systems have 8-10 cycle latencies in looking up the L2 TLB. Like conventional
caches, TLBs can be banked to partly reduce RAM/CAM access latency.

Hit rate: Hit rates have to be as high possible to counterbalance the higher access
times of uni�ed L2 TLBs. This is where L2 TLBs shine. Because they are signi�cantly
bigger than L1 TLBs, they typically enjoy high hit rates [14, 21]. Although little is
publicly known about TLB replacement policies, academic studies using microbench-
marks that glean properties of commercial TLB hierarchies suggest that L2 TLBs use
intelligent replacement policies akin to cache replacement strategies (e.g., approxmia-
tions of LRU, etc.) [64, 66]. This is in contrast to L1 TLBs, where simpler replacement
policies like random eviction are often used for ease of implementation [66, 76].

Multiple page size support: An important aspect of uni�ed L2 TLBs is the question
of supporting multiple page sizes. For reasons outlined in previous sections, supporting
multiple page sizes in a single set-associative structure can be challenging. Modern L2
TLBs tend to support a limited set of multiple page sizes – e.g., x86-64 architectures
have supported 4KB and 2MB pages concurrently in L2 TLBs since the advent of Intel
Skylake's Haswell/Broadwell architectures and AMD's Zen architecture. Additionally,
these architectures maintain a (smaller) separate 1GB page TLB. In Section 5, we

8



discuss how L2 TLBs support multiple page sizes concurrently.

Inclusive, mostly-inclusive, or exclusive designs:When designing multi-level TLBs,
an important question is whether they should be architected such that L2 TLBs are
inclusive of the L1 TLBs. Implementation choices and tradeoffs are similar to caches
in this regard. In general, there exist three options.

The �rst option – and generally the most commonly-used – is to implement the
TLBs asmostly inclusive[21, 93]. In this scenario, while it is likely that L1 TLB
entries are also present in the L2 TLB, there is no guarantee. Operationally, when the
L1 and L2 TLBs miss and a page table walk occurs, the desired translation entry is
�lled into both L1 and L2 TLBs. When the miss is to an instruction translation, it is
�lled into the L1 iTLB and the uni�ed L2 TLB. When the miss is to a data translation,
it is �lled into the L1 dTLB and the uni�ed L2 TLB. However, after these TLBs are
�lled, translation eviction from each TLB occurs independently because each structure
maintains it's own replacement policy. That is, it is possible for a translation to be
evicted from the L2 TLB while remaining resident in the L1 TLB. This approach is
similar to mostly-inclusive designs for caches [21, 43].

The second option is to usestrict inclusive. Strictly inclusive architectures are
similar to mostly inclusive ones, with one difference – L1-L2 inclusion is guaranteed.
In other words, if a translation is absent from the L2 TLB, it is guaranteed to also be
absent from the L1 TLB. This means that if a translation is evicted from the L2 TLB, a
back-invalidation message is relayed to the L1 TLB. This message checks to see if the
translation evicted from the L2 TLB is present in the L1 TLB. If it is, it is invalidated
from the L1 TLB to maintain the inclusion property. TLB back-invalidation operations
is similar to back-invalidations that are used for strictly inclusive caches [43].

The third option is to use anexclusivepolicy. In this scenario, L1 and L2 TLBs are
designed to avoid any type of redundancy. When a desired translation is absent from
the L1 and L2 TLBs, triggering a page table walk, the entry is �lled only in the L1 TLB
(and not the L2 TLB). Only when the translation is evicted from the L1 TLB does it
get �lled into the L2 TLB, mirroring the design of exclusive caches [43, 45].

Choosing which of these approaches to use depends on various factors. If the L2
TLB is area- or power-constrained, an exclusive architecture may be desirable. This
is because maintaining multiple copies of the same translation in the L1 and L2 TLBs
may adversely affect performance when TLB entries are scarce. Again, this is similar in
spirit to situations where exclusive cache hierarchies are useful. If, on the other hard,
interconnect bandwidth between the L1 and L2 TLBs is limited, a mostly inclusive
approach without the overheads of back-invalidation messaging may be appropriate.
However, if coherence overheads are a concern, a strictly inclusive organization may
be more appropriate, for reasons detailed below.

Implications of inclusive/exclusive hierarchies on translation coherence:Although
a detailed treatment of translation coherence is out of the scope of this appendix, we
brie�y introduce the problem in this section. Like private caches, private TLBs must
also be kept coherent. On a multi-core or multi-processor system, a single core run-
ning the OS may change a translation entry; e.g., the physical page assigned to a vir-
tual page may change, page permissions (read/write/execute) may change, etc. These
changes must be re�ected in all private TLBs [5, 51, 58, 59, 65, 74, 89, 93]. For ex-

9



ample, suppose that on a four-core system, core 0 modi�es a translation. Initially, the
translation shows that virtual page 2 points to physical frame 10. Now suppose that the
OS modi�es the translation so that virtual page 2 points to physical frame 12. Not only
must this change be re�ected in core 0's TLB, but also in cores 1-3's private L1 and L2
TLBs too. This means that invalidation messages for the TLB entries corresponding
to virtual page 2 must be relayed system-wide. While TLB coherence messages are
likely far fewer than cache coherence messages, they can occur frequently enough that
one may wish to design TLB hierarchies that minimize them. In this scenario, a strictly
inclusive setup can reduce coherence messages as the L2 TLB can act as a coherence
�lter for the L1 TLB (as with L1 and L2 caches [82]). In other words, coherence trans-
actions can �rst look up the L2 TLB. If the translation is found in the L2 TLB, it may
also exist in the L1 TLB, so a coherence message must also be relayed to the L1 TLB.
However, if the translation is absent in the L2 TLB, the property of strict inclusion tells
us that the translationmustalso be absent from the L1 TLB. Therefore, no coherence
message needs to be relayed to the L1 TLB in this case, saving interconnect bandwidth
versus a mostly inclusive design, where a coherence message would still need to be
relayed to the L1 TLB.

Q&A 3
Q3. Consider a strictly-inclusive TLB hierarchy where a back-invalidation message is
sent from the L2 TLB to L1 TLB, whenever a translation is evicted from the former.
The L1 TLB is a 4-entry, 2-way set-associative structure, while the L2 TLB is an 8-
entry, 2-way set-associative structure. Consider translationsA-H, whereA corresponds
to virtual page 0,B to virtual page 1,C to virtual page 2, and so on. Furthermore,
suppose that the L1 TLB has the following contents – translationsA andC are resident
in set 0, whileB andD are resident in set 1. Now suppose that the L2 TLB has the
following contents – translationsA andE are in set 0,B andF are in set 1,C andG are
in set 2, andD andH are in set 3. Suppose that the CPU makes a memory request for
translationJ (corresponding to virtual page 9). How do the L1 and L2 TLB contents
change?

A3. TLBs are looked up and �lled using conventional modulo set-indexing, which is
why A, which corresponds to virtual page 0, maps to set 0 in both TLBs; whyB, which
corresponds to virtual page 1, maps to set 1 in both TLBs; whyC, which corresponds
to virtual page 2, maps to set 0 in the L1 TLB (which has only two sets) but set 2 in
the L2 TLB (which has four sets). If J is requested, it must be �lled into the L1 and
L2 TLBs, and some contents must be evicted. First, consider how J is placed in the L2
TLB. Since its virtual page number is 9, it maps to set 1. This means that eitherB or F
must be evicted from the L2 TLB. Suppose thatB is evicted from the L2 TLB. Because
of strict inclusion,B must also be evicted from the L1 TLB too, so a back-invalidation
message is relayed. Next,J must be �lled in to the L1 TLB, where it also maps to set
1. Since the entry that previously heldB is now empty, it becomes the natural location
in the L1 TLB to �ll J in.

Now consider the situation where instead ofB, F had been evicted from the L2
TLB to make room forJ. If this had been the case, a back-invalidation message would
have been sent to set 1 in the L1 TLB. In this case, becauseF is not resident in the L1

10



Figure 4: Translation coherence requires maintaining coherence among page table entries
within the private caches, as well as the TLBs (and other address translation structures).

TLB, the back-invalidation would not have an impact on the L1 TLB. In our example,
B or D need to be evicted from the L1 TLB, and can be done silently without informing
the L2 TLB, which must have these translations due to strict inclusion.

Q&A 4
Q4. Consider Figure 4, which shows the private L1 caches and L1 TLBs of a four-core
system. Page table entries are shown in the solid/striped blue and red boxes. A cache
line of eight page table entries is �lled into CPU 0 and CPU 3, because they accessed at
least one page table entry within the cache line (via their page table walker or the OS) .
CPU 0 has accessed the blue page table entry in the past, while CPU 3 has also accessed
the blue and striped red page table entries. Consequently, these page table entries are in
their TLBs. Meanwhile, CPU 1 has likely only accessed a page table entry within the
cache by executing the OS rather than the page table walker; therefore, the cache line
is present in its L1 cache but no page table entry from it is resident in the TLB. Finally,
CPU 2 has not accessed any page table entry within this cache line. In this exercise,
we will analyze translation coherence and how the addition of per-core L2 TLBs with
strict inclusion can help reduce probes (due to coherence activity) of the L1 TLBs.

(Q4a.) Suppose CPU 1 runs the OS, which chooses to update the physical frame num-
ber assigned to the virtual page in the solid blue page table entry. What steps are
necessary in order to maintain coherence?

(Q4b.) What if CPU 0 performs the action described in (Q4a.), rather than CPU 1?

(Q4c.) How would the actions in (Q4a.) and (Q4b.) change if all CPUs maintained
private L2 TLBs that were organized as being strictly inclusive of the L1 TLBs?

(Q4d.) What happens if CPU 1 executes a store to the red striped page table entry?

(A4a.) Translation coherence is made up of two separate sets of coherence activities –
coherence of the page table entries within the TLBs, and coherence of the page table
entries within the L1 caches. Consequently, if CPU 1 updates the solid blue page table
entry, any copies of the page table entry in the TLBs and caches of CPU 0, 2, and 3
must also be updated.

TLB coherence is maintained in two ways. In x86-64-style architectures, CPU 1
invokes OS routines on the other CPUs viainter-processor interrupts, which prompt a
context switch of CPU 0, 2, and 3 to run OS code [93]. This OS code then executes a

11



privilegedinvlpg instruction which invalidates each core's TLB's copy of the transla-
tion. In the example in Figure 4, CPU 0 therefore invalidates its copy of the solid blue
TLB-resident page table entry, CPU 2 does not �nd an entry to invalidate, while CPU
3 invalidates its TLB-resident solid blue page table entry. Alternately, in ARM-style
architectures, CPU 1 executes atlbi instruction, which leads to a broadcast message to
all other cores to invalidate their TLB-resident copies of the translation. In either case,
TLB entries corresponding to the solid blue entry are invalidated using this approach.

Coherence of the page table entries in L1 caches, meanwhile, are maintained using
the standard cache coherence protocol (e.g., MESI, MOESI, etc.). This means that
when CPU 1 has to update its copy of the solid blue page table entry, it needs to
�rst gain exclusive access to the cache line. To achieve this, CPU 1 sends invalidate
messages to CPU 0, 2, and 3 �rst. CPU 0 and 3 may therefore suffer from false sharing,
where all the page table entries in the cache line are invalidated, even though CPU 1
only updated the solid blue page table entry.

(A4b.) If CPU 0 updates the solid blue page table entry instead, there is only a minor
difference versus the activities outlined above. Before launching inter-processor inter-
rupts to CPU 1, 2, and 3, CPU 0 would have to invalidate its own local TLB's copy of
the blue page table entry.

(A4c.) If all the CPUs maintained private L2 TLBs that were strictly inclusive, the
L2 TLBs could act as a �lter for the L1 TLBs. In particular, CPU 2's TLB does not
cache the solid blue page table entry. If a probe of CPU 2's L2 TLB �nds that the blue
page table entry is absent, there is no need to look up the L1 TLB. It is possible that
the (bigger) L2 TLB may actually have the blue page table entry, in which case the L1
TLB would still have to be probed. However, by strict inclusion, at least a fraction of
the coherence traf�c on the L1 TLB may be avoided.

(A4d.) In the previous examples, we assumed that the CPU ran the OS, which modi�ed
a page table entry. However, hardware page table walkers (which are used to search
the page table on TLB misses and are described further in Section 6) can also generate
coherence traf�c by updating status bits in page table entries. In particular, page table
entries maintain dirty bits which have to be set whenever a CPU performs a write to
the corresponding page (see Section 6 for details). Therefore, when CPU 1 executes
a store to the red striped page table entry, it has to generate cache coherence traf�c to
invalidate the cache lines of CPU 1 and CPU 3 before writing the dirty bit. However,
since dirty bits are not maintained in TLBs (only the virtual-to-physical translation is),
there is no need for TLB coherence activity.

5 Multiple Page Size Support

In recent years, processor vendors have begun integrating support for concurrent caching
of translations for different page sizes in the L2 TLB. These approaches tolerate a
higher access time or additional implementation complexity to concurrently support
multiple page sizes. While these approaches could technically also be applied to L1

12



TLBs, L1 access time requirements make such approaches infeasible.

Hash-rehashing:With this approach, the L2 TLB is �rst probed (orhashed) assuming
a particular page size, usually the baseline page size [29, 61]. On a miss, the TLB
is again probed (orrehashed) using another page size. This process continues with
rehashed lookups for any remaining page sizes until there is a TLB hit, or all possible
lookups have been exhausted because there are no remaining page sizes.

A bene�t of hash-rehashing is its relative simplicity of implementation. For this
reason, although not con�rmed, it is likely that it is the implementation technique that
has been used to support both 4KB and 2MB pages in Intel Skylake/Broadwell's L2
TLBs. Having said that, hash-rehashing also suffers from some important problems.
The most obvious one is that there are now multiple hit times, depending on the hash
or rehash lookup that achieves a hit. This means that some hits can be slower than
others. This also means that it takes longer to identify TLB misses (i.e., only after all
the hash/rehash lookups are performed can one establish the occurence of a TLB miss).
There are several ways of addressing these problems:

1 Page size prediction: One way of reducing TLB hit time is to use a hardware struc-
ture to predict the page size of a translation [61]. One could then perform the hash (or
the �rst TLB probe) for the predicted page size. Accurate prediction allows faster TLB
hits. A key question is how the predictor structure should be designed. Such a structure
can be realized as a direct-mapped table that can be indexed using program counter bits
and/or virtual address bits. Figure 5 shows both approaches. The predictor shown on
the left is indexed using the lower-order bits of the program counter of the memory
reference. By using the program counter as the index, the predictor can be looked up
early in the pipeline (technically as early as the instruction fetch stage). This enables
predictor access latency to be taken off the critical path of the memory reference. The
downside is that the page sizes are learned separately for different instructions, even if
they refer to the same page. Consider, for example, a scenario where a program pro-
cesses different �elds of a data structure via different instructions. These instructions
can map to different predictor entries, leading to predictor state duplication, longer
learning time, and more predictor aliasing.

Consequently, using a portion of the virtual address bits can present a more ef�-
cient indexing scheme for the page size predictor. With this approach, shown on the
right in Figure 5, the page size predictor must still be accessed early in the pipeline.
Consequently, rather than extracting bits from the virtual address, bits are extracted
from the encoded memory instruction. In particular, the region of the instruction that
corresponds to the base register,rs may be used. This is used to probe the register �le,
from where the register value is used to look up the predictor. The intuition is that the
�nal virtual address is unlikely to be signi�cantly different from the base register.

Regardless of the choice of page size predictor, an important point is that both
approaches consume area and power. Naturally, it is important for a designer to weigh
up these overheads versus the bene�ts.

2 Parallel lookup: A simpler alternative to using a page size predictor is to simply
perform multiple parallel lookups of the TLB structure, with one lookup per supported
page size. The bene�ts of this approach is that it obviates the need for predictors, it

13



Figure 5:The �gure on the left shows a page size predictor based on the program counter value
of the memory instruction probing the TLB. An entry in the predictor is chosen by using a set of
least signi�cant bits (LSBs) from the program counter address. The �gure on the right shows a
predictor based on the base register value of a memory instruction.

makes sure that all TLB hits are quick (and have the same latency), and it permits
TLB misses to be identi�ed with the latency of one probe. The downsides are the
energy overheads of performing multiple lookups, most of which are spurious since a
translation can only be cached with one page size in the TLB structure.

3 Parallel page table walks: Finally, another approach that can (partly) mitigate the in-
creased cost of identifying a TLB miss is that of performing page table walks in parallel
with the rehash probes. Consider the case where an initial probe of the TLB results in a
miss. At this point, in the conventional case, a new address based on the next page size
would be rehashed and used to probe the TLB. To improve performance, it is possible
to simultaneously launch a speculative page table walk so that if the rehashes also miss
in the TLB, the page table walk can at least partly overlap the latency of the rehashes.
While the notion of speculative page table walks does introduce some complexities –
e.g., page table entries hold status bits that, among other things, record an ”access” to
a page, and these can be erroneously updated by speculative walks – modern architec-
tures already maintain support for such scenarios since speculative page table walks
can also occur in other ways (see Section 6).

Skewing: Skewed TLBs are inspired by work on skew-associative caches [79]. The
basic idea is to change the notion of set in a TLB. Traditionally, the bits extracted from
a virtual page uniquely determine a set – in other words, all the ways in a TLB set
are reachable via the same set of index bits because TLB lookup uses a single hash
function. Skewed TLBs use an alternate idea – the ways of a set no longer share the

14



Figure 6:The �gure on the left shows a TLB with conventional indexing. A hash function,f is
applied to all addresses. In this example, addressesA, B, andC hash to the same TLB set, which
is made up of two ways, shown in the two separate data/tag array boxes. The �gure on the right
shows the same TLB with skew indexing. Since there are two ways per set, two hash functions
f1 andf2 are used. The two hash functions can map to different ways in each set.

same index bits and each way of a set uses its own index function. Figure 6 illustrates
this concept. The �gure on the left shows a conventional set-associative TLB, while the
one on the right shows a skew-associative TLB. In both cases, we show a two-way set-
associative TLB with four sets. Each horizontal slice of the data/tag arrays represents
a set, each with two ways.

The �gure on the left shows that addressesA, B, andC hash to the same set. When
using conventional indexing with the hash functionf, this means that these addresses
can be allocated in either of the two ways assigned to that set. In our example, this
means that one of the three translations must be evicted as there are only two ways
in each set. Contrast this with the �gure on the right, which shows an example of
a skewed-associative TLB. Since there are two ways per set, a skew TLB uses two
hash functionsf1 and f2. In this case,A, B, andC hash to the same way in the set
on the left via hash functionf1. However, the translations for these three addresses
map to different ways in the set on the right because of hash functionf2. The bene�t
of this approach is that the same TLB structure can now accommodateA, B, andC
simultaneously compared to the traditional set-associative approach.

To support multiple page sizes, the standard skew-associative structures need to be
modestly changed in the following way – a translation maps to a subset of TLB ways
depending not just on its address but also its page size. Speci�cally, the hash functions
are designed such that a virtual address can only reside in a way if it has a certain page
size. This also means that each page size has an effective associativity in the TLB.

To explain the lookup process, consider an example where we have a 512-entry
8-way skew-associative TLB. Furthermore, suppose that the TLB is designed for a
SPARC architecture with 8KB, 64KB, 512KB, and 4MB pages. Choosing among the
64 sets in the TLB requires the use of 6 index bits from the virtual page number. One
possible way of engineering the hash functions could be to use bits 23-21 with the
following rules: (a) map to ways 0 and 4 if part of a 8KB page; (b) map to ways 1
and 5 if part of a 64KB page; (c) map to ways 2 and 6 if part of a 512KB page; and

15



(d) map to ways 3 and 7 if part of a 4MB page. The number of supported page sizes
is statically designed into in the hash indexing functions and they all have the same
effective associativity (two in our example). When an entry needs to be allocated, and
hence an entry needs to be evicted, the effective ways of that page size are searched
for an eviction candidate. In our prior example, if virtual address A belongs to an
8KB page, then only ways 0 and 4 are searched. Since the potential victims reside in
different sets, LRU is infeasible. Hence, skew associative TLBs rely on time stamps
placed with each entry, with the entry with the oldest timestamp becoming the primary
eviction candidate [61, 78].

While skew-associative TLBs can support multiple page sizes concurrently without
the complications of multi-latency hit times or slow iden�cation of TLB misses, they
do suffer from key drawbacks. The �rst is that they require multiple hash functions,
which can be complex to implement. The second is that they require additional area
from time stamps needed for replacement policies. And �nally, the more page sizes
there are to accommodate, the lower the effective associativity per page size.

Q&A 5
Q5. Consider a CPU with separate L1 TLBs for for 4KB pages, 2MB pages, and 1GB
pages. Suppose further that the L2 TLB can support 4KB and 2MB pages, but not 1GB
pages. Is there any way that lookups for 4KB pages can cause changes in the contents
of the L1 TLB for 2MB pages, and vice versa? Can lookups for 4KB pages cause
changes in the contents of the L1 TLB for 1GB pages, and vice versa?

A5. Even though it may seem impossible at �rst blush, it is possible for lookups for
4KB pages to affect the L1 TLB for 2MB pagesif the L2 TLB is strictly inclusive with
the L1 TLB. In other words, suppose that a lookup for a 4KB page prompts TLB misses
at the L1 level. Suppose further that there is a miss at the L2 TLB, prompting a page
table walk. Once the translation is retrieved, it is possible that it may evict an existing
2MB page entry in the L2 TLB. If this happens, because the L2 TLB is strictly inclusive
of the L1 TLBs, a back-invalidation message will have to be relayed to the L1 TLB for
2MB pages. Consequently, an entry in the L1 TLB for 2MB pages may be invalidated.
A similar sequence of events is possible for lookups for 2MB pages. Again, it may be
that a 4KB page translation needs to be evicted from the L2 TLB to make room for a
2MB page translation, prompting a back-invalidation of a translation in the L1 TLB for
4KB pages. In contrast, in our hypothetical TLB hierarchy, it is not possible for 4KB
page lookups to affect 1GB pages, because the L2 TLB does not concurrently cache
translations for 1GB pages with those for 4KB and 2MB pages.

6 Page Table Walks

Thus far, we have focused on the L1 and L2 TLBs available per-core on modern multi-
core chips. However, even with highly effective TLBs, misses are unavoidable. When
TLB misses occur, the page table must be searched or ”walked” to locate the desired
translation. These page table walks (also called translation walks) can occur either in

16



software or in hardware. Computing systems have, over decades of design, evolved to
embrace one technique over the others. For example, early Alpha systems generally-
used hardware-managed translation walks [20]. This evolved into software translation
walks on SPARC and ARM architectures. More recently, processor vendors have again
adopted hardware translation walkers due to their superior performance.

Software approaches:The key idea with software-managed translation walks is that
TLB misses force a context switch to the OS, which is tasked with walking the page ta-
ble. Processors rely on several implementation techniques to force this context switch.
On some older embedded x86-64 processors, a TLB miss would invoke microcode for
a trap instruction, which in turn would force the processor to switch to privileged mode.
Other techniques involved constructing the TLB datapath to be able to directly signal
the core to save state and switch to privileged mode. Regardless of the technique used
to invoke the OS, several steps take place in response. First, the pipeline is drained and
architectural state is saved. Next, OS code is invoked to, among other things, consult
a trap table to vector into the OS routine designed to handle the TLB miss. As the OS
code is invoked, instruction and data caches suffer misses in bringing in cache lines re-
quested by the OS (because the OS had not been running in the recent past). Finally, the
core executes a OS TLB miss handler with knowledge of the page table organization.
The handler searches the page table for the desired page table entry or translation. This
process of searching or walking the page table is typically expensive, with multiple
sequential memory references. The precise number of memory references is depen-
dent on the page table organization. Consider, for example, an x86-64-style page table,
which is organized as a forward-mapped multi-level data structure. Figure 7 illustrates
an x86-64 page table. Current x86-64 page tables usually consist of four levels and
there is even burgeoning support for �ve-level page tables.

Figure 7 shows that page table walks are expensive because they require multiple
memory references (four in the �gure). To represent page tables in a space-ef�cient
manner, x86-64 page tables use multiple levels to represent a program's address space.
Each level is itself stored in a page of memory; hence we refer to each level as a page
table page. Since baseline pages in x86-64 architectures are 4KB, and because page
table entries are 8 bytes, this means that each page table page maintains 512 entries.

To walk the page table, the virtual address is �rst separated into a page offset and the
virtual page number. Then, the virtual page number is separated into four 9-bit indices,
each of which is used to index into one of the four page table pages comprising the
different levels. In our example, we assume that the virtual address can be decomposed
in a hexadecimal sequence of (0b9, 00c, 0ae, 0c2, 016). This means that in the �rst
step, a page table walk requires that we concatenate the physical address of the �rst
entry in the root page table (which we callL4 and is known as asPage Map Level 4
or PML4 in x86-64 terminology) with the �rst 9-bit index of the address or0x0b9. A
lookup at this location (highlighted in the L4 table) reveals the physical page number
(or PPN) of the next level of the page table (L3). We concatenate this physical page
number (0x042) with the next 9-bit index,00c, to look up the L3 page table page. We
carry on with this process until we reach the leaf page table page orL1, which �nally
tells us the physical page number of the virtual address we wanted to translate.

Naturally, traversing this multi-level page table is expensive, especially because it

17



Figure 7:Example x86-64 page table, with four page table levels. TheCR3register stores the
physical address of the root level of the page table. Each page table level stores the physical
page number of the next page table page, wherePPN stands forphysical page number. The
highlighted path through the page table is for a virtual address that is made up of the following
hexadecimal values concatenated together (0b9, 00c, 0ae, 0c2, 016). TLBs cache entries from
the leaf level or theL1 level of the page table. Because the page table walk can be expensive, ded-
icated memory management unit (MMU) caches, which we discuss in Section 7, cache entries
from the root page table page (L4) as well as theL3 andL2 levels.

requires several memory references, all of which must occur sequentially. Therefore,
if walks are performed by the interrupt handler in the OS, it is a long process that can
easily require tens to hundreds of clock cycles in practice [18, 20]. Finally, when the
desired translation is identi�ed, it is �lled in the hardware TLBs (both L1 and L2 if the
TLBs are mostly- or strictly-inclusive, only the L1 TLB if the TLBs are exclusive). At
the end of this process, the core context switches back in the user application – which
has to warm up its instruction and data caches again – at which point the memory
instruction that originally missed in the TLB isreplayed.

It is important to note, from Figure 7, that processor vendors use various techniques
to try to accelerate page table walks. In fact, L1 and L2 TLBs are used to cache page
table entries from the leaf orL1 levels. But in addition, as we will discuss in Section 7,
more advanced address translation implementations also maintain dedicated Memory
Management Unit (MMU) caches for theL4, L3, andL2 page table levels. While
MMU caches can technically be used in tandem with software-managed translation
walks, they are typically only found in systems with hardware-managed translation
walks. Therefore, we defer a discussion of these structures to subsequent sections.

Translation storage buffers:As software-managed translation walking has matured,
several optimizations have been proposed to accelerate their operation. One popular
technique has been the use of Translation Storage Buffers (TSBs), originally devel-
oped by SPARC architects [11, 68]. TSBs are software caches (usually direct-mapped)
and store frequently-used portions of the page table. They are accessed early in the
OS handler to seek out the desired translation fast (hopefully with a single memory

18



reference) before falling back on the page table walk. In other words, the OS uses the
lower-order bits from the virtual address that suffered the original TLB miss to look up
the desired entry in the TSB. If the translation is found in the TSB, the OS handler can
return without suffering the four memory references of the page table walk. Otherwise,
the page table is walked. When the desired translation is located, it is inserted into both
the software TSB and the hardware TLB structures.

An important question with TSB design is how it should be sized. Since it is a
software structure, it can be sized dynamically and grown to arbitrarily large structures
[11]. However, excessively large TSBs can pollute the processor caches and ultimately
decrease performance. Therefore, most real-world TSBs are sized to a �xed capacity;
i.e., translations in the TSB may have to be evicted to make room for new ones.

Managing status bits:Our discussions have focused on the virtual-to-physical page
translations in the processor page tables. However, page tables (and TLBs) also main-
tain information about the permissions associated with a virtual page (i.e., whether it is
readable, writable, and/or executable), attributes of the page (i.e., whether it is a kernel
or user-level page, whether the page is globally shared across multiple address spaces),
and information about how the page has been manipulated (i.e., access bits, which track
page hotness, and dirty bits, which track whether a page has been written to). When
the OS walks the page table, it must interact with these status bits appropriately.

Consequently, after the OS performs a translation walk, it checks the protection bits
of the translation. If the access is permitted as per the read/write/execute permissions,
only then is the physical page number returned. If the access is not permissible, the OS
is vectored to a new interrupt handler which takes care of this ”protection fault”.

Page table entries also maintain access and dirty bits. These are used by the OS
to track whether a page is in the working set of a program, and whether it needs to
be written back to memory on eviction because its copy in main memory is stale, re-
spectively. Access bits are typically set by the TLB miss handler when a translation is
loaded into the TLB after a page table walk. Depending on the page replacement policy
implemented by the OS, it may opt to manipulate these access bits in the future. For
example, withLRU with second chance policies, the OS replacement policy periodi-
cally clears access bits to see whether their corresponding pages are accessed again the
near future. This permits the OS to maintain relatively up-to-date information about
page hotness. Similarly, the dirty bit can be set by the OS when there is a TLB miss to
the store instruction. When the replacement policy evicts a page which has its store bit
set, the OS ensures that the page is written back to secondary storage.

Pros and cons:The bene�t of software-managed translation walks is that they allow
the OS to organize and manage page tables in a �exible manner. Because the OS's
TLB handler walks the page table, it can be maintained either as a multi-level page
table (like the one showed in our x86-64 example), or in other ways (like inverted
page tables or hashed page tables [20]). This permits the OS to manipulate page table
organization in a manner that best meets the system's requirements in terms of size of
the page table, time taken to search it, and even whether it can be used to store more
complex attributes corresponding to page hotness than just a single access bit [2].

The disadvantage of software-managed translation walks is that require pipelines
to be context switched and OS code to be invoked for all TLB misses. Modern high-

19



Figure 8:Hardware page table walkers (PTWs) integrated per-core perform hardware transla-
tion walks. The hardware page table walker is made up of a state machine (PTW State Machine)
and buffers that store the status of outstanding TLB misses (PTW Buffers) which operate simi-
larly to miss-status holding registers (MSHRs) for caches. These two hardware blocks in tandem
launch references to the memory hierarchy to search for the page table, for both instruction and
data translations that miss in the TLBs. PTWs can be used in tandem with any number of TLBs
and not just the two-level TLB hierarchy shown.

performance processors maintain sizeable architectural state that needs to be saved
on these context switches, use deep pipelines that need many cycles to drain and �ll,
and use many architectural predictors that are polluted by these context switches. Re-
cent studies have shown that even in the absence of cache/predictor pollution effects,
processors like Intel's Haswell/Broadwell like take in the range of 700 clock cycle to
accomplish a context switch [93]. Consequently, most processor vendors have replaced
software translation walks with hardware translation walks.

Hardware approaches: The goal of hardware translation walking is to improve per-
formance by integrating per-core hardware units that understand the page table's orga-
nization and can walk it without context switching the main processor to OS code. To
enable this, most processor vendors build hardware page table walkers (or PTWs) per
core, as shown in Figure 8. Hardware PTWs are made up of two components. The �rst
component is a state machine that is built to understand the organization of the page
table supported by the architecture. The second component is the PTW buffer, a set
of registers that maintain information about each outstanding TLB miss. PTW Buffers
are similar to miss-status holding registers that track outstanding cache misses [20].

To understand the operation of the hardware PTW, consider the x86-64 page table
example in Figure 7 again. Suppose further that there has been a TLB miss for the
translation shown in the shaded path in the page table. At this point, rather than in-
voking the OS and executing a TLB miss handler, the core can activate the hardware

20



PTW. The hardware PTW usually has access to a register that maintains information
about the physical address of the root of the page table. In our example in Figure 7,
this corresponds to theCR3 register, which stores the physical address of the L4 page
table level. The PTW state machine concantenates the contents of theCR3with the
�rst 9-bit index from the virtual address (0x0b9 in our example). This information is
used to update the state �eld of the appropriate outstanding miss recorded in the PTW
buffer – in this case, the state �eld records the fact that the PTW is about to launch a
memory reference for the information in the desired L4 page table. The reference is
launched to the memory hierarchy, where it probes the L1/L2/LLC caches, and then
potentially main memory. When the information stored in the L4 level is returned (the
physical page number 0x42 in our example), it is relayed to the PTW state machine.
The state machine concatenates this returned address with the 9-bit L3 index from the
virtual address (0x00c in our example), updates the outstanding miss buffer to indi-
cate that a upcoming memory request for this L3 page table level, and launches the
memory request. This process continues until the entire page table walk completes and
the desired translation is extracted from the page table. At this point, the translation
is inserted into the TLBs, and the memory reference that prompted the original TLB
miss is replayed [18, 19]. In this manner, the page table is walked with no intervention
from software. While conceptually easy to understand, there are important aspects of
hardware PTW design complexity. We now discuss some of these complexities:

Microcode injection:Correct address translation often requires the use of microcode
instructions that are not fetched as ISA-level instructions from the user or kernel levels.
In particular, TLB misses invoke the hardware PTWs, which in turn invoke microcode
operations that perform the loads from the page table levels. These microcode oper-
ations are pushed into the execution core of modern out-of-order processors. These
microcode operations can, however, be not just load operations to walk the page table
levels, but also store operations that modify status bits, as we next discuss.

Managing status bits:When using purely hardware translation walks, hardware PTWs
are tasked with updating the access and dirty bits of page table entries. These updates
are considered to be ”sticky” from the point of view of the walker – i.e., only the
OS is capable of clearing a bit when it is set. Furthermore, PTWs use microcode
instructions to atomically update these bits. From a memory consistency standpoint,
these updates must be guaranteed to be committed before the load/store with which
they are associated have committed [54, 55, 73].

Concurrent page table walks across cores:Since each core maintains separate hard-
ware PTWs, they are permitted to simultaneously walk page tables. If the applications
running on different cores are from different address spaces, the PTWs would walk
their distinct page tables. However, even in the case where multiple cores run differ-
ent threads from the same address space, multiple PTWs are permitted to access the
same page table to satisfy TLB misses on different cores. Multiple threads may update
access and dirty bits simultaneously so it is possible for multiple cores to update ac-
cess/dirty bits in PTEs that fall in the same cache line. The cache coherence protocol
is in charge of arbitrating the order in which these updates occur and are made visible
to other cores.

21



Figure 9: Suppose that the �rst load suffers a TLB miss. With software translation walks,
the CPU would have to context switch to the OS and run it to walk the page table. Only after
this would the remaining instructions be executed. With a hardware translation walk, however,
the CPU could continue executing independent instructions in parallel with the hardware PTW
servicing the TLB miss. Since the second load instruction has an effective address mapping to the
same virtual page number (assuming 4KB pages), this would not be an independent instruction.
However, load instructions 3 and 4, as well as the add (instruction 6) are independent and can be
executed while the TLB miss is being serviced.

Pros and cons:The bene�t of hardware PTWs is the performance that they offer over
software alternatives. By obviating the need for context switches on TLB misses, sev-
eral hundreds of clock cycles for a TLB miss can typically be converted into tens of
clock cycles. The downside of hardware PTWs are the additional area and power needs
of PTW state machine and buffers and their reduced �exibility versus using TLB miss
handlers in software. The �rst problem is not severe – recent studies show that hard-
ware PTWs do not account for more than 5-7% of the area of typical L2 TLBs on mod-
ern chips, and add signi�cantly less than 1% additional area to each core [14, 69, 70].
The second problem, however, is a bigger concern. For hardware PTWs to work effec-
tively, their state machine must be designed in a manner that is aware of the particular
page table organization. In our x86-64 example in Figure 7, the PTW state machine
was aware that the page table was organized as a four-level structure with 512 page
table entries each. This means that page table formats are �xed at design time and
cannot be changed even if we discover that at runtime, there may be other page table
formats that could be more ef�cient. Although OS-managed walks can support this
�exibility, hardware translation walks achieve much higher performance because of
the elimination of OS context switches, and also two other reasons:

1 Overlapping TLB misses with useful work: If hardware PTWs are integrated on
CPUs that support out-of-order execution, it is possible to hide at least part of the TLB
miss latency with the execution of other streams of independent instructions. Consider,
for example, the snippet of code shown in Figure 9. Suppose that instruction 1, which
performs a load from memory, suffers a TLB miss. For architectures with software
translation walks, the OS is expected to execute a TLB miss handler to locate the de-
sired translation. While this handler executes on the CPU, no other instructions from
the user-level program can be executed. However, with hardware translation walks, this
restriction can be lifted. In the example in Figure 9, the third, fourth and sixth instruc-

22



tions can be identi�ed as being independent by the underlying out-of-order mechanism
(e.g., scoreboarding, Tomasulo's algorithm, etc.) and can be issued and executed out of
order. Note that the load in instruction 2, however, will not be executed until the TLB
miss from the �rst instruction is serviced because its effective address is to the same
virtual page (0x100) as the �rst instruction. Since the �fth and seventh instructions are
dependent on the second and �rst instruction, these are also not executed until the TLB
miss is handled. Nevertheless, hardware PTWs permit at least part of the TLB miss to
be overlapped by independent instructions, mitigating the performance impact of page
table walks.

2 Concurrently handling multiple misses: One of the implicit requirements to overlap
independent instructions with TLB misses is that hardware PTWs enable TLBs with
support for hits under misses. That is, even though the �rst load suffered a TLB miss,
the third and fourth loads were permitted to look up the TLB (and enjoy hits) because
they correspond to different virtual page numbers. However, a key question remains –
when the hardware PTW is engaged in a page table walk, what if a parallel TLB lookup
also suffers a miss? Can hardware PTWs handle multiple concurrent TLB misses?

The �rst generations of hardware PTWs were designed to satisfy only one out-
standing TLB miss. There were many reasons for this – lower hardware complexity
(the PTW buffers in Figure 8 need only a single entry), simpler microcode control
(support for concurrent TLB misses requires microcode for two page table walks to be
injected into the pipeline simultaneously), and simply the fact that TLB misses were
rare enough (although expensive when they occurred) that multiple TLB misses were
rarely encountered. However, more recent processor designs have begun to incorporate
PTWs with support for multiple misses for several reasons. First, architects continue
to exploit more ILP per CPU by accommodating progressively larger reorder buffers;
consequently, the chances that a TLB miss may occur while a page table walk is in
progress continue to rise. Second, modern TLB hierarchies are generally expected
to service several hardware threads via simultaneous multi-threading or hyperthread-
ing. The greater the number of hardware threads, the higher the likelihood that several
threads may encounter TLB misses concurrently. Third, emerging hardware accel-
erators like GPUs execute hundreds to thousands of threads concurrently and often
encounter concurrent TLB misses.

The bottomline is that hardware PTWs currently have support for multiple out-
standing misses. As shown in Figure 8, the PTW buffers maintain multiple entries,
one for each outstanding miss. This is the technique used, for example, in Intel's
Haswell/Broadwell/Skylake chips which can support 2-4 outstanding TLB misses, or
GPUs, which can support several tens of misses [28, 29, 69, 70, 72, 87].

Hybrid approaches: Although rare, hybrid page table walkers that combine the best of
hardware and software page table walks are employed by some architectures. Consider,
for example, the way Linux supports ARM V7 architectures. Linux maintains two page
tables – a software managed one, and a hardware managed one that the MMU also has
access to. On TLB misses, a hardware PTW can walk the hardware-managed page
table to populate the TLB. However, hardware PTWs cannot set dirty or access bits.
Instead, the dirty bit is emulated by granting hardware write permission if and only if
the page is marked writable and dirty in the software page table. In other words, a write

23



to a clean page causes permission faults. This forces the OS to run a handler that marks
the page table entry as dirty. After the hardware table is updated with new permissions
and book keeping is done, the user mode program is started at the replayed instruction.
In general, the bene�t of a hybrid approach is that TLB misses can be handled quickly
(in hardware), but the OS can maintain access/dirty information in a manner that better
tracks the hotness of pages than traditional hardware-only PTWs.

Q&A 6
Q6. Although a detailed treatment of virtualization is out of the scope of this appendix,
we provide a gentle introduction through the following exercise. Consider a virtualized
system where user-level programs make memory references in a virtual machine run-
ning a guest operating system, which sits atop a hypervisor. In this model of execution,
two levels of address translation are required. First, a guest virtual address must be
converted to a guest physical address. This guest physical address must then be con-
verted to a system physical address. Many modern architectures maintain two levels
of page tables to enable this two-step translation process. The �rst one, the guest page
table, translates the guest virtual pages to guest physical pages and is maintained by the
guest OS. The second one, the nested page table, translates the guest physical pages
to the system physical pages, and is maintained by the hypervisor. Assuming that the
page table walker has access to both page tables, how many memory references are
expected for a page table walk in this virtualizated environment? You may assume an
x86-64 architecture.

A6. Figure 10 shows a two-dimensional page table walks for virtualized systems. A
guest virtual page (GVP), which is not shown, is translated to guest physical page
(GPP). This is done by concatenating the L4 index bits from the GVP with a special
CR3 register, the guest CR3, which maintains the system physical page (SPP) of the
root of the guest page table. This generates a GPP (which we call GPP Req in our
example), which must be converted to an SPP. This SPP is used to look up the L4 guest
page table level (gL4). The four-level nested page table (nL4-nL1) is used to generate
this SPP. Then, the SPP is combined with the GVP's L3 index bits to look up the gL4,
which provides the GPP of the gL3. Again, the nested page tables must then be looked
up, and so on. This process continues until the GPP of the L1 is known. This then
can be used to look up the nested page table one last time to determine the �nal SPP.
Overall, this two-dimensional page table walk requires 24 memory references, which is
a signi�cant factor over the native execution case. For this reason, address translation
performance is particularly problematic in virtualized environments. To partly mitigate
this overhead, processor vendors include dedicated caches, MMU caches and nested
TLBs, to short-circuit some of these memory references. While nested TLBs are out
of the scope of this appendix, we discuss MMU caches in the next section.

24



Figure 10:Two-dimensional page table walks for virtualized systems. Nested page tables are
represented by boxes and guest page tables are represented by circles. Each page table's levels
from 4 to 1 are shown. TLBs cache translations from the requested guest virtual page (GVP) to
the requested system physical page (SPP).

7 Memory Management Unit Caches

Although hardware PTWs can mitigate the detrimental performance impact of TLB
misses, the quest for ever-increasing performance has led processor vendors to explore
other techniques to reduce page table walk latencies. One means of achieving this –
which many commercial processors use – is through the use ofMemory Management
Unit (MMU) cachesor pre�x caches[10, 16]. MMU caches were originally built based
on the observation that page table walks are lengthy because they require multiple se-
quential memory references. For example, x86-64 architectures require four sequential
memory references to traverse all four levels of the page table. MMU caches are used
to short-circuit several (ideally three) of these memory references, as detailed below.

While multi-level page tables require multiple accesses to translate a virtual ad-
dress, accesses to the �rst few levels enjoy signi�cant temporal locality. This is natural
– after all, each page table entry in the root level of an x86-64 page table maps 512GB
contiguous chunks of the virtual address space in contrast to the leaf level of the page
table, which maps only 4KB chunks of the virtual address space. In general, translation
walks for two consecutive pages in the virtual address space are likely to use the page
table entries in the L4, L3, and L2 page table levels since the 9-bit indices used to select
the entries are extracted from high-order bits of the virtual address, which change less
frequently.

25



When the MMU accesses the page table table, it does so through the memory hi-
erarchy. Technically, the temporal locality enjoyed by the entries in the upper levels
of the page table can be exploited by the processor caches. However, these processor
caches must also cache user-level data, and other kernel-level data structures. Con-
sequently, page table entries are often only found in the LLC, which can take several
tens of cycles of access. It is this problem that MMU caches solve. MMU caches are
low-latency caches for the upper level page table entries. As Figure 7 shows, while
the leaf level of the page table is cached in the TLB, the upper levels are cached in the
MMU caches.

MMU caches may be designed in several ways. One way is to design them similar
to conventional data caches, where each entry stores a page table entry and is tagged
with the physical address of the corresponding location in the memory-resident page
table. Examples include AMD's page walk cache [15]. Alternately, Intel uses an ap-
proach where MMU caches are indexed by parts of the virtual address – these structures
are known as paging structure caches. Finally, research proposals have also suggested
an alternate format, known as a translation path cache [10]. For these tagging schemes,
elements from different levels of the page table can be mixed in a single cache (a uni�ed
cache), or placed into separate caches (a split cache). We detail these options next.

Page walk caches:Consider standard instruction and data caches. The hardware PTW
generates a physical address based on the page table level that is to be accessed and the
appropriate 9-bit index from the virtual address. This is the address that is used to look
up the memory hierarchy. Page walk caches use the same approach. Each entry in a
page walk cache is tagged with the physical address in the page table. These tags are
the size of the physical page number plus the size of a page table index. (As previously
described, L1 entries of the x86-64 page table are not cached in the page walk cache as
they are cached in TLBs instead.)

1 Uni�ed page walk caches: These structures are high-speed read-only caches that
store page table entries from all the upper page table levels together. Entries from the
different levels of the page table are generally mixed together – and usually treated
with similar priorities as per the replacement policy – and indexed via their physical
address. The diagram on the left in Figure 11 shows an example uni�ed page walk
cache after the completion of the page table walk in Figure 7 for a virtual address with
decomposed 9-bit indices (0b9, 00c, 0ae, 0c2, 016). Tags are made up of a combination
of the base physical address (Base) and the 9-bit index that corresponds to the L4, L3,
or L2 entry (Index). Data – or theBasephysical address of the next page table level –
is stored in theNext�eld.

Consider the cached state shown in Figure 11 and suppose that the MMU subse-
quently tries to translate virtual address (0b9, 00c, 0ae, 0c3, 103). The hardware PTW
will initiate a lookup for the page table entry stored in location 0b9 in the L4 page table
(which is located in physical page number 613, as indicated by theCR3register). This
entry is present in the page walk cache (as indicated by the third entry with aBase
of 613 andIndexof 0b9), with aNextvalue of 042. Because of this page walk cache
hit, the PTW does not need to launch this memory reference to the cache hierarchy,
improving performance greatly (MMU caches are generally single-cycle access). In
the next step, the hardware PTW looks up the uni�ed page walk cache for aBaseof

26



Figure 11:On the left, we show an example of a uni�ed page walk cache, where entries from
the L4, L3, and L2 levels are mixed. Tags are made up of a combination of theBaseandIndex
�elds, and we show the state of the page walk cache after the walk in Figure 7. The �gure on the
right shows the state of split page walk caches – where there are separate structures for L4, L3,
and L2 entries – after the same walk.

042 andIndexof 00c (from the 9-bit L3 index found in the virtual address). Again,
this results in a page walk cache hit, obviating the need for a lookup of the memory
hierarchy. This process continues until the address of the L1 page table level is found
(508), concatenated with the L1 index (0c2), and followed with a memory reference
made up of this concatenated address.

Without a page table cache, all four of these accesses to page table entries would
have required a memory reference, each of which may hit in the processor caches or
have to go to main memory. Instead, with a page walk cache, MMU cache lookups for
the �rst three page table levels hit, and only the L1 lookup requires a memory reference.

2 Split page walk caches: The main problem with uni�ed page walk caches is that
they complicate replacement policies – since L4, L3, and L2 page table entries can
freely intermingle in the cache, and since they map 512GB, 1GB, and 2MB chunks
of the virtual address space respectively, their locality properties can differ widely. In
this situation, replacement policies can be complicated to implement since traditional
cache LRU policies are based on the idea that each line maps an equal amount of the
address space.

Consequently, an alternate design for page table caches separates the page table
entries from different levels into different hardware structures. We show this split ap-
proach on the right in Figure 11. In this design, each individual entry contains the same
tag and data as it would in the uni�ed page table cache. The main difference is that each
page table level has a private cache, and entries from different levels do not compete
for a common pool of slots. This �xes the interference problem among translations for
different levels and also makes it easier to build replacement algorithms.

Paging structure caches:Page walk caches tag their entries by physical address; but

27



Figure 12:On the left, we show an example of a uni�ed paging structure cache, where entries
from the L4, L3, and L2 levels are mixed. Tags are made up of a combination of the 9-bit L4, L3,
and L2 indices (or pre�xes) from the virtual address. Some of the lower-order bits of this tag are
made up of don't care values (XXX) depending on whether the corresponding entry represents
an L4, L3, or L2 translation. we show the state of the page walk cache after the walk in Figure
7. The �gure on the right shows the state of split page walk caches – where there are separate
structures for L4, L3, and L2 entries – after the same walk.

an alternative is to tag entries by the indices in the virtual address. This is the ap-
proach taken when designing paging structure caches. With this approach, L4 entries
are tagged with 9-bit L4 indices, L3 entries are tagged with 9-bit L4 indices and 9-bit
L3 indices, while L2 entries are tagged with 9-bit L4 indices, 9-bit L3 indices, and 9-bit
L2 indices. With this approach, data from one entry is not needed to look up the entry
at the subsequent lower page table level. In other words, lookups for L4, L3, and L2
can be concurrently performed. In the end, the MMU selects the entry which has the
longest matching pre�x with the virtual address because it allows the hardware PTW
to skip over most levels.

1 Uni�ed paging structure caches: The diagram on the left in Figure 12 shows a
uni�ed paging structure cache, where entries from the L4, L3, and L2 levels are inter-
mingled. We show the state of the cache after the page table walk for (0b9, 00c, 0ae,
0c2, 016) shown in Figure 7. Now suppose that the MMU has to translate the virtual
address (0b9, 00c, 0dd, 0c3, 929). At this point, the hardware PTW will attempt to
full�ll a longest virtual address pre�x match in the paging structure cache, so that it
can minimize the number of lookups of the structure. This means that the hardware
PTW begins by trying to match L4, L3, and L2 indices. This leads to matches for the
L4 and L3 indices – the entries for 0b9/00c/xxx and 0b9/xxx/xxx both match (while
0b9/00c/0ae does not, because the desired L2 index is 0dd). Of these two matches,
the �rst represents the longest pre�x. Therefore, the hardware PTW extracts the data,
(125), and concatenates the L2 index with it (0dd) to generate the desired physical
address of the page table entry within the L2 page table page. This is then sent to the
memory hierarchy, followed by a reference for the L1 page table page. In this example,

28



Figure 13:An example of the contents of a translation path cache after the page walk in Figure
7. Tags are made up of three 9 bit indices and all three 40-bit physical page numbers are stored
for all three page table levels.

the paging structure cache permits skipping over two lookups in the page table.

2 Split paging structure caches: The diagram on the right in Figure 12 shows a split
paging structure cache design. This operates similarly to the uni�ed paging structure
cache, but like split page walk caches, eliminates the problem of interference among
L4, L3, and L2 entries (due to differing locality properties). Furthermore, splitting the
structures makes it easier to look up all the paging structure caches in parallel.

Translation path caches:In the paging structure caches in Figure 12, the tags for the
three entries for a single page table walk path have the same content. The L4 and L3
entries maintain severaldon't carebits, but the partial translations they do hold have
the same content. Consequently, researchers have proposed translation path caches,
structures where this kind of area waste is mitigated by storing all three physical page
numbers in a single entry [10, 16]. In such caches, a single entry represents an entire
path, including all intermediate entries, rather than individual entries within a walk.

Figure 13 shows the contents of a translation path cache after the page table walk
in Figure 7. All the data from the walk is stored in a single translation path cache entry.
If the MMU starts to translate virtual address (0b9, 00c, 0ae, 0c3, 929), the L1 entry is
discovered. In particular, the hardware PTW �nds the entry in the cache with the tag
(0b9, 00c, 0ae) and reads the physical page number 508 of the L1 page location. Later,
if the PTW has to translate virtual address (0b9, 00c, 0de, 0fe, 829), this address shares
a partial path (0b9, 00c) with the previously inserted entry. Therefore, the translation
path cache provides the physical address of the L2 entry.

Design comparison:Having detailed various types of MMU caches, we now compare
their design attributes.

1 Indexing: The indexing scheme of the MMU cache impacts its overall operation
and ef�ciency. The schemes we considered can tag MMU cache entries by physical or
virtual addresses. For example, page walk caches use physical addresses to tag page
table entries, and are essentially like versions of conventional processor data caches
but dedicated to upper-level page table entries. This makes them easy to design, which
is why they have been adopted in commercial processors by vendors like AMD [15].
However, they have an important drawback – they require multiple lookups for transla-

29



tions in top-down order. Speci�cally, the result of the L4 entry search is required before
the L3 entry search can begin, because the L4 entry gives the physical page number of
the L3 page table page, which is needed to generate the physical address of the L3
page table entry. Similarly, the L2 search is dependent on the result of the L3 search.
The need for top-down searches presents several problems. First, the page walk cache
must be looked up multiple times for a walk, accruing access latency and energy, even
if all the levels of the walk are resident. Paging structure caches, on the other hard, use
parts of the virtual address (the indices) as tags for the entries. This allows them to be
searched in any order (L4 �rst, L2 �rst, or in parallel), making them ef�cient.

2 Coverage: The coverage of an address translation cache is the amount of the vir-
tual address space that can be represented by the �nite number of entries it supports.
For example, a 128-entry TLB for 4KB pages has a coverage of 128� 4KB or 512KB.
Unfortunately, characterizing the coverage of an MMU cache is not as straightforward.
For example, consider a scenario where a hardware PTW lookup of a paging structure
cache hits on the L3 entry, but not the L2 entry. In this case, the translation is accel-
erated by the MMU cache, but still requires a memory reference to fetch the L2 page
table entry – should this lookup be counted as being covered or not?

Prior work has taken the strict position that MMU coverage is only said to oc-
cur when no memory references are made to fetch L4, L3, and L2 page table entries
[10, 16]. In general, when equally sized, paging structure caches are able to cover a
larger portion of the address space than page walk caches. This is because paging struc-
ture caches generally make more ef�cient use of their entries than page walk caches.
For a page walk cache to provide coverage according to its strict de�nition, it must
simultaneously hold L4, L3, and L2 page table entries. In contrast, a single paging
structure cache entry can provide the full path through L4, L3, and L2 levels.

3 Complexity: MMU caches can be built as either fully-associative or set-associative
caches using CAMs and SRAM. The different variants have differing tag and data
widths, leading to differing implementation complexity. Figure 14 shows the complex-
ity of all variants of MMU caches that we have considered. We separate analysis for
page walk caches and paging structure caches, showing the number of caches that they
need, the number of bits per tag in each entry of the cache, and the number of bits per
data �eld in each entry of the cache. Furthermore, the analysis is parameterized by the
number of levels in the page table, L, the number of bits in a physical address, P, and
the number of offset bits in a page table index for a particular level, N.

For modern x86-64 architectures, L is 4, P is 52, and N is 9. This means that paging
structure caches and translation path caches require signi�cantly smaller tags than page
walk caches (27 bits versus 40 bits). This means that generally, paging structure and
translation path caches are smaller and more energy-ef�cient.

8 MMU Integration: Putting Everything Together

We have presented several microarchitectural structures that are involved in address
translation, from two-level TLB hierarchies and page table walkers to many types of
MMU caches. In addition, these structures have important interactions with other mi-

30



Figure 14:Number of caches, tag bits per entry, and data bits per entry for page walk caches
and paging structure caches. We separate results for uni�ed and split con�gurations. Note that
translation path caches are neither uni�ed nor split. All complexity analysis is parameterized by
the number of levels of translation, L, the number of bits in a physical address, P, and the number
of offset bits in a page table index for a particular level, N. As an example, in x86-64 processors,
L is 4, P is 52, and N is 9.

croarchitectural components like load-store queues and processor caches. In sum, these
components interact with one another in a manner that creates signi�cant indirections,
and can thus be complex to understand. We devote this subsection to detailing the
interactions among all these microarchitectural components. Naturally, the nature of
these interactions is determined by the speci�c microarchitectural components – i.e.,
physically-tagged versus virtually-tagged caches, hardware versus software translation
walks, etc. To simplify our discussion, we assume an MMU that integrates with a
virtually-indexed, physically-tagged L1 cache, and the use of hardware PTWs.

1 Load/store queue to TLB: When CPUs generate memory references, they are in-
serted into load/store queues, which are the �rst microarchitectural structures that inter-
act with address translation hardware [54, 55]. While little has been publicly disclosed
about load/store queue-TLB interactions in commercial microprocessors, we present a
plausible overview of these interactions based on information gleaned from published
work and patents [54].

One of the hallmarks of high-performance processors is the need for memory pre-
diction and disambiguation [26]. The prediction stage anticipates dynamic same-phy-
sical address dependencies between stores and loads to try to preemptively prevent
correctness problems. The disambiguation stage later ensures that all predictions were
correct. This pairing ensures that synonyms – situations where multiple virtual ad-
dresses map to the same physical address – can be detected while keeping the TLB off
the forwarding critical path.

31



Figure 15:Interactions between the store buffer, load buffer, and TLB hierarchy. The bubbles
represent various steps in the memory dependency prediction and disambiguation process. Both
load and store buffers maintain a separate �eld for the virtual page (VP), physical page (PP), and
page offset bits (PO), which are the same in the virtual and physical address spaces and hence
do not need to be repeated. Additionally, store buffers maintain a data �eld, while load buffers
do not. Finally, both buffers maintain age �elds to track the program order in which the loads
and stores were inserted in the buffers.

One plausible mechanism is shown in Figure 15. We separately show the L1 TLB
(the remainder of the address translation and memory hierarchy are present but not
shown), the load buffer, and the store buffer. Both load and store buffers maintain
separate �elds for the virtual page number (VP) and the physical page number (PP).
Furthermore, they maintain a single �eld for the page offset,PO, since it is equivalent
in virtual and physical address spaces. While the size of the page offset can vary
depending on whether it pertains to base pages or superpages, the load and store buffers
need just enough bits for the smallest page size, which is 4KB in x86-64 systems.
Therefore, x86-64 load/store buffers require 12 bits in the page offset �eld.

In Figure 15, we show how stores and loads operate. All stores write their virtual
address and data into the store buffer in parallel with searching the TLB (shown ina ).
This means that the virtual page, page offset, and data �elds in the relevant store buffer
entry are populated. The physical page number is later written into the store buffer
entry when the TLB returns the data (shown inb ).1

Figure 15 also shows load operation. Loads write their virtual page number and
page offset bits in parallel with TLB access (shown inc ). Then, each load compares
these page offset bits against the page offset bits of all older stores in the store buffer

1We discuss the events constituting a TLB miss in subsequent subsections.

32



Figure 16:Virtually-indexed, physically-tagged cache operation. A virtual address is split into
a virtual page number,VP, and page offset. The virtual page number is split into TLB index and
tag, while the page offset houses the block offset and (part of) the cache index bits. The TLB
lookup proceeds in parallel with identi�cation of the cache set. We show an example of an L1
TLB hit, where the L1 cache lookup completes fast. Furthermore, our L1 cache assumes two
ways per set, where each set is a horizontal slice of the the L1 cache.

(shown in d ). If there is no match among the existing entries, this clearly means that
none of the existing stores are to the same address as the load instruction. If an older
store does exist but its address is not generated yet (so the page offset �eld is blank),
we predict there to be no dependencies between the store and load.

If there is a match in page offset bits, the load then compares higher-order bits. If
the load's virtual page number matches the store's virtual page number (shown ine ),
the store forwards its value to the load (shown ing ). If there is no match, the load
compares its physical page number against the store's physical page number, stalling if
either instruction's TLB access has not yet returned a translation. If the physical page
bits match, the store will forward its data to the load. Otherwise, the load will have
determined that no dependency exists between the load and that particular store.

Finally, load/store queues must also re�ect disambiguation; stores must determine
whether their speculations were legal. Therefore, before each store commits, it checks
the load buffer to see if any younger loads matching the same physical address have
speculatively executed before it. If so, it squashes and replays them [54].

2 TLB hierarchy to cache hierarchy: The load/store queue's interactions with the

33



Figure 17: Similar setup as Figure 16, except that the L1 TLB initially misses. When this
happens, the L1 cache lookup is aborted, freeing up its ports for lookups from other instructions
that are non-dependent on this TLB miss. The L2 TLB is then looked up. If the translation is
found in the L2 TLB, it is �lled into the L1 TLB, and the memory reference that initially missed
in the TLB is replayed. This time, the cache lookup completes.

TLB present just the �rst step in the life of a memory reference. We now detail the
following steps which involve interactions between the TLB and the L1 caches. With-
out loss of generality, we focus on virtually-indexed physically-tagged (VIPT) caches,
as shown in Figure 16. Consider the case where VIPT caches are used on an x86-64
architecture. The 64-bit virtual address is split into a virtual page number (VP) and a
page offset. The basic idea is that to mitigate the access latency of the TLB, the TLB
lookup can be performed in parallel with part of the L1 cache lookup. To do this, Fig-
ure 16 shows that the virtual page number can be split up into a portion that is used
as the TLB index to select the desired TLB set (a ). In parallel, the L1 cache can be
probed to complete set selection (alsoa ). With an effective VIPT organization, the
tag match in the TLB (b ) completes by the time the tags in the selected set in the L1
cache are ready to be compared (c ).

Thus far, we have assumed that a situation where the L1 TLB lookup results in a
hit. Figure 17 shows the case where the L1 TLB lookup results in a miss. When this
happens, an entry in the L1 TLB's miss status holding register (MSHR) is allocated
to record the virtual address of the memory reference (c ). In the next step (d ), the
cache access is aborted so as to free up the cache port for use by other instructions

34



that are independent of the TLB miss and can proceed without being blocked due to a
structural hazard. Suppose, further, that the desired translation is found in the L2 TLB.
At this point, it is �lled into the L1 TLB (in e ), after which the memory instruction
is replayed by the CPU (inf ). The replay re-initiates cache and TLB set lookups (in
g ), TLB tag match (in h ). This time, the translation is found in the L1 TLB, so a
cache tag match can proceed (ini ).

Naturally, our description presents only one possible implementation of the TLB-
L1 cache interface. Furthermore, our design presents two subtle points. The �rst is that
the VIPT approach can only work if the bits used to select the cache index are guaran-
teed to be identical in physical and virtual address spaces. In x86-64 bit architectures,
only the lowest 12 bits are guaranteed to be identical as they correspond to the smallest
page size of 4KB. Therefore, even though x86-64 architectures support 2MB and 1GB
pages – and hence, one might consider the idea of extracting cache index bits from the
lowest 21 and 30 bits of the virtual address – we only use the lowest 12 bits for cache
index selection because the page size is unknown until TLB lookup.

The second point is that using the lowest 12 bits of the virtual address to house the
cache index bits implies a cap on the number of sets that a VIPT L1 cache can accom-
modate. For x86-64 bit architectures with 64-byte cache blocks, only a maximum of 6
bits remain for the cache index, implying a maximum of 64 cache sets. After 64 sets,
L1 VIPT caches can be grown by increasing the number of ways in a set rather than
the set count. This can present power and access time problems, although techniques
like page coloring can partly mitigate this problem [24, 50, 62, 80, 95].

3 Page table walker to MMU caches and cache hierarchy:In our previous example
in Figure 17, we assumed a situation where the lookup missed in the L1 TLB, which
prompted the VIPT cache access to be aborted. We then assumed an L2 TLB hit.
However, it is also possible that the L2 TLB lookup results in a miss. When this
happens, an MSHR entry for the L2 TLB is allocated. This MSHR is the same as a
PTW buffer in Figure 8 and maintains information about all the page table walks that
have been initiated. Since the VIPT cache access was already aborted at the L1 TLB
miss, nothing else needs to be done on the L1 cache side.

A hardware PTW interacts with the MMU caches and the processor's data caches.
In the best case scenario, the lookups for the �rst three page table levels in the x86-64
architecture are hits, leaving the reference for the leaf page table entry for a lookup
into the data caches and main memory. Note that references for instruction address
translation are relayed to the data caches too (as opposed to the instruction caches),
since page tables are treated as data by the processor.

Figure 18 shows the steps involved in a page table walk, assuming that we use a
page walk cache as the MMU cache. Suppose that a CPU invokes the hardware PTW,
which is responsible for generating physical addresses to the page table entries in the
L4-L1 page table levels. For each of the L4-L2 levels, the PTW probes the MMU cache
�rst to ascertain whether that particular page table entry can be quickly found. In the
event that the desired page table entry is not in the page walk cache, a miss occurs.
When this happens, the physical address of the page table entry in the L4-L2 levels is
used to probe the memory hierarchy, made up of data caches and main memory. When
the page table entry is found, it is �lled into the MMU cache, which is not shown in

35




