
Inter-Core Cooperative TLB Prefetchers
for Chip Multiprocessors

Abhishek Bhattacharjee and Margaret Martonosi
Department of Electrical Engineering

Princeton University
{abhattac, mrm}@princeton.edu

Abstract
Translation Lookaside Buffers (TLBs) are commonly employed in
modern processor designs and have considerable impact on over-
all system performance. A number of past works have studied
TLB designs to lower access times and miss rates, specifically for
uniprocessors. With the growing dominance of chip multiproces-
sors (CMPs), it is necessary to examine TLB performance in the
context of parallel workloads.

This work is the first to present TLB prefetchers that exploit
commonality in TLB miss patterns across cores in CMPs. We pro-
pose and evaluate two Inter-Core Cooperative (ICC) TLB prefetch-
ing mechanisms, assessing their effectiveness at eliminating TLB
misses both individually and together. Our results show these ap-
proaches require at most modest hardware and can collectively
eliminate 19% to 90% of data TLB (D-TLB) misses across the sur-
veyed parallel workloads.

We also compare performance improvements across a range of
hardware and software implementation possibilities. We find that
while a fully-hardware implementation results in average perfor-
mance improvements of 8-46% for a range of TLB sizes, a hard-
ware/software approach yields improvements of 4-32%. Overall,
our work shows that TLB prefetchers exploiting inter-core correla-
tions can effectively eliminate TLB misses.

Categories and Subject Descriptors B.3 [Memory Structures]:
Design Styles; C.1 [Processor Architectures]: Parallel Architec-
tures; C.4 [Performance of Systems]: Design Studies; D.4 [Op-
erating Systems]: Performance

General Terms Design, Experimentation, Performance

Keywords Translation Lookaside Buffer, Parallelism, Prefetching

1. Introduction
To avoid high-latency accesses to operating system (OS) page ta-
bles storing virtual-to-physical page translations, processor Mem-
ory Management Units (MMUs) store commonly used translations
in instruction and data Translation Lookaside Buffers. While past
work has addressed various options for TLB placement and lookup
[4, 17], most contemporary systems place them in parallel with the
first-level cache. Due to their long miss penalties, TLB behavior
affects processor performance significantly [6, 13, 16, 18].

Numerous techniques have been proposed to improve TLB per-
formance. On the hardware side, TLB characteristics such as size,
associativity, and the use of multilevel hierarchies have been ex-
plored [4]. On the software side, the concept of superpaging has
been examined [23]. Hardware/software prefetching techniques

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’10, March 13–17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-839-1/10/03. . . $10.00

have also been investigated in detail [14, 19]. While effective, pro-
posed prefetchers are specific to uniprocessors. With the growing
dominance of chip multiprocessors (CMPs), it is imperative that
we examine TLB performance in the context of parallel workloads.

Recent characterizations of emerging parallel workloads on
CMPs show that significant similarities exist in TLB miss patterns
among multiple cores [2]. This occurs either in the form of TLB
misses caused by identical virtual pages on multiple cores, or in
the form of predictable strides between virtual pages causing TLB
misses on different cores. These observations point to valuable op-
portunities for eliminating TLB misses by studying common miss
streams across cores.

This paper develops Inter-Core Cooperative (ICC) TLB prefetch-
ers to exploit common TLB miss patterns among cores for perfor-
mance benefits. We propose and evaluate two approaches for TLB
prefetching. The first approach, Leader-Follower prefetching, ex-
ploits common TLB miss virtual pages among cores by pushing
TLB mappings from leader to other cores, reducing TLB misses.
In the second approach, we augment the uniprocessor-centric
Distance-based prefetching mechanism developed by Kandiraju
and Sivasubramaniam [14] to exploit stride-predictable TLB misses
across CMP cores. Our specific contributions are as follows:

• Foremost, our work is the first to recognize opportunities for
inter-core TLB cooperation and propose mechanisms in re-
sponse.

• In particular, by pushing TLB mapping information from the
initial miss core (leader) to the other cores, Leader-Follower
prefetching can eliminate up to 57% of the TLB misses across
the surveyed workloads. Confidence mechanisms also help to
reduce over-aggressive prefetching.

• Furthermore, we show how Distance-based Cross-Core prefetch-
ing captures repetitive TLB miss virtual page stride patterns
between cores and within the same core to eliminate up to 89%
of the TLB misses across the evaluated workloads.

• We then combine both approaches and show that they can be
implemented with modest hardware to eliminate 13-89% of
TLB misses across the tested parallel benchmarks.

• Finally, we investigate performance improvements for a range
of hardware and software implementations of ICC prefetching.
While a fully hardware implementation can yield average per-
formance improvements of 8-46%, even after moving signif-
icant components of the prefetcher into software we achieve
average improvements of 4-32%.

Overall this work is the first to exploit inter-core TLB miss re-
dundancy in parallel applications. The rest of the paper is structured
as follows. Section 2 covers background material. Section 3 then
proposes two ICC TLB prefetchers. Section 4 presents our evalu-
ation methodology while Section 5 evaluates the benefits of each
TLB prefetching scheme individually and then combines them.
Section 6 addresses the performance benefits of incorporating the
ICC TLB prefetchers for a range of hardware/software implemen-
tations. Section 7 discusses system issues related to prefetching and
finally, Section 8 offers conclusions.

2. Background and Related Work
Since TLBs are usually placed in parallel with first-level caches,
CMPs maintain per-core instruction and data TLBs, which are
largely oblivious to the behavior of other TLBs, except for shoot-
downs used for coherence. These TLBs are either hardware-
managed or software-managed. Hardware-managed TLBs use a
hardware state machine to walk the page table, locate the appro-
priate mapping, and insert it into the TLB on every miss. Because
the page-table walk is initiated by a hardware structure, there is no
need for expensive interrupts and the pipeline remains largely un-
affected. Moreover, the handling state machine does not pollute the
instruction cache. Past studies have shown the performance ben-
efits of hardware-managed TLBs [10], with typical miss latencies
ranging from 10 to 50 cycles [11, 13].

Although hardware-managed TLBs do offer performance ben-
efits, they also imply a fixed page table organization. As such, the
OS cannot employ alternate designs. In response, RISC architec-
tures such as MIPS and SPARC often use software-managed TLBs
[9, 16]. Here, a TLB miss causes an interrupt, and the OS executes
a miss handler which walks the page table and refills the TLB.
Since the OS controls the page table walk, the data structure de-
sign is flexible. This flexibility, however, comes with an associated
performance cost. First, precise interrupts prompt pipeline flushes,
removing a possibly large number of instructions from the reorder
buffer. Second, the miss handler tends to be 10 to 100 instructions
long and may itself miss in the instruction cache [10]. In addition,
the data cache may also be polluted by the page table walk. All
these factors contribute to TLB miss latencies that can span hun-
dreds of cycles [9, 10].

Numerous studies in the 1990s investigated the performance
overheads of TLB management in uniprocessors. Studies placed
TLB handling at 5-10% of system runtime [6, 13, 16, 18] with ex-
treme cases at 40% of runtime [8]. Anderson showed that software-
managed TLB miss handlers are among the most commonly exe-
cuted primitives [1] while Rosenblum et al. found that these han-
dlers can use 80% of the kernel’s computation time [18].

To tackle TLB management overheads, early work addressed
hardware characteristics such as TLB size, associativity, and multi-
level hierarchies [4]. More recently, TLB prefetching schemes have
also been explored. For example, Saulsbury et al. [19] introduce
Recency-based prefetching to exploit the observation that pages
referenced around the same time in the past will be referenced
around the same time in the future. In this approach, two sets of
pointers are added to each page table entry to track virtual pages
referenced in temporal proximity to the current virtual page. While
effective, this strategy leads to a larger page table.

In response, Kandiraju and Sivasubramaniam [14] adapt cache
prefetching techniques such as Sequential, Arbitrary-Stride and
Markov prefetching [5, 7, 12]. They propose a Distance-based
TLB prefetcher which tries to detect repetitive strides as well as
the patterns that Markov and Recency prefetching provide, using
a modest amount of hardware. Specifically, the Distance-based
approach tracks the difference or distance between successive TLB
miss virtual pages and attempts to capture repetitive distance pairs
in the miss stream. On every TLB miss, the goal is to use the
distance between the last miss virtual page and current miss virtual
page to predict the next expected distance and hence, the next miss
virtual page. A prefetch is then initiated for this virtual page.

While these prefetchers exhibit performance benefits, they all
target uniprocessors. As CMPs become ubiquitous, it becomes nec-
essary to re-evaluate the role of TLBs in the performance of emerg-
ing parallel workloads. There has been surprisingly little work done
in this context although our prior work indicates that emerging par-
allel workloads can severely stress current TLB designs, with a
worst-case CPI of 0.7 devoted to D-TLB management on a 4-core
AMD Opteron [2]. Fortunately, this work also indicates that sig-
nificant commonality exists in TLB miss patterns across cores of a
CMP. In particular, a large number of TLB misses are predictable in
that they are caused by virtual page accesses seen on multiple cores
or by virtual pages that experience repetitive inter-core strides. As

�

�

��

��

��

��

��

��

	�

�

��

���

��
��
�� �
� �
	
 �
�
�
��
�
�� ��
��

��

��

��
� ��
� �

�� �
� �
��

�
���
�
�������������
�
�������������
�
�������������

Figure 1. Number of inter-core shared (ICS) D-TLB misses, per number
of sharers, and inter-core predictable stride (ICPS) D-TLB misses. Sum-
ming these categories and normalizing to the total misses represents the
potential for ICC prefetching to help.

such, these observations present a valuable opportunity to eliminate
the rising costs of TLB misses in parallel workloads. This work
uses this insight to develop novel CMP-targeted TLB prefetchers
for performance improvements of parallel applications.

While the techniques we develop in this work may be applied to
both I-TLBs and D-TLBs, this study focuses on D-TLBs because
of their far greater impact on system performance [2, 6, 19]. Our
approaches, however, are likely to reduce I-TLB misses as well.

3. Two Inter-Core Cooperative TLB Prefetchers
3.1 Motivation and Background Data

To develop effective prefetching mechanisms exploiting redundant
inter-core TLB miss patterns, predictable TLB miss types must be
understood. In [2], we classified predictable TLB misses in CMPs
into two categories:

1. Inter-Core Shared (ICS) TLB Misses: In an N-core CMP, a
TLB miss on a core is ICS if it is caused by access to a translation
entry with the same virtual page, physical page, context ID (pro-
cess ID), protection information, and page size as the translation
accessed by a previous miss on any of the other N-1 cores, within
a 1 million instruction window. The number of cores that see this
translation is defined as the number of sharers.

2. Inter-Core Predictable Stride (ICPS) TLB Misses: In an N-
core CMP, a TLB miss is ICPS with a stride of S if its virtual page
V+S differs by S from the virtual page V of the preceding matching
miss (context ID and page size must also match). We require this
match to occur within a 1 million instruction window, and the stride
S must be repetitive and prominent to be categorized as ICPS.

Figure 1 summarizes the prevalence of these types of pre-
dictable D-TLB misses across the parallel benchmarks from PAR-
SEC surveyed in [2], assuming 64-entry D-TLBs. The stacked bars
represent the number of ICS D-TLB misses (with separate contri-
butions for different sharer counts) and ICPS D-TLB misses as a
percentage of total D-TLB misses. As shown, a significant number
of TLB misses across the benchmarks are predictable by either ICS
misses (e.g. Canneal, Facesim, and Streamcluster) or through
ICPS misses caused by a few prominent strides (e.g. over 85% of
the D-TLB misses on Blackscholes are covered by strides of ±4
pages). Note that the methodology and benchmarks used for this
plot are described in detail in Section 4.

In this work, we exploit these predictable misses with ICC
prefetching techniques that detect inter-core TLB behavior com-
monality and eliminate TLB misses. Our strategy is to develop low-
overhead techniques to study the behavior of TLB miss patterns on
individual cores, gauge whether they are predictable across cores
under the ICS or ICPS categories, and then prefetch appropriate
TLB entries.

3.2 Prefetching Challenges

Despite the potential benefits of inter-core cooperative prefetch-
ing, key challenges remain. First, it is difficult to create a single

Benchmark Prominent Strides
Blackscholes ±4 pages
Canneal None
Facesim ±2, ±3 pages
Ferret None
Fluidanimate ±1, ±2 pages
Streamcluster None
Swaptions ±1, ±2 pages
VIPS ±1, ±2 pages
x264 ±1, ±2 pages

Table 1. Prominent stride patterns for evaluated benchmarks. Diverse
stride patterns mean that distance predictors are likely to outperform simple
stride prefetching. The three benchmarks not suited to stride prefetching
show good potential for Leader-Follower prefetching.

prefetching scheme that can adapt to diverse D-TLB miss pat-
terns. For example, while PARSEC benchmarks Canneal and
Streamcluster see many shared ICS misses, Blackscholes is
particularly reliant on strided ICPS misses. Moreover, the actual
strides among the benchmarks also vary significantly. To see this
in greater detail, Table 1 summarizes the prominent stride values
employed by the different benchmarks.

In addition to diverse strides, their distribution among cores may
vary. For example, in Blackscholes core N+1 misses on virtual
page V+4 if core N misses on virtual page V. In contrast, in VIPS
core 0, 1, and 3 consistently miss with a stride of 1 or 2 pages
from core 2. Our implementation must dynamically adapt to these
scenarios while also maintaining some level of design simplicity.

A second challenge involves the timeliness of prefetching. On
one hand, our scheme requires sufficient time between detecting
a TLB miss pattern on one core and using this pattern on another
core, for our prefetchers to react and prefetch the desired entry be-
fore use. At the same time, we must avoid overly-early prefetching
which may displace current TLB mappings before they stop being
useful. To study this, we have tracked the time between the oc-
currence of a predictable TLB miss on one core to the subsequent
predictable TLB miss on another core. For a 4-core CMP with 64-
entry TLBs, this time is between 16K to 4M cycles for 70% of the
predictable TLB misses. While this indicates that sufficient time
exists for our prefetchers to react to TLB miss patterns, we must be
careful that we do not prefetch too early.

3.3 Leader-Follower Prefetching

We now introduce two TLB prefetchers targeting inter-core shared
and inter-core predictable stride TLB misses. We begin with the
Leader-Follower prefetcher, aimed at eliminating ICS TLB misses.

3.3.1 Concept

Leader-Follower prefetching exploits the fact that in ICS-heavy
benchmarks, if a core (the leader) TLB misses on a particular vir-
tual page entry, other cores (the followers) will also typically TLB
miss on the same virtual page eventually. Since the leader would
already have found the appropriate translation, we can prevent the
followers from missing on this entry by pushing it into the follow-
ers’ TLBs. Key challenges lie in identifying miss patterns and in
avoiding pushing mappings onto uninterested cores.

3.3.2 Algorithm

Figure 2 illustrates the algorithm necessary for Leader-Follower
prefetching assuming an N-core CMP with per-core D-TLBs. Like
many uniprocessor TLB prefetching studies, we do not prefetch
entries directly into the TLB, but instead insert them into a small,
separate Prefetch Buffer (PB) which is looked up concurrently with
the TLB. This helps mitigate the challenge of prefetching into the
TLB too early and displacing useful information.

Each PB entry maintains a Valid bit and a Prefetch Type bit (to
indicate whether the entry arose from Leader-Follower or Distance-
based Cross-Core prefetching) in addition to the translation entry
(virtual page, physical page, context ID etc.). On a PB entry hit,
the particular entry is removed from the PB and inserted into the

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

����� ���	�

�
� ����� �

��� � ��� �
���
����� �����

����� ��

� � ���!� �

��� � �"� �
���
���#� ��� �

����� ��$

� � ����� � ������
������ ������ ������
����

���� ����

����

� � � ��� �"���
����� �����

Figure 2. The baseline Leader-Follower algorithm prefetches a TLB miss
translation seen on one core (the leader) into the other cores (the followers)
to eliminate inter-core shared TLB misses.

�

����������� ��������	
���
�	� �������� ���� ������������������
�

%�& '�('�) *�+-,�.�(('/&�0 %�,21

����
��

Figure 3. Each prefetch buffer entry has a Valid bit, a Prefetch Type bit (to
indicate whether the entry arose from Leader-Follower or Distance-based
Cross-Core prefetching), CPU Number (indicating prefetch-initiating core
number), and the translation information.

TLB. The PB uses a FIFO replacement policy; if an entry has to
be evicted to accommodate a new prefetch, the oldest PB entry is
removed. If a newly prefetched entry’s virtual page matches the
virtual page of a current PB entry, the older entry is removed and
the new prefetch is added to the PB as the newest entry of the FIFO.

Figure 2 separates the Leader-Follower algorithm into two ex-
ample cases. While these cases are numbered, there is no implied
ordering between them. We detail the cases below:

Case 1: Suppose we encounter a D-TLB miss but PB hit on core
0 (step 1a). In response (step 1b), we remove the entry from core
0’s PB and add it to its D-TLB.

Case 2: Suppose instead that core 1 sees a D-TLB and PB miss
(step 2a). In response, the page table is walked, the translation is
located and refilled into the D-TLB. In step 2b, this translation is
also prefetched or pushed into PBs of the other cores, with the aim
of eliminating future ICS misses on the other cores.

3.3.3 Integrating Confidence Estimation

The baseline Leader-Follower prefetching scheme prefetches a
translation into all the follower cores every time a TLB and PB
miss occurs on the leader core. However, this approach may be
over-aggressive and cause bad prefetches.

As with standard cache prefetching taxonomy [20], we classify
a prefetch as bad if it is evicted from the PB without being used.
This could happen either because the item was prefetched incor-
rectly and would never have been referenced even in an infinite PB,
or because the finite size of the PB prompts the item to be evicted
before its use.

For the Leader-Follower approach, bad prefetching arises due
to blind prefetching from the leader to the follower, even if the
follower does not share the particular entry. For example, in
Streamcluster, 22% of the D-TLB misses are shared by 2 cores,
45% by 3 cores, and 28% by all 4 cores. However, for each miss, the
baseline approach aggressively pushes the translation into all fol-
lower PBs. This can result into two types of bad prefetches, which
we classify by extending cache prefetch taxonomy [20]. First, the
bad prefetch may be useless in that it will be unused. Second, the
prefetch may be harmful in that it will not only be unused, but will
also render existing PB entries useless by evicting them too early.

We alleviate this problem by incorporating confidence estima-
tion. This results in modifications to both the prefetch buffer and
the baseline Leader-Follower algorithm.

Figure 3 shows that each PB entry now holds a CPU Number
field in addition to the baseline information. The CPU Number
tracks the leader core responsible for the prefetch of each entry.
Figure 4 illustrates the modification to baseline Leader-Follower
prefetching. Each core maintains confidence counters, one for ev-
ery other core in the system. Therefore, in our example with an
N-core CMP, core 0 has saturating counters for cores 1 to N-1.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

���������	�

�
�

����� � � ��������� ��� �
� � � �
 ������� ��� � !

"$# %'&�� �

��������

�
�

����� � � ��������� ��� �
� � � �(������� ��� � !

"$# %'&�� �

���)� ��*
�
�

������� � ������� � ��� �
� � � �(����� � ��� � !

"+# %'&�� � ��������
���� ������ ������
��������

����

����

����

����

����

	���

	���

Figure 4. Algorithm for incorporating confidence estimation with saturat-
ing confidence counters in Leader-Follower prefetching scheme.

Figure 4 also details three types of operations for confidence-
based Leader-Follower prefetching:

Case 1: Suppose that core 0 sees a PB hit (step 1a). As in the
baseline case, step 1b removes the PB entry and inserts it into the
D-TLB. In addition, we check, with the Prefetch Type bit, if the
entry had been prefetched based on the Leader-Follower scheme.
If so, we identify the initiating core (from the CPU number). In
our example, this is core 1. Therefore, in step 1c, a message is sent
to increment core 1’s confidence counter corresponding to core 0
since we are now more confident that prefetches where core 1 is
the leader and core 0 is the follower are indeed useful.

Case 2: Suppose instead (step 2a) that core 1 sees a D-TLB
and PB miss. In response, the page table is walked and the D-
TLB refilled. Then, in step 2b, core 1’s confidence counters are
checked to decide which follower cores to push the translation to.
We prefetch to a follower if its B-bit confidence counter is greater
or equal to 2

B−1. In our example, core 1’s counter corresponding to
core 0 is above this value, and hence step 2c pushes the translation
into core 0’s PB. At the same time, since core 1 itself missed
in its PB, we need to increase the rate of prefetching to it. Step
2d therefore sends messages to all other cores so that core 1’s
confidence counters in the other cores are incremented.

Case 3: Consider the third case in which a PB entry is evicted
from core N-1 without being used (step 3a). Since this corresponds
to a bad prefetch, we send a message to the core that initiated this
entry (step 3b), in this case core 1. There, core 1’s counter corre-
sponding to core N-1 is decremented, decreasing bad prefetching.

Section 5.4 presents results showing that confidence estimation
gives dramatic performance improvement for modest hardware.

3.3.4 Key Attributes

We now highlight key properties of Leader-Follower prefetching.
First, this scheme is shootdown-aware. If a translation mapping or
protection information is changed, initiating a shootdown, TLBs
are sent an invalidation signal for the relevant entry. In our scheme,
this message is relayed to the PB to invalidate any matching entries.

Second, our scheme performs single-push prefetches in that a
TLB miss on one core results in that single requested translation
being inserted into follower PBs.

Third, the Leader-Follower mechanism prefetches translations
into followers only after the leader walks the page table to find the
appropriate translation entry. Therefore, all the translation informa-
tion is already present when inserted into the follower PBs.

Fourth, our scheme does not rely on any predesignation of
which cores are leaders or followers. Any core can be a leader or
follower for any TLB entry at a time.

Finally, while later sections in the paper will quantitatively
evaluate the benefits of this approach and investigate feasible PB
sizes, it is clear that the Leader-Follower technique is advantageous
primarily for inter-core shared TLB misses. For instances of inter-
core predictable strides, the next section investigates Distance-
based Cross-Core prefetching.

3.4 Distance-Based Cross-Core Prefetching

3.4.1 Concept

As detailed in Section 3.2, although many TLB misses are ICPS,
creating feasible hardware to detect and adapt to the various stride

�

�

�

�

�

�

�

�

�

������

��

,.- /�0�132'4$576�138'9 5

: ;3< 1�=�5)>?1�@BA'2'CD4$AE=�5�/�F34+5)2'0�=�1�9(9 A'4$130�- A'2'G

��

��
��

H AE=�5JI
K L M
N�O P�Q R(S T

O)U S S T

N�V
W�XEY PDZ�R([

N�V
W�X)K]\ W�X Z�R([

H A'=�5_^ H AE=�5J` a ^

Kb\ W�X T
O)U S S T

P3Q R
S T
O)U S S T

Kb\ W�X T
O)U S S T

P3Q R
S T
O)U S S T

Kb\ W�X T
O)U S S T

��

N�VcW�XEd3X e+X Z)R([

K L M
N�O

N�VcW�X)Y PDZ)R
[

N�VcW�XEKb\ W�X Z)R
[

N�VcW�XEd(X e$X Z)R
[

K L McN�O

N�V
W�X)Y PDZ)R
[

N�VcW�XEKb\ W�X Z)R
[

N�V
W�X)d3X e$X ZER
[

��
��

��

	�
�

Figure 5. Distance-based Cross-Core prefetching uses a central, shared
Distance Table to store distance pairs and initiates prefetches based on these
patterns whenever a TLB miss occurs on one of the cores (for both PB
hits and misses). Note that the prefetches on a core may be initiated by a
distance-pair initially seen on a different core.

patterns is challenging. Therefore, our solution draws from a
distance-based approach introduced for uniprocessors [14].

To understand Cross-Core Distance prefetching, assume that
two cores in a CMP have the following TLB miss virtual page
streams with all of core 0’s misses occurring before core 1:

Core 0 TLB Miss Virtual Pages: 3, 4, 6, 7
Core 1 TLB Miss Virtual Pages: 7, 8, 10, 11
Here, a stride of 4 pages repeats between the missing virtual

pages on the two cores. But due to timing interleaving and global
communication, cross-core patterns are hard to detect and store
directly. Instead, our approach focuses on the differences, or dis-
tances between successive missing virtual pages on the same core
but makes distance patterns available to other cores. For example,
the first difference on core 0 is 1 page (page 4 - page 3). Overall,
the distances are:

Core 0 Distances: 1, 2, 1
Core 1 Distances: 1, 2, 1
The key to our approach is that although the cores are missing

on different virtual pages, they both have the same distance pattern
in their misses, and this can be exploited. We therefore design a
structure to record repetitive distance-pairs - in this case, the pairs
(1, 2) and (2, 1). Then, on a TLB miss from a core, the current dis-
tance (current missing virtual page - last missing virtual page) is
used to scan the observed distance pairs to find the next predicted
distance, and hence the next virtual page miss. The matching trans-
lation entry is then prefetched. In our example, core 0 experiences
all its misses, recording the distance-pairs (1, 2) and (2, 1). Then,
once core 1 TLB misses on pages 7 and 8 (current distance 1), the
distance-pair (1, 2) reveals that the next virtual page is predicted
to be 2 pages away. A subsequent prefetch therefore eliminates the
miss on page 10. Similarly, the TLB miss on page 11 is also elimi-
nated (using the (2, 1) pair).

3.4.2 Algorithm

Figure 5 shows how Distance-based Cross-Core prefetching works.
We again assume an N-core system with prefetches placed into per-
core PBs. The steps of the approach are as follows:

Step 1: On a D-TLB access, the PB is scanned concurrently to
check for the entry. If there is a PB hit, we go to step 2, otherwise
we skip directly to step 3.

Step 2: On a PB hit, the entry is removed from the PB and
inserted into the D-TLB (in our example, for core 0). We then move
to step 3 and follow the same steps as the PB miss case.

Step 3: We now check if the context ID of the current TLB miss
is equal to the context ID of the last TLB miss (held in the Last
Ctxt. Reg.). If so, the current distance is calculated by subtracting
the current TLB miss virtual page from the last TLB miss virtual
page (held in the Last VP Reg.) and we move to step 4. If there is
no match, we skip directly to step 8.

Step 4: The core (in our example, core 0) sends the current
distance, the last distance (from the Last Dist. Reg.), the CPU
number, and the current context to the Distance Table (DT), which
caches frequently used distance-pairs and is shared by all the cores.
Our scheme places the DT next to the shared L2 cache.

� �����������

��
����

	�

���
��� ��
����
���

���� ���������� ������

�����������	�
���
������� ���

��

��

��

��

��

���� ����

��

���� ����

��

����������� � �����������
����������� ���

	�

���
��� ��
����
���

���� ������ ���� ������

������ ���� 	���� �
������
���	� ��

����
��

������

���� ����

����

��

��

��

��

��

��

��

	���� 	� �� 	���� 	� ��

���� ����

����
��

������ ���� 	���� �
������
���	� ��

������

��
������

Figure 6. The Distance Table uses the current distance as the address in
the lookup operation and also requires a context match for a lookup hit.
The last distance is used as the address for updating with context and CPU
number matches also required.

Step 5: The DT uses the current distance to extract predicted
future distances from the stored distance-pairs. It also updates itself
using the last distance and current distance.

Step 6: A maximum of P predicted distances (the current dis-
tance may match with multiple distance-pairs) are sent from the DT
back to the requesting core (core 0 in our example), where they are
entered into the Distance Buffer (DB). The DB is a FIFO structure
with size P to hold all newly predicted distances.

Step 7: The predicted distances in the DB are now used by
the core (core 0 in our case) to calculate the corresponding virtual
pages and walk the page table. When these prefetched translations
are found, they are inserted or pulled into the PB (unlike the Leader-
Follower case, this is a pull mechanism since the core with the TLB
miss prefetches further items to itself rather than the others).

Step 8: The Last Ctxt., Last VP, and Last Dist. Regs are updated
with the current context, current virtual page, and current distance.

A number of options exist for the page table walk in step 7;
a hardware-managed TLB could use its hardware state machine
without involvement from the workload, which could execute in
parallel. In contrast, a software-managed TLB may execute the
page table walk within the interrupt caused by the initiating TLB
miss. We will compare these approaches in Section 6.

3.4.3 Distance Table Details

Figure 6 further clarifies DT operations such as lookups (left dia-
gram) and updates (right diagram). Requests are initially enqueued
into a Request Buffer, global to all cores. Each request is comprised
of the current distance, the context, the core number initiating the
request, and the last distance value. Moreover, each DT entry has
a Valid bit, a Tag (to compare the distance used to address into the
DT), Ctxt bits for the context ID of the stored distance-pair, the
CPU number from which this distance-pair was recorded, and the
Pred. Dist. or next predicted distance. We now separately detail the
steps involved in DT lookup and update.

DT Lookup
Step 1: The lower-order bits of the current distance index into

the appropriate set. Figure 6 shows a 2-way set associative DT, but
the associativity could be higher.

Step 2: For all indexed entries, the valid bit is checked and if the
tag matches the current distance tag and the Ctxt bits match the cur-
rent context, we have a DT hit. Multiple matches are possible since
the same current distance may imply multiple future distances.

Step 3: On a DT hit, the Pred. Dist. field of the entry is extracted.
Clearly, this DT line may have been allocated by a core different
from the requesting core, allowing us to leverage inter-core TLB
miss commonality. The maximum number of prefetches is equal to
the DT associativity.

DT Update
Step 1: In contrast to the lookup, DT update uses the lower-order

bits of the last distance to index into the required set.
Step 2: For each line, the valid bit is checked, the tag is com-

pared against the last distance tag portion, and the Ctxt bits are
compared against the current context. Also, since distances are cal-
culated relative to TLB misses from the same core, we check that
the CPU bits of the lines match with the requesting CPU. We move
to step 3 if these comparisons hold; otherwise, we skip to step 4.

Step 3: We now check if updating the Pred. Dist. entry with the
current distance will result in multiple lines in the set having the
same Tag, Pred. Dist. pair (this might happen when multiple cores
see the same distance-pairs). If true, we avoid storing redundant
distance-pairs by not updating the line. If however, no duplicates
exist, we update the Pred. Dist. entry with the current distance.

Step 4: If no matching entry is found, a new line in the set is
allocated with the tag, context, and CPU bits set appropriately. For
this purpose, the DT uses an LRU replacement policy.

3.4.4 Key Attributes

Like Leader-Follower prefetching, Distance-based Cross-Core
prefetching is shootdown-aware; PB entries can be invalidated
when necessary. Since the DT only maintains distance-pairs and
not translations, it is agnostic to TLB shootdowns.

Second, this scheme is multiple-pull; prefetches for translations
are pulled only into the core which experienced the initial TLB
miss. Furthermore, multiple prefetches (limited by the associativity
of the DT) may be initiated by a single miss.

Third, the DT predicts future distances but the correspond-
ing translations need to be found. This differs from the Leader-
Follower scheme, in which the leader directly pushes the required
translation into the PBs of the other cores. The actual translation
search may be accomplished differently for hardware and software-
managed TLBs and will be further studied in future sections.

Fourth, since the DT induces additional page table walks, we
must account for page faults. Our scheme assumes non-faulting
prefetches in which the page walk is aborted without interrupting
the OS if the entry is not found.

Finally, while Distance-based Cross-Core prefetching reduces
ICPS TLB misses, it can also help with ICS misses and distance-
pairs seen on only one core. Hence, some benefits of uniprocessor
TLB prefetching are also provided with this approach.

4. Methodology and Characterization
4.1 Simulation Infrastructure

We evaluate our inter-core cooperative TLB prefetchers using the
Multifacet GEMS simulation infrastructure with parameters listed
in Table 2 [15]. GEMS employs Virtutech Simics [24] as its func-
tional model, which simulates a 4-16 core CMP based on Sun’s
UltraSPARC III Cu with SunFire’s MMU architecture [21]. We
instrument the Simics MMU source code to track requested vir-
tual/physical address pairs prompting TLB misses and integrate our
ICC prefetchers.

Table 3 shows the modeled MMUs. Since the simulated MMUs
are software-managed, the OS receives an interrupt on every TLB
miss. Furthermore, each MMU has a distinct TLB architecture. The
SF280R is representative of Sun’s entry-level servers with typi-
cal TLB sizes, whereas the SF3800 contains one of the largest
TLB organizations to date. The SF3800 employs a 16-entry fully-
associative L1 D-TLB used primarily by the OS for locking pages.
The SF3800 also has two L1 512-entry D-TLBs for unlocked trans-
lations. These are accessed in parallel and can be configured by the
OS to hold translations for different page sizes. In our simulations,
the OS sets both TLBs to the same page size, making them equiva-

Architecture SPARC (out-of-order)
Core Count 4-16
Fetch/Issue/Commit Width 4
Reorder Buffer Size 64-entry
Instruction Window Size 32-entry
L1 cache Private, 32 KB (4-way)
L2 cache Shared, 16 MB (4-way)
L2 roundtrip 40 cycles (uncontested)
OS Sun Solaris 10
Interconnection Network Mesh

Table 2. Simulation parameters used to evaluate TLB prefetchers.

MMU Type Description
SF280R 64-entry (2-way) D-TLBs
Intermediate 512-entry (2-way) D-TLBs
SF3800 16-entry, full-assoc. D-TLB (locked/unlocked pages)

2 × 512-entry, 2-way D-TLBs (unlocked pages)

Table 3. Simulated SunFire MMUs with software-managed TLBs.

Parallelization Data Usage
Benchmark Model Granul. Sharing Exchange
Blackscholes Data-parallel Coarse Low Low
Canneal Unstructured Fine High High
Facesim Data-parallel Coarse Low Medium
Ferret Pipeline Medium High High
Fluidanimate Data-parallel Fine Low Medium
Streamcluster Data-parallel Medium Low Medium
Swaptions Data-parallel Coarse Low Low
VIPS Data-parallel Coarse Low Medium
x264 Pipeline Coarse High High

Table 4. Summary of PARSEC benchmarks used to evaluate ICC TLB
prefetchers. Note the diversity in parallel models, granularities, and data
sharing characteristics.

lent to a single 1024-entry D-TLB. Finally, we evaluate Intermedi-
ate MMUs with TLB sizes between the SF280R and SF3800.

Our simulator runs Solaris 10, which can exploit superpaging
techniques [23]. However, when tracking MMU activity, we find
no use of superpaging and cannot access the necessary source code
to initiate this ourselves. Nevertheless, our ICC schemes are equally
applicable to scenarios with superpaging.

Finally, due to the slow speeds of full-system simulation, we
present results observed with 1 billion instructions rather than full
runs. Our instruction windows are chosen such that under 5% of
the total D-TLB misses are cold misses across the workloads.

4.2 Benchmarks and Input Sets

We evaluate our prefetchers using PARSEC benchmarks, a suite
of next-generation shared-memory programs for CMPs [3]. Table
4 lists the PARSEC workloads we use here. Of the 13 PARSEC
workloads available, we are able to compile the 9 listed for our
simulator. The workloads come from many application domains
and, as shown, use diverse parallelization schemes (unstructured,
data, and pipeline-parallel), parallelization granularities, and inter-
core communication characteristics.

We run the PARSEC workloads with a number of threads equiv-
alent to the core count of the CMP system, and we use Simlarge in-
put data sets. Since TLB misses occur with coarser temporal granu-
larity than cache misses, we must use large input data sets to realis-
tically stress TLB designs. Simlarge represents the largest PARSEC
input set considered feasible for simulation.

4.3 D-TLB Miss Rates of PARSEC Workloads

Figure 7 plots D-TLB misses per million instructions (MMI) for the
workloads across the SF280R, Intermediate, and SF3800 MMUs.
As expected, the D-TLB misses decrease with larger TLBs. How-
ever, benchmarks like Canneal, Ferret, and Streamcluster
consistently suffer from high D-TLB misses, even with larger

�

�

���

���

���

���

����

����

�
��
��
��

�	
	

	�
�

��
�
�

�
�
�
��
�
	�
	� �	���
�����
����������

���
��
����
������
����������

�	�����������
����������

������� �

Figure 7. D-TLB misses per million instructions (MMI) for the PARSEC
workloads. Note that Canneal, Ferret, and Streamcluster consistently
experience the most D-TLB misses. While Blackscholes sees the most
misses for SF280R MMUs, its performance improves relative to other
workloads for larger TLBs.

��	
���
 � ���

� ��� � ���

����
���� �

!�
"�
#�
$�
% �

 !�
&' (
) *+
,- .+
*
/ +*
0 1 2
) 3
45 *

6) +1
0 *
71 88
*8

9

:�
�;�;
�
<�����	 = > ?�
����@ A �

B !�#�"
"� #� $�

C D E F�G H I�JKG FML�N O�G F�PRQRS T T F�T

U V
U V
U V
U V
U V

; ��
�	
��� > W

����� �<
�WX�
 % �

V<Y�Z [\
V<Z�] U V<Y�Z [^
V<Z [^
V<Z [\<] U V�Y�Z�[^
V<Z [\

Figure 8. Based on inter-core sharing, we separate the workloads into
ICPS-h, ICS/ICPS-m, ICS-m, ICS-h/ICPS-m, and ICS-h categories.

TLBs. Moreover, while Blackscholes sees a particularly high
MMI for SF280R MMUs, this declines sharply for larger TLBs.

The actual performance implications of D-TLB behavior de-
pend on a number of factors apart from D-TLB MMIs. For exam-
ple, the time taken for page table walks and the CPI of the bench-
mark heavily influence how severely the D-TLB MMIs affect per-
formance and the benefits of our ICC prefetchers. Section 6 will
explore these issues in more detail.

4.4 Classification of Inter-Core D-TLB Patterns

Figure 8 arranges the workloads in terms of TLB miss sharing by
plotting them with the percentage of ICS misses (at least 2 sharers)
on the x-axis and percentage of ICPS misses on the y-axis. Based
on this, we form the following categories:

ICPS-h: This is for stride-reliant workloads with high ICPS
misses and low ICS sharing. Only Blackscholes is in this cat-
egory.

ICS/ICPS-m: These have moderate but roughly similar contri-
butions from ICS and ICPS misses. Fluidanimate, Swaptions,
and VIPS are in this category

ICS-m: These have moderate ICS misses and few ICPS misses.
Ferret and x264 comprise this category.

ICS-h/ICPS-m: These have heavy ICS sharing with moderate
ICPS. Only Facesim is in this category.

ICS-h: These exclusively exhibit ICS-sharing, which is a high
proportion of the total D-TLB misses. Canneal and Streamcluster
fall in this category.

We will use these classifications to assess the benefits of our
prefetchers. Specifically, we expect that ICS-high categories partic-
ularly benefit from Leader-Follower prefetching while ICPS-high
benchmarks exploit Distance-based Cross-Core prefetching.

4.5 Experimental Approach

We develop and evaluate the two schemes in the following steps:
In Section 5, we evaluate the Leader-Follower and Distance-

based Cross-Core prefetching schemes on a 4-core CMP system
with the SF280R MMUs (64-entry TLBs). We show the benefits of
each scheme individually and then combine them. In the Leader-
Follower scheme, we assume that it takes 40 cycles for the leader

�
���
���
���
���
�����

	
 �
�
 �
���

�
 �
�� � � � ��

� � ���
�

� ��
��� ��

!

� �
����
"

�
$$��

�� ���
" � % &' �

()+*�, - . ()+, /�()+*�, - 0 ()+, - 0 ()+, - .1/
()+*�,2-
0

()+, - . 354 4

67
89:;
<= >>
?>
@A= B
= C
DE ?
F

Figure 9. Percentage of D-TLB misses eliminated with Leader-Follower
prefetching with infinite PBs. This scheme performs well for high-ICS
benchmarks such as Canneal, Facesim, and Streamcluster but poorly
for ICPS-reliant Blackscholes.

core to push a translation into the follower core (this is equal to
the L2 latency, which may be considerably longer than the actual
time taken on interconnection networks with 4-16 cores today).
Furthermore, in Distance-based Cross-Core prefetching, we place
the DT next to the L2 cache, and hence assume that a DT access
is equal to an L2 access latency. Finally, we assume that, as with
hardware-managed TLBs, a hardware state machine walks the page
table on predicted distances from the DT. In this section, the state
machine is assumed to locate the desired translation with an L1
access (subsequent sections address longer page table walks).

Finally, in Section 6, we investigate hardware/software prefetcher
implementation tradeoffs and assess the benefits and overheads of
each approach. We then study the performance implications of
these approaches for multiple core counts and TLB sizes.

5. Inter-Core Cooperative Prefetcher Results
We now focus on the benefits of the prefetchers and explore the
hardware parameters involved. In Section 5.1, we quantify the ben-
efits of Leader-Follower prefetching and then in Section 5.2, do
the same for Distance-based Cross-Core prefetching. Both these
cases assume an aggressive implementation with infinite PBs and
no confidence estimation. In Section 5.3, we then combine both
approaches for feasible PB sizes. Subsequently, Section 5.4 shows
how confidence estimation reduces bad prefetches for better per-
formance. Finally, Section 5.5 compares our approach against in-
creasing TLB sizes.

5.1 Leader-Follower Prefetching

Figure 9 shows the percentage of total D-TLB misses eliminated
using Leader-Follower prefetching, assuming infinite PBs for now.
From this, we observe the following:

First, ICS-h and ICS-h/ICPS-m benchmarks Canneal, Facesim,
and Streamcluster enjoy particularly high benefits. For example,
Streamcluster eliminates as much as 57% of its misses.

Second, even benchmarks from the ICS-m and ICS/ICPS-m cat-
egories see more than 14% of their D-TLB misses eliminated. For
example, VIPS eliminates 26% of its D-TLB misses. This means
that even moderate amounts of ICS sharing can be effectively ex-
ploited by Leader-Follower prefetching.

Unlike their ICS-heavy counterparts, ICPS-reliant benchmarks
see fewer benefits. For example, Blackscholes sees roughly 3%
of its D-TLB misses eliminated. Nonetheless an average of 28%
miss reduction occurs across all applications.

5.2 Distance-Based Cross-Core Prefetching

Next, Figure 10 presents results for Distance-based Cross-Core
prefetching. It shows D-TLB misses eliminated for various DT
sizes with infinite PBs. Assuming a 4-way set-associative DT
(therefore, the maximum number of prefetches is 4 and the DB
is also set to this value), we vary the size of the DT from 128 to 2K
entries. Each bar is further separated into D-TLB misses eliminated
from two types of prefetches:

1. Between-Core prefetches in which a core prefetches based on
a distance-pair in the DT that was recorded from a different core.
This is the category that exploits inter-core commonality.

2. Within-Core prefetches in which a core prefetches based on a
distance-pair in the DT that was recorded from itself.

Figure 10 indicates that miss eliminations rise with bigger DTs.
Benchmarks with ICPS TLB misses enjoy particular improvements
from this approach. For example, Blackscholes (ICPS-h) consis-
tently eliminates more than 80% of its TLB misses.

Second, Figure 10 shows that streaming benchmarks employ-
ing regular distance-pairs derive great benefits from Distance-based
Cross-Core prefetching. For example, Facesim, which employs an
iterative Newton-Raphson algorithm over a sparse matrix, sees over
70% of its D-TLB misses eliminated even at the smallest DT. Simi-
larly, Ferret’s working set is made up of an image database that is
scanned linearly by executing threads; hence regular distance-pairs
exist, eliminating above 60% of D-TLB misses.

Third, Distance-based Cross-Core prefetching aids even ICS
benchmarks from ICS-m, ICS-h/ICPS-m, and ICS-h categories. For
example, Canneal enjoys roughly 60% D-TLB miss elimination at
2K entry DTs. ICS-heavy workloads typically benefit most from
increased DT size because they have less prominent strides and
hence a higher number of unique distance-pairs through execution.

Finally, the high contribution of between-core prefetches demon-
strates that the DT actively exploits inter-core commonality. Even
in cases where this is less prominent however, the DT can capture
within-core distance-pairs, and use them for better performance.
For example, Swaptions makes particular use of this with half of
its D-TLB eliminations arising from within-core prefetches.

Clearly, the bulk of eliminated D-TLB misses across the work-
loads arises from behavior seen across CMP cores. While unipro-
cessor distance schemes [14] may be able to capture some of these
patterns, they would take longer to do so, eliminating fewer misses.
Moreover, since our scheme uses a single DT to house all distance-
pairs across cores, we eliminate the redundancy of a scheme with
per-core DTs.

Based on Figure 10, we assume a DT of 512 entries from now
on (with an average of 54% of the D-TLB misses eliminated).
Moreover, we have experimented with a range of associativities
and found that there is little benefit beyond a 4-way DT. There-
fore, we assume an associativity, and hence maximum number of
simultaneous predictions and DB size, of 4.

Based on this, each DT entry uses a Valid bit, 25 Tag bits, 2
CPU bits (for a 4-core CMP), 13 context bits (from UltraSPARC
specifications), and 32 bits for the next predicted distance, amount-
ing to a 4.56 KB DT for 4 cores, or 4.81 KB at 64 cores. Compared
to the neighboring L2 cache, the DT is orders of magnitude smaller,
making for modest and scalable hardware.

5.3 Combining the ICC Approaches

Since the Leader-Follower and Distance-based Cross-Core schemes
target distinct application characteristics, we now evaluate the
benefits of both approaches together in a combined ICC TLB
prefetcher. Both schemes may be implemented as before, with the
PB now shared between both strategies.

Figure 11 shows the benefits of the combined prefetcher for
finite PBs of 8 to 64 entries and infinite PBs. In all cases, a 4-
way, 512-entry DT with 4-entry DBs is assumed. As expected, the
combined ICC prefetcher eliminates 26% to 92% of the D-TLB
misses for infinite PBs. Moreover, in every case, the combined
approach outperforms either of the approaches individually.

Figure 11 also shows that ICC prefetchers offer notable benefits
even for small PB sizes. For example, even modest 16-entry PBs
eliminate 13% (for Swaptions) to 89% (for Blackscholes) of
the D-TLB misses, with an average of 46%. Moreover, benchmarks
like Canneal and Ferret, which suffer from a high number of
D-TLB misses [2], see more than 44% of their misses eliminated,
translating to significant performance savings.

Interestingly, Figure 11 shows that ICS-h benchmarks Canneal
and Streamcluster suffer most from decreasing PB sizes. Sec-
tion 5.4 shows how confidence estimation can mitigate this effect.

�
���
� �
���
���

� ���

�	
 �
�
 �� �
�

	��
�
�
 �� �
�

��	 �
�
 �� �
�

�� �
�
 �� �
�

	� �
�
 �� �
�

�	
 �
�
 �� �
�

	��
�
�
 �� �
�

��	 �
�
 �� �
�

�� �
�
 �� �
�

	� �
�
 �� �
�

�	
 �
�
 �� �
�

	��
�
�
 �� �
�

��	 �
�
 �� �
�

�� �
�
 �� �
�

	� �
�
 �� �
�

�	
 �
�
 �� �
�

	��
�
�
 �� �
�

��	 �
�
 �� �
�

�� �
�
 �� �
�

	� �
�
 �� �
�

�	
 �
�
 �� �
�

	��
�
�
 �� �
�

��	 �
�
 �� �
�

�� �
�
 �� �
�

	� �
�
 �� �
�

�	
 �
�
 �� �
�

	��
�
�
 �� �
�

��	 �
�
 �� �
�

�� �
�
 �� �
�

	� �
�
 �� �
�

�	
 �
�
 �� �
�

	��
�
�
 �� �
�

��	 �
�
 �� �
�

�� �
�
 �� �
�

	� �
�
 �� �
�

�	
 �
�
 �� �
�

	��
�
�
 �� �
�

��	 �
�
 �� �
�

�� �
�
 �� �
�

	� �
�
 �� �
�

�	
 �
�
 �� �
�

	��
�
�
 �� �
�

��	 �
�
 �� �
�

�� �
�
 �� �
�

	� �
�
 �� �
�

��	 �
�
 �� �
�

��� ����������� !� "$# %&��� '�()��*&� +�, -&' �.0/1/1.�2 354&607 5����.0��# 8 9$��:&:$.0�!� ';21/ .0��8<� =�>5?!�
, 9@-&';A B , 9$'!CD, 9$-&'!A 8 , 9$';A 8 , 9$';A B&CD, 9$-&';A 8 , 9$'!A B =�� �

EF
GHIJ
KL MMN
M
OPL Q
L R
ST N
U VXW�Y0Z[W�W�\^]`_^a^bDW

ced Y0f d \] _ga^bhW

Figure 10. Percentage of D-TLB misses eliminated with Distance-based Cross-Core prefetching assuming infinite PBs for various sizes of the DT. Note that
a high number of misses are eliminated consistently across benchmarks, primarily from between-core prefetches.

�

�
��
��
��
��
���

�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�	
��
	
�

�

�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�	
��
	
�

�

�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�	
��
	
�

�

�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�	
��
	
�

�

�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�	
��
	
�

�

�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�	
��
	
�

�

�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�	
��
	
�

�

�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�	
��
	
�

�

�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�
�
��
	

�
��

�	
��
	
�

�

�
�
��
	

�
��

�����
�� ������� �� ��� ���� �����
 ���� ����
� !�		��� �
��� � "#$�

�!��%& �!�'�!��% �!�% �!�%&�'��!��% �!�%& "��

ij
klmn
op qqr
q
stp u
p v
wx r
y (�����%�)��)� ��

* �

�	��%��
���!�)

%!)���+��
� ��	%!)��,
* �

�	��%��
���!�)

%!)���+- �
&�	%!)��,

Figure 11. Effect of combining the two prefetching schemes with finite PBs. Even with as few as 16 entries in the PB, these techniques eliminate an average
of 46% of the D-TLB misses.

Based on Figure 11, we assume a combined ICC prefetcher
with a modest PB size of 16 entries for the rest of our evaluations.
This represents the smallest of the PB sizes deemed feasible by
Kandiraju and Sivasubramaniam [14].

5.4 Integrating Confidence Estimation

Our results so far assume the absence of confidence estimation
described in Section 3.3.3. However, as previously noted, there
may be instances of over-aggressive prefetching, especially for
the Leader-Follower case in benchmarks like Streamcluster in
which not all cores share the all the TLB miss translations. Confi-
dence estimation is crucial to the performance of these workloads.

Figure 12 profiles the percentage of total prefetches from our
prefetcher without confidence estimation (i.e. the version pre-
sented until now) that are bad, and compares this to the case
of using confidence with 2-bit counters. Each bar in the graph
is divided into Leader-Follower and Distance-based Cross-Core
contributions. Without confidence, benchmarks like Canneal and
Streamcluster, which particularly suffer from lowered PB sizes,
have the most bad prefetches. Even in other cases without con-
fidence, there are high bad prefetch counts (an average of 38%).
Moreover, it is clear that a large proportion of the bad prefetches
are initiated by over-aggressive Leader-Follower prefetching. For
example, this scheme causes roughly 80% of Streamcluster’s
bad prefetches, with 60% on average across applications.

Figure 12 shows that using just 2-bit confidence counters cuts
bad prefetches from an average of 38% to 21% across the work-
loads. In fact, we see that Streamcluster’s bad prefetches are
halved while Canneal also sees substantial benefits. Moreover,
while bad prefetches from Leader-Follower prefetching decrease,
Distance-based Cross-Core prefetching also benefits because fewer
prefetches from this scheme are prematurely evicted due to bad

Leader-Follower prefetches. This means that not only are useless
prefetches decreased, so too are harmful prefetches.

Figure 13 shows that the decrease in bad prefetches from con-
fidence estimation translates into notable performance improve-
ments. For example, Canneal and Streamcluster eliminate 10%
and 20% more misses with confidence. This is because harmful
prefetches are decreased and thus useful information is not pre-
maturely evicted from the PB. At the same time, benchmarks like
Facesim and Ferret see a slight drop of 2% to 3% in D-TLB
miss elimination due to the reduced prefetching; however, since
the average benefit is a 6% increase in D-TLB miss elimination,
we incorporate confidence estimation into our ICC prefetcher.

5.5 Cooperative Prefetching Versus Larger TLBs

To fairly quantify the benefits of prefetching, we must compare our
techniques against just enlarging the TLB. Specifically, since we
require 16-entry PBs to be checked concurrently with the D-TLBs,
we need to compare this approach to adding 16 TLB entries.

Figure 14 plots the benefits of ICC prefetching over blindly
adding 16 entries for the 64-entry TLBs (SF280R MMU), 512-
entry TLBs (Intermediate MMUs), and 1024-entry TLBs (SF3800
MMUs). For these TLB sizes, we plot the difference between
percent D-TLB misses eliminated using ICC prefetching with the
baseline size versus adding 16 TLB entries to the baseline case.

Figure 14 shows that ICC prefetching notably outperforms
blindly increasing TLB sizes across all sizes for all benchmarks. At
64-entry and 512-entry baseline sizes, ICC prefetching outperforms
larger TLBs by over 20%. At 1024-entry baseline TLB sizes, ben-
efits are slightly reduced to roughly 12% due to the fact that TLB
misses occur less often, lessening the impact of prefetching. Never-
theless, ICC prefetching outperforms larger TLBs notably even for
1024-entry TLBs. Therefore, prefetching strategies with modest
hardware can yield significant gains beyond just enlarging TLBs.

�
���� �
������
� ���

� �
	 �

�
�
	 �

�
�

� �
	 �

�
�
	 �

�
�

� �
	 �

�
�
	 �

�
�

� �
	 �

�
�
	 �

�
�

� �
	 �

�
�
	 �

�
�

� �
	 �

�
�
	 �

�
�

� �
	 �

�
�
	 �

�
�

� �
	 �

�
�
	 �

�
�

� �
	 �

�
�
	 �

�
�

� �
	 �

�
�
	 �

�
�

��� ��������������� ��� ����"!$#%��&��('
) *�!+�$,�-.-/,�021 ��� �3������,4�5� 687���9�9�,4��� !$0/- ,4��6:�4;
<�=��
) 7�*�!$> ?) 7@!$A5) 7@*�!$> 6) 7�!�> 6) 7@!$> ?BA

) 7@*�!�> 6
) 7�!�> ? ;C� �

DE
FGH
IJK J
L MN JO

P�,4�� �,4-.> ��Q�� � Q�#R,4-
ST� �50 ��9���,4> �@����,4 B7@- Q@�5��> 7@Q�-/,

Figure 12. Percentage of total prefetches that are bad because they are
never used or are prematurely evicted from the PB due to its finite size. With-
out confidence there are many bad prefetches, particularly from the Leader-
Follower scheme. However, 2-bit confidence counters fix this, leading to a
2× decrease in bad prefetches.

�

�

��

��

��

��

���

�
	
�

	
�
�

	
�
�

�
	
�

	
�
�

	
�
�

�
	
�

	
�
�

	
�
�

�
	
�

	
�
�

	
�
�

�
	
�

	
�
�

	
�
�

�
	
�

	
�
�

	
�
�

�
	
�

	
�
�

	
�
�

�
	
�

	
�
�

	
�
�

�
	
�

	
�
�

	
�
�

�
	
�

	
�
�

	
�
�

�������������� �� ��� ���� ����� !��� ������"
������� ���"�#$%�

�
��&' �
�(�
��&" �
�&" �
�&'�(�

�
��&"

�
�&' #��

UV W
XYZ
[\]]
^]
_`\ a
\ b
cd ^
e)�����&�	��	� ��

*�� ����&
�����
�	��&
	���+
� � ���&
	��,

*�� ����&
�����
�	��&
	���+- � '��&
	��,

Figure 13. Percentage of D-TLB misses eliminated with the inclusion
of confidence estimation. Not only does confidence estimation reduce bad
prefetches, it also improves prefetcher performance by retaining useful
information for longer in the PB. On average, 6% additional D-TLB misses
are eliminated by incorporating confidence estimation.

6. Hardware/Software Implementation Tradeoffs
A number of hardware/software implementations are possible for
ICC prefetching. This section discusses implementation possibili-
ties and their impact on performance.

Table 5 presents the three implementation options that we
study. First, in Section 6.1, we assess the performance implica-
tions of a fully-hardware design, in which both Leader-Follower
and Distance-based Cross-Core prefetching are implemented com-
pletely in hardware. Moreover, this scheme assumes the presence
of per-core state machines to walk the page table, like in hardware-
managed TLBs. This is the highest-performance but most resource-
hungry of the options (although the hardware remains modest).

In Section 6.2, we then explore a hardware implementation,
but without per-core state machines to walk the page table. This
represents the case of software-managed TLBs. In this case, we
augment Distance-based Cross-Core prefetching to conduct DT-
induced page table walks in bursts within OS interrupts. We will
explain our burst prefetch algorithm in detail in Section 6.2.

Finally, Section 6.3 develops a hybrid hardware/software ap-
proach by moving the structures for Distance-based Cross-Core
Prefetching, such as the DT and the Last Ctxt., VP, and Dist. regis-
ters into software. We also remove the DB entirely. We do, however,
leave the PBs and Leader-Follower prefetching within hardware.
This implementation strives for performance benefits close to the
full-hardware case but with lower hardware requirements.

6.1 Fully-Hardware Implementation

We first present the performance of a fully-hardware ICC prefetcher
with 16-entry PBs, a 512-entry, 4-way DT, 4-entry DBs and confi-

�

�

��

��

��

��

���

�
	

��

�
�

�
	�
��

�

��

�
�

�
��
�

��
��
�
�

��
�
�

�

��

�
�

�

�
�
�

	

�
��
�

�
�

!"
�

����#$ ���%����#� ���#� ���#$�%�

����#�

���#$ 		

fg
hhiji k
lmno p
qrs
ti uuv
u

wni x
i lmj v
h yijz
{||
} ~v
� vj �
zi
l� �����&�'��#����()

���������
���'*��#����()

��+����'����#����()

Figure 14. Percentage additional misses eliminated using ICC prefetch-
ing with 16-entry PBs versus just enlarging TLBs by 16 entries. ICC
prefetching consistently outperforms enlarged TLBs.

Implementation Description
Fully-Hardware PB, Leader-Follower scheme in HW.

Distance-based Cross-Core in HW (DT, DB,
Last Ctxt, Last VP, Last Dist. Regs in HW).
Hardware page walking state machine present.

Hardware Prefetch PB, Leader-Follower scheme in HW.
with Software Page Distance-based Cross-Core in HW (DT, DB,
Table Walks Last Ctxt, Last VP, Last Dist. Regs in HW).

Software page table walks in burst during interrupts.
Hardware/Software PB, Leader-Follower scheme in HW.
Prefetch with Distance-based Cross-Core in SW (DT, Last Ctxt.,
Software Page Last VP, Last Dist. Regs in SW, no DB present).
Table Walks Software page table walks in burst during interrupts.

Table 5. Range of hardware and software ICC implementations consid-
ered. For each case, we assess the benefits and overheads.

dence estimation. Again, it takes 40 cycles for the leader to push a
translation to the follower, and 40 cycles for each DT access.

A key issue affecting performance is page table walk times.
While Leader-Follower prefetching pushes the already-available
translation into cores, Distance-based Cross-Core prefetching re-
quires page table walks for each DT prediction. As with hardware-
managed TLBs, we assume that a fully-hardware prefetcher uses
hardware state machines to walk the page table. This means that
DT-induced translation searches proceed without OS or program
intervention.

To assess performance benefits, we need realistic latencies for
DT-induced page table walks. Since our simulator does not allow
us to implement these walks directly, we instead run separate sim-
ulations for two scenarios: cases in which page table walks all hit
in the L1 cache, and those in which page table walks all miss in
the L1 but hit in the L2 cache. These are the typical cases since So-
laris maintains a software data structure known as the Translation
Storage Buffer (TSB) which stores frequently accessed page table
entries and is typically found in the L1 or L2 cache.

Figure 15 shows the runtime performance improvements of the
SF280R, Intermediate, and SF3800 MMUs for a 4-core CMP. For
each workload, separate results are shown for DT-induced page
table walks that hit in the L1 and L2 cache.

Significant performance benefits exist for all the workloads
considered. They are particularly pronounced for SF280R MMUs
(over 46% on average), and remain notable for Intermediate MMUs
(over 14% on average), and SF3800 MMUs (over 8% on average).

Figure 15 also shows that improvements depend on prefetch-
ing accuracy and original D-TLB miss rates. For example, since
Canneal has one of the highest MMIs, it sees consistently high
benefits from 17% to 57% across the MMUs considered.

Figure 15 shows benefits across all D-TLB sizes. Even for the
largest D-TLBs, ICC prefetches yield 9% improvements on aver-
age. Comparatively, improvements drop for larger TLBs because
of lower MMIs. However, high MMI workloads like Canneal,
Streamcluster, and Ferret benefit notably for all cases.

�

�
��
��
��
��
��
��
	�

�
��
���

���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�������������� �� ��� ���� ����� !��� ������"#�$$���� ���"�%&'�

�#��() �#�*�#��(" �#�(" �#�()�*�

�#��("

�#�() %����
��

�� �
�

� �	
 �	
�
��

�

� �
�	�
���
��

� ���
�+�,��(�$ �-�.(/�
�0

�$ ��"���� ��,���(�$ �-�.(/�
�0

���
���,����(�$ �-�.(/�
�0

Figure 15. Runtime performance improvements from fully-HW ICC
TLB prefetchers for SF280R, Intermediate, and SF3800 MMUs. We show
separate performance graphs for the scenario where page table walks for DT
predictions hit in the L1 cache and when they hit in the L2 cache. Improve-
ments depend upon prefetching accuracy and frequency of D-TLB misses
in the benchmark.

Finally, even the pessimistic assumption of an L2 access for
every DT-induced page table walk sees considerable benefits. In
this case, ICC prefetching still achieves average improvements of
8% to 43%. This high performance despite potentially expensive
L2 accesses occurs because the state machine walks the page ta-
ble in parallel with program execution. Therefore, the L2 access
is overlapped with useful work. Furthermore, this delay is seen
by prefetches from the Distance-based Cross-Core scheme, only
a fraction of the total prefetches. Finally, TLB misses occur on a
relatively coarse temporal granularity, allowing sufficient time be-
tween lookups for a translation and their subsequent use.

6.2 Hardware Prefetch with Software Page Table Walks

We next consider MMUs with software-managed TLBs. Since SW-
managed TLBs rely on the OS for page table walks, we must adapt
ICC prefetching accordingly.

While Leader-Follower prefetching remains unaffected for SW-
managed TLBs, there are two cases to consider for Distance-based
Cross-Core prefetching. When a core misses in both the D-TLB and
PB, the OS receives an interrupt. In this case, the interrupt handler
may assume responsibility for conducting page table walks for the
suggested distances from the DT. If a PB hit occurs, there is no
interrupt. At the same time, the DT suggests predicted distances
for which page table walks are needed.

A solution is to limit Distance-based Cross-Core prefetches to
instances when both the D-TLB and PB miss, because in these
cases the OS will be interrupted anyway. In particular, we imple-
ment Burst Distance-based Cross-Core prefetching. Our scheme
performs DT prefetches only when both the D-TLB and PB miss;
however, instead of prefetching just the predicted distances relative
to the current distance, we use these predicted distances to re-index
into the DT and predict future distances as well. Suppose, for ex-
ample, that a current distance curr yields the predicted distances
pred0 and pred1. In our scheme, pred0 will then re-index the DT
to find its own set of predicted distances (eg. pred3 and pred4).
Similarly, pred1 may then be used to index the DT. In effect, our
scheme limits prefetches to PB misses but compensates by aggres-
sively prefetching in bursts at this point.

Figure 16 showcases the effectiveness of Burst Distance-based
Cross-Core Prefetching in eliminating D-TLB misses, assuming
a maximum of 8 DT-induced prefetches for every PB miss. For
each workload, we compare this scheme against the conventional
Distance-based Cross-Core approach. We also show our benefits
versus the option of performing DT prefetches only on PB misses,
but prefetching based on just the distances predicted from the
current distance. In all cases, a 4-core CMP with SF280R MMUs
also using Leader-Follower prefetching is assumed.

Restricting DT prefetches on a PB miss to distances based on
the current distance severely reduces ICC prefetching gains. This
is especially true for ICPS-heavy benchmarks like Blackscholes

�

�
��
��
��
��
��
��
	�

�
��
���

�

�
��
��
�

�

�
��
�
�

��
�
�
�

�
��
�

��
��
�
�

 �
�
�

��
��
��
!

"
�
#
#
�
�

�
��
�
�
!
�

$
%&
�

�"��'(�"�)�"��'! �"�'! �"�'(�)�

�"��'!

�"�'($

��
����

�� ��
��

���
�� �
�
�! *+'���,���(�-#����.����#��/ ���

*+'���,���(�-#����/ ���
������*����#��'������"�-��'"-��

Figure 16. Burst Distance-based Cross-Core prefetching eliminates al-
most as many D-TLB misses as the fully-hardware case. Results assume
that Leader-Follower prefetching remains unaffected.

and Facesim which particularly exercise the DT. On average, there
is a 15% reduction in benefits against the fully-hardware case where
DT prefetches occur for both PB hits and misses.

Fortunately, Figure 16 also shows that Burst Distance-based
Cross-Core prefetching addresses this problem effectively for every
workload considered. On average, we eliminate just 5% fewer
D-TLB misses than the fully-hardware approach making this a
valuable technique for SW-managed TLBs.

Figure 17 shows the runtime performance gains from ICC
prefetching using Leader-Follower and Burst Distance-based Cross-
Core prefetching. While we again assume that both schemes in-
clude hardware support, we use a burst prefetch approach because
of the absence of page walking hardware state machines. Here,
we use 16-entry PBs, and a 512-entry, 4-way DT table. Since Burst
Distance-based Cross-Core prefetching can yield up to 8 prefetches
at a time, we increase DB sizes to 8. We again show separate re-
sults for the case when all DT-induced page table walks hit in the
L1 cache and when they hit in the L2 cache.

Figure 17 indicates that all the workloads still enjoy significant
performance improvements from ICC prefetching, even with soft-
ware page table walks. For example, SF280R MMUs see 41% and
36% improvements for the L1 and L2 hit cases respectively. More-
over, benchmarks with high D-TLB MMIs like Canneal, Ferret,
and Streamcluster still enjoy particularly high benefits consis-
tently across TLB sizes.

While Figure 17 shows that improvements are high, they are
lower than the full-hardware case with page-walk-handling state
machines. This is because prefetches for DT predictions are now
done in the interrupt handler rather than by the state machine in
parallel with workload execution. Moreover, since Burst Distance-
based Cross-Core prefetching does not prefetch on both PB hits
and misses (like in the fully-hardware case), performance benefits
decrease. This explains why, for example, Blackscholes’ per-
formance improvement drops by roughly 12% from the full hard-
ware case. Nevertheless, performance benefits remain substantial
(7-41% for SF280R MMUs with L1 access).

Finally, the impact of page table walks missing in the L1 cache
and needing to access the L2 cache is still marginal; however, it is
more pronounced than for the fully-hardware case. This is because
the prefetches are processed by the interrupt handler and therefore,
the cost of going to the L2 cache cannot be overlapped with useful
program execution. Nevertheless, the L2 hit case still sees average
improvements of 36%, 11%, and 6% for the SF280R, Intermediate,
and SF3800 MMUs.

6.3 Hardware/Software Prefetch with Software Page Table
Walks

The previous section addressed performance implications of mov-
ing page table walks into software but leaving the prefetchers in
hardware. We now assess the benefits and overheads of also mov-
ing prefetcher components into software.

We first decide which components to leave in hardware. Hard-
ware PBs must be retained for concurrent scans with D-TLBs. Fur-

�

�
��
��
��
��
��
��
	�

�
��

���

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

������� ������� �� ��� ���� ����� !��� ������"#�$$���� ���"� %&'�

�#��() �#�*�#��(" �#�(" �#�()�*�

�#��("

�#�() %��
��
���� �
��
�	
 �
	�
��

�� �
�	�
���
��� ���
�+�,��(�$ �-�.(/�
�0

�$ ��"���� ��,���(�$ �-�.(/�
�0

���
���,����(�$ �-�.(/�
�0

Figure 17. Runtime performance improvements from Leader-Follower
and Burst Distance-based Cross-Core prefetchers for SF280R, Intermedi-
ate, and SF3800 MMUs. The components are all in hardware but page table
walks performed in software. Significant improvements are seen across all
benchmarks with an average of 6% to 41%.

thermore, since Leader-Follower prefetching operates without soft-
ware intervention, it too can remain a purely hardware operation.

In contrast, we now place the DT purely in software. Since we
use Burst Distance-based Cross-Core prefetching, we access the
DT from the interrupt handler and burst-prefetch up to 8 transla-
tions every time a D-TLB and PB miss occurs. We again assume
a 512-entry, 4-way DT, but this time pin the structure in physical
memory so that a DT access cannot itself result in a TLB miss.

With the DT held in software, we must not only perform page
table walks within the interrupt but also DT lookups as well. We
assume that the first DT lookup in every interrupt hits in the L2
cache. For the DT organization we consider, each DT entry requires
73 bits. A 64-byte cache line can easily accommodate 4 DT entries
where 4 equals the associativity. Therefore, after the first DT ref-
erence, which brings a set into the L1 cache, every access in the
set results in an L1 cache hit. For burst-prefetching, in the worst
case, we need to access 8 independent sets of the DT, amounting
to 8 L2 accesses. However, this case rarely occurs since multiple
predictions usually arise from the same set.

After the predictions are extracted from the DT, we must per-
form the associated page table walks. We again separately consider
performance results assuming L1 and L2 page table hits.

As described, this scheme has minimal hardware and software
requirements. Modest 16-entry PBs are assumed and a software
table maintains the DT. Even the DB structures are not required
in this scheme because of the removal of the hardware DT.

Figure 18 shows the performance improvements of ICC prefetch-
ing when using this combined hardware/software approach. Again,
notable performance improvements exist for all considered work-
loads. In fact, SF280R MMUs see an average of 31% and 26% im-
provements for the L1 and L2 hit cases respectively. Even for the
largest TLBs from SF3800, we see average improvements of 4% to
6%. Moreover high MMI benchmarks like Canneal, Ferret, and
Streamcluster also enjoy consistently high performance gains
across TLB sizes.

Figure 18 does show lower performance gains however, than
the hardware schemes of Section 6.1 and 6.2. One reason for this
is that, compared to the fully-hardware case, no state handling
machine exists to walk the page table for DT predictions in parallel
with program execution. Moreover, not only do we now have to
conduct page table walks in the interrupt handler, we must also
perform DT lookups in the handler. This further serves to increase
runtime, particularly when DT lookups require accesses to multiple
sets that do not fit in the same cache line.

Nevertheless, Figure 18 indicates that significant scope remains
for performance improvements using this modest combination of
hardware and software. Especially in cases when even moderate
hardware overheads are undesirable, this software approach pro-
vides a valuable and effective alternative.

�

�
��
��
��
��
��
��
	�

�
��

���

���� ���� ���� ���� ���� ���� ���� ���� ���� ����

������� ������� �� ��� ���� ����� !��� ������"#�$$���� ���"� %&'�

�#��() �#�*�#��(" �#�(" �#�()�*�

�#��("

�#�() %����
���� �
��
��� �
��
���
�� �
 ��
!��
��� ���
�+�,��(�$ �-�.(/�
�0

�$ ��"���� ��,���(�$ �-�.(/�
�0

���
���,����(�$ �-�.(/�
�0

Figure 18. Runtime performance improvements from hardware Leader-
Follower and software Burst Distance-based Cross-Core prefetchers for
SF280R, Intermediate, and SF3800 MMUs. Significant improvements are
seen across all benchmarks with an average of 4% to 32%.

"#$"
%$"&$"
'(") "
*$"+ "
,$"-$"
#."$"

/0 12
3 4265 70 89: 1

5
; <1
= 5 >?@;

7 ABBA
C

DEF
G

7 12A
49 H I 1J

JA10
;C BA1
H 5 K LM65

N OQP.RTS U N OQR V.N OQP.RTS W N O.RXS W N O.RXS UYVN OQP.RTS W N OQRXS U Z\[[

]^ _`
ab c
de df
g hfc
i`j
d

k c
lfhm
dc
d`a n

'porqQs t#.*\ouq.s t

Figure 19. Runtime performance improvements from ICC prefetching
for 4-core and 16-core CMPs with SF280R MMUs. Note that higher core
counts increase benefits on average from 43% for 4 cores to 49% for 16
cores. ICS-h Canneal and Streamcluster benefit particularly.

7. Discussion
7.1 Moving to Greater Core Counts

When analyzing the benefits of our prefetchers, it is important to
gauge their performance in the presence of increasing core counts.
While our results up to now have assumed a 4-core CMP, we now
quantify the performance benefits on a 16-core CMP.

Figure 19 compares the runtime performance improvements
from ICC prefetching for the 4-core CMP against a 16-core CMP
for SF280R MMUs. We assume the fully-hardware implementa-
tion with 16-entry PBs, hardware Leader-Follower prefetching, and
hardware Distance-based Cross-Core prefetching with a 512-entry,
4-way DT. DB sizes are set to 4 and a hardware state machine is
used to walk the page table for predictions from the DT. Moreover,
we show performance results assuming that the page table walks
for DT suggestions all miss in the L1 cache and hit in the L2 cache.

Figure 19 shows that ICC prefetching improves performance
even at greater core counts; on average the benefits rise from 43%
for 4 cores to 49% for 16 cores. This can be attributed to the fact
that in many benchmarks, D-TLB MMIs increase at higher core
counts. This is because while the instruction counts per thread
decrease, the number of D-TLB misses do not decrease com-
mensurately. In addition, ICS and ICPS TLB misses actually in-
crease for higher cores since there are more cores which potentially
have correlating miss patterns. This explains why ICS-h workloads
Canneal and Streamcluster see the most benefits at 16 cores.

Figure 19 shows that Blackscholes and Ferret, however, do
have lower performance improvements in the 16-core case. These
workloads differ from the rest in that their D-TLB MMIs actually
drop at higher core counts, lowering the potential benefits of any
scheme targeting D-TLB behavior. Nevertheless, even for these
workloads, ICC prefetching gives substantial improvements of 57%
and 58% for Blackscholes and Ferret respectively.

7.2 Handling Multiprogramming

Adapting ICC prefetchers for multiprogrammed workloads is read-
ily accomplished. First, in Leader-Follower prefetching, confidence
counters detect and minimize bad prefetches. Because misses in
the D-TLB and PB might re-initiate prefetching however, a second
counter per-core is needed to track how many total prefetches from
the core were bad. When this rises above a predefined threshold,
Leader-Follower prefetching may be prevented from re-initiating
until a context switch on the core, when we would want to re-
evaluate the use of Leader-Follower prefetching.

Second, Distance-based Cross-Core prefetching may be used
for multiprogramming with no additional hardware. Since each DT
entry has a context ID, prefetching is based on patterns seen in the
same application (though it might be based on multiple threads).
Therefore, in a scenario where multiple single-threaded workloads
run, prefetching would only be initiated based on patterns seen
within cores, as in uniprocessor Distance-based prefetching.

7.3 Accommodating Superpaging

Much recent research in academia and industry has recognized the
fact that future workloads will demand greater TLB reach (the
maximum size of memory mapped by a TLB) and has proposed
superpaging as a potential solution [22, 23]. Superpages use the
same linear address space as conventional paging but have sizes
that are power-of-two multiples of the baseline page size and are
aligned in both virtual and physical memory. The obvious benefit
of superpages is that they permit greater TLB reach without an
increase in TLB size. As a result, commercial processors typically
support multiple superpage sizes.

Because ICC TLB prefetching operates orthogonally to super-
paging, we anticipate that both techniques may be accommodated
in contemporary CMPs. However, analyzing the performance im-
plications of combining both approaches is a complex issue. First,
since superpaging implies larger pages, the probability of multi-
ple threads accessing the same page increases. This implies that
Leader-Follower prefetching will become more effective. Second,
the potential span of strides would also decrease, making strides
for Distance-Based Cross-Core prefetching easier to deduce. At the
same time, superpaging may also reduce intrinsic TLB misses. As
a result, TLB prefetching may fundamentally matter less, although
TLB-intensive workloads will always exist. Given this set of com-
plex tradeoffs, a thorough quantitative treatment is out of the scope
of this paper but presents an important future direction.

8. Conclusion
Our primary goal in this work has been to show that TLB miss
correlations between multiple CMP cores can be exploited to elim-
inate TLB misses, thereby boosting performance significantly. To
accomplish this, we have proposed and evaluated two inter-core
cooperative TLB prefetchers: Leader-Follower and Distance-based
Cross-Core prefetchers. Not only do these schemes eliminate a con-
siderable number of TLB misses individually, they can be com-
bined with modest hardware to eliminate 13% to 89% of workload
TLB misses.

We have also explored hardware and software implementations
ranging from a fully-hardware case with average performance im-
provements of 8% to 46% to a hardware/software hybrid with im-
provements of 4.5% to 32% for multiple TLB sizes. Moreover, we
have shown that benefits are even greater with higher core counts.

Ultimately this work may be used by designers to augment
contemporary hardware and software-managed MMUs with sim-
ple mechanisms to tackle the increasing TLB-pressure of emerging
parallel workloads. Moreover, our results point to a range of pos-
sibilities, in both hardware and software, to eliminate TLB misses
through prefetching. We believe that this flexibility offers valuable
opportunities for more intelligent TLB designs in the future.

9. Acknowledgements
We thank the anonymous reviewers for their feedback. We also
thank Li-Shiuan Peh for her suggestions on improving the quality

of our submission and Chris Bienia for his help with understanding
the PARSEC workloads. Finally, we also thank Mahmut Kandemir
for his suggestions to improve our final version of the paper.

The authors acknowledge the support of the Gigascale Systems
Research Center, one of six research centers funded under the Fo-
cus Center Research Program (FCRP), a Semiconductor Research
Corporation entity. In addition, this work was supported in part by
the National Science Foundation under grant CNS-0627650.

References
[1] T. Anderson et al. The Interaction of Architecture and Operating

System Design. Intl. Symp. on Architecture Support for Programming
Languages and Operating Systems, 1991.

[2] A. Bhattacharjee and M. Martonosi. Characterizing the TLB Behavior
of Emerging Parallel Workloads on Chip Multiprocessors. Intl. Conf.
on Parallel Architectures and Compilation Techniques, 2009.

[3] C. Bienia et al. The PARSEC Benchmark Suite: Characterization and
Architectural Implications. Intl. Conf. on Parallel Architectures and
Compilation Techniques, 2008.

[4] J. B. Chen, A. Borg, and N. Jouppi. A Simulation Based Study of TLB
Performance. Intl. Symp. on Computer Architecture, 1992.

[5] T. Chen and J. Baer. Effective Hardware-based Data Prefetching for
High-Performance Processors. IEEE Trans. on Computers, 1995.

[6] D. Clark and J. Emer. Performance of the VAX-11/780 Translation
Buffers: Simulation and Measurement. ACM Transactions on Com-
puter Systems, 3(1), 1985.

[7] F. Dahlgren, M. Dubois, and P. Stenström. Fixed and Adaptive Se-
quential Prefetching in Shared Memory Multiprocessors. Intl. Conf.
on Parallel Processing, 1993.

[8] H. Huck and H. Hays. Architectural Support for Translation Table
Management in Large Address Space Machines. Intl. Symp. on Com-
puter Architecture, 1993.

[9] B. Jacob and T. Mudge. Software-Managed Address Translation. Intl.
Symp. on High Performance Computer Architecture, 1997.

[10] B. Jacob and T. Mudge. A Look at Several Memory Management
Units: TLB-Refill, and Page Table Organizations. Intl. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems,
1998.

[11] B. Jacob and T. Mudge. Virtual Memory in Contemporary Micropro-
cessors. IEEE Micro, 1998.

[12] D. Joseph and D. Grunwald. Prefetching using Markov Predictors.
Intl. Symp. on Computer Architecture, 1997.

[13] G. Kandiraju and A. Sivasubramaniam. Characterizing the d-TLB
Behavior of SPEC CPU2000 Benchmarks. ACM SIGMETRICS Intl.
Conf. on Measurement and Modeling of Computer Systems, 2002.

[14] G. Kandiraju and A. Sivasubramaniam. Going the Distance for TLB
Prefetching: An Application-Driven Study. Intl. Symp. on Computer
Architecture, 2002.

[15] M. Martin et al. Multifacet’s General Execution-Driven Multiproces-
sor Simulator (GEMS) Toolset. Comp. Arch. News, 2005.

[16] D. Nagle et al. Design Tradeoffs for Software Managed TLBs. Intl.
Symp. on Computer Architecture, 1993.

[17] X. Qui and M. Dubois. Options for Dynamic Address Translations in
COMAs. Intl. Symp. on Comp. Arch., 1998.

[18] M. Rosenblum et al. The Impact of Architectural Trends on Operating
System Performance. ACM Transactions on Modeling and Computer
Simulation, 1995.

[19] A. Saulsbury, F. Dahlgren, and P. Stenström. Recency-Based TLB
Preloading. Intl. Symp. on Comp. Arch., 2000.

[20] V. Srinivasan, E. Davidson, and G. Tyson. A Prefetch Taxonomy.
IEEE Transaction on Computers, 53(2), 2004.

[21] Sun. UltraSPARC III Cu User’s Manual. 2004.

[22] M. Talluri. Use of Superpages and Subblocking in the Address Trans-
lation Hierarchy. PhD Thesis, Dept. of CS, Univ. of Wisc., 1995.

[23] M. Talluri and M. Hill. Surpassing the TLB Performance of Super-
pages with Less Operating System Support. Intl. Conf. on Architec-
tural Support for Programming Languages and Operating Systems,
1994.

[24] Virtutech. Simics for Multicore Software. 2007.

