
Full-System Chip Multiprocessor Power Evaluations
Using FPGA-Based Emulation

Abhishek Bhattacharjee, Gilberto Contreras and Margaret Martonosi
Department of Electrical Engineering

Princeton University
{abhattac, gcontrer, mrm}@princeton.edu

ABSTRACT
The design process for chip multiprocessors (CMPs) requires
extremely long simulation times to explore performance, power,
and thermal issues, particularly when operating system (OS)
effects are included. In response, our novel FPGA-based em-
ulation methodology models a full CMP design including ap-
plications and an OS. Activity counters programmed into the
cores feed per-component microarchitectural power models.
These models achieve under 10% error compared to detailed
gate-level simulations. Our method retains software flexibil-
ity, but offers up to 35× speedup compared to corresponding
full-system software simulations. We present our approach
by emulating a 2-core Leon3 cache-coherent multiprocessor
running Linux and parallel benchmarks. In an example case
study, our emulated system uses activity counts (a proxy for
temperature) to guide process migration between the CMP
cores. Overall, this paper’s methodology makes possible de-
tailed power and thermal studies of CMPs and their operat-
ing systems.

Categories and Subject Descriptors
B.8 [Performance and Reliability]: Performance Analysis
and Design Aids; C.1 [Processor Architectures]: Parallel
Architectures; C.4 [Performance of Systems]: Measure-
ment Techniques

General Terms
Design, Measurement, Performance

1. INTRODUCTION
Increasing transistor counts and superlinear clock scaling

have led to a significant rise in microprocessor power den-
sity, introducing higher operating temperatures and potential
hotspots. Higher temperatures result in reliability issues [23]
and prohibitively expensive packaging solutions [17]. As chip
multiprocessors (CMPs) become the dominant microproces-
sor approach, development of efficient and accurate CMP
power estimation becomes crucial.

Power estimation in the early design stages is a critical
component of processor design. From this, various circuit-
level and architectural techniques can be employed to miti-
gate thermal and power problems [4]. Conventionally, soft-
ware simulation is used at the architectural [4], RTL, gate,
and layout levels of design. However, full system simulations
come at the expense of extremely long simulation times. To
counter this, application snippets are employed and operat-
ing system effects ignored, compromising the credibility and
accuracy of results. The problem is compounded for thermal
studies, which require the simulation of tens to hundreds of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’08,August 11–13, 2008, Bangalore, India.
Copyright 2008 ACM 978-1-60558-109-5/08/08 ...$5.00.

milliseconds to study equilibrium operating points [21]. Al-
though existing simulators may be parallelized for speedup,
shared data structures such as coherence engines and the
L2 cache limit the scalability of this approach [6]. More-
over, simulating CMPs with increasing core-counts results in
a commensurate slow-down in simulation speed.

One solution uses hardware performance counters (HPCs)
in existing microprocessors for accurate component and total
power estimates [9, 14, 16]. Orders of magnitude faster, run-
time power estimation using well-tuned HPC-based power
models can be highly accurate. While this is an attractive
alternative to software simulation, it is infeasible in early de-
sign stages since it requires that the processor already exist.

The increasing capability of Field Programmable Gate Ar-
rays (FPGAs) offers emulation-based alternatives. Due to
their inherently programmable fabric and because they run
at hardware speeds, it is possible to combine fast simulation
time with high accuracy and flexibility for early power esti-
mation [11, 24]. Therefore, the concept of power emulation
on FPGAs warrants examination. In this context, the novel
contributions of this paper are:

• We develop an FPGA-based power emulator for a hy-
pothetical CMP based on the Leon3 Sparc V8 core [1].
Our system runs 2 cache-coherent cores at 65 MHz and
boots Linux 2.6. This achieves a speedup of up to 35×
over full-system architectural software simulators. To
our knowledge, this is the first FPGA-based full-system
power emulation framework to be built.

• We evaluate the accuracy of our approach by comparing
the emulated power with simulated power from Synop-
sys PrimeTime PX across a series of benchmarks. Our
power models have under 10% average error.

• A case study involving runtime power profiling and OS
regulated process migration highlights the benefits of
our approach.

Although the emulation framework currently models Leon3
cores, we envision our methodology as general enough for
early power estimation of any proposed architecture.

Our paper is organized as follows. We discuss related work
in the next section and the novelty of our approach in Section
3. Section 4 details infrastructure methodology while Section
5 discusses results. Section 6 illustrates a case study, and
Section 7 concludes.

2. RELATED WORK
A framework for power density and thermal studies in early

design stages must satisfy three requirements. First, it must
yield accurate per-component power estimates based on ar-
chitectural events of interest. Second, fast data collection is
critical to achieve high efficiency. Finally, the platform must
provide power estimation of a proposed architecture that has
not been implemented yet. We review prior work in the con-
text of these three requirements.

2.1 Software Simulators
Early architecture-level power simulators included Wattch

[4] (for out-of-order processors) and SimplePower [22] (for



in-order processors). Wattch, for example, used capacitance-
based power models for modules such as arrays, CAMs, com-
binational logic, and clocking components. Similarly, Skadron
et al. pioneered work in the thermal space by developing
Hotspot [21]. These studies demonstrate the strengths and
limitations of software simulators. First, component power
estimates can be gathered easily by instrumenting appropri-
ate modules in the simulator with event counters. Further-
more, proposed designs can be readily created within the sim-
ulator environment. However, due to long simulation times,
accuracy may be compromised. Application snippets are em-
ployed to reduce the runtime while operating system effects
are often ignored. This long simulation time is particularly
problematic for thermal studies which require simulation of
tens to hundreds of milliseconds of the target design [21]. A
related problem is that the number of statistics being col-
lected has a significant impact on simulation speeds. An
increase in the former typically leads to a decrease in the
latter.

Our emulation approach addresses these weaknesses by us-
ing a programmable hardware substrate to provide a 35×
speedup, thereby allowing for full workloads and operating
system effects to be included. As with software simulators,
our infrastructure retains flexibility in designing the event
counters to feed into component power models. However, we
do this with no degradation in the emulation speed, unlike
full-system simulators.

2.2 Hardware Runtime Monitoring
Runtime power estimation on existing processors is an at-

tractive alternative. Feeding HPC counts from existing pro-
cessors into highly-tuned power models has been demon-
strated as a fast and accurate means of power estimation
[2, 9, 14, 16]. However, runtime power estimation suffers
from the glaring disadvantage of requiring an existing proces-
sor. Direct access to architectural components for live power
measurements is also unavailable. Therefore, HPCs are used
to infer component-wise power consumption. While greater
speed does offer higher potential accuracy, well-tuned power
models are necessary. The number and variety of HPCs can
restrict the development of these component power models,
as demonstrated by Contreras and Martonosi [9]. More-
over, since HPCs are designed to measure performance, they
may not cover the important power events. It is precisely
these weaknesses that our framework addresses due to its
programmable nature and access to individual components.

2.3 Hardware Emulation
Hardware emulation has been viewed as a mechanism to

attain the flexibility of software with the speed of hardware.
However, the restrictive capacities of earlier generation FP-
GAs posed problems. For this reason, the RPM project [20],
one of the first FPGA-based emulators, evaluated only the
memory subsystem for a maximum of 8 processors. Addi-
tionally, no OS was supported. With newer, more power-
ful FPGA generations, interest in emulation has been rekin-
dled. Large-scale efforts such as RAMP [24] and HAsim
[11] have primarily been concerned with the methodology
involved in creating modular, parameterizable performance
models of complex architectures. Hybrid hardware/software
approaches such as Protoflex [8] emulate common processor
functionality such as pipeline operations on FPGAs while off-
loading infrequent operations such as I/O to software sim-
ulation. Despite these advances, a full-system emulation
framework focusing on power/thermal studies remains un-
addressed. While Coburn et al. [15] investigate power emu-
lation, they do so at the RTL level. Furthermore, they ad-
dress the implementation of power models at the hardware
level itself and techniques to decrease area/latency overheads
arising from this. In contrast, Ghodrat et al. [19] propose a
hybrid approach with power emulation for a subset of SoC
components complementing more general estimation with an
HDL simulator. Similarly, Atienza et al. [10] focus on ther-
mal emulation of MPSoCs. They analyze existing cores for
which power characteristics are already available and use run-
time communication between the FPGA and software on a
host PC instead of a full-fledged OS on the emulated system.

 

FPGA 

 

 

Emulation Framework 

 

Event 

Counters 

(VHDL) 

 

 

 

 

 

 

 

I/O 

Applications 

(multiprogrammed 

and multithreaded) 

Linux 2.6 (with 

knowledge of power 

models) 

2-core cache-coherent 

CMP (VHDL) 

Host PC 

 

OS accesses counters 

for migration policies 

Track CMP activity 

RS-232 

Ethernet 

Figure 1: Emulator consists of power models, emulated
CMP, OS, applications, event counters and host PC.

In contrast to all these approaches, we develop a method-
ology for emulation of a proposed CMP architecture in its
early design stages and demonstrate interaction with com-
plex applications and a full OS. Our target is to develop a
full-system scalable architectural power emulation platform
that operates without an HDL simulator backbone.

Overall, both software simulators and runtime monitoring
systems present unique problems. Moreover, current emu-
lation research has not focused on power/thermal studies in
the early design stages of novel microprocessor designs. This
represents a fundamental gap in the infrastructure available
for studies of proposed architectures. Additionally, we ex-
pect this situation to worsen as designs increase in complex-
ity, forcing software simulators to slow down and making it
even more difficult to formulate component power estimates
through runtime monitoring.

3. OUR APPROACH: FPGA-BASED FULL-
SYSTEM POWER EMULATION

We address architecture’s infrastructure gap by using FPGA-
based emulation to combine the advantages of the software
simulator and hardware runtime monitoring approaches for
power and thermal studies. There are four novel traits in
our work. First, unlike other emulation studies, we focus
on power/thermal evaluations of a proposed cache-coherent
CMP running complex workloads and Linux. Second, as
with software simulators, we can instrument event counters
of interest to estimate the power of individual architectural
components. Third, due to its hardware speeds and because
HPCs relevant to power can be implemented, we achieve po-
tentially higher power estimation accuracy than either soft-
ware simulators or hardware prototypes. Furthermore, the
HPCs do not affect emulation speeds, as opposed to soft-
ware simulators which slow down with statistics gathering.
Fourth, as with software simulators, this approach can be
used for power estimates of a proposed design.

Figure 1 details the interaction among components in our
targeted emulation platform. We use the component power
models (discussed in subsequent sections) in conjunction with
our FPGA-based emulator to yield runtime power estimates
of applications running on a cache-coherent CMP. As indi-
cated, Linux runs on our emulated cores. The host PC uses
the ethernet connection to upload applications on the em-
ulator and receives statistics and OS/program output via
the RS-232 connection. During application execution, event
counters track the usage of different components in the de-
sign. As will be shown in the case study, the OS can feed
these counter values into the power models to make decisions
on process migration policies.

4. DETAILS OF OUR APPROACH
Our goal is to develop an emulation system which can ac-

curately estimate CMP component power. To this end, we
need to accomplish four objectives. First, we select a target
CMP configuration based on a core design of interest. Sec-
ond, we design component-specific event counters that will
usefully reflect power dissipation in the core and the CMP
system. Third, we develop component-specific power equa-
tions by assigning power weights to relevant counters. Fi-
nally, we validate our power models and refine them based
on designed microbenchmarks.

This flow is a one-time investment. Once the appropriate
power models have been developed, the emulation platform



Table 1: 2-core Leon3 Multiprocessor Configuration

Clock Rate 65 MHz

Organization 2-core, snooping for L1 cache coherence

Pipeline Single-issue, in-order, 7-stage

Functional Units Adder, Shifter, Pipelined Mul(5cc), Div(35cc)

L1 I-Cache 4KB, 2-way, 32-byte lines, LRR, 1 cycle hit

L1 D-Cache 4KB, 2-way, 32-byte lines, LRR

write-through, virtually addressed, 1 cycle hit

MMU 8-entry I and D TLBs, LRU, 2 cycle TLB hit

Bus ARM AMBA AHB bus with snooping

can be readily used to study the power characteristics of com-
plex workloads with operating system effects.

4.1 Emulation Infrastructure
Our infrastructure platform is the Berkeley Emulation En-

gine 2 (BEE2) [5], which is comprised of five Xilinx Virtex II
Pro 70 FPGAs. The FPGAs are laid out in a star topology
with four user FPGAs in a ring and one control FPGA com-
municating with each user and the host PC. We currently use
only the control FPGA. As we scale our design to emulate
more complicated cores and higher core counts, we will use
the other FPGAs as well.

Our approach is not specific to the BEE2. While we use it
due to its high capacity and support, any FPGA board with
sufficient resources would be usable.

4.2 System to be Emulated
Currently, we emulate a cache-coherent, bus-based CMP

with Leon3 cores. The Leon3 is a VHDL model of a 32-bit
SparcV8 architecture [1]. Details are listed in Table 1. In
the future, we will add more cores, larger L1 caches, an L2
cache, and a floating point unit. The added complexity is
feasible because the current design uses under 60% of the
look-up tables (LUTs) and under 20% of the on-chip Block
RAM (BRAM) for the caches on a single Virtex II Pro 70.

We stress here that the purpose of our work is to demon-
strate a general approach. Therefore, other core designs or
CMP system configurations would also be applicable.

4.3 Performance Counters for Power Models
The choice of events to monitor hinges on the specific com-

ponents of interest. To that end, we develop power models
for the integer pipeline, the integer register file, the caches,
and the AHB bus controller. For each component, we modify
the VHDL to assert pulses on events that cause the relevant
64-bit counters to increment. For example, a cache read hit
asserts a pulse on a wire connected to the read hit event
counter, resulting in its increment. All the counters reside in
a distinct module on the bus and are hence non-obtrusive.

To guarantee cycle accuracy, we modify the pipeline to add
counter start, counter stop, and counter reset instructions to
the ISA. It takes 1 cycle to respond to these instructions (the
time taken to exit the pipeline decode stage). Furthermore,
the counters are memory-mapped allowing for a simple in-
terface to gather statistics.

We currently model 36 counters for our power models.
They cover events ranging from pipeline operations (instruc-
tions fetched, number of interlock stalls, instructions using
different execution units), register file events, cache events
(load hits and misses, store hits and misses, number of snoops),
and bus transactions. Due to its simplicity, the counter mod-
ule and associated logic uses less than 3% of the LUTs and
has no impact on the operating frequency of the design.

4.4 Component Power Models
We next develop component power models for the pipeline,

register file, caches, and AHB bus controller. Each power
equation takes the form:

Pcomponent = Pidle +
X

i

(Einif)/cycles (1)

Idle power is significant in Leon3 due to the absence of clock-
gating. The second term of the relation, the events power,
is calculated by finding the composite energy across all ar-
chitectural events and scaling by the time taken to run the
benchmark. Here, Ei is the energy per event i (for example,

Leon3 with HPCs 
synthesized on BEE2 

Leon3 RTL 
Code 

Synopsys Design 
Compiler 

Version Z-2007.03-SP3 

Standard Chartered 
Technology Libraries 
0.13 µm, 1.2V, 25˚C 

Gate-level Netlist 

Microbenchmark  

ModelSim with Leon3 
instance in a testbench 

 

Capture switching 
activity in Value 
Change Dump (VCD) 

Synopsys Prime Time PX 
Version Z-2007.06-SP2 

Component-wise Power 
Breakdown of LEON3  

 

Calculate Energy 
Value per Event 

HPC values 

 

�� ��
�

�
�

Figure 2: Flow for assigning energy to events.

a register file write) and ni is the event count. For tech-
nologies with significant leakage power, we could include a
leakage term in the equation.

Next we assign appropriate Ei values to the different events.
Since we are interested in estimating the power of the em-
ulated machine, measuring the power of the FPGA itself is
meaningless. Instead, we calibrate our events with power
numbers expected from a custom Leon3 microprocessor. Due
to the absence of a commercial Leon3 multiprocessor, we cal-
ibrate with power numbers extracted from gate-level simula-
tion. Our calibration flow is outlined in the following section.

4.5 Determining Event Energy Assignments
Figure 2 shows our calibration of event counter energies

from detailed gate-level simulations. We start at point 1,
with a synthesized version of our system with HPCs on the
BEE2. We then synthesize an unmodified copy of the Leon3
RTL with Synopsys Design Compiler in step 2. This gener-
ates a gate-level netlist of the emulated machine with the
0.13µm Standard Chartered libraries. Step 3 creates mi-
crobenchmarks used to exercise certain portions of the sys-
tem. To determine the energy of the microbenchmark, we
capture its switching activity in a VCD file at step 4 via sim-
ulation on the Leon3 RTL in Modelsim. Now, we have both
the gate-level netlist from step 2 and the switching activity
from our microbenchmark. These become inputs to Synopsys
PrimeTime PX in step 5, yielding a component-wise power
estimate. We also run our microbenchmark on the BEE2
and gather performance statistics in step 6. At step 7, we
use the counter values and the power breakdown to assign
energy numbers to the events exercised in the microbench-
mark. Steps 3-7 are repeated for different microbenchmarks
to assign energy numbers to all the events of interest. Once
all energy numbers for a component are assigned, the power
model is complete.

A gate-level netlist rather than a placed-and-routed design
is used for our calibration. While the latter yields higher ac-
curacy, it also results in an exponential increase in simulation
time. Since the microbenchmarks must run 500-1000 instruc-
tions, this approach is impractical. Instead, the gate-level
netlist approach combines high accuracy with efficiency.

Although the eventual power models are behavioral in the
sense that they track activity counts, they are faithful to
real power estimates because of the accurate calibration with
gate-level synthesis.

4.6 Discussion of Event Energy Assignments
Table 2 illustrates the idle power and event energy as-

signments per component. With these values, power models
based on Equation 1 can be created. Due to the absence of
clock-gating, the idle power numbers track the area of each
component. Therefore, larger modules such as the caches
consume significantly higher idle power.

Pipeline energy is assigned relative to the different exe-
cution units activated by the instructions. Instruction and
data cache stalls freeze the entire pipeline and therefore only
consume idle power. Dependency stalls result in the first 4
pipe stages shutting down while the last 3 drain. Hence, the
energy for these stalls is low.

The I and D cache power models are primarily dependent
on access hits and misses. The I-cache streaming cycles met-



Table 2: Event Energy Assignments
Pipeline Idle: 19.97mW Add: 5.03nJ Shift: 3.43nJ

Logical: 1.7nJ Br/Jmp: 1.93nJ Mul: 13.67nJ

Div: 53.63nJ Dep Stall: 0.56nJ Other: 0.61nJ

Register File Idle: 18.83mW Write: 0.53nJ

Read Single: 0.29nJ Read Double: 0.39nJ

I-Cache Idle: 82.34mW Hit: 1.46nJ Miss: 1.12nJ

Streaming: 1.82nJ

D-Cache Idle: 79.71mW Read Hit: 1.88nJ

Read Miss: 2.08nJ Write Hit 2.37nJ

Write Miss: 1.90nJ Snoops: 1.04nJ

���

���

���

���

��
���
���

�	

��

��
	��

��

���������	�����
���������
����������
��������������������

�

��

���

� ��� ��� ��� ��� ���

��
���
���

�	

��

��
	��

��

���������	
����������������������

��

���

���

���

���

���

��
���

��
��	


�
���
�

�
Emulator Power Models
Synopsys PrimeTime

�

��

��

��

Reg File D-Cache I Cache Pipeline AHB Cont

��
���

��
��	


�
���
�

�

���������

Figure 3: (a)Switching energy per register file event
(b)Power model validation using Libquantum with all com-
ponents under 10% error

ric accounts for energy expended during a cache line refill
from main memory. Since the D-cache is write-through, there
is little variation between read misses and write hits. How-
ever, a write miss uses a smaller energy quantum because
the value is propagated to main memory without requiring
updates in the cache.

To better understand the development of the microbench-
marks, we now focus on the register file power model.

4.6.1 Case Study: Register File Power Model
The register file has three architectural events: write, read

single operand, and read double operand. To gauge the en-
ergy for each of these events, we write a series of microbench-
marks with 500 instructions. Only instructions causing the
event under investigation and nops are present. We vary the
number of event instructions and nops to study the energy
change. We then run these microbenchmarks using the flow
described in Figure 2. Figure 3a exhibits the linear rela-
tionship between the event instruction count and the energy
expended by the register file. The energy per event may now
be computed from the slopes.

4.7 Power Model Validation
Our power models have been extensively validated against

both microbenchmarks and SPEC 2006 benchmarks. All the
validation microbenchmarks run at least twice as long as the
microbenchmarks used to develop the power models. Fur-
thermore, the microbenchmarks now exercise multiple event
types simultaneously. This tests the accuracy of the models
when running complex workloads over longer periods of time.
In addition, we validate our power models against PrimeTime
power estimates for Mcf and Libquantum from SPEC 2006.
Due to extremely long PrimeTime simulation times (in the
order of days), we take 5 distinct 1-million-instruction snap-
shots of the SPEC 2006 benchmarks for validation.

We run the microbenchmarks and SPEC 2006 applications
on the emulator to gather statistics. These statistics, using
the power models, provide average power estimates per com-
ponent. Concomitantly, the benchmarks are fed to Prime-
Time for component power numbers. We then compare the
estimates from our models against those from PrimeTime.

Table 3 demonstrates that our power models closely match
PrimeTime power results with an error of under 10% for all
components. Figure 3b reveals the accuracy of our estimates
to PrimeTime results for Libquantum. Not only do compo-
nent estimates closely match the PrimeTime power averages,
they also track the power trends accurately.

This component-wise accuracy is a key benefit of our sys-
tem. It will be particularly important as we develop thermal
models in the future, in which per-component estimates and
related floorplan information are crucial. This is in stark

Table 3: Avg. Power Model Errors Against PrimeTime
Component Microbenchmarks SPEC 2006

Pipeline 7.51% 5.74%

Register File 7.02% 6.31%

I-Cache 8.57% 8.85%

D-Cache 7.24% 7.44%

AHB Controller 5.66% 7.30%

contrast to works such as [14] where components such as the
register file have no dedicated event counters. Instead, the
number of micro-operations is scaled by an empirical factor
to estimate switching activity. Thus, our approach combines
high accuracy with high speed.

While the curve-fitting strategy is appropriate for aver-
age power, it may not enjoy the same level of accuracy in
tracking peak and transient power. That being said, we de-
signed our microbenchmark lengths and instruction mixes to
sensitize the power models to peak and transient behavior.
Furthermore, our experience with profiling runtime power
of applications indicates that power surges and hotspots are
tracked.

5. RESULTS

5.1 Emulation Speedup over Simulation
We measure the speedup our emulation framework offers

over a gate-level simulator (Synopsys PrimeTime), and over
an architectural simulator (Multifacet GEMS [18]). For the
first case, we use the runtimes of the microbenchmarks and
the 1 million instruction snapshots from Mcf and Libquan-
tum. Compared to PrimeTime running on a lightly-loaded
64-bit, 2.2 GHz AMD Opteron 848, our approach achieves
an average speedup of 33Million×! For perspective, while it
takes 6 days to simulate Mcf on PrimeTime, it takes 10ms on
our emulator.

We also compare our emulator to a full-system, cycle-
accurate multiprocessor simulator, GEMS, running on a 64-
bit, 2 GHz dual-core AMD Athlon processor. We simulate
2 cores with L1 caches configured to match our Leon3 em-
ulation setup and remove the L2 cache [18]. We then run
SPEC 2006 benchmarks (Mcf, Libquantum and Bzip2) with
the train workloads to evaluate the speedup of the emulator
over GEMS. We observe speedups of up to 35× across the
tested benchmarks.

The speedup varies with application characteristics: for
example, memory-intensive Mcf takes over 26 hours to run
on GEMS but 46 minutes on our emulator, resulting in a
speedup of 35. Since our system models the pipeline inter-
actions in detail as opposed to our configuration of GEMS
with only Ruby loaded [18], the speedup numbers are actu-
ally a conservative estimate. Moreover, the speedup quoted
is dependent on our current cache configuration and emulator
frequency. We anticipate even higher gains as we implement
larger caches and increase our core frequencies.

We stress that we characterize our system benefits as con-
servatively as possible. Therefore, the power estimates are
compared to highly accurate gate-level simulations rather
than architectural power simulators. At the same time, the
speedup of the emulator is compared against architectural
simulators, which are much faster than gate-level simulation.

5.2 Runtime Power Profiling

5.2.1 Kernel Modifications
In preparation for our case study on power-aware OS-

regulated process migration, we now detail our implemen-
tation of runtime power profiling. We modify the Linux ker-
nel to accomplish this by adding instructions that read the
HPCs within the 10ms kernel timer interrupt. We design
system calls to initiate profiling and parameterize the sam-
pling rate in multiples of 10ms. The counter values for each
sample are stored in a kernel buffer. To minimize the cy-
cles required for HPC access, we bypass the virtual memory
system by using special macros that reference physical ad-
dresses directly. This optimization allows for the access of
all 36 counters within the timer interrupt. The overhead as-



0 2000 4000 6000 8000 10000
370

380

390

400

410

420

430

440

Time [10 ms]

P
ow

er
 [m

W
]

 

 

CPU 0
CPU 1

(a) Per-core power

0 2000 4000 6000 8000 10000
0

50

100

150

200

Time [10 ms]

P
ow

er
 [m

W
]

 

 Register File
Pipeline
Data Cache
Instruction Cache

(b) CPU0 component power

Figure 4: Runtime power profiles for LU with 2 threads
on emulator: while component profiles indicate sudden
power surges for the register file, this is undetected on
the composite core profiles.

sociated with our profiling is roughly 5700 clock cycles. Even
for the finest sampling granularity of 10ms, this corresponds
to a negligible 0.87% perturbation of runtime.

5.2.2 Power Profiling Results
We have profiled the runtime power of a number of SPEC

2006 benchmarks as well as multithreaded applications from
Splash 2 and the PARSEC suite [3] using our emulation
framework. For example, Figure 4 displays the runtime power
characteristics of LU from Splash 2 running with 2 threads on
our emulation system. The raw power numbers and swings
are low compared to current microprocessors for several rea-
sons: a 65MHz clock, a simple in-order, single-issue pipeline,
small caches, the absence of a floating point unit, and lack of
clock-gating. However, this does not detract from the gener-
ality of our approach and if each core dissipated more power,
we would also see a larger power swing.

Figure 4a illustrates the power variation between the two
cores. There is a visible phase for the first 15s when only core
1, which runs the master thread, is active. It consumes close
to 440 mW while core 0 spins on an idle thread. From our
measurements, the idle thread consumes roughly 380 mW.
When the second thread is spawned, computation begins and
periodic transitions in the power consumption for both cores
are seen. Figure 4b provides a component-wise breakdown of
the power for core 0. Most of the component power numbers
are low initially because the core runs the idle thread. The
data cache is the sole exception primarily because most of
the idle thread’s accesses are cached. Since cache accesses
take a single cycle to expend the read hit energy quantum,
more power is consumed. Once the computation begins how-
ever, cache misses lead to additional stalls which effectively
lower the power. The pipeline and the I-cache profiles track
each other. This is expected since an I-cache miss stalls the
pipeline, leaving just the idle power. Finally, the register
file profile is of significant interest. There are clearly points
where the power rises drastically for time-frames in the range
of 100ms. For example, we see a a peak register file power of
136mW at 52s. This would lead to a localized hot spot in the
register file. However, a corresponding spike is not visible in
the core 0 profile on Figure 4a because of the decrease in the
pipeline and I-cache power profiles at that point. For exam-
ple, at 52s core 0 is roughly 420mW which falls within the av-
erage range. The value of our emulation framework is appar-
ent in this scenario. Unlike software simulators, the emulator
runs fast enough to observe these sudden variations. At the
same time, unlike runtime monitoring approaches on com-
mercial processors, we have direct access to accurate com-
ponent power profiles. We thus identify hotspots like in the
register file which would otherwise remain undetected when
looking at purely composite core power.

6. CASE STUDY: ACTIVITY MIGRATION
We now demonstrate our platform’s capabilities in a case

study on power density-based activity migration (AM). Dy-
namic thermal management (DTM) has been shown to be
effective in limiting peak temperatures [7, 13]. Among many
proposed DTM approaches, AM successfully counters local
hot-spots within cores [7, 12, 13]. While effective at tack-
ling thermal imbalances, there is an associated performance
penalty. As such, AM offers a rich area of research for CMPs.

2 seconds since last migration? 100ms interrupt 

Calculate core component power estimates over the last 50ms 

Is any component above pre-defined threshold, T1?? 

Same component in other core above pre-defined threshold, T1?  

Calculate deltas between offending components from the cores 

Are deltas above pre-defined threshold, T2 ? 

No 

No 

No 

Yes No 

Yes 

Yes 

Yes 

Do Not 
Migrate 

Migrate 

Figure 5: Scheduler algorithm for power-based migra-
tion as implemented in Linux 2.6 kernel

The use of our emulation environment for AM studies is
motivated by a couple of observations. First, on-chip temper-
ature hot-spots and power profiles are highly correlated with
the utilization of individual architectural units [7]. Therefore,
migration policies are highly dependent on accurate runtime
power/thermal estimates of modules such as caches, register
files etc. Extraction of this information is an intrinsic benefit
of our infrastructure.

Second, on-chip temperatures experience rise and fall times
in the order of hundreds of milliseconds [7, 14]. Our emula-
tion scheme provides a natural alternative to software sim-
ulators which would take much longer to profile these time-
frames. Furthermore, operating systems such as Linux are
prime candidates for managing AM schemes due to their
scheduler ticks in the tens of milliseconds range. In this vein,
our framework is fast enough to handle full OS effects.

While our studies are currently power-based, we intend
extending this work to incorporate temperature models for
thermal migration. However, the benefits of our system are
clearly assayed from our preliminary power-based studies.

6.1 Scheduling Algorithm
It is now possible to use the power profiling infrastruc-

ture to implement a power-aware task scheduling policy. The
scheduling algorithm used is detailed in Figure 5. We instru-
ment a 100ms hardware interrupt to initiate the migration
scheduler. This timeframe is based on thermal rise and fall
times documented in [7]. To equip our policy with some no-
tion of performance, we require a 2s interval before a recently
migrated process becomes a candidate for migration again.
This interval is chosen because migration takes 300ms on av-
erage. This allows up to a 15% performance penalty due to
migration overhead (discounting the impact of cold caches af-
ter migration). The 300ms required for migration is heavily
dependent upon our 65MHz configuration and 4KB caches.
As we scale these numbers, we expect lower migration times.

If the required time has elapsed, the component powers are
computed over the last 50ms interval. This corresponds to a
5 sample window of the 10ms sample buffer. If a component
dissipates power above a pre-defined threshold during this
window, it becomes a candidate for migration. Should the
same component in the other core also be above the thresh-
old, the difference between the corresponding power numbers
has to be higher than a second threshold for migration to
take place. This prevents one high power process replacing
another with an associated performance cost. The alternate
case (an offending component in a single core) is trivial and
immediately activates the migration procedure. When mul-
tiple component types are above the threshold, migration is
allowed should any one of the components conform to the
stated requirements.

As a final note, the algorithm favors a swap operation if
there are processes present on both cores. This is consistent
with the goal of maintaining performance while striving for
power-aware scheduling. From here on, our discussion will
assume a swap-based migration without loss of generality.

6.2 Kernel Modifications
We modify the Linux kernel by adding a 100ms interrupt

and corresponding handler. The handler uses the schedul-
ing algorithm discussed to decide on potential migrations.
Per-core runqueue data structures maintain a list of the ac-
tive and expired processes for their corresponding cores. We
change the runqueues to include a flag that the handler sets
should migration be initiated. These flags are checked when
the main kernel scheduler is invoked. We add code in the
kernel scheduler that forces the migration processes to be



0 1000 2000 3000 4000 5000 6000 7000 8000
250

300

350

400

450

500

Time [100 ms]

P
ow

er
 [m

W
]

 

 

CPU 0 (Bzip2)
CPU 1 (Mcf)

(a) Core power profiles (no migration)

0 1000 2000 3000 4000 5000 6000 7000 8000
240

260

280

300

320

340

360

380

400

420

440

Time [10 ms]

P
ow

er
 [m

W
]

 

 

CPU 0
CPU 1

(b) Core power profiles (migration)

3550 3600 3650 3700 3750 3800 3850 3900 3950 4000
20

40

60

80

100

120

140

160

Time [10 ms]

P
ow

er
 [m

W
]

 

 

Register File
Pipeline
Data Cache
Instruction Cache

Idle
Thread

Migration Complete: Mcf
context switched in

Pipeline Migration
Threshold = 142 mW

Migration Triggered:
Bzip2 context
switched out

(c) Migration procedure on CPU0

Figure 6: Bzip2 and Mcf on the emulator: initial inter-core power imbalance is corrected by activity migration

context switched out of each processor. This guarantees a
safe swap. Finally, a custom routine to swap task descrip-
tors between runqueues completes the migration.

6.3 Results
We have successfully tested our scheduling policy on a

number of benchmarks. Here we focus on migration while
running Bzip2 and Mcf from SPEC 2006. Figure 6a illus-
trates the power profiles of Bzip2 on core 0 and Mcf on core 1.
While Bzip2 experiences a maximum fluctuation of 180mW
periodically, Mcf has phases of low power (around 280mW)
prior to phases when the power increases close to 350mW
followed by 390mW. This behavior is due to a high memory
access count which results in low initial power. Once most of
the working set is cached, computation proceeds, leading to
the higher power profile. Due to the vastly different power
characteristics of the two benchmarks, there is ample scope
for better inter-core power distribution from migration.

While migration due to hotspots on any component is eas-
ily achievable by our scheduling algorithm, we will focus here
on migration due to power surges on the integer pipeline. Fig-
ure 6b displays the first 80s of the runtime shown in Figure
6a with the power-based migration policy activated. Clearly,
the power is now well balanced between the cores. Once
again, core 0 starts with power-hungry Bzip2 while core 1
runs Mcf. Migration is activated when the pipeline power of
core 0 overshoots the pre-defined threshold around 37.6s into
execution. In response, Bzip2 and Mcf are swapped and core
1 begins to dissipate more power while core 0 cools off.

Figure 6c zooms into the exact point of migration on core 0.
Here, the pipeline power surges above the 142mW threshold
triggering the detection of a likely hotspot. Bzip2 is immedi-
ately context switched out and the idle thread is switched in.
Although not shown, there is a corresponding replacement
of Mcf by the idle thread on core 1 at the same time. The
task swap between the core runqueues is then accomplished.
Approximately 300ms later, the newly swapped processes are
context switched in, lowering the power on core 0.

Our emulation setup enjoys unique capabilities even for
this simple experiment. The nuances of migration can be
studied on complex workloads interacting with an OS. Fur-
thermore, adaptive policies can readily be developed to cope
with hotspots because of accurate component powers. Thus,
this platform affords efficient, yet credible, studies of archi-
tectural and software solutions to power/thermal issues.

7. CONCLUSIONS
Our power emulation framework offers a novel early-stage

alternative to software simulators and runtime monitoring.
While it enables hardware speeds and fast data collection (up
to 35× speedup over software), it retains software’s flexibil-
ity in instrumenting event probes, incorporating new design
proposals, and detailing accurate component power break-
downs (within 10% of gate-level simulators). As such, this
presents a viable platform to carry out early-design-stage
power and thermal studies on complex future microproces-
sors. As shown by the case study, our emulator can be used
to study various DTM policies such as activity migration on
complex workloads with operating system effects. Moreover,
because they too follow Moore’s Law, FPGAs will become
more powerful as processors become more complex. Thus,
they will remain useful for effective modeling for CMPs with
large core counts and complicated functionality.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback. This

work was supported in part by the Gigascale Systems Re-
search Center, funded under the Focus Center Research Pro-
gram, a Semiconductor Research Corporation program. In
addition, this work was supported by the National Science
Foundation under grant CNS-0720561.

9. REFERENCES
[1] Gaisler research. GRLIB IP core user’s manual. Nov 2007.

[2] F. Bellosa. The benefits of event-driven energy accounting in
power-sensitive systems. Proc. 9th ACM SIGOPS European
Wkshp., 2002.

[3] C. Bienia et al. The PARSEC benchmark suite:
Characterization and architectural implications. Princeton
Univ. Tech. Rep., (TR81108), Jan 2008.

[4] D. Brooks et al. Wattch: A framework for architectural-level
power analysis and optimizations. Proc. 27th Intl. Symp. on
Computer Architecture, June 2000.

[5] C. Chang et al. A high-end reconfigurable computing system.
IEEE Design and Test of Computers, 2005.

[6] M. Chidester and A. George. Parallel simulation of
chip-multiprocessor architectures. ACM Trans. on Modeling
and Computer Simulation, 12(3):176–200, July 2002.

[7] J. Choi et al. Thermal aware task scheduling at the system
software level. Proc. 2007 Intl. Symp. on Low Power
Electronics and Design, 2007.

[8] E. Chung et al. PROTOFLEX: FPGA-accelerated hybrid
functional simulator. Computer Architecture Lab at Carnegie
Mellon (CALCM) Technical Report, (2007-2), Feb 2007.

[9] G. Contreras and M. Martonosi. Power prediction for Intel
XScale processors using performance monitoring units. Proc.
2005 Intl Symp. on Low Power Electronics and Design, 2005.

[10] D.Atienza et al. A fast HW/SW FPGA-based thermal emulation
framework for multiprocessor system-on-chip. Proc. 43rd Conf.
on Design Automation, July 2006.

[11] N. Dave et al. Implementing a functional/timing partitioned
microprocessor simulator with an FPGA. Wkshp. on
Architecture Research using FPGA platforms, Feb 2006.

[12] J. Donald and M. Martonosi. Techniques for multicore thermal
management: Classification and new exploration. Proc. 33rd
Intl. Symp. on Computer Architecture, 2006.

[13] S. Heo et al. Reducing power density through activity
migration. Proc. 2003 Intl. Symp. on Low Power Electronics
and Design, 2003.

[14] C. Isci and M. Martonosi. Runtime power monitoring in
high-end processors: methodology and empirical data. Proc.
36th Intl. Symp. on Microarchitecture, Dec 2003.

[15] J.Coburn et al. Power emulation: A new paradigm for power
estimation. Proc. 42nd Conf. on Design Automation, June
2005.

[16] R. Joseph and M. Martonosi. Runtime power estimation in high
performance microprocessors. Proc. 2001 Intl. Symp. on Low
Power Electronics and Design, 2001.

[17] R. Mahajan et al. The evolution of microprocessor packaging.
Intel Tech. Jnl., 2001.

[18] M. Martin et al. Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. Computer
Architecture News, Sept 2005.

[19] M.Ghodrat et al. Accelerating system-on-chip power analysis
using hybrid power estimation. Proc. 44nd Conf. on Design
Automation, June 2007.

[20] K. Oner et al. The design of RPM: An FPGA-based
multiprocessor emulator. Proc. 3rd Intl. Symp. on Field
Programmable Gate Arrays, Feb 1995.

[21] K. Skadron et al. Temperature-aware microarchitecture. Proc.
30th Intl. Symp. on Computer Architecture, June 2003.

[22] N. Vijaykrishnan et al. Energy-driven integrated
hardware-sotware optimizations using SimplePower. Proc. 27th
Intl. Symp. on Computer Architecture, 2000.

[23] R. Viswanath et al. Thermal performance challenges from silicon
to systems. Intel Tech. Jnl., 4(3):16, 2000.

[24] J. Wawrzynek et al. RAMP: A research accelerator for multiple
processors. Tech. Rep. UC Berkeley, EECS-2006-158, Nov
2006.


