Shared Last-Level TLBs for Chip Multiprocessors

Abhishek Bhattacharjee
Dept. of Computer Science
Rutgers University
abhib@cs.rutgers.edu

Abstract

Translation Lookaside Buffers (TLBs) are critical to
processor performance. Much past research has ad-
dressed uniprocessor TLBs, lowering access times and
miss rates. However, as chip multiprocessors (CMPs)
become ubiquitous, TLB design must be re-evaluated.

This paper is the first to propose and evaluate shared
last-level (SLL) TLBs as an alternative to the commer-
cial norm of private, per-core L2 TLBs. SLL TLBs elim-
inate 7-79% of system-wide misses for parallel work-
loads. This is an average of 27% better than conven-
tional private, per-core L2 TLBs, translating to notable
runtime gains. SLL TLBs also provide benefits compara-
ble to recently-proposed Inter-Core Cooperative (ICC)
TLB prefetchers, but with considerably simpler hard-
ware. Furthermore, unlike these prefetchers, SLL TLBs
can aid sequential applications, eliminating 35-95% of
the TLB misses for various multiprogrammed combina-
tions of sequential applications. This corresponds to a
21% average increase in TLB miss eliminations com-
pared to private, per-core L2 TLBs.

Because of their benefits for parallel and sequen-
tial applications, and their readily-implementable hard-
ware, SLL TLBs hold great promise for CMPs.

1 Introduction

Processors supporting virtual memory employ in-
struction and data Translation Lookaside Buffers (TLBs)
to store commonly-used virtual-to-physical page trans-
lations and to avoid high-latency accesses to operat-
ing system (OS) page tables. TLBs are crucial to
system performance due to their long miss penalties
[2, 7, 15, 20, 23]. While past work has addressed op-
tions for TLB placement and lookup [6, 22], contempo-
rary systems place them in parallel with the L1 cache.
TLB size and associativity have also been explored [6],
as have superpaging [29] and prefetching [15, 24]. How-
ever, these proposals have all targeted uniprocessors.
As chip multiprocessors (CMPs) become dominant, it
is crucial to examine TLBs in this context.

This paper is the first to propose and analyze shared
last-level (SLL) TLBs for CMPs. While processor
vendors have addressed increasing application memory
footprints and associated TLB stress by implementing
two-level TLB hierarchies (eg. Intel i7 [11], AMD K8
and K10 architectures [1]), these designs use private,
per-core L2 TLBs. No shared last-level TLB has been
built commercially. While the commercial use of shared
last-level caches may make SLL TLBs seem familiar,
important design issues remain to be explored.

Daniel Lustig
Dept. of Electrical Engineering
Princeton University
dlustig@princeton.edu

Margaret Martonosi
Dept. of Computer Science
Princeton University
mrm@princeton.edu

We show that a single last-level TLB shared among
all CMP cores significantly outperforms private L2
TLBs for parallel applications. More surprisinly, it
also often aids multiprogrammed workloads of sequen-
tial applications. For parallel applications, SLL. TLBs
exploit the fact that multiple threads experience TLB
misses on identical address translation entries. This ten-
dency of parallel programs to show inter-core sharing
was recently observed [3] and subsequently exploited
to develop Inter-Core Cooperative (ICC) TLB prefetch-
ers [4]. However, unlike ICC prefetchers, which re-
quire complex hardware, SLL TLBs achieve comparable
performance benefits with readily-implementable hard-
ware. Moreover, unlike ICC prefetchers, SLL TLBs also
benefit workloads combining sequential applications.

The design issues of SLL TLBs for multipro-
grammed combinations of sequential applications are in
particular need of study. For these workloads, applica-
tions do not access the same TLB entries, so one might
expect SLL TLBs to show little improvement over pri-
vate TLBs, or even degrade performance if a larger array
requires longer access times. Contrary to these expecta-
tions, SLL. TLBs usually do not hurt and often actually
improve performance over private L2 TLBs. They ac-
complish this by allowing more flexible and adaptive use
of a single pool of TLB resources, rather than more con-
strained per-core entries in the private L2 TLB approach.
Overall, our contributions are as follows:

1. Foremost, our work is the first to explore SLL
TLB design. While similar in spirit to the shared last-
level caches on current CMPs, their unique design trade-
offs and requirements warrant focused study. Our results
show that SLL TLBs provide considerable performance
benefits not just for parallel programs where the perfor-
mance advantages are expected, but also for multipro-
grammed sequential workloads as well.

2. We analyze SLL TLB benefits for parallel pro-
grams. We show that they eliminate 7-79% of misses, a
27% improvement on average compared to private L2
TLBs with equivalent hardware requirements. These
benefits are comparable to those achieved by ICC
prefetchers, but with simpler hardware. Then, we inves-
tigate augmenting the baseline SLL TLB with rudimen-
tary stride prefetching techniques, further increasing hit
rates by an average of 5%. We also study the increasing
effectiveness of SLL TLBs at higher core counts, show-
ing that they eliminate an additional 6% of baseline TLB
misses on average. Finally, we consider the performance
implications of these eliminations, showing that they can
cut down TLB miss handling times by up to 0.25 CPIL.

3. We then analyze workloads consisting of se-
quential applications running one per core in a multi-

programmed fashion. We may expect such workloads
to show insufficient commonality to benefit from SLL
TLBs. Nonetheless, across workload mixes, we find that
SLL TLBs eliminate 35-95% of the misses compared to
no L2 TLBs. More notably, they outperform per-core
private L2 TLBs, eliminating an additional 21% of the
misses on average. These improvements arise because
the SLL TLB is better able to allocate resources to the
differing working set needs of simultaneously-running
sequential applications. This typically leads to perfor-
mance improvements, saving as much as 0.4 CPL.

The paper is structured as follows. Section 2 covers
background material and Section 3 details SLL TLBs.
Section 4 presents our evaluation methodology. Then,
Section 5 shows results for parallel workloads while
Section 6 does the same for multiprogrammed sequen-
tial workloads. Finally, Section 7 offers conclusions.

2 Background and Related Work

2.1 Uniprocessor TLB Characterizations

Contemporary architectures typically maintain pri-
vate, per-core TLBs placed in parallel with first-level
caches [1, 11]. Numerous past studies measured TLBs
as comprising 5% to 10% of system runtime [7, 15, 20,
23] with extreme cases at 40% [10]. In response, a num-
ber of enhancement techniques were proposed. Early
work addressed hardware characteristics such as TLB
size and associativity [6]. Eventually, prefetching tech-
niques [15, 24] and superpaging [29] were also studied
with promising results.

While useful, this prior work specifically targets
uniprocessors. As CMPs become ubiquitous, we must
re-evaluate the role and design of TLBs. Although there
is surprisingly little work in this area, processor vendors
and the research community have proposed some solu-
tions, as discussed below.

2.2 Private Multilevel TLB Hierarchies

Recognizing the increasingly critical role of TLBs
to system performance, processor vendors have, over
the years, extended the concept of multilevel hierarchies
from caches to TLBs. Since the turn of the decade,
AMD’s K7, K8, and K10, Intel’s i7, and the HAL
SPARC64-1II have embraced two-level TLB hierarchies
[1, 11, 28]. Private L2 TLBs first appeared in uniproces-
sors, but they have become even more prevalent with the
adoption of CMPs, with L2 TLBs approaching relatively
large sizes with 512 and 1024 entries.

Though they are beneficial, all commercial L2 TLBs
are implemented as private to individual cores. This pa-
per shows that this strategy is deficient in two ways.
First, per-core, private TLBs cannot leverage the inter-
core TLB sharing behavior of parallel programs. Sec-
ond, even for multiprogrammed combinations of se-
quential applications, per-core TLBs allocate a fixed set
of resources to each individual core, regardless of the
needs of applications running on them. Therefore, one
core may execute an application with only a small TLB
footprint, and another core may simultaneously experi-
ence TLB thrashing. This wastes resources since the un-

used TLB entries of the first core would have been better
used if made available to the thrashing core.

As we show, SLL TLBs overcome both these defi-
ciencies by exploiting the inter-core sharing of parallel
programs and allocating resources gracefully among se-
quential applications in multiprogrammed workloads.

2.3 Inter-Core Cooperative Prefetching

The research community has also recently studied
the impact of emerging parallel workloads on TLBs [3].
Characterizations of several parallel workloads show
how significant commonality exists in TLB miss pat-
terns across cores of a CMP, leading to two types of
predictable TLB misses in the system. The first type
is Inter-Core Shared (ICS). This occurs when multiple
cores TLB miss on the same translation. These misses
occur often in parallel programs; for example, 94%
of Streamcluster’s misses and 80% of Canneal’s
misses are seen by at least 2 cores on a 4-core CMP,
assuming 64-entry TLBs [3].

Recent work has proposed Leader-Follower prefetch-
ing to eliminate such ICS misses [4]. In this approach,
on every TLB miss, the currently-missing core (the
leader) refills its TLB with the appropriate entry and
also pushes this translation to the other (the follower)
CMP cores. The prefetches are pushed into per-core
Prefetch Buffers (PBs) placed in parallel with the TLBs.
Our SLL TLBs capture this same class of ICS TLB
misses, but do so with much more streamlined hardware.

A second type of TLB miss is defined as Inter-Core
Predictable Stride (ICPS). These occur when multiple
cores TLB miss on virtual pages with a consistent stride
between them. For example, Blackscholes actively
employs inter-core strides of 4 pages, making 86% of
its misses predictable [3]. Distance-based Cross-Core
prefetching targets ICPS misses [4]. This scheme stores
repetitive inter-core strides in virtual pages in a central,
shared Distance Table (DT). On TLB misses, the DT
predicts subsequent required translations which can be
prefetched. In our evaluations, we refer to ICC prefetch-
ing as combining both Leader-Follower and Distance-
based Cross-Core prefetching.

While SLL TLBs do not directly attack ICPS misses,
we show that SLL TLBs augmented with simple stride
prefetching can meet or exceed the performance of the
more complicated Distance-based Cross-Core prefetch-
ers, and can do so with smaller hardware overheads
(no tables) and simpler implementations. Furthermore,
this paper shows that SLL. TLBs benefit not just par-
allel workloads, but also, in many cases, aid multipro-
grammed combinations of sequential applications. ICC
prefetchers have not been evaluated on such workloads.

2.4 Our Approach: Shared Last-Level TLBs

Having detailed the limitations of existing strategies,
we now discuss the novelty of our approach. We begin
by comparing design issues of SLL. TLBs and shared
last-level caches. While at first glance there may seem
to be parallels between shared last-level caches and a
shared TLB, many key differences remain. First and
foremost, SLL. TLBs see more inter-core sharing since
the granularity of storage is in the form of pages rather

Core 0 Core 1l

o (1a) m (22)
D-TLB D-TLB T _.
D)

Core N-1

Figure 1: The basic structure of a shared last-level TLB in-
volves a CMP with private, per-core L1 TLBs and a larger,
shared L2 TLB. Cases 1 and 2 detail instances of SLL TLB
misses and hits respectively.

than cache lines, increasing the chances of sharing and
resulting in fundamentally different sharing patterns.
Second, since TLBs are far smaller than caches, eviction
and sharing play different and important roles in perfor-
mance. Understanding their behavior, particularly in the
context of multiple threads contending and sharing re-
sources, requires a study in its own right. Moreover, the
penalty of a TLB miss is typically much more severe
than a cache miss since an expensive page table walk
is involved. Therefore, shared TLBs warrant a detailed
examination distinct from caches.

3 Shared Last-Level TLBs

We first describe SLL TLBs and detail their operation
and implementation. We then discuss augmenting SLL
TLBs with prefetching mechanisms as well.

3.1 Concept

Figure 1 presents a CMP with private, per-core L1
TLBs backed by an SLL L2 TLB. While this example
uses just one level of private TLBs, more levels may be
accommodated (for example, each core could maintain
two levels of per-core private TLB followed by an L3
SLL TLB). As with last-level caches, the SLL TLB is
accessed when there is a miss in any L1 TLB. The SLL
TLB strives for inclusion with the L1 TLB, so that en-
tries that are accessed by one core are available to others.
Figure 1 shows the SLL TLB residing in a central loca-
tion, accessible by all the cores. While this centralized
approach is a possible implementation, we discuss this
and other implementation issues in Section 3.3.

SLL TLBs enjoy two orthogonal benefits. First, they
exploit inter-core sharing in parallel programs. Specif-
ically, a core’s TLB miss brings an entry into the SLL
TLB so that subsequent L2 misses on the same entry
from other cores are eliminated. Second, even for un-
shared misses, SLL. TLBs are more flexible regarding
where entries can be placed. TLB hits arising from this
flexibility aid both parallel and sequential workloads.

3.2 Algorithm

Figure 1 details SLL misses and hits in two exam-
ple cases respectively. While these cases are numbered,
there is no implied ordering between them. We detail
the cases below:

Case 1: Figure 1 follows an L1 TLB and SLL TLB
miss. First, there is an L1 TLB miss (step la). In re-
sponse, a message is sent to the SLL TLB. After the

access latency, we suffer an SLL miss (step 1b). The
page table is then walked and the appropriate translation
is inserted into both the SLL and L1 TLB. By entering
the entry into the SLL TLB (step lc), future misses on
this entry are avoided by both the initiating core as well
as the other cores.

Case 2: We now illustrate the steps involved in an
SLL TLB hit. First, the L1 TLB sees a miss (step 2a),
and a message is sent to the SLL. TLB. Now suppose
there is an SLL TLB hit (step 2b). As previously de-
tailed, there are two possible causes of this hit. First, the
currently missing core may have previously brought this
entry into the SLL TLB. Alternately, the entry may be
inter-core shared and another core may previously have
fetched it into the SLL TLB. Regardless of the reason,
an SLL TLB hit avoids the page table walk. Instead, the
same entry is now inserted into the L1 TLB (step 2c¢) in
the hope that future accesses to this entry will be L1 hits.

3.3 Implementation Options

Having detailed the basic operation of SLL TLBs, we
now address some key implementation attributes:

TLB Entries: SLL TLB entries store information
identical to the L1 TLB. Each entry stores a valid bit,
the translation entry, and replacement policy bits. We
also store the full context or process ID with each entry.
Less hardware could be used with fewer bits but our SLL
TLB is small, making such optimizations unnecessary.

Replacement Policies: To leverage inter-core shar-
ing in parallel programs, the L1 and SLL TLBs need to
be inclusive. However, as with multilevel caches, guar-
anteeing strict inclusion requires tight coordination be-
tween the L1 and the L2 SLL TLB controllers and re-
placement logic [9]. Instead, we use the approach taken
by x86 caches [9] and implement a multilevel TLB hi-
erarchy that is mostly-inclusive. Here, while entries are
placed into both the L1 and SLL TLB on a miss, each
TLB is allowed to make independent replacement deci-
sions, requiring far simpler hardware. Furthermore, pro-
cessor vendors have noted that while this approach does
not guarantee strict inclusion, it achieves almost perfect
inclusion in practice. For example, in our applications,
we find that above 97% of all L1 TLB entries are present
in the SLL TLB.

Consistency: Our SLL TLBs are designed to be
shootdown-aware. Whenever a translation entry needs
to be invalidated, both the SLL and the L1 TLBs must
be checked for the presence of this entry. Had our SLL
TLB been strictly inclusive of the L1 TLBs, this would
be unnecessary in the case of an SLL miss. However,
since our two TLB levels are mostly-inclusive, it is pos-
sible for an entry to be absent from the SLL TLB but
be present in the L1 TLBs. Therefore, a shootdown
requires checks in all the system TLBs. Nonetheless,
shootdowns are rare and the simpler hardware afforded
by the mostly-inclusive policy make it appropriate for
our proposed approach.

Placement: Here, we assume a unified, centralized
SLL TLB equidistant from all cores. This is feasible
for the current size of SLL TLBs we study (512 entries,
as detailed in Section 4), which enjoy short hit times (2
cycles for 45nm technology from CACTI experiments
[19]). If future SLL TLBs are considerably larger and

Core 0(1 Core 1 3 Core N-1
11 VP 1 VP1 1

|
D-TLB D-TLB I ... |pTB
(2) VPO
VP 1
L2SLL VP2
D-TLB VP 3

Figure 2: Enhancing the SLL TLB with simple stride
prefetching. When an L1 and SLL TLB miss occur, both
the requested translation and other translations a stride of
1, 2, and 3 pages away are inserted into the SLL. TLB.

require longer hit times, they could be distributed simi-
larly to NUCA caches [16].

As with caches, a communication medium exists be-
tween cores and the SLL TLB (eg. on-chip network or
bus). Therefore, SLL roundtrip latency is comprised of
the network traversal and SLL TLB access time. Given
short access latencies of 2 cycles, network traversal time
dominates. We assume network traversal times of 20 cy-
cles, similar to [4]. While this does mean that 22 cycles
total are spent on SLL TLB hits, we will show that this
still vastly improves performance by eliminating page
table walks that could take hundreds of cycles [12, 13].
Techniques that reduce this communication latency will
only amplify the SLL TLB benefits.

Finally, since the SLL TLB is centrally shared among
all the cores, it will require longer access times than the
private L2 TLBs. Based on CACTI simulations at 45nm,
scanning the private L2 TLB takes the same amount of
time as the SLL TLB (2 cycles); however, since private
L2 TLBs do not need to be centralized among cores,
they have a communication time which is shorter by 6
cycles.

Access Policies: While L1 TLBs handle only one re-
quest at a time and are blocking, SLL TLBs could poten-
tially be designed to service multiple requests together.
This, however, complicates both the hardware and how
the OS handles page table walks; our design there-
fore assumes blocking SLLL TLBs. Nevertheless, non-
blocking SLL. TLBs would likely provide even more
performance benefits.

3.4 SLL TLBs with Simple Stride Prefetching

In some of our experiments, we also consider aug-
menting SLL TLBs with simple prefetching extensions.
A number of past studies have shown that due to large-
scale spatial locality in memory access patterns, TLBs
often exhibit predictable strides in accessed virtual
pages. These strides occur in memory access streams
from a single core [15] as well as between multiple mul-
tiple cores [3, 4]. While sophisticated prefetchers have
been proposed to exploit this, this work explores the de-
gree to which simple stride-based prefetching added to
the baseline SLL TLB can provide benefits. Specifically,
on a TLB miss, we insert the requested translation into
the SLL TLB and also prefetch entries for virtual pages
consecutive to the current one. Figure 2 describes SLL
TLBs with prefetching integrated:

Step 1. First, we assume that a TLB miss has oc-
curred in both the L1 and SLL L2 TLBs. Having walked
the page table to find the translation corresponding to the

missed virtual page (page O in this example), the appro-
priate entry is placed into the L1 TLB.

Step 2: Having refilled the L1 TLB entry in the first
step, we now fill the same entry into the SLL. TLB. Next,
prefetching is activated. To capture potential intra-core
and inter-core strides, we now prefetch entries for vir-
tual pages consecutive to the one just missed upon. The
number of and particular strides of the prefetched entries
are design choices that subsequent sections will discuss.
In this example, virtual page 0 has been missed upon, so
we choose to also prefetch translations for pages 1, 2,
and 3.

Step 3: Suppose that core 1 requests the translation
for virtual page 1 because it has an inter-core stride of
1 page from core 0. Assuming that we miss in the L1
TLB, we scan for the entry in the SLL TLB structure.
Fortunately, because of stride prefetching, we find that
the entry already exists in the SLL TLB. An expensive
page table walk is eliminated and all that remains is for
the entry to be refilled into the L1 TLB as well.

It is critical to ensure that these prefetches do not add
overheads by requiring extra page table walks. To avoid
this, we propose a simple piggyback handling approach.
When a TLB miss and its corresponding page table walk
occur, we eventually locate the desired translation. Now,
this translation either already resides in the cache or is
brought into the cache from main memory. Because
cache line sizes are larger than translation entries, a sin-
gle line will maintain multiple translation entries. For
our 64-byte cache lines (see Section 4), entries for vir-
tual pages 1, 2, and 3 pages away will also reside in the
same line. Therefore, we prefetch these entries into the
SLL TLB, with no additional page walk requirements.
Moreover, we permit only non-faulting prefetches.

4 Methodology

To quantify the benefits of SLL TLBs, we focus on
two distinct sets of evaluations. First, we show how par-
allel programs benefit from SLL TLBs. We then also
evaluate workloads in which a different sequential ap-
plication runs on each core. This section describes each
methodology in turn.

While SLL TLBs benefit both I-TLBs and D-TLBs,
this study focuses on D-TLBs because of their far
greater impact on system performance [3, 24]. Our ap-
proaches will, however, reduce I-TLB misses as well.

4.1 Parallel Applications
4.1.1 Simulation Infrastructure

We study SLL TLBs with parallel programs using the
Multifacet GEMS simulator [18] from Table 1. Our
simulator uses Virtutech Simics [30] as its functional
model to simulate 4-core and 16-core CMPs based on
Sun’s UltraSPARC IIT Cu with SunFire’s MMU archi-
tecture [27]. As shown, this uses two L1 TLBs that are
looked up concurrently. The OS uses a 16-entry, fully-
associative structure primarily to lock pages. A second
64-entry TLB is used for unlocked translations. Our L1
TLB sizes match the ICC prefetcher studies from [4].
Furthermore, these sizes are similar to the L1 TLBs of
contemporary processors such as Intel’s i7 (64-entry)
and AMD’s K10 (48-entry).

System 4-core SPARC

Issue/Commit Width | 4-instruction

Reorder Buffer 64-entry

Instruction Window | 32-entry

L1 cache Private, 32 KB (4-way)
L2 cache Shared, 16 MB (4-way)
L2 roundtrip 40 cc (uncontested)

Private L1 TLBs 16-entry fully-assoc TLB
(locked/unlocked pages),
64-entry, 2-way TLB
(unlocked pages)

0OS Sun Solaris 10

Table 1: Simulation parameters used to evaluate SLL. TLB
benefits for parallel workloads.

Strategy Description
Per-Core Private 128-entry, 4-way
L2 TLBs 16 cc roundtrip

interconnect: 14 cc, access: 2 cc
4-core case: 512-entry, 4-way

(Conventional case)
Shared Last-Level

L2 TLB 16-core case: 2048 entries, 4-way
(Our strategy) 22 cc roundtrip

(interconnect: 20 cc, access: 2 cc)
ICC Prefetching 16-entry PB per core

(For comparison) 512-entry DT
28 cc DT roundtrip

(interconnect: 20 cc, access: 8 cc)

Table 2: TLB enhancements evaluated in this work. SLL
TLB and private, per-core L2 TLB sizes match the ICC
prefetchers designed in [4].

To assess the benefits of SLL TLBs, we com-
pare them against both per-core, private L2 TLBs and
ICC prefetchers (including both Leader-Follower and
Distance-based Cross-Core prefetching) with the same
total hardware. We first compare our SLL TLBs against
the ICC prefetchers from [4] which assume a 4-core
CMP with the configuration detailed in Table 2. As
shown, based on these configurations, an equally-sized
SLL TLB requires 512 entries. This in turn means that
for a 4-core CMP, we compare SLL TLBs to private L2
TLBs of 128 entries. Finally, TLB access times are as-
signed from CACTI [19] assuming a 45nm node. These
penalties include time to traverse the on-chip network
as well as time to scan the TLB array. We find that the
TLB scan times for both approaches remain the same (2
cycles); however since the private L2 TLBs are placed
closer to the cores than the L2 SLL TLB, they have
quicker network traversal (by 6 cycles).

After comparing the benefits of SLL TLBs with ICC
prefetchers and private, per-core L2 TLBs on a 4-core
CMP, we study the impact of core counts on SLL TLBs.
For these experiments, we model a 16-core CMP as
shown in Table 2. In order to fairly compare a 16-core
CMP with private, per-core TLBs of 128 entries, we
model a 2048 SLL TLB for these studies.

Benchmark Model Working Set
Streamcluster | Data-parallel 16MB
Canneal Unstructured 256MB
Facesim Data-parallel 256MB
Fluidanimate Data-parallel 64MB

x264 Pipeline-parallel | 16MB
Ferret Pipeline-parallel | 64MB

VIPS Data-parallel 16MB
Swaptions Data-parallel 512KB
Blackscholes Data-parallel 2MB

Table 3: Summary of PARSEC benchmarks used to evalu-
ate SLL TLBs. Note the diversity in parallelization models
and working set sizes.

1400 10978
g 1200
< 1000
S 800
R
5 400
S 200 I I
(%]
g °
>
= 5‘2} (\Q”b i}é\ N ,f'ob‘ &,\e’,“ \\\Q(" '00(9 o\é’
g » & & & Yo F &
o O 9)
E & ©C <@ & F
S ¢ < 5°
Figure 3: D-TLB misses per million instructions

(MMI) for PARSEC workloads. Canneal, Ferret, and
Streamcluster see high D-TLB misses, consistent with
their working sets. While Blackscholes has a smaller
working set, its access pattern results in the highest MMI.

Due to slow full-system timing simulation speeds, we
present results for 1 billion instructions. Our instruction
windows are chosen such that under 5% of the total D-
TLB misses are cold misses. Historically, TLB studies
[2, 3] focus on miss elimination rates rather than perfor-
mance as it is infeasible to run applications with long
enough durations on timing simulators to provide prac-
tical runtime performance numbers. We go beyond pre-
vious work and investigate performance (in addition to
miss eliminations) by carefully considering TLB miss
handling strategies and analytically modeling our bene-
fits appropriately.

4.1.2 Parallel Benchmarks and Input Sets

We use the PARSEC benchmarks, a suite of next-
generation shared-memory programs for CMPs [5]. Ta-
ble 3 lists the workloads used in this study. Of the
13 available workloads, we are able to compile the 9

listed for our simulator.! The workloads use diverse par-
allelization strategies (unstructured, data-parallel, and
pipeline-parallel) and are run with a thread pinned to
each CMP core. Since TLB misses occur less frequently
than cache misses, we use the largest available input data
set feasible for simulation, the Simlarge set.

IThese are also the PARSEC workloads that are studied in [3, 4]
and hence, serve as a point of reference for our results.

2000 6786 4809

2 1600

§ 1200

g 800 I

g 400

Q

§ 0 | - .l____

2 S X o O o X >4 Q0 o

= Er§ess 2893FES

= e 2% %88 %

7 5 ES 27% £
INT FP

Figure 4: D-TLB misses per million instructions (MMI)
for the SPEC CPU2006 workloads used in this paper.
The workloads exhibit diverse miss rates, with mcf and
cactusADM showing particularly high MMIs.

Figure 3 presents the workload D-TLB misses per
million instructions (MMIs). As expected, benchmarks
such as Canneal, and Ferret, which have large work-
ing sets, see high MMIs. Interestingly, Blackscholes
sees the highest MMI due to its access pattern, despite
a relatively modest working set size. These MMI num-
bers present a useful foundation to better understand our
subsequent results.

4.2 Multiprogrammed Workloads of
Sequential Applications

4.2.1 Simulation Infrastructure

We also provide results for multiprogrammed sequential
workloads. As for parallel workloads, our sequential ap-
plications use the full-system 4-core CMP simulator of
Table 1. Using a similar approach to previous studies
[8, 14, 25], we advance simulation by four billion in-
structions and evaluate performance over a window of
ten billion instructions. Unlike the parallel workload ex-
periments, we evaluate the multiprogrammed workloads
using functional simulation only. This is in part be-
cause these multiprogrammed sequential workloads are
not as heavily influenced as the parallel ones by inter-
thread timing interactions. In addition, our functional
approach allows us to capture larger swaths of execu-
tion, which is important because of the large Ref datasets
we use to fully exercise the TLB. Since TLB effects oc-
cur over such long timescales, the key is for the window
to be sufficiently large, to observe and contrast the be-
havior of the various workloads. Our functional simula-
tion also includes OS effects, which are naturally quite
important to our study. Finally, as with parallel work-
loads, while we cannot present raw full-program run-
time performance numbers, we do provide performance
intuition through careful analysis of TLB miss handling
overheads and analytical models.

We use sequential applications from the SPEC
CPU2006 [26] suite to form our multiprogrammed
workloads. We choose to evaluate the workloads desig-
nated by [21] as capturing the overall performance range
of the SPEC CPU2006 suite. Figure 4 provides an ini-
tial characterization of these benchmarks which include
6 integer and 7 floating-point applications. As shown,

ID Stress | SPEC Benchmarks

Het-1 Inter. m(.:f’ xalancbmk, sjeng,
libquantum

Het-2 Low xalancbmk, sjeng,

libquantum, gcc

Het-3 Inter. cactusADM, milc, soplex, lbm

Het-4 Low soplex, lbm, wrf, povray
. cactusADM, mcf, omnet
Het-5 | High P et PPy
GemsFDTD
Hom-1 | High 4 copies of mct
Hom-2 | Low 4 copies of xalancbmk

Table 4: The multiprogrammed workloads used in this
paper. Five of the workloads are constructed to be het-
erogeneous (Het-1 to Het-5) while two are homogeneous
(Hom-1 and Hom-2). The workloads are designed to show
varying degrees of TLB stress.

the applications see varying D-TLB MMIs for the 64-
entry TLBs simulated in this system. In particular, we
find that mcf and cactusADM most severely stress our
TLBs with MMIs of 6786 and 4809 respectively.

While a fully-comprehensive analysis of multipro-
grammed workloads comprised of four applications
would involve simulation of all (%) combinations of
benchmarks, this is practically infeasible. In conjunc-
tion with Figure 4, we therefore draw from the methods
and data in [21] to form seven workloads of four SPEC
CPU2006 applications each. Table 4 lists these combi-
nations in detail.

As shown in Table 4, these combinations stress the
TLBs to varying degrees. We separate them into five het-
erogeneous workloads (Het-1 to Het-5) and two homo-
geneous workloads (Hom-1 and Hom-2). The hetero-
geneous workloads provide insight into how well SLL
TLBs adapt to programs with different memory require-
ments. In contrast, the homogeneous ones model scenar-
ios where no single application overwhelms the others.

We construct the workloads as follows. First, we
design two heterogeneous workloads with intermediate
levels of TLB stress by combining one high-stress ap-
plication with three lower-stressed ones. Here, mcf and
cactusADM serve as high-stress benchmarks and there-
fore are used to create intermediate-stress workloads
Het-1 and Het-3 along with three other lower-stress ap-
plications. Second, for comparison, we create a pair
of low-stress workloads, Het-2 and Het-4. Finally, our
last heterogeneous workload is designed to be very high-
stress. Therefore, in this case we combine both mcf and
cactusADM along with two other workloads in Het-5.

For the homogeneous workloads, we once again fo-
cus on a high-stress and low-stress case. The high-stress
workload is constructed using four copies of mcf while
the low-stress workload uses four copies of xalancbmk.

5 SLL TLBs: Parallel Workload Results

We now study SLL TLBs for parallel workloads.
First, Section 5.1 compares SLL TLBs against com-
mercial per-core, private L2 TLBs. Second, Section
5.2 compares SLL TLBs with ICC prefetching. Section

100 ESLLL2TLB
7 Private L2 TLB

% Hit Rate
N—
R—
-

—
—
—
.
—

S 2 o
& P& & Q &
F L ST LT
@m [GAREWS & a{:—,
2 S S
L}@ & ®

High to Low ICS

Figure 5: SLL TLB versus private, per-
core L2 TLB hit rates. While private L2
TLBs do provide benefits, they are con-
sistently outperformed by SLL TLBs (by
27% on average).

~
o
NN\

@
a
K] N 4 Copies
60 .
g 50 m 3 Copies
: gg 7 2 Copies
§ %8 m 1 Copy
0
X > O O &
\;}z & Q}@ Q\Q _&\oo &Y v\\%
A < & S
N C &
& N

High to Low ICS

Figure 6: Copy counts for private L2
TLBs. For every evicted L1 line, we
record how many L2 TLBs hold this entry.
Heavy replication of entries exists, which
SLL TLBs mitigate.

100 ESLLL2TLB
90 ICC Prefetcher 7

NN\

Figure 7: SLL TLB hit rate versus
ICC prefetcher hit rate. Benchmarks
with high inter-core sharing like Canneal,
Facesim, and Streamcluster benefit the
most from SLL TLBs.

5.3 evaluates the benefits of enhancing the baseline SLL
TLB operation with stride prefetching. Section 5.4 then
studies the benefits of the SLL TLB with increasing core
counts. Finally, Section 5.5 conducts a detailed perfor-
mance analysis of our approach.

5.1 SLL TLBs versus Private L2 TLBs

Figure 5 shows the hit rates of a single 512-entry
SLL TLB and per-core, private 128-entry L2 TLBs in
a 4-core CMP. The benchmarks are ordered from high-
est to lowest inter-core sharing [3]. The overriding ob-
servation is that SLL TLBs eliminate significantly more
misses than private L2 TLBs using the same total hard-
ware for every single application. On average the differ-
ence in hit rates is 27%.

Second, high-ICS applications like Canneal,
Facesim, and Streamcluster see especially high hit
rate increases as compared to the private L2 case (by
23%, 57%, and 38% respectively). This occurs because
SLL TLBs deliberately target inter-core shared misses.

Figure 5 also shows that x264 sees the biggest im-
provement using SLL TLBs versus private L2 TLBs. As
we will show, this is because many entries in each pri-
vate L2 are replicated for this application; in contrast,
the SLL TLB eliminates this redundancy, allowing for
more TLB entries to be cached for the same hardware.

Figure 6 explores this issue of replication in greater
detail. To analyze this, on every L1 TLB miss, we scan
all the private L2 TLBs to look for the number of ex-
isting copies of the missing translation entry. Then, as a
percentage of the total L1 misses that exist in at least one
L2 TLB, we show separately the number of misses that
have a single or multiple copies. Higher copy-counts are
indicative of applications which would gain even more
from SLL TLBs that remove redundancy and use the ex-
tra hardware to cache more unique translations.

Figure 6 shows that heavy replication exists across
the benchmarks. For example, Canneal sees that 45%
of its L1 evictions are replicated across all 4 cores. As
mentioned, x264 suffers from an extremely high copy-
count, which SLL TLBs eliminate. In fact, even lower-
ICS benchmarks like Ferret and Swaptions see high
replication rates. Therefore, it is clear that maintaining
separate and private L2 TLBs results in wasted resources
as compared to a unified SLL TLB.

5.2 SLL TLBs versus ICC Prefetching

We now consider benefits versus previously-
proposed ICC prefetching (which includes both
Leader-Follower and Distance-based Cross-Core
prefetching). Figure 7 shows the hit rate of a 512-entry
SLL TLB compared to the ICC prefetcher. On average,
SLL TLBs enjoy a hit rate of 47%. These hit rates rival
those of ICC prefetchers, but SLL TLBs achieve them
with simpler hardware.

On average, SLL TLBs see merely a 4% drop in hit
rate compared to ICC prefetchers. Moreover, Figure 7
shows that in many high-ICS workloads like Canneal,
Facesim, and Streamcluster, SLL TLBs actually out-
perform ICC prefechers. In fact, SLL TLBs eliminate
an additional 24%, 6%, and 21% TLB misses for these
workloads. However, applications like Blackscholes
which are highly ICPS see lower benefits than from
ICC prefetching. Nevertheless, SLL. TLBs still man-
age to eliminate a high 62% of the TLB misses for
Blackscholes. Overall, SLL TLBs eliminate a highly
successful 7% to 79% of baseline TLB misses across all
applications, while requiring simpler hardware than ICC
prefetchers.

Apart from the benefits of SLL TLBs, it is also use-
ful to understand their sharing patterns. Figure 8 plots,
for every L1 TLB miss and SLL TLB hit, the number
of distinct cores that eventually use this particular SLL
entry. We refer to these distinct cores as sharers. On a
4-core CMP, there are up to 4 sharers per entry.

High-ICS benchmarks enjoy high SLL TLB entry
sharing. For example, 81% of Streamcluster’s hits
are to entries shared among all 4 cores. Less intuitive
but more interesting is the fact that even benchmarks
with lower inter-core sharing such as x264, VIPS, and
Swaptions see high sharing counts for their SLL hit
entries. This is because the SLL TLB effectively pri-
oritizes high-ICS entries in its replacement algorithm;
hence, these entries remain cached longer. On average,
roughly 70% of all hits are to entries shared among at
least two cores.

We also consider sharing patterns of evicted transla-
tions. Figure 9 illustrates the number of sharers for every
evicted SLL TLB entry. The vast majority (on average,
75%) of the evictions are unshared. This reaffirms our
previous hypothesis that the SLL structure helps priori-

1

£ 4 Sharers
| m3Sharers
7 2 Sharers
M 1 Sharer

7?27

% SLL L2 TLB Hits
w
o
Y7777

%,
“
(SRS
%
’%0 S
ROy
S, %

High to Low ICS

Figure 8: Sharing characteristics of
each SLL L2 TLB hit entry. Note
that high-ICS applications like Canneal,
Facesim, and Streamcluster see high
SLL inter-core sharing.

Z £ 4 Sharers
m 3 Sharers
%2 Sharers
M 1 Sharer

)
S

%
o
A\

% SLL L2 TLB Lines Evicted
w
o

,)7
%
G, &
%
P

High to Low ICS

Figure 9: Sharing patterns of SLL TLB
entries evicted. As shown, most evicted
entries are unshared; inter-core sharing
increases priority in replacement algo-
rithm, decreasing eviction likelihood.

WSLLL2TLB

SLL L2 TLB with Stride
Prefetching

v

é é

.

W

U L

' b

AR R

@ > &L E

& @ﬂ(@«‘ PO
&

3

High to Low ICS

% Hit Rate

Figure 10: Including simple stride
prefetching improves SLL TLB hit rates
by an average of 5% across the evaluated
workloads. This is because it captures
repetitive inter-core distance pairs.

tize shared TLB entries in parallel applications. Namely,
entries accessed by multiple cores are frequently pro-
moted to the MRU position, while those accessed by a
single core are more likely to become LRU and therefore
prime candidates for eviction. Since our parallel work-
loads have many ICS misses, SLL TLBs cache transla-
tions that will be used frequently by multiple cores.

5.3 SLL TLBs with Simple Stride Prefetching

Having studied the hit rates of the baseline SLL
TLB, we now consider low-complexity enhancements.
Specifically, we now add simple stride prefetching for
translations residing on the same cache line as the cur-
rently missing entry. This offers the benefits of prefetch-
ing without the complexity of ICC techniques. As cov-
ered in Section 3.4, prefetched candidates are 1, 2, and
3 pages away from the currently missing page.

Figure 10 compares the proposed SLL TLB alone,
versus an SLL TLB that also includes stride prefetch-
ing. First, we see that the benefits of this approach vary
across applications. Blackscholes, which has repeti-
tive 4-page strides [4], sees little benefit since the only
strides being exploited here are 1, 2, and 3 pages. How-
ever, Fluidanimate and Swaptions enjoy greatly im-
proved hit rates since they do require strides of 1 and 2
pages [4]. Similarly, even Facesim sees an additional
10% hit rate since it exploits 2 and 3 page strides.

Figure 10 also shows that applications lacking promi-
nent strides (eg. Canneal and Streamcluster) can ac-
tually see slightly lower hit rates. This is because the
useless prefetches can displace useful SLL TLB entries.

Overall, while stride prefetching provides benefits for
most applications, one may also consider the prospect
of combining ICC prefetchers with SLL TLBs. While
this is certainly possible, the main motivation of SLL
TLBs is to achieve similar performance to ICC prefetch-
ers but with much lower hardware complexity. Thus,
SLL TLBs with simpler stride prefetching are an elegant
and effective alternative.

5.4 SLL TLBs at Higher Core Counts

Our results indicate that SLL TLBs are simple yet ef-
fective at 4 cores. It is also important, however, to quan-
tify their benefits at higher core counts. To this end, we
now compare the benefits of SLL TLBs against private,
per-core L2 TLBs at 16 cores.

Figure 11 plots the increase in hit rate that SLL
TLBs provide over 128-entry private, per-core L2 TLBs
(higher bars are better) for 4-cores and 16-cores. Since

§ & 90 W 4-core (512-entry SLL TLB)
s S 80 16-core (2048-entry SLL TLB)
g£ 70
o 60
@ & 50
-
Ea
@@ 30
=]
= ® 20
sl 0l
wv o 0 -
® X X > 3) 3 o
&@ & é@ &K RO &
&« &
S C R
&) N
o High to Low ICS

Figure 11: Increase in hit rate that SLL TLBs provide versus
private, per-core L2 TLBs for 4-core and 16-core CMPs. Since
private L2 TLBs are 128-entry, the SLL TLB is 512-entry and
2048-entry for 4-core and 16-core CMPs respectively. Note the
increased hit rates at higher core counts.

each private L2 TLB is 128 entries, equivalently-sized
SLL TLBs are 512-entry for the 4-core case and 2048-
entry for the 16-core case.

Figure 11 demonstrates that not only do SLL TLBs
consistently outperform private L2 TLBs (each bar is
greater than zero), the benefits actually tend to increase
at higher core counts. For example, Streamcluster
and VIPS for 16-core CMPs enjoy an additional 10%
increase in hit rate over the 4-core case. In fact, the ben-
efits increase by 6% on average.

There are two primary reasons for these improve-
ments. First, higher core counts tend to see even higher
inter-core sharing [3], which the SLL TLB exploits. Fur-
thermore, since greater core counts have more on-chip
real estate devoted to the TLB, an aggregated SLL TLB
has even more entries in a 16-core case than in a 4-core
case (2048 entries versus 512 entries). The net effect is
that SLL. TLBs will be even more useful in future CMP
systems with higher core counts.

5.5 Performance Analysis

Up to this point, we have focused purely on TLB
hit rates; however, the ultimate goal of our work is to
achieve performance benefits. This section sketches a
cost-benefit analysis to estimate the performance gains
from SLL TLBs against the alternatives. For these ex-
periments, we compare SLL TLB performance against
the commercial norm of private L2 TLBs. As previously
detailed, our performance analysis is conducted assum-
ing a 4-core CMP. Moreover, since full-run cycle-level
simulations would take weeks per datapoint to complete.
We instead use a CPI analysis inspired by [24].

Type Type 1 Type 2 Type 3 Type 4
Description | Flush ROB, Setup insts. | Flush ROB, Setup insts. | Flush ROB, Setup insts. | Flush ROB, Setup insts.
TSB Hit in L1 cache TSB Hit in L2 Cache TSB Hit in DRAM TSB Miss
Cleanup code Cleanup code Cleanup code 3-level page table walk
Cleanup code
Penalty 50 cycles 80 cycles 150 cycles Beyond 200 cycles

Table 5: Typical TLB miss handler times. After a TLB miss, the reorder buffer (ROB) is flushed, handler setup code is executed,
the TSB is accessed and if needed, the page table walk is conducted, followed by cleanup code.

o
o
@

©c 9o

o ©o

L N
1

o

Cycles per Instruction(CPI) Saved
Versus Private L2 TLBs

Streamcluster, Canneal Facesim Fluidanimate

ESLLL2 TLB
SLL L2 TLB with Stride Prefetching

X264 ‘ Ferret ‘ VIPS

0.4 0.08
0.35 0.07
0.3 0.06
0.25 0.05
0.2 0.04
0.15 0.03
0.1 0.02
0.05 - 0.01 - ¢

Swaptions Blackscholes Avg.

Figure 12: CPI saved by SLL TLBs against private L2 TLBs. Every application benefits from SLL TLBs with exact gains

increasing with miss penalties.

While SLL TLBs do provide substantially better hit
rates than private L2 TLBs, they also require longer net-
work traversal times. Therefore, it is important to care-
fully weigh these benefits with access costs. We use Cy-
cles per Instruction (CPI) to assess the performance of
SLL TLBs by focusing on CPI saved on TLB miss han-
dling time versus private L2 TLBs. This metric will hold
regardless of actual program CPI, which may change
across architectures. To compute CPI saved, we need to
consider the various costs associated with a TLB miss,
how we mitigate them, analytically model these savings
and finally produce a range of possible performance ben-
efits. We begin by considering the steps in a typical TLB
miss handler. We focus on Solaris TLB handlers in this
analysis; however these same steps and strategies are ap-
plicable to other miss handling strategies too.

Table 5 details typical TLB miss handler steps, break-
ing them into four categories. For all the handlers, the
reorder buffer (ROB) is flushed upon the interrupt, and
handler setup code is executed. In Solaris, this is fol-
lowed by a lookup in the Translation Storage Buffer
(TSB), a software data structure that stores the most
recently accessed page table elements. The TSB, like
any software data structure, may be cached. A TSB ac-
cess that hits in the L1 cache minimizes the total handler
penalty to roughly 50 cycles (Type 1), while others miss
in the L1 resulting in lookups in the L2 cache (Type 2) or
DRAM (Type 3), with progressively larger penalties. In
the worst case, the requested translation will be absent
in the TSB and a full-scale three-level page table walk
must be conducted, which takes hundreds of cycles. The
exact TLB miss handling times per application will vary
depending on the mix of these miss types. Therefore,
rather than focusing on a single miss handler value, we
now analyze SLL TLB performance across a range of
possible average handler times. We vary from the opti-
mistic case of 50 cycles to the more realistic of 100-150
cycles and beyond to 200 cycles.

We note here that handling TLB misses in software is
one of a number miss handling strategies currently em-
ployed commercially. In particular, a number of com-
mercial systems employ hardware-managed TLBs [12].
In these systems, a TLB miss is handled by a dedicated
finite state machine which walks the page table on a
miss. The additional hardware provides for faster page
table walks than software miss handlers but has less flex-
ible OS management of page tables [13]. These systems
enjoy TLB miss handling latencies around the 50 cycle
mark [12]. Therefore, our subsequent analysis which
shows CPI numbers for TLB miss latencies of 50 cycles
also provides information about SLL TLB performance
for hardware-managed TLB walks.

Figure 12 plots the CPI saved by our approach versus
the commercial norm of private L2 TLBs when using the
baseline SLL TLB and its prefetching-augmented coun-
terpart. For each application, CPI counts are provided
for TLB miss penalties ranging from 50 to 200 cycles in
increments of 50. As shown, every parallel benchmark
benefits with the SLL TLB, even under the assumption
that all handlers are executed in 50 cycles. Assuming
a more realistic average miss penalty of 150 cycles, the
average benefits are roughly 0.05 CPI, and as high as
0.25 CPI for Blackscholes. The exact benefits also
vary for the scheme used; for example, Fluidanimate
particularly benefits with the prefetcher-augmented SLL
TLB. Moreover, the gains become more substantial as
miss penalties increase.

Therefore, even with optimistically low TLB miss
penalties, our SLL. TLB outperforms private L2 TLBs,
despite using merely the same total hardware. As such,
SLL TLBs are an effective and elegant alternative to pri-
vate L2 TLBs. To further show their utility, we now
focus on multiprogrammed sequential workloads.

WSLLL2 TLB

% Hit Rate

Tota| ee—

Het-2 Het-3

Private L2 TLB

Hom-1 Hom-2

Figure 13: Hit rates for the multiprogrammed workloads for both the SLL L2 TLB and the private L2 TLBs. SLL TLB hit rates
in total for each heterogeneous workload combination are substantially higher than private for L2 TLBs (on average, by 21%).
Furthermore, high-stress applications like mcf see vast improvements without noticeably degrading lower-stress applications. Even
homogeneous workload combinations see hit rate increases with SLL TLBs.

6 SLL TLBs: Multiprogrammed
Workload Results

We now study SLL TLBs for workloads comprised
of sequential applications, running one per core in a
multiprogrammed fashion. Section 6.1 quantifies L2
TLB hit rates for the five heterogeneous and two ho-
mogeneous workloads. Compared to private, per-core
L2 TLBs, we show both per-application and across-
workload benefits. For the heterogeneous workloads,
we study how effectively a single shared last-level TLB
adapts to simultaneously-executing applications with
different memory requirements. We also use homoge-
neous workloads to study SLL TLB benefits when mul-
tiple programs of similar nature execute.

After studying application hit rates, Section 6.2 de-
tails the performance gains derived from SLL TLBs ver-
sus private L2 TLBs. As with parallel workloads, this
section performs a cost-benefit analysis and quantifies
CPI saved using our approach.

6.1 Multiprogrammed Workloads with
One Application Pinned per Core

Figure 13 quantifies SLL L2 and private L2 TLB hit
rates for the five heterogeneous (Het-1 to Het-5) and
two homogeneous workloads (Hom-1 and Hom-2) de-
scribed. For every workload combination, we separately
plot TLB hit rates for each sequential application, and
also show total TLB hit rates across all applications.

First, we study hit rates for the heterogeneous work-
loads. As shown, both SLL TLBs and per-core, private
L2 TLBs eliminate a large fraction of the L1 TLB misses
(35% to 95% for the SLL TLBs on average). Further-
more, we find that for every workload combination, to-
tal SLL TLB hit rates are higher than the private L2 hit
rates. On average, the SLL TLB eliminates 21% ad-
ditional L1 misses over private L2 TLBs for heteroge-
neous workloads, a substantial improvement. These in-
creases occur because the SLL L2 TLB is able to allo-
cate its resources flexibly among applications differing
in memory requirements. In contrast, the private, per-
core L2 TLBs provide fixed hardware for all applica-
tions, regardless of their actual needs.

Second, and more surprisingly, Figure 13 shows that
SLL TLBs do not generally degrade hit rates for lower-
stress application when running with high-stress ones.

One might initially expect high-stress benchmarks to
capture a larger portion of the SLL TLB, lowering other
applications hit rates significantly. However, for ex-
ample in Het-1, while mcf hit rates for SLL TLBs in-
crease by 50% over the private TLB, xalancbmk and
libguantum still enjoy hit rate increases of 5% and
9% respectively. This behavior is also seen across all
the other workload combinations, particularly in Het-
5, where mcf on the SLL TLB enjoys a 52% hit rate
increase while every other application in the workload
also sees a hit rate increase. This occurs because
the low-stress applications experience short bursts of
TLB misses. Therefore, while the SLL. TLB gener-
ally provides more mapping space to high-stress appli-
cations like mcf, it also rapidly adapts to these bursty
periods, providing the lower-stress applications with
the TLB space they require. The result is that SLL
TLBs show notable improvement over private L2 TLBs
for the workload combinations in general, improving
high-stress applications without substantially degrading
lower-stress ones (and usually improving them too).

Third, Figure 13 also compares the SLL TLB hit
rates versus private L2 TLB hit rates for the homoge-
neous workloads, showing 2% to 4% improvements.
As expected, the hit rates are consistent for all four
cores. Because each core now places an equal demand
on the SLL TLB, essentially equally dividing the en-
tries among them, we expect little benefit from this ap-
proach. However, even in this case, we find that SLL
TLBs marginally increase hit rates over the private L2
TLBs. This occurs because the four benchmarks do not
run in exact phase; therefore, the short-term needs of
each program vary enough to take advantage of the flexi-
bility that SLL TLBs provide in allocating entries among
applications. Moreover, the OS may occupy proportion-
ally less space in the SLL TLB than it does in each of
the private L2 TLBs, giving more overall room for the
benchmarks to operate. These effects result in the im-
provement of SLL TLBs against private TLBs for both
homogeneous workloads.

Therefore, our results strongly suggest that the SLL
TLB demonstrates far greater flexibility in tailoring the
total hardware that private L2 TLBs use to the demands
of various simultaneously executing sequential work-
loads. The result is that both total workload hit rates
and per-application hit rates enjoy increases.

m50cycles #100cycles ™ 150 cycles & 200 cycles
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1 4

ok
-0.1

Cycles per Instruction(CP1) Saved Versus
Private L2 TLBs

Het-1 | Het-2 | Het-3| Het-4 | Het-5| Hom-1 Hom-

Figure 14: CPIsaved using SLL TLBs versus private L2 TLBs
for individual applications and per-workload averages. Higher
TLB miss penalties result in greater performance gains.

6.2 Performance Analysis

The previous section showed that sequential applica-
tions actually benefit from SLL TLBs in terms of hit rate
relative to private L2 TLBs. However, since hit penal-
ties for an SLL TLB are higher than for the private L2
TLB, it is important to conduct a cost-benefit analysis
of the sources of TLB overhead and how we mitigate
them. Therefore, we now extend the parallel program
performance analysis based on the TLB handling times
described in Section 5.5 to multiprogrammed combina-
tions of sequential workloads. Again, the focus is on
understanding CPI saved using our approach for a real-
istic range of TLB miss penalties, with a methodology
inspired by [24].

Figure 14 shows the CPI saved from SLL TLBs rela-
tive to private per-core L2 TLBs for individual applica-
tions and per-workload averages. While the individual
application CPIs may be computed using their particular
TLB miss rates, the per-workload averages are based on
weighting the L1 TLB miss rates for each constituent se-
quential program. The results are shown assuming miss
penalties ranging from 50 to 200 cycles, in increments
of 50 cycles.

Figure 14 shows that across the heterogeneous work-
loads, higher hit rates typically correspond to increased
performance for the per-workload averages. In particu-
lar, Het-1 and Het-5 see notable CPI savings. The SLL
TLB also provides CPI savings to Het-2, albeit more
muted, while Het-4 sees little change. These trends can
be better understood by the nature of the application
mixes. The SLL TLB typically provides the most benefit
in workload mixes where a high-stress application runs
with lower-stress ones. In this case, the private L2 TLBs
allocate unused resources to the low-stress applications,
while the high-stress application suffers. SLL TLBs,
on the other hand, can better distribute these resources
among the sequential applications, aiding the high-stress
workload without hurting the lower-stress ones. This
behavior is particularly prevalent for Het-1 and Het-5,
in which Mcf suffers in the private L2 TLB case. In
the presence of the SLL TLB, however, Mcf increases

in performance without hurting the other applications in
Het-1 and only marginally degrades cactusADM in Het-
5. This leads to a CPI savings approaching 0.2, even
at the smallest TLB penalty of 50 cycles. As expected,
benefits become even more pronounced at more realistic
TLB miss penalties around 100 to 150 cycles.

Figure 14 also shows that cactusADM sees lowered
performance in Het-3 and Het-5. This is surprising
since cactusADM is a high-stress TLB application; one
may therefore have expected that an SLL TLB would
be highly beneficial. In reality, cactusADM has been
shown to have extremely poor TLB reuse and hence ex-
periences unchanging hit rates even as TLB reach is in-
creased [17, 31]. Therefore, our larger SLL TLB only
marginally increases its hit rate (see Figure 13) and is
unable to overcome the additional access penalty rela-
tive to private L2 TLBs. This means that cactusADM
suffers a marginal performance degradation. Neverthe-
less, cactusADM is a well-known outlier in this regard
[17, 31]; the large majority of applications show bet-
ter TLB reuse characteristics, making them likely to im-
prove performance with SLL TLBs.

Finally, as expected, Hom-1 and Hom-2 change lit-
tle with the SLL TLB. Since individual benchmarks in
these workloads equally stress the SLL TLB, none sees a
significant increase in available entries. Therefore, per-
formance is only marginally decreased due to the addi-
tional access time, and these homogeneous workloads
are likely to represent the worst-case for SLL TLBs.
Overall SLL TLBs provide significant performance im-
provements for parallel and some heterogeneous se-
quential workloads, while being largely performance-
neutral on others. This makes them an effective and low-
complexity alternative to per-core L2 TLBs.

7 Conclusion

This paper shows the benefits of SLL TLBs for
both parallel and multiprogrammed sequential work-
loads. We find that readily-implementable SLL TLBs
exploit parallel program inter-core sharing to eliminate
7-79% of L1 TLBs misses, providing comparable ben-
efits to ICC prefetchers. They even outperform con-
ventional per-core, private L2 TLBs by an average of
27%, leading to runtime improvements of as high as
0.25 CPL. Further integrating stride prefetching provides
increased hit rates (on average 5%). In addition, SLL
TLBs also, somewhat surprisingly, can improve perfor-
mance for multiprogrammed sequential workloads over
private L2 TLBs. In fact, improvements over private L2
TLBs are 21% on average, with higher hit rates also ex-
perienced per application in a workload mix. This can
lead to as high as 0.4 CPI improvements.

Ultimately, this work may be used to design SLL
TLBs in modern processors. Our results provide in-
sight to both sequential and parallel software develop-
ers on the benefits expected from this approach, using
low-complexity hardware.

8 Acknowledgments

We thank the anonymous reviewers for their feed-
back. We also thank Joel Emer for discussions on this
work. This material is based upon work supported by

the National Science Foundation under Grant No. CNS-

0627650 and CNS-07205661.

The authors also ac-

knowledge the support of the Gigascale Systems Re-
search Center, one of six centers funded under the Focus
Center Research Program (FCRP), a Semiconductor Re-
search Corporation entity. Finally, we acknowledge the
support of a research gift from Intel Corp.

References

(1]
(2]
(3]
(4]

(5]
(6]
(7]

8]

(9]
(10]

(1]
[12]

(13]
(14]

[15]

(16]

(17]

(18]

(19]

[20]
[21]

(22]
(23]

(24]

Advanced Micro Devices. http://www.amd.com.

T. Barr, A. Cox, and S. Rixner. Translation Caching:
Skip, Don’t Walk (the Page Table). ISCA, 2010.

A. Bhattacharjee and M. Martonosi. Characterizing the
TLB Behavior of Emerging Parallel Workloads on Chip
Multiprocessors. PACT, 20009.

A. Bhattacharjee and M. Martonosi. Inter-Core Cooper-
ative TLB Prefetchers for Chip Multiprocessors. ASP-
LOS, 2010.

C. Bienia et al. The PARSEC Benchmark Suite: Charac-
terization and Architectural Implications. PACT, 2008.
J. B. Chen, A. Borg, and N. Jouppi. A Simulation Based
Study of TLB Performance. ISCA, 1992.

D. Clark and J. Emer. Performance of the VAX-
11/780 Translation Buffers: Simulation and Measure-
ment. ACM Trans. on Comp. Sys., 3(1), 1985.

E. Ebrahimi et al. Fairness via Source Throttling: a Con-
figurable and High-Performance Fairness Substrate for
Multi-Core Memory Systems. ISCA, 2010.

G. Hinton. The Microarchitecture of the Pentium 4. Intel
Technology Journal, 2001.

H. Huck and H. Hays. Architectural Support for Trans-
lation Table Management in Large Address Space Ma-
chines. ISCA, 1993.

Intel Corporation. http://www.intel.com.

B. Jacob and T. Mudge. A Look at Several Memory
Management Units: TLB-Refill, and Page Table Organi-
zations. ASPLOS, 1998.

B. Jacob and T. Mudge. Virtual Memory in Contempo-
rary Microprocessors. IEEE Micro, 1998.

G. Kandiraju and A. Sivasubramaniam. Characterizing
the d-TLB Behavior of SPEC CPU2000 Benchmarks.
Sigmetrics, 2002.

G. Kandiraju and A. Sivasubramaniam. Going the
Distance for TLB Prefetching: An Application-Driven
Study. ISCA, 2002.

C. Kim, D. Burger, and S. Keckler. NUCA: A Non-
Uniform Cache Architecture for Wire-Delay Dominated
On-Chip Caches. IEEE Micro Top Picks, 2003.

W. Korn and M. Chang. SPEC CPU2006 Sensitivity
to Memory Page Sizes. ACM SIGARCH Comp. Arch.
News, 35(1), 2007.

M. Martin et al. Multifacet’s General Execution-Driven
Multiprocessor Simulator (GEMS) Toolset. Comp.
Arch. News, 2005.

N. Muralimanohar, R. Balasubramonian, and N. Jouppi.
CACTI 6.0: A Tool to Model Large Caches. HP Labs
Tech Report HPL-2009-85, 2009.

D. Nagle et al. Design Tradeoffs for Software Managed
TLBs. ISCA, 1993.

A. Phansalkar et al. Subsetting the SPEC CPU2006
Benchmark Suite. ACM SIGARCH Comp. Arch. News,
35(1), 2007.

X. Qui and M. Dubois. Options for Dynamic Address
Translations in COMAs. ISCA, 1998.

M. Rosenblum et al. The Impact of Architectural Trends
on Operating System Performance. Trans. on Mod. and
Comp. Sim., 1995.

A. Saulsbury, F. Dahlgren, and P. Stenstrém. Recency-
Based TLB Preloading. ISCA, 2000.

[25]

(26]

[27]
(28]
[29]

[30]
(31]

A. Sharif and H.-H. Lee. Data Prefetching Mechanism
by Exploiting Global and Local Access Patterns. Jour-
nal of Instruction-Level Parallelism Data Prefetching
Championship, 2009.

Standard Performance Evaluation
http://www.spec.org/cpu2006.

Sun. UltraSPARC III Cu User’s Manual. 2004.

Sun Microsystems. http://www.sun.com.

M. Talluri and M. Hill. Surpassing the TLB Performance
of Superpages with Less Operating System Support. AS-
PLOS, 1994.

Virtutech. Simics for Multicore Software. 2007.

D. H. Woo et al. An Optimized 3D-Stacked Memory Ar-
chitecture by Exploiting Excessive, High-Density TSV
Bandwidth. HPCA, 2010.

Corporation.

