
Large-Reach Memory Management Unit Caches

Coalesced and Shared Memory Management Unit Caches to Accelerate TLB Miss Handling

Abhishek Bhattacharjee
Department of Computer Science, Rutgers University

abhib@cs.rutgers.edu

ABSTRACT

Within the ever-important memory hierarchy, little research
is devoted to Memory Management Unit (MMU) caches, im-
plemented in modern processors to accelerate Translation
Lookaside Buffer (TLB) misses. MMU caches play a crit-
ical role in determining system performance. This paper
presents a measurement study quantifying the size of that
role, and describes two novel optimizations to improve the
performance of this structure on a range of sequential and
parallel big-data workloads. The first is a software/hard-
ware optimization that requires modest operating system
(OS) and hardware support. In this approach, the OS al-
locates page table pages in ways that make them amenable
for coalescing in MMU caches, increasing their hit rates.
The second is a readily-implementable hardware-only ap-
proach, replacing standard per-core MMU caches with a sin-
gle shared MMU cache of the same total area. Despite its ad-
ditional access latencies, reduced miss rates greatly improve
performance. The approaches are orthogonal; together, they
achieve performance close to ideal MMU caches.
Overall, this paper addresses the paucity of research on

MMU caches. Our insights will assist the development of
high-performance address translation support for systems
running big-data applications.

Categories and Subject Descriptors

B.3.2 [Hardware]: Memory Structures; C.1.0 [Processor

Architectures]: General

Keywords

Virtual Memory, Memory Management Units, Translation
Lookaside Buffers

1. INTRODUCTION
As the computing industry enters the era of big data, fields

such as scientific computing, data mining, social networks,
and business management depend on processing massive,
multidimensional data-sets. Designers have responded to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO ’46, December 7-11, 2013, Davis, CA, USA
Copyright 2013 ACM 978-1-4503-2561-5/13/12 ...$15.00.

this shift by proposing hardware that reflects this change.
For example, recent research has studied microarchitecture
[12, 20], caches and memory [13, 21, 26], and accelerators
[36] appropriate for software with massive data-sets.

In this context, evaluating virtual memory for big data is
warranted. Virtual memory is a powerful abstraction that
enhances programmer productivity by automating memory
management. At its core, it requires translation of program-
level virtual addresses to system-level physical addresses.
Processor vendors provide per-core Translation Lookaside
Buffers (TLBs) to cache commonly used address translations
or page table entries (PTEs). Historically, the programma-
bility benefits of virtual memory have outweighed TLB miss
overheads, which typically degrade system performance by
5-15% [2, 8, 10, 18, 23, 28].

Unfortunately, emerging big-data workloads (with mas-
sive memory footprints) and increased system consolidation
(i.e., virtualization) degrade TLB performance in two ways.
First, TLBs struggle to map the full working set of appli-
cations, increasing miss rates. Second, larger working sets
usually lead to larger page tables, which become increasingly
hard to cache, increasing TLB miss penalties. For example,
×86 systems use four-level page tables. A TLB miss hence
requires four long-latency memory accesses to these page ta-
bles and usually finds them in the last-level cache or main
memory [2, 6]. Recent work shows that, as a result, TLB
miss overheads for modern systems can be as high as 5-85%
of total system runtime [4].

In response, some processor vendors (e.g., Intel and AMD)
design structures that not only cache PTEs from the last
level of multilevel radix tree page tables (in the TLB), but
also cache entries from higher levels of the tree in small
per-core Memory Management Unit (MMU) caches [14, 5].
MMU caches are accessed on TLB misses; MMU cache hits
enable skipping multiple memory references in the page table
walk (reducing the entire walk to just a single memory refer-
ence in the best case). Unfortunately, MMU caches have not
been deeply-studied (with the first major study appearing
only recently [2]).

This paper presents the first quantification of MMU cache
performance on a real system running sequential and par-
allel workloads representative of emerging software. We
show that current system performance is degraded because
of MMU cache misses. In response, we study low-overhead
and readily-implementable MMU cache optimizations. Our
optimizations can be classified into those that require hard-
ware and software support, and those with hardware-only
changes. The two techniques are orthogonal and while effec-
tive individually, in tandem they achieve performance close

�

�

�

�

�

�

�

�����������������

� �

�

�

�

�

�

�� ��

���� �����	
�

���� �������

���� ��������

�� ��

�� ��

���� ����	���

���� ��������

���� ��������

�� ��

�� ��

���� �������

��� �������

��	� ����
���

�� ��
�� ��

���� ��������

���� �������

���� ����	���

�� ��

�� ��

���� ��������

���� ��������

���� �������

�� ��

�� ��

���� ��������

��� �����	�

��	� ��������

�� ��

�������� �������� ������	�
���

�	����������� �����

��������� ����

�� ��
�

�	�������� �����

������ ���

�� ��
�

�	����� �����

��� ���

�� ��
�

������������� ��������������

����������� �	�

�� ��
�

��	� ����������

�	�������

�������

�������

��������

��������

������� !���"�������� !����������#���$%$&��'�#&��(�#��

Figure 1: 64-bit x86 page table walk for virtual ad-

dress (0b9, 00c, 0ae, 0c2, 016). TLBs cache L1 PTEs

and MMU caches store L2-L4 PTEs. Conventional hard-

ware caches can store all entries.

to ideal MMU caches. Specifically, our contributions are:
First, we use on-chip event counters to profile MMU cache

overheads for parallel, sequential, and server workloads on
a real system. Non-ideal MMU caches degrade performance
by as much as 10-17%. Surprisingly, we find (because we use
a real system) that real MMU cache sizes differ from those
assumed in past simulation-based studies [2].
Second, we propose a hardware/software coalescing tech-

nique to reduce MMU cache misses. In this approach, we
design low-overhead operating system (OS) page table allo-
cation mechamisms that maximize coalescing opportunity.
We then propose complementary enhancements to standard
MMU caches to detect and exploit coalescing patterns, im-
proving performance by as much as 10-12%. Interestingly,
past OS work on page allocation focuses exclusively on large
data pages [24, 32]; we show that careful allocation of the
page table itself can yield significant performance benefits.
Third, we propose replacing per-core MMU caches with a

unified MMU cache shared by all cores. While this central-
ized structure suffers higher access latencies, its higher hit
rate more than compensates, providing overall performance
improvements of 10-12%. One might expect only parallel
programs (with threads sharing common data structures) to
benefit from shared MMU caches; we find, however, benefits
for multiprogrammed sequential applications too. In these
cases, a central structure better allocates resources to appli-
cations on demand, rather than statically partitioning total
MMU cache space among cores, regardless of their needs.
Finally, we combine coalescing and sharing, achieving close

to ideal performance (as high as 17%), while remaining ro-
bust to increased access latencies. We make two additional
observations. First, unlike coalesced and shared TLBs, co-
alesced and shared MMU caches consistently improve and
never degrade application performance for our profiled appli-
cations. Second, coalesced and shared MMU caches achieve
performance and hardware complexity benefits over naively
increasing per-core MMU cache size.
Overall, we set the foundation for simple MMU cache op-

timizations, which will become particularly compelling as
software demands ever-increasing quantities of data.

2. BACKGROUND
Figure 1 illustrates how MMU caches store parts of the

page table, and how they accelerate TLB misses. For illus-
trative purposes, we show an ×86 radix tree multilevel page
table though MMU caches are useful for any radix tree page
table (e.g., ARM, SPARC). TLB misses prompt a hardware
page table walk of a four-level page table with the Page Map
Level 4 (PML4), Page Directory Pointer (PDP), Page Di-
rectory (PD), and Page Table (PT). To ease terminology,
we henceforth refer to them as L4, L3, L2, and L1 tables.

On a TLB miss, a hardware page table walker first splits
the requested virtual address into four 9-bit indices used
to index the various levels, and a page offset. The exam-
ple of Figure 1 assumes a TLB miss for virtual address
0x5c8315cc2016, which has the (L4, L3, L2, L1) indices
of (0b9, 00c, 0ae, 0c2) and a page offset of (016). Then
the walker reads the CR3 register, which maintains the base
physical address of the L4 page table. This page table page
maintains 512 8-byte PTEs, each of which points to a base
physical page address of an L3 page table page. The walker
adds an offset equivalent to the L4 index (0b9) to the base
physical address in CR3 to select an L4 PTE. This points to
an L3 page table page base, from which the L3 index (00c)
is offset to select the desired pointer to the L2 page table
page base. This process continues until the L1 PTE, which
maintains the actual translation, is read.

TLBs cache PTEs from the L1 page table levels. Small
per-core hardware MMU caches, in comparison, store L4,
L3, and L2 PTEs. The motivation to do so is that upper-
level PTEs are frequently reused because they map a bigger
chunk of the address space. For example, ×86 L1 PTEs
map 4KB base pages while L2, L3 and L4 PTEs map 2MB,
1GB, and 512GB address chunks. Therefore, a TLB miss
first checks the MMU cache for L2, L3, and L4 PTEs. Low-
latency MMU cache hits avert expensive lookups for these
levels in the memory hierarchy. Past studies show that with-
out MMU caches, PTEs are typically found in the last-level
cache (LLC) or main memory [2, 3, 5].

There are multiple implementation possibilities for MMU
caches. Intel uses Paging Structure Caches (PSCs) [14],
which are indexed by parts of the virtual address. Figure
1 shows PSC contents after accessing virtual address (0b9,
00c, 0ae, 0c2, 016). Separate PSCs are maintained for
each page table level; L4 entries are tagged with the L4 in-
dex, L3 entries are tagged with both L4 and L3 indices, while
L2 entries are tagged with L4, L3, and L2 indices. On a TLB
miss, all PSC entries are searched in parallel. The MMU se-
lects the entry matching the longest prefix of the virtual
address, allowing the page table walk to skip the maximum
number of levels. Once the longest prefix match is found,
the remainder of the page table walk occurs by accessing the
memory hierarchy. For example, searching for (0b9, 00c,
0ae, 0c2, 016) yields an L2 PSC match. Therefore, only
the L1 entry (508 concatenated with index 0ae) is looked up
in the hardware caches (and possibly main memory). An L3
match, however, requires both L2 and L1 lookups.

While our work primarily uses PSCs (due to space con-
straints), our insights are equally applicable (and we study)
other designs too. An important alternative design is AMD’s
Page Walk Cache (PWC) [5]. Unlike PSCs, PWCs are
tagged with physical addresses; as a result, the page table
levels must be looked up sequentially in the PWC (i.e., the
L4 PTE is first looked up, then the L3, and L2 PTEs).

3. RELATIONSHIP TO PRIORWORK
There is a distinct paucity of past work on MMU caches.

�

�

�

�

��

��

��

�
	

�
	
�

��
�
	
�
��
�
��
�
�

�
�
�
�

�
�
�
�
�

�
�
��
�
�

�
	
��
��
�

�
��
��
	

��

	
��

�
�	
��
��
�
�
��
�

�
	
�
��
�

�

�
�
��
�
�

�
	
��
	

�
�	

�!
�

"
�
�
�
�
�

"
�#

�
	
��
�
�$
�
"

$
��
	
�

%
�

�
��
�

&
�
�
��
�

�

'
	
�	

�(
�
�

�
�
��
�

)	���� ��*�� ��� ���

)
�
��
�

�	
!
�
��
#�
+
�

��
�
�

"�	�������	!���	����*����	�

,��	��""-��	������*����	� �. �/ �/���

Figure 2: Percentage of runtime devoted to handing

TLB misses for a real system compared to the overheads

of a perfect MMU cache.

�

�

��

��

��

��

���

�
	

�
	
�

��
�
	
�
��
�
��
�
�

�
�
�
�

�
�
�
�
�

�
�
��
�
�

�
	
��
��
�

�
��
��
	

��

	
��

�
�	
��
��
�
�
��
�

�
	
�
��
�

�

�
�
��
�
�

�
	
��
	

�
�	

�!
�

"
�
�
�
�
�

"
�#

�
	
��
�
�$
�
"

$
��
	
�

%
�

�
��
�

&
�
�
��
�

�

'
	
�	

�(
�
�

�
�
��
�

)	���� ��*�� ��� ���

�
+
��
�
��
�
�
��
)
	
!
�
�,

	
��

%*����	� "	
�	���+

Figure 3: Average number of cycles per page table walk.

Note that the best case walk involves a cache hit for the

L1 PTE reference.

Recent work [2] sheds light on some of their design aspects.
We are, however, the first to quantify the performance over-
head of MMU caches on emerging big data applications.
MMU cache coalescing is partly inspired by TLB coalesc-

ing [25]. In our work, the OS detects when successive PTEs
from page table level Ln are used. When this happens, the
OS attempts to allocate the Ln−1 page table pages pointed
to by the Ln PTEs to consecutive physical pages. In tandem,
complementary hardware detects instances of such behavior
and exploits them to reduce MMU cache misses.
Although MMU caches, like coalesced TLBs, conceptually

exploit contiguity, they do so by exploiting allocation of the
page table itself rather than the data. This leads to key
differences. Unlike coalesced TLBs, coalesced MMU caches
require OS modifications to guide page table page allocation.
This is an interesting counterpoint to all traditional work on
page allocation for TLB performance, which focuses exclu-
sively on data page allocation (e.g., superpages [24, 32]).
As such, achievable page table page contiguity amounts and
their overheads are completely different than all past data
page allocation work. Therefore, coalesced MMU caches re-
quire an entirely different design space exploration.
Similarly, shared MMU caches, though partly inspired by

shared-last level TLBs [6], have completely different design
constraints and characteristics. Unlike TLBs which map
only 4KB pages, MMU cache entries map 512GB, 1GB, or
2MB sizes, depending on whether the entry is from the L4,
L3, or L2 levels. Since MMU cache entries map much larger
regions of memory, they exhibit completely different sharing
patterns. Also unlike TLBs, each MMU cache entry maps
different address space amounts. Shared MMU cache designs
must be made aware that the miss penalties and sharing
potential for each level is different. Finally, MMU caches
are orders of magnitude smaller than TLBs, meaning that
sharing and eviction play vastly different roles.
Finally, combining coalescing and sharing on MMU caches

actually outperforms coalesced and shared TLBs in many
cases. Because MMU caches store a larger chunk of the ad-
dress space than TLBs, shared MMU caches are smaller and
enjoy lower access penalties. Coalescing further increases
shared MMU cache hit rates, completely outweighing addi-
tional access times.

4. MMU CACHE OVERHEADS
We begin by measuring MMU cache overheads on a real

system to quantify opportunities for improvement.

4.1 Experimental Platform
We use a 64-bit Intel Core i7 with 8 cores and 8 GB

memory. Each core has four-way set-associative L1 data
(64-entry) and instruction TLBs and unified L2 TLBs (512-
entry). The LLC is 8MB. We run Linux 2.6.38 (with trans-
parent hugepages [1] so that large pages are available) and
use three hardware event counters to (1) measure the num-
ber of cycles spent on page table walks; (2) the number of
page table walks; and (3) the number of cycles spent on the
application runtime.

The Core i7 uses PSCs; because Intel manuals do not
detail PSC organizations, we ran microbenchmarks inspired
by past work [34] to deduce their sizes. We found that the
L4, L3, and L2 STCs are 2-entry, 4-entry, and 32-entry (4-
way associative). Past studies assume that all PSC sizes are
the same, giving considerably different results [2].

We also quantify ideal MMU cache performance to assess
upper-bounds for our optimizations. Ideal MMU caches skip
L4, L3, and L2 PTE references in the walk, leaving only
an L1 PTE memory reference (which may be found in ei-
ther the standard hardware caches or main memory). Using
microbenchmarks, we see that L1 PTE references are over-
whelmingly found in the LLC or main memory, matching
prior work [2, 6]. Therefore, ideal MMU caches (and ideal
page table walks) require only L1 PTE accesses, which all
hit in the LLC (a 30-cycle penalty [15]).

4.2 Evaluation Workloads
We study the behavior of MMU caches across a range of

parallel, sequential, and server workloads. We pick work-
loads representative of emerging recognition, mining, and
synthesis domains from the Parsec suite [9], which we run
with Native inputs on all 8 cores. Furthermore, we pro-
file two multithreaded Java workloads – SpecJBB and Cas-
sandra (from the Data Serving application in Cloudsuite
[12]). These workloads are representative of the types of
big-data applications driving modern server design. Finally,
we run sequential applications from Spec [16] (with Ref in-
puts) and two bioinformatics applications (Biobench [17])
with the largest inputs.

4.3 Real System Measurements
Figure 2 shows the number of cycles measured on page

table walks as a percentage of total execution time and
compares this with the fraction of runtime that would be
expended if the MMU caches were perfect (100% hit rate

����������

	�
��������

�����
������

� �

��� �����	

��� ������

��� �������

� �

� �

��� �������

��� ������

��� ����	��

� �

� �

��� ����	��

��� ����	��

��� ����	��

� �

� �

��	 �����

��� ������

��� ������

� �

� �

��� �����	�

��� �����	�

��
 �������

� �

� �

��� �������

��� ������

�� �����	

� �

��������

�	
�������������

�����

�	
������������

�����

�	
�����������
�

��������� �����	�� �
���	�

�������

��������

�����

�	
�����������������
�

�����

�	
�������������

Figure 4: If consecutive L2 entries point to L1 pages

placed at consecutive physical page frames, coalesced

MMUs can store information of multiple translations in

a single entry. Note that standard set-indexing schemes

must be changed to accommodate this.

ignoring cold misses, with only L1 PTE memory references,
all of which hit in the LLC).
Figure 2 shows that TLB miss overheads are substan-

tial, particularly for Canneal, Streamcluster, the server and
the bioinformatics workloads, and several Spec benchmarks
(e.g., Mcf and CactusADM). Overheads typically arise due to
pseudo-random access patterns (e.g., Canneal) or simply be-
cause the application’s memory footprint far exceeds TLB
capacity (e.g., SpecJBB and Cassandra, whose memory foot-
prints comfortably exceed multiple gigabytes). Since TLB
misses are overwhelmingly on the critical path of execution
[25], runtime is severely degraded.
Figure 2 shows, however, that perfect PSCs boost perfor-

mance. SpecJBB, Cassandra, Tigr, Mummer, and Mcf elimi-
nate overheads of 10-17%. Figure 3 further plots the average
number of cycles per walk. Each bar is divided into the num-
ber of cycles taken by a perfect MMU cache (30 cycles for
L1 PTE lookup’s LLC hit) and the overheads arising from
additional MMU cache misses. In general, server and bioin-
formatics benchmarks, as well as Mcf suffer most.

5. COALESCED MMU CACHES
Having assessed the performance potential of ideal MMU

caches, we focus on optimization techniques to achieve close-
to-ideal performance. Our first optimization, coalesced MMU
caches, uses modest OS support and simple complementary
hardware enhancements to the MMU cache. In this sec-
tion, we present software and hardware design details for
coalesced MMU caches. We present motivational data when
appropriate, deferring detailed evaluations to Section 9.

5.1 Concept
High-level idea. At a high-level, we must modify the OS

to allocate page table pages to encourage coalescing. Novel
coalesced MMU cache hardware must then detect this be-
havior and collapse multiple PTEs into single entries. Figure
4 illustrates these two components.
First, we have page tables conducive to coalescing, where

�

�
��
��
��
��
��
��

	

�
�
�

�
��

�

�

�
�
��

�
�

�
�
�
�

�
�
�
�
�

�
�
��

�
�

�

��

��
�

�
�

��

�
��

��

�

��
��

�
�
�

�

�
�

�
��
�
�
�

�
�
�
�

�
�

	

��

�
�
�

!
�"

�

#
�
�

�
�
�

#
�$

	

��

�
�%

�
#

%
��

�

&
�

�
�
��

�

'
�
�

��
�
!
�

(

�
�)

�
�

�
�
�
�

�

*
���� ���+�� ��� ����

%
+
�
�

"
�
�,

�
�	

�
�
��
"
�
��
-

���

Figure 5: Average number of consecutive entries in

the L2 PTE sets the upper-bound on coalescing op-

portunity.

consecutive L2 PTEs map consecutive physical page frames
(where L1 page table pages are maintained). We propose
OS code that produces this type of page table allocation.

Second, we propose hardware support that detects coa-
lescing opportunity and exploits it. Figure 4 depicts the
difference in operation between a standard L2 PSC and a
coalesced L2 PSC. The coalesced MMU cache detects that
L2 PTEs at 0xac and 0xad are coalescible (because they
point to consecutive physical page frames) and merges them
into a single L2 PSC entry. Overall, the coalesced PSC re-
quires two entries to cache the three L2 PTEs, whereas the
baseline PSC requires three entries. Importantly, coalesced
PSCs change traditional cache set-indexing. In the baseline
case, successive L2 PTEs stride across PSC sets; coalescing,
however, requires successive L2 PTEs to map to the same
set so that they can be merged (e.g., 0xac and 0xad).
Coalescing opportunity. Coalescing requires (1) consec-
utive L2 PTEs to be used; and (2) successive L2 PTEs to
map to L1 page table pages in consecutive physical page
frames. Though the OS guides (2), upper-bounds on coa-
lescing opportunity are determined by (1), which is a pro-
gram property.

Fortunately, Figure 5 shows great coalescing opportunity
by plotting, on average, how many consecutive PTEs are al-
located around each L2 PTE. We collect these numbers on
real-system page tables with the methodology described in
Section 8. Any value higher than 1 indicates some coalesc-
ing potential, with higher values signifying greater opportu-
nity. We find that program has ample coalescing opportu-
nity, with L2 contiguity usually above 10. Even for the sole
exception, Omnetpp, the value is 3, which can be exploited
for coalescing.
Coalescing scope in this work. Beyond L2 PSCs, L4 and
L3 PSCs can also be coalesced. We focus only on L2 PSCs
because their miss rates are most critical for performance.

5.2 Software Support for Coalescing
We would ideally modify the Linux kernel to influence

page table allocation. Regrettably, such wholesale modifica-
tion to the Linux kernel, particularly in the memory alloca-
tor, is complex and infeasibly time-consuming, particularly
for early-stage research explorations. Instead, like past work
[33], we detail where to place code in the kernel, and calcu-
late its overheads using simulations and careful estimations.
Reservation-based page table page allocation. To en-
courage L1 page table page allocation on consecutive phys-
ical pages (if they are mapped by consecutive L2 PTEs),
we envision a reservation-based mechanism, partly inspired
by past work on superpages [24, 32]. At a high level, on a
page fault, we see whether a new L2 PTE and an L1 page

int handle_mmu_fault (...){
/* counters , mm semaphore acquired */
pte_alloc ();
/* set pte offset maps */

}
int _pte_alloc (...){

/* check reserved pages */
for(i = 0; i < MAX_RESERVE; i++)

if(reserve.check_pmd(i) == pmd)
goto: found_page;

pgtable new =
pte_alloc_one(mm, address , 0);

found_page:
/* ensure all pte setup (page locking

and clearing) done */
/* reserve pages */
for(i = -(MAX_RESERVE >>2);

i<(MAX_RESERVE >>2); i++)
reserve.add(pte_alloc_one(mm, address , i))

/* check expiry */
for(int i = 0; i < MAX_RESERVE; i++)

pgtable reserved = reserve.read(i);
if(reserved.reserve_num <

(CURR_NUM - EXPIRY_NUM))
reserve.delete(i);

/* put pointer to L1 level into L2 table */
pmd_populate()

}

Figure 6: Reservation-based page table page allocation

algorithm implemented in Linux kernel functions.

table page are needed. If so, we optimistically also reserve
consecutive physical page frames around the L1 page table
page, so that they can be allocated if the program uses a
consecutive L2 PTE entry. This simultaneous L2 PTE and
L1 page table page contiguity promotes coalescing.
Basic algorithm. Figure 6 sketches the code for reservation-
based page table page allocation. Page faults call han-
dle_mmu_fault(), which requires L1 page table page allo-
cation. When this happens _pte_alloc() is called.
In _pte_alloc(), we add code that checks whether any

of the already-reserved pages are for the L2 PTE currently
requested. If so, we can use a reserved L1 page table page to
encourage coalescing. If not, we default to the conventional
case where _pte_alloc_one() allocates L1 page table pages.
After this, we reserve consecutive pages around the allocated
L1 page table page, hoping that the L2 PTEs around the cur-
rently requested L2 PTE will eventually be used. There are
two important considerations when reserving pages. First,
we have to choose how many pages to reserve. A higher
number increases the chances of reserving a useful page; at
the same time, it also increases reservations of pages that
will ultimately be unhelpful. In our code, MAX_RESERVE de-
termines the number of reservations.
Second, we must reclaim reserved pages if they remain

unused after a sufficient amount of time. To do this, we
maintain a running counter of the number of page table
pages allocated. Every time we reserve a page, we tag it with
the current counter value. Then, in _pte_alloc(), we check
the counter values of all reserved pages against the current
counter value. If the difference exceeds EXPIRY_NUM, these
pages are unreserved, freeing memory. This parameter must
also carefully chosen; a number too low reduces coalescing
opportunity while one too high increases memory pressure.
Software overheads. Our code is invoked rarely (only

���������	�
��� ��� ���������	����

���������	
��
�����

���	����	�����	����	����
���	�	������������

���	�

���	�

�	���

���

��������� 	
�� ��

����

��������	
�!�"

���������	
��

���	����	�����	����	����
���	�	������������

���	�

�	���

��������� 	
�� ��

#���	���������	������

���������	
��

���	����	�����	����	����
���	�	������������

���	�

�	���

��������� 	
�� ��

�����

���	�##���

$��

���$�	����	�%	
�!��

���	�
��������&	��&	'(%

���

���$�	����	�%	
�!��

���	�
��������&	��&	'(%

���

���$�	����	�%	
�!��

Figure 7: Lookup, hit, miss, and fill operations in a coa-

lesced MMU cache, assuming the page table from Figure

4. Note that the diagram only shows partial tags (the

full tag prefixes the tags shown with (0x0b9, 0x00c).

on page faults that also allocate page table pages). Fur-
thermore, we track reserved pages as a linked list. Because
we use small values of MAX_RESERVE and EXPIRE_NUM (de-
tailed in subsequent sections), this list rarely exceeds 10-15
pages. This means that our code makes at most 30-45 mem-
ory references, which is orders of magnitude lower than the
many hundreds made in the page fault handler (needed to
access VMA trees, page tables, and various book-keeping
structures) [11]. Finally, our data structures require no ad-
ditional locks beyond semaphores used by the standard fault
handler. This adds little overhead to some page faults.

5.3 Hardware Support for Coalescing
Address decomposition. When accessing a standard MMU
cache, the virtual page number is decomposed into a tag and
index. The least significant bits are used as the index in or-
der to stride successive PTEs into different sets, reducing
conflict misses. A coalesced MMU cache, however, requires
consecutive PTEs to map to the same set (in order to per-
mit coalescing). Index bits must therefore be left-shifted by
n to permit coalescing of up to 2n PTEs. For example, a
standard four-set MMU cache uses VPN[1:0] to choose the
correct set; an MMU cache that coalesces up to four PTEs
uses VPN[3:2]. The bits left of the index become the new
tag, while the lower bits (VPN[1:0]) index into a valid bit
array (detailed next). A fundamental question in this work
is to understand the best tradeoff between exploiting coa-
lescing by left-shifting index bits, at the potential cost of
increased conflict misses.
Coalesced entries. A standard MMU cache entry is a
5-tuple consisting of (valid bit, tag, attribute, physical page,
replacement policy bits). A coalesced MMU cache is made up
of the 5-tuple, (valid bit array, tag, attribute, base physical
page, replacement policy bits). The valid bit array indicates
the presence of a PTE in a coalesced packet. We only co-
alesce entries that share the same attribute bits (this can
be relaxed with more hardware). Furthermore, we record
the base physical page (i.e., the physical page number of the
PTE whose valid bit is the first to be set in the array).
Lookup and miss operation. Figure 7 shows how the
coalesced MMU cache (specifically, a PSC) operates on a
lookup and miss operation. Since our example uses a two-set

PSC, VPN[1] is the index bit (Figure 7 shows the bottom
8 bits of the VPN and highlights the index bit). In our
example, the empty PSC experiences a miss and accesses
the next set of PSCs (L4 and L3 PSCs). Regardless of PSC
hits, the page table walker will ultimately make a memory
reference for the L2 PTE (and eventually the L1 PTE) which
is typically found in the LLC or main memory.
Fill operation. Figure 7 shows that a PTE memory refer-
ence eventually loads a cache line of PTEs into the LLC. A
typical 64-byte cache line stores eight 8-byte PTEs. These
eight PTEs are scanned by coalescing logic that sits between
the LLC and the MMU cache. Once the coalescing logic de-
termines coalescible PTEs around the requested one, all the
entries are merged into a single translation that is filled into
the MMU cache. Note that we do not consider coalescing
opportunities that may exist across LLC lines as they require
additional memory references in the page table walk.
Lookup and hit operation. Figure 7 shows a lookup that
hits in the coalesced PSC. The left-shifted index bit selects
the desired set. Bits to the left of the index are compared
with the tag bits (for space reasons, Figure 7 only shows the
bottom 6 bits of the tag). Then, bits to the right of the index
(highlighted in red) select a valid bit. If set, the desired PTE
exists in this coalesced entry. Physical page generation logic
then takes the valid bit array and the base physical page
from the PSC entry to calculate the desired physical page.
This is accomplished by adding the base physical page to an
offset value (which is equal to the number of bits separating
the first set bit in the valid array and the bit selected by this
request). In our example, 1 is added to the base physical
page of 378 to give physical page 379.
Replacement, invalidations, and attribute changes.

We assume standard LRU replacement policies for this work.
We also assume a single set of attribute bits for all coa-
lesced entries. On shootdowns or invalidations, we flush
out entire coalesced entries, losing information on PTEs
that might otherwise be unaffected. Gracefully uncoalescing
MMU cache entries and advanced replacement policies will
perform better and will be the subject of future studies.
Hardware overheads. Like coalesced TLBs [25], coalesced
MMU caches have modest hardware overheads. Lookup
times are essentially unaffected because the change in tag
matches, index selection, and valid bit lookup are simple
and require no special hardware. Physical page generation
requires only combinational logic (especially as the coalesc-
ing amount is bounded). Such readily-implementable logic is
already available to prefetchers and branch predictors. Coa-
lescing logic (which is just a combinational logic block) is ac-
cessed only on the fill path rather than the lookup. One may
expect coalesced MMU caches to require additional ports to
fill entries without conflicting with subsequent reads. We
find, however, that more ports yield no performance bene-
fits. We therefore assume a single port for our studies.

6. SHARED MMU CACHES
Unlike coalescing, which requires both hardware and soft-

ware support, shared MMU caches are entirely transparent
to software, requiring only simple hardware changes. We
now detail these changes.

6.1 Concept
High-level idea. We replace per-core MMU caches with
a single central MMU cache (of total equivalent capacity).
We move the per-core page table walkers next to this struc-

�

�
�

�
���
���
���
���

�

	

�
�
�

�
��

�

�

�
�
��

�
�

�
�
�
�

�
�
�
�
�

�
�
��

�
�

�

��

��
�

�
�

��

�
��

��

�

��
��

�
�
�

�

�
�

�
��
�
�
�

�
�
�
�

�
�

	

��

�
�
�

!
���� ���"��

�
�

��
��

�
��

#�
$

��
��

�

%������ �����$��� �����	������

�
�
�
&
�
'
�
(

	

�
�
�

�
��

�

�

�
�
��

�
�

�
�
�
�

�
�
�
�
�

�
�
��

�
�

�

��

��
�

�
�

��

�
��

��

�

��
��

�
�
�

�

�
�

�
��
�
�
�

�
�
�
�

�
�

	

��

�
�
�

!
���� ���"��

	
�
�
��

�

Figure 8: (Left) Avoidable MMU cache misses if each core

could access all MMU caches; and (right) redundancy in

per-core MMU cache entries across cores.

ture. The shared MMU cache has a higher access latency
from additional network traversal and because it is a larger
structure. However, higher hit rates more than compensate
for longer access times, boosting performance.
Benefits for parallel programs. Parallel programs em-
ploy threads that cooperate on the same data structures.
Past work shows that as a result, TLB entries are often
shared among multiple threads (and hence cores) [6, 7].
Since TLB entries map much smaller chunks of memory than
MMU cache entries (4KB versus 2MB/1GB/512GB), the
latter are likelier to be shared among cores. Shared MMU
caches therefore provide two benefits.

First, the same MMU cache entries are often required by
multiple cores. The left diagram in Figure 8 illustrates this
(from real-system memory traces using the methodology in
Section 8). For every MMU cache miss, we see how often
other cores maintain the desired entries. This captures how
often walks could have been accelerated had each core had
access to all MMU caches. We show how often: (1) a core
misses on a particular radix tree level while the same level’s
entry exists in another core’s MMU cache (Skip Current);
(2) another core actually stores a lower level in its MMU
cache (Skip More); and (3) cases where shared MMUs would
not accelerate the page table walk (No Skip). While (1) and
(3) are easy to understand, an example of (2) is when a core
misses on an L3 PTE while another core maintains not only
that L3 PTE but also its associated L2 PTE.

Figure 8 shows that close to 40% misses could be averted
because another core maintains desired PTEs. Often, other
cores maintain entries from even lower levels of the walk.
If these PTEs could be accessed, even more walk memory
references could be skipped. Shared MMU caches exploit
precisely this property.

Second, shared MMU caches store one PTE instance rather
than multiple copies across cores. The right graph in Fig-
ure 8 shows, for private MMU cache hits, the number of
PTE copies across the other cores. An 8-core CMP has
up to seven other copies; the higher the number of copies,
the greater the potential performance improvements from
shared MMU caches. We see 3 to 5 copies of PTEs across
cores for most benchmarks. A shared MMU cache eliminat-
ing these copies frees up space to store additional PTEs.
Benefits for multiprogrammed sequential workloads.

Our initial goal is to use shared MMU caches to improve par-
allel program behavior without overly-degrading sequential
applications. One may expect shared MMU caches to de-
grade sequential application performance (because of higher
access latencies without inter-core sharing). In reality, we
do not harm sequential applications and even achieve con-
sistent performance benefits. This is because sharing better

���������	�
��� ��� ���������	����

���������	
��
�����

���	����	�����	����	����
���	�	������������

���	�

���	�

�	���

���

��������� 	
�� ��

����

��������	
�!�"

���������	
��

���	����	�����	����	����
���	�	������������

���	�

�	���

��������� 	
�� ��

#���	���������	������

���������	
��

���	����	�����	����	����
���	�	������������

���	�

�	���

��������� 	
�� ��

�����

���	�##���

$��

���$�	����	�%	
�!��

���	�
��������&	��&	'(%

���

���$�	����	�%	
�!��

���	�
��������&	��&	'(%

���

���$�	����	�%	
�!��

����������

������������

��������	����

� �

��� �����	

��� ������

��� �������

� �

� �

��� �������

��� ������

��� ����	��

� �

� �

��� ����	��

��� ����	��

��� ����	��

� �

� �

��	 �����

��� ������

��� ������

� �

� �

��� �����	�

��� �����	�

��
 �������

� �

� �

��� �������

��� ������

�� �����	

� �

���	����

���)��)����	�'%��

���	�
���)��)����	�'(%�

���	�
���)��)����	�'(��

��������� �����	�� �
���	�

�������

���	����

���	�
���)��)��*����	�'(%*'(��

���	�
���)��)����	�'%��

�������� �����	�

�������

�����	�

����������

��������������������

�����	�

����������
����������

���

��+�
���

,,-	.
/

��+�
���

,,-	.
/

��+�
���

,,-	.
/

��+�
���

,,-	.
/

��+�
���

/

��+�
���

��+�
���

��+�
���

�$�+��	,,-	.

���

��+�
���

/

��+�
���

��+�
���

��+�
���

�$�+��	,,-	.

���

/

/
/

��+�
���

/

��+�
���

��+�
���

��+�
���

�$�+��	0	
���������	
,,-	.

���

����1	�� 1

�	 ��1

Figure 9: Comparison of baseline MMU caches with

shared MMU caches (with and without multiple page ta-

ble walkers), as well as a coalesced and shared MMU

cache. Though not shown, each core also has a private

L1 cache.

utilizes the total MMU cache capacity by only allocating
entries to applications when needed (rather than statically
provisioning a set amount per core, which wastes capacity).

6.2 Hardware Implementation Options
Figure 9 compares the hardware for conventional per-core

MMU caches against various shared configurations. Shared
MMU caches have the following hardware characteristics.
Shared MMU cache entries. Shared MMU cache entries
have the same structure as private MMU caches. Entries
include valid, tag, data, and protection bits. Each entry has
a process ID (TLBs and MMU caches already maintain this
[15]) so that context switches do not flush the MMU cache.
Moreover, any shootdowns of individual entries are handled
similarly to per-core MMU caches.
Placement and access latency. Figure 9 shows that we
aggregate per-core MMU caches in a shared location avail-
able to all cores, moving the page table walkers in tandem.
While this does increase hit rates, there are two sources
of overhead. First, a larger centralized structure incurs a
higher access latency for lookup. Second, the shared struc-
ture is placed further away from each core, adding an on-chip
network traversal time.
Like past work [6], we assume that the last-level cache

is distributed but the shared MMU cache is a monolithic
structure. We use CACTI [22] to estimate the additional
access times; however, we also vary access times to study
their influence on performance.
Multiple page table walkers and ports. Figure 9 shows
that per-core MMU caches have individual page table walk-
ers. Therefore, each MMU cache can operate in parallel,
serving simultaneous TLB misses on different cores. A key
design question is whether the shared MMU cache should ac-
commodate simultaneous accesses from multiple cores. We
therefore consider the performance of maintaining multi-
ple versus a single walker next to the shared MMU cache.
We also consider multiported MMU caches. Per-core MMU
caches have one read/write port but a shared version may
need multiple ports to manage traffic from multiple cores.
Choice of sharing. MMU caches that have separate struc-
tures for L4, L3, and L2 PTEs (e.g., PSCs) can choose which
structures to share. We assume that all structures are shared

though follow-up studies will investigate this issue further.
Miss penalties. Entries from different levels of the page
table walk suffer varying miss penalties. Higher-level PTEs
enjoy higher sharing (as they map larger portions of the
address space) but also suffer longer miss penalties. For
example, L4 entries are reused more than L2 entries but
also require two additional memory references on a miss. It
is important that higher-level PTEs enjoy greater sharing
to offset these penalties. Ultimately, performance depends
on whether the shared MMU cache is like Intel’s PSCs or
AMD’s PWCs. For example, PWCs are checked for every
level of the radix page table. L4 and L3 entries must exist
for the L2 entries to be useful.
Overheads. Coalesced MMU caches require modest hard-
ware and software support. Instead, shared MMU caches
need simple hardware tweaks and are transparent to soft-
ware. Shared MMU caches essentially provide performance
improvements“for free”; compared to per-core MMU caches,
they have the same entry organization, same total capacity,
no increase in ports, and the same number of page table
walkers (we will show that even fewer walkers perform well).

7. COMBINED APPROACHES
Our coalescing and sharing strategies are orthogonal; we

can therefore combine them to extract even greater ben-
efits than either scheme alone. Combining the approaches
requires no additional software or hardware support. In gen-
eral, we will show that parallel programs benefit even more
from coalescing on a shared MMU cache because the proba-
bility of sharing multiple coalesced PTEs is higher than that
of sharing one PTE. We also find that on the rare occasion
that a shared MMU cache degrades performance because of
additional access latencies (usually for sequential applica-
tions with small memory footprints), coalescing boosts hit
rates sufficiently to yield overall performance gains.

8. METHODOLOGY
We now detail our methodology, focusing on experimental

infrastructure and evaluation benchmarks.

8.1 Experimental Infrastructure
Like past work, we note that software simulators are ei-

ther too slow to run workloads for long enough duration to
collect meaningful performance numbers for virtual mem-
ory studies or that they ignore full-system effects [2, 4, 8,
6, 30]. In response, we use a novel experimental method-
ology consisting of a microarchitectural software simulator
which provides timing information, driven by a full-system
trace extracted from a real system. This is similar to past
approaches (e.g., like CMP$im [16]); however, unlike Pin
traces, which cannot capture full-system effects (and page
table accesses), we modify the Linux 2.6.38 kernel to pro-
vide full memory reference traces to drive our simulator.
Novel real-system memory traces. Similar to the method-
ology proposed in recent work [4], we have independently
modified the Linux kernel’s virtual memory allocator to track
system memory references. Our tool records the virtual ad-
dress, physical address, and full page table walk of memory
references on a real system. We do this by essentially con-
verting memory references into “fake” page faults that trap
into the OS, where we log information.

Our strategy is to, at profile startup, poison the applica-
tion’s page table by setting each PTE’s reserved higher order

bits. We then flush the TLB. The empty TLB immediately
suffers misses for requested memory addresses. Ordinarily,
these TLB misses would be handled by the hardware page
table walker, without invoking the OS. Since we have poi-
soned the page tables, however, the hardware walker traps
to a custom kernel trap handler. After logging any desired
information here, we load a clean TLB entry (though the
page table remains poisoned so that future TLB misses also
trap), allowing execution to continue.
Our approach traces fast enough to log tens of billions of

memory references in 2-3 hours (much faster than Pin and
software simulators). Furthermore, it retains full-system ef-
fects, providing full memory address information.
Performance evaluations. Most prior studies [2, 6, 30]
focus exlusively on TLB miss rates because of slow sim-
ulation speeds. We too evaluate hit rates from our real-
system traces, but go beyond by also determining perfor-
mance. Since we transform memory references into inter-
rupts, the timing of memory accesses in the trace is unreal-
istic. Therefore, we ally the traces with the software simu-
lation strategy presented in prior work [25]. Our approach
does not account for instruction replays that would actually
occur on a TLB miss. Therefore our performance gains are
conservative and would likely be higher.
We model an 8-core chip multiprocessor (CMP) with 32KB

L1 caches and 8MB LLC (with a 30-cycle access time). Each
core has 64-entry L1 and 512-entry L2 TLBs. We model two
types of MMU caches (1) Intel’s PSCs (32-entry, 4-way as-
sociative L2 PSCs, 4-entry L3 PSCs, 2-entry L4 PSCs); and
(2) AMD’s PWC (32-entry, 4-way associative). We assume
8GB main memory, with 150-cycle roundtrip time. Like all
past architectural research on TLBs [2, 3, 5, 6, 25], we note
that detailed memory models [29], while beneficial, have ex-
cessively high runtimes that are not appropriate or necessary
for virtual memory hardware studies.

8.2 Evaluation Workloads
We use the same evaluation workloads as our real-system

experiments, tracing up to 10 billion memory references,
with the largest input sets. For all workloads (except Cas-
sandra), we collect traces after 5 minutes to ignore pro-
gram setup phases. For Cassandra, we collect traces after
the workload completes the ramp-up period and reaches a
steady state [20]. Furthermore, we use a 7GB Java heap and
a 400MB new-generation garbage collector space.
We run 8 threads per parallel workload. Our studies on

coalesced MMU caches for sequential applications model
8 simultaneous copies of the workload. However, shared
MMU cache studies require multiprogrammed combinations
of sequential applications. From the 7 sequential workloads
(Spec and Biobench), we construct workloads with 2 copies
of 4 applications (using all 8 cores), a total of 35 workloads.
Note that each sequential application runs in its own address
space; therefore when we run two copies of the sequential
applications, they do not share the same translation entries
and artificially increase sharing.

8.3 Our Approach
We assess the performance benefits of three designs: (1)

per-core coalesced MMU caches; (2) a shared MMU cache;
and (3) a shared and coalesced MMU cache. While we
focus on overall application runtime improvement (rather
than just the improvement of TLB miss handling time), we
also provide hit rate data when appropriate. We also show

�

�

���

���

���

���

��	

����
���
����
�����

�
��
�
��
�
�
�
��
�
�
��
��
�
�

�������� �������� ��������������

�

���

���

���

���

��	

����
���
����
�����

�
��
�
��
�
�
�
��
�
�
��
��
�
�

�������� �������� ��������������

�

���

���

���

���

��	

����
���
����
�����

�
��
�
��
�
�
�
��
�
�
��
��
�
�

�������� �������� ��������
	
�

�

���

���

���

���

��	

����
���
����
�����

�

��
�
��
�
�
�
��
�
�
��
��
�
�

�������� �������� ��������
����

Figure 10: Additional pages reserved normalized to

total page table pages.

how sensitive a shared and coalesced MMU cache is to ac-
cess latencies of the larger shared structure, compare perfor-
mance to shared and coalesced TLBs, and show how well our
schemes perform versus naively increasing MMU cache size.
Due to space limitations, most of our results focus on Intel’s
PSCs, though we have also studied AMD’s PWCs. A small
section compares the performance of both organizations.

9. EXPERIMENTAL RESULTS

9.1 Configuring Coalesced and Shared MMU
Caches

Previous sections detailed the design parameters for co-
alesced and shared MMU caches. Before evaluating their
performance benefits, we must configure our mechanisms to
balance performance with overheads.
Coalescing. Our OS code must promote coalescible page
tables with MAX_RESERVE and EXPIRE_NUM values that best
balance coalescing opportunity and overheads. Reservation-
based L1 page table page allocation must not significantly
increase workload memory usage. Like past work on large
pages [24], we track the number of additional pages that are
reserved but unused as a fraction of the total pages.

Figure 10 plots the average unused reserved pages for
several configurations. Alloc ±n (MAX_RESERVE) indicates
which pages are reserved on an L1 page table page allo-
cation (e.g., ±1 means that the current page number plus
one and minus one are both reserved). Furthermore, Exp n
(EXPIRE_NUM) tracks how many additional page table alloca-
tions each reservation is active for, before it is relinquished.
The higher the allocated amount and expiration amount,
the higher the chance of producing reservations that are ul-
timately used; however, this also increases the risk of allo-
cating useless reservations that would never be used.

The number of pages reserved, as a fraction of an appli-
cation’s total pages, is negligible for every single workload
(all under 0.1%). Nevertheless, we conservatively study the
overheads as a fraction of the number of total page table
pages (rather than total pages) in Figure 10. All Alloc ±1
schemes are particularly effective, restricting the number of
reserved pages. The server, bioinformatics, and Spec bench-
marks overheads are under 10% while Parsec overheads are
higher (30%) because they typically use smaller page tables.

We have also quantified what fraction of reserved pages
are eventually used. We have found that even modest reser-

�

����

�

���

���

���

���

	

�
�
�

�
�

�
��

�
�
��
�
��

�

�
�
�
�

�

�
�
�

�

��

�

�
�
�
��
�

�
��
��
�
�
��
�
�

�
��
��
��
�
�
�
�

�

�
�
��
�
�
�

�
�

�!
�
�

�
��
�
�
�
��

"
�#
�

$
�
�
�

�

$
�%

�
��
�
�&
�
$

&
��
�
�

'
�
�

��
�

(

�
��
�
"
�

)
�
��
�
�*
�
�

�
�
�
�
�

+���� ��,� ��� ���

�
��
��
��
�
��
%�
$
��
�
��
-
��
�
��
�
�
�

��������
��������
��������

Figure 11: Miss elimination rates as index bits are left-

shifted.

�

�

���

���

���

���

�

	

�
�
�

�
��

�

�

�
�
��

�
�

�
�
�
�

�
�
�
�
�

�
�
��

�
�

�

��

��
�

�
�

��

�
��

��

�

��
��

�
�
�

�

�
�

�
��
�
�
�

�
�
�
�

�
�

	

��

�
�
�

!
���� ���"��

�
�

��
��

�
��

#�
$

��
��

��
%
�
�

��

��

�

&�

&'

&�

Figure 12: Miss elimination using shared MMU caches.

vation counts of ±1 result in high utilization (on average
73% of reserved pages are used). Utilization is particularly
high for the server and bioinformatics workloads, a posi-
tive sign as these benchmarks suffer most from TLB misses.
Furthermore, reserving more pages only negligibly increases
how many of them are eventually used. We therefore only
reserve ±1 with an expiration of 4 page allocations.
Beyond the OS code, a key hardware design tradeoff is

to ensure that left-shifting index bits to enable coalescing is
not offset by increased conflict misses. We therefore show
the number of misses eliminated if a maximum of 2, 4, and
8 L2 PTEs are coalesced (left-shifting index bits by 1, 2,
and 3 bits). We did not consider higher levels of coalescing
because the coalescing logic scans a single cache line (which
has a maximum of 8 PTEs) for coalescing opportunity.
Figure 11 shows that coalescing up to 8 PTEs eliminates

the most misses (except for Soplex where the additional
conflict misses lower miss eliminations slightly compared to
coalescing 4 PTEs). Interestingly, some coalesing configura-
tions increase miss rates due to higher conflict misses (e.g.,
Ferret) when coalescing only 2 or 4 entries. From these re-
sults, our coalesced MMU caches target coalescing 8 PTEs.
Sharing. We now showcase the hit rate increases of a shared
MMU cache on an 8-core CMP versus per-core MMU caches,
with equivalent total capacities. Figure 12 shows, for all par-
allel applications, how many L4, L3, and L2 level misses are
eliminated when the per-core MMU caches are replaced by a
single shared MMU cache. Shared MMU caches frequently
eliminate most misses (with L2 miss eliminations ranging
from 18% to 98%). Due to space constraints, we do not
show the hit rate improvements of the multiprogrammed
workloads; however, we will show overall performance re-
sults for these in subsequent sections.

9.2 Performance Improvements
Based on the previous sections, we quantify the perfor-

mance benefits of the following configurations of MMU caches.

�

�

�

�

��

�
�
	
	

�
�

�
�

�
�
��
�
�

�

�
�
�
�

�

�
�
�

�

��

�
�
�

��
�

�
��
��
�
	
��
�

�
��
��
��
�
�
�

�

�
�
�
�
�
�
	
�

�
�

��
�
�

�
�
��
�
	
�
��

 ���
� �
�!
�

�"
#$
%�

�
��
!

�

	
 &��'

����
��
�

����
�

����
��
�$(

����
�

Figure 13: Percentage performance improvements from

coalesced and shared MMU caches for parallel programs.

�

�

��

��

��

�
��
�

	

�
�
�
�

	
�

�
�
�

��

�
	

�
��
�
�

�
�
�
�
��
�

�
�
�
��
�
�
�

�
�
��
�
�

�
�

�
�
�
��

!�� ���

"
�
��
#$
%�

�
��
&
�
�
�
�
�

������

�������'

Figure 14: Percentage performance improvements from

coalesced MMU caches for sequential programs.

Coalescing: We coalesce up to 8 PTEs per entry (left-
shifting the index by 3 bits), using MAX_RESERVE of 2 (±1)
and EXPIRE_NUM of 4 pages.

Sharing: We aggregate per-core MMU caches into shared
structures of the same total capacity, with one page table
walker and a single read/write port. For our 8-core CMPs,
access times increase by 2× (from CACTI) in addition to
network traversal time (which we model).

Combined: We combine coalescing and sharing with the
same settings as the individual optimizations.
Parallel applications. Figure 13 quantifies performance
improvements for parallel and multithreaded server applica-
tions. For each application, we compare the best achievable
performance increase (Target) with the actual performance
improvement from coalescing, sharing, and combining both
approaches. Figure 13 shows that either coalescing or shar-
ing boosts performance for every workload. Sharing achieves
this despite the additional access latency. In most bench-
marks, sharing slightly outperforms coalescing though there
are exceptions (e.g., Cassandra). Overall, combining both
approaches improves performance close to the target (7-9%
for Canneal, Streamcluster and the server workloads).
Sequential applications. Figure 14 compares performance
improvements from coalescing (sharing results are shown
separately) from the best-achievable target. Again, there
are performance gains in all cases (with Tigr, Mummer, and
Mcf improved over 10%). In general, this approach falls
about 2-3% from the ideal target.

For shared MMU caches, our initial goal was to minimize
the frequency and magnitude of performance degradation for
sequential applications. We achieve these goals by limiting
performance degradation and comprehensively exceed them
by combining coalescing with sharing.

Figure 15 orders, for the 35 multiprogrammed workloads,

��

��

�

�

�

��

��

�	

� � � �

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�
�
��
��
�
�
�
�
�
�
�
�

�������

������ ���! ��������"�!

#����"$��%������� ���! #����"$��%���������"�!

Figure 15: Percentage performance improvement

(average and worse-case) of shared and combined ap-

proaches.

�

�

�

�

��

�
�
	
	

�
�

�
�

�
�
��
�
�

�

��
�
�

�

�
�
�

�

��

�
�
�

��
�

�
��
��
�
	
��
�

�
��
��
��
�
�
�

�

�
�
�
�
�
�
	
�

�
�

��
�
�

�
�
��
�
	
�
��

 ���
� �
�!
�

�"
#$
%�

�
��
!

�

	

&��'

����
��
�

����
�

����
��
�$(

����
�

�

)

��

�)

��

&
�'
�

*
�
�
�

�

*
�"

�
�
�
�
�+
�
*

+
�
�
�

,
�
	

�
�

-

�
��
�
&
�

.
�
��
	
�/
�
�

�
�
�
�

�

��� ��
�

�"
#$
%�

�
��
!

�

	

&��'

����
��
�

0)

0�

�

�

1

��

��

��

� �) 1 �

�
�

�
�

�
)

�
1

�
�

�
�

�
�

�
)

�
1

�
�

�
�

�
�

�
)

�"
#$
%�

�
��
!

�

	

2�������

����
$3*
�	4 ����
$32���4

����
��
$($����
$3*
�	4 ����
��
$($����
$32���4

0)

�

)

��

�)

��

�)

��

� �) 1 �
�
�
�
�
�
)
�
1
�
�
�
�
�
�
�
)
�
1
�
�
�
�
�
�
�
)
�
1
�
�
�
�
�
�
�
)
�
1
�
�
)
�
)
�
)
)

�"
#$
%�

�
��
!

�

	

2�������

**5$����
$3*
�	4 &6�(**5$����
$3*
�	4

0)

�

)

��

�)

� �) 1 �
�
�
�
�
�
)
�
1
�
�
�
�
�
�
�
)
�
1
�
�
�
�
�
�
�
)
�
1
�
�
�
�
�
�
�
)
�
1
�
�
)
�
)
�
)
)

�"
#$
%�

�
��
!

�

	

2�������

��

7�

���

Figure 16: Impact of access latencies of shared and

coalesced MMU caches on average performance.

lowest to highest performance improvements. We show the
average performance improvement of the entire workload
(a weighted average since some applications may be more
memory-intensive than others) and the performance of the
worst-affected workload (this allows us to comprehensively
check all applications). First, Figure 15 shows that the over-
whelming majority of workloads are consistently improved
for both average, and worst-case performance (with an aver-
age of 7% and high of 15%). This occurs because the shared
structure better allocates entries to different applications as
needed, rather static allocation. Nevertheless, 5 workloads
suffer average performance degradation (with 7 for worst-
case performance). In these applications, the additional hit
rates do not justify the increased access time.
Fortunately, Figure 15 also shows that combining coalesc-

ing with sharing completely offsets any case of performance
degradation, even for every single worst-case workload. On
average, performance improvements are now 9% with a best
case of 18%. Coalescing and shared MMU caches are there-
fore consistent performance boosters.

9.3 Influence of Access Latencies
CACTI indicates that a shared structure suffers access la-

tency increases of 2× for 8 cores. We also, however, quantify
how higher access latencies mute performance. Figure 16
shows the average performance improvement of shared and
coalesced MMU caches for all 55 workloads, assuming the
default 2× access latency increase, and overly-pessimistic
8× and 16× latencies.
Figure 16 shows that even when access latencies are in-

creased by 8×, performance improvements are very simi-
lar to 2× access latencies. Even in the worst-case, the
performance difference is roughly 3%. This is because the

increase in hit rates bought from coalescing and sharing
far outstrip the higher access latencies. At 16× latency,
while the overwhelming majority of applications still benefit
from optimized MMU caches, 9 workloads do suffer a minor
degradation (all under 3% reduction in performance). Note,
however, that 16× access latencies are highly-pessimistic
(and well beyond CACTI predictions). We believe that
distributed MMU cache approaches (similar to distributed
caches) will mitigate these overheads; we leave these studies
for future work.

9.4 Comparison with TLB Optimizations
Past work has shown the benefits of coalesced TLBs [25]

and shared last-level TLBs [6]. In this context, we compare
two scenarios: (1) standard TLBs with combined coalesced
and shared MMU caches; and (2) combining coalescing and
sharing on both TLBs and MMU caches (like past work, we
assume that a shared last-level TLB imposes an additional
8 cycle access time [6]). One might initially consider the
benefits of a third scheme, shared and coalesced TLBs with
standard MMU caches. However, a shared last-level TLB is
placed close to the LLC. At that point, standard per-core
MMU caches require messages to be relayed from the uncore
back to cores, making this an impractical design option.

Figure 17 shows how well shared and coalesced MMU
caches perform compared to sharing and coalescing both
TLBs and MMU caches. We consider all 35 multiprogrammed
workloads, but also multithreaded, server, and single in-
stances of single-threaded workloads (giving a total of 55
applications). Again, the performance improvements are
ordered from lowest to highest performance compared to a
baseline with standard TLBs and MMU caches.

One might initially expect optimizations on both the TLB
and MMU cache to outperform optimizations on just the
MMU cache. Surprisingly, optimized MMU caches improve
9 of the 55 workloads versus optimized TLBs (and MMU
caches). In fact, coalescing and sharing TLBs degrades 7
of these workloads, whereas only MMU cache optimizations
consistently improve performance in every case. This is be-
cause a larger shared TLB can, in some cases, add excessive
access latencies that are not outweighed by increased hit
rates. A standard TLB, on the other hand, quickly checks
for hits (and hence a miss does not incur additional access
latencies), and forwards requests to a smaller shared MMU
cache (which does not suffer as high an access time increase
as a much larger shared TLB). Of course, future studies
that consider advanced shared TLBs that are distributed
may offset some of these overheads; nevertheless, we show
that if we extend current TLB and MMU caches with very
simple enhancements, optimized MMU caches can outper-
form optimized TLBs. Finally, Figure 17 shows that even
when the optimized TLB and MMU caches outperform the
optimized MMU caches, the performance difference is often
small (usually 3-4%).

9.5 Multiple Ports and Page Table Walkers
A key question is whether shared MMU caches should

have multiple ports and page table walkers to accommodate
multiple simultaneous requests (which in the per-core case,
would be simultaneously serviced by independent ports and
walkers). We have found that increasing port counts (from
the baseline single read/write port to 8 ports for 8 cores) neg-
ligibly affects performance. In general, this is because shared
MMU caches experience low traffic and are small, shortening

��

�

�

��

��

��

��

��

� � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
	
�
	
�
	
�
	
�
	
�
�
�
�
�
�
�

�
�
��
��
�
��
�
�
�
�
�
�

��������

������� ��!����" #$%&������� ��!����"

Figure 17: Percentage performance improvements

using (1) baseline TLBs and shared and coalesced

MMU caches; and (2) coalesced and shared TLBs and

MMU caches.

access times (compared to TLBs) even when shared.
Multiple walkers, however, do boost performance. On av-

erage, including 4 page table walkers increases performance
by an average of 1-2% across workloads (though this num-
ber is closer to 4% for the server applications). Beyond
this, however, their performance improvements are negligi-
ble. These gains arise when multiple cores simultaneously
experience MMU cache misses; in these cases, multiple walk-
ers can overlap miss handling.

9.6 Comparisons with Larger MMU Caches
At first blush, one might consider enlarging per-core MMU

caches rather than coalescing or sharing. However, past
work on coalesced TLBs [25] show that hardware changes
for coalescing have negligible impact on area, lookup times,
and fill times. Moreover, shared MMU caches can actually
decrease area since fewer walkers are required compared to
per-core MMU caches. Either way, the total MMU cache
capacity is preserved. Instead, increasing MMU caches re-
quires additional area (and may increase access latencies).
Since coalesced and shared MMU caches often provide

close-to-ideal MMU cache performance, per-core MMU caches
must be enlarged substantially for similar hit rates. By
evaluating a number of configurations, we have found that
many benchmarks require substantially larger MMU caches
to achieve comparable performance to coalesced and shared
MMU caches of the baseline size; for example, SpecJBB, Cas-
sandra, Tigr, and Mcf require 2-3× larger per-core MMU
caches. Hence, we believe that coalescing and sharing are a
far more effective approach to boost performance.

9.7 Comparison with Page TableWalk Caches
We have so far focused on PSCs but we have also studied

PWCs. We find that on average, PSC performance across
all schemes is about 3% higher than PWCs. This is because
PWCs require a serial walk (the L4 PTE is looked up, then
the L3 and then the L2). This has two implications: (1)
the L4 and L3 PTEs are needed for an L2 PTE hit; and (2)
multiple lookups in the MMU cache are necessary. Unfortu-
nately, L4 and L3 PTEs can be evicted in shared PWCs by
the higher L2 PTE counts. Furthermore, multiple lookups
to a shared structure with higher lookup latency begins to
offset some of the higher hit rate gains. Nevertheless, the
benefits are still substantial. Furthermore, advanced designs
that prioritize L4/L3 PTEs in the replacement policy could
help address some of these problems.

10. BROADER INSIGHTS AND IMPACT
Instruction references. Like past work [2, 3, 6, 7, 8],
we focus on data references because they traditionally de-
termine performance. However, these techniques will also
improving instruction reference behavior, particularly as in-
struction footprints increase in emerging server workloads
[13, 20].
Coalescing versus prefetching. Prefetching speculates
on what will be used in the future and when it will be used.
In contrast, coalescing is aware exactly what items will be
required in the future (i.e., any coalescible PTE must even-
tually be touched by the processor). However, when this
item will be required is unknown; nevertheless, since this
item is merged with the requested PTE, there are no ca-
pacity overheads. The only overheads arise from changes in
set-indexing (which must not increase conflict misses) and
additional hardware (which is modest compared to predic-
tion tables typically required by prefetchers [31, 35]).
Orthogonality to past work on superpages. Our work
has an interesting relationship with prior work on super-
pages [24, 27, 32]. Superpages are large pages (e.g., 2MB,
1GB in ×86 systems), allocated by the OS to reduce TLB
pressure by orders of magnitude. While they can be effec-
tive, there are cases when they increase paging traffic [1].
Interestingly, we have shown that OS code that carefully al-
locates page table pages can be consistently low-overhead;
based on our results, one can envision schemes where coa-
lesced page table pages are used in conjunction or even as
a replacement for superpages. We leave this line of research
to future studies.
Applicability to other architectures. For example, ARM
and Sparc, which use tree-based page tables (and for Sparc,
software caches of the page table called Translation Stor-
age Buffers [8] to accelerate walks) can also benefit from
coalescing and sharing PTEs.
Scaling for future architectures. An advantage of per-
core MMU caches is that as more cores are added on chip,
greater capacity is achieved automatically with more MMU
caches also stamped out. Since each MMU cache’s size re-
mains largely constant, its access times do not lengthen.
Shared monolithic MMU caches however, require a careful
balance between increased capacity and access times and
must therefore be re-evaluated as core counts change.

We believe that the key to mitigating the redesign of
shared MMU caches with increased core counts is to study
distributed shared MMU cache organizations. Distributed
designs offer a mechanism to increase cache capacity with-
out overly degrading access latency. While past work on
distributed caches [19] are a good starting point, the differ-
ent granularity of MMU cache entries (hundreds of pages
instead of cache lines), variation in entry granularity (L4,
L3, and L2 PTEs map different amounts of main memory),
and its tight access time requirements need dedicated studies
in their own right.

11. CONCLUSION
This paper is the first to quantify real-system performance

of MMU caches and presents the foundation for many opti-
mization studies for these structures. We show that coalesc-
ing and sharing approaches can each improve performance
by up to 10-12%. Since the approaches are complementary,
we can combine them to achieve close to ideal performance.

Overall, we show the need to optimize hardware for vir-
tual memory beyond TLBs, particularly with the advent

of emerging software. We show that novel directions involv-
ing intelligent page table allocation, page table construction,
and low-overhead hardware optimizations eliminate many
TLB miss overheads (particularly for upcoming server and
bioinformatics workloads). These insights will become par-
ticularly compelling for big-data systems.

12. REFERENCES

[1] Andrea Arcangeli, “Transparent Hugepage Support,”
KVM Forum, 2010.

[2] T. Barr, A. Cox, and S. Rixner, “Translation Caching:
Skip, Don’t Walk (the Page Table),” ISCA, 2010.

[3] ——, “SpecTLB: A Mechanism for Speculative
Address Translation,” ISCA, 2011.

[4] A. Basu, J. Gandhi, J. Chang, M. Swift, and M. Hill,
“Efficient Virtual Memory for Big Memory Servers,”
ISCA, 2013.

[5] R. Bhargava et al., “Accelerating Two-Dimensional
Page Walks for Virtualized Systems,”ASPLOS, 2008.

[6] A. Bhattacharjee, D. Lustig, and M. Martonosi,
“Shared Last-Level TLBs for Chip Multiprocessors,”
HPCA, 2010.

[7] A. Bhattacharjee and M. Martonosi, “Characterizing
the TLB Behavior of Emerging Parallel Workloads on
Chip Multiprocessors,”PACT, 2009.

[8] ——, “Inter-Core Cooperative TLB Prefetchers for
Chip Multiprocessors,”ASPLOS, 2010.

[9] C. Bienia et al., “The PARSEC Benchmark Suite:
Characterization and Architectural Implications,”
PACT, 2008.

[10] D. Clark and J. Emer, “Performance of the
VAX-11/780 Translation Buffers: Simulation and
Measurement,”ACM Transactions on Computer
Systems, vol. 3, no. 1, 1985.

[11] A. Clements, F. Kaashoek, and N. Zeldovich,
“Scalable Address Spaces Using RCU Balanced Trees,”
ASPLOS, 2012.

[12] M. Ferdman et al., “Clearing the Clouds: A Study of
Emerging Scale-Out Workloads on Modern
Hardware,”ASPLOS, 2012.

[13] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive
Instruction Fetch,”MICRO, 2011.

[14] Intel Corporation, “TLBs, Paging-Structure Caches
and their Invalidation,” Intel Technical Report, 2008.

[15] ——, “Intel Developer’s Manual,” 2012.

[16] A. Jaleel, “Memory Characterization of Workloads
Using Instrumentation-Driven Simulation - A
Pin-based Memory Characterization of the SPEC
CPU2000 and SPEC CPU2006 Benchmark Suites,”
VSSAD Technical Report, 2007.

[17] A. Jaleel, M. Mattina, and B. Jacob, “Last Level
Cache (LLC) Performance of Data Mining Workloads
on a CMP - A Case Study of Parallel Bioinformatics
Workloads,” International Symposium on High
Performance Computer Architecture, 2006.

[18] G. Kandiraju and A. Sivasubramaniam, “Going the
Distance for TLB Prefetching: An Application-Driven
Study,” ISCA, 2002.

[19] C. Kim, D. Burger, and S. Keckler, “NUCA: A
Non-Uniform Cache Architecture for Wire-Delay
Dominated On-Chip Caches,” IEEE Micro Top Picks,
2003.

[20] P. Lofti-Kamran et al., “Scale-Out Processors,” ISCA,
2012.

[21] G. Loh and M. Hill, “Efficiently Enabling
Conventional Block Sizes for Very Large Die-Stacked
DRAM Caches,”MICRO, 2011.

[22] N. Muralimanohar, R. Balasubramonian, and
N. Jouppi, “CACTI 6.0: A Tool to Model Large
Caches,”Micro, 2007.

[23] D. Nagle et al., “Design Tradeoffs for
Software-Managed TLBs,” ISCA, 1993.

[24] J. Navarro et al., “Practical, Transparent Operating
System Support for Superpages,”OSDI, 2002.

[25] B. Pham, V. Vaidyanathan, A. Jaleel, and
A. Bhattacharjee, “CoLT: Coalesced Large Reach
TLBs,”MICRO, 2012.

[26] M. Qureshi and G. Loh, “Fundamental Latency
Tradeoffs in Architecting DRAM Caches,”MICRO,
2012.

[27] T. Romer et al., “Reducing TLB and Memory
Overhead Using Online Superpage Promotion,” ISCA,
1995.

[28] M. Rosenblum et al., “The Impact of Architectural
Trends on Operating System Performance,” SOSP,
1995.

[29] P. Rosenfield, E. Cooper-Balis, and B. Jacob,
“DRAMSim2: A Cycle Accurate Memory System
Simulator,” IEEE Computer Architecture Letters,
2011.

[30] A. Saulsbury, F. Dahlgren, and P. Stenström,
“Recency-Based TLB Preloading,” ISCA, 2000.

[31] S. Somogyi et al., “Spatio-Temporal Memory
Streaming,” ISCA, 2009.

[32] M. Talluri and M. Hill, “Surpassing the TLB
Performance of Superpages with Less Operating
System Support,”ASPLOS, 1994.

[33] M. Talluri, M. Hill, and Y. Khalidi, “A New Page
Table for 64-bit Address Spaces,” SOSP, 1995.

[34] Vlastimil Babka and Petr Tuma, “Investigating Cache
Parameters of x86 Processors,” SPEC Benchmark
Workshop, 2009.

[35] C.-J. Wu et al., “PACman: Prefetch-Aware Cache
Management for High Performance Caching,”MICRO,
2011.

[36] L. Wu, R. Barker, M. Kim, and K. Ross, “Navigating
Big Data with High-Throughput, Energy-Efficient
Data Partitioning,” ISCA, 2013.

