
This manuscript matches the copy in the ACM digital library, except for the addition of references [69, 70], which were mistakenly omitted
from the original version of the paper.

Using Branch Predictors to Predict Brain Activity in
Brain-Machine Implants

Abhishek Bhattacharjee
Department of Computer Science, Rutgers University
Princeton Neuroscience Institute*, Princeton University

abhib@cs.rutgers.edu

ABSTRACT
A key problem with implantable brain-machine interfaces is that
they need extreme energy efficiency. One way of lowering energy
consumption is to use the low power modes available on the pro-
cessors embedded in these devices. We present a technique to pre-
dict when neuronal activity of interest is likely to occur so that the
processor can run at nominal operating frequency at those times,
and be placed in low power modes otherwise. To achieve this, we
discover that branch predictors can also predict brain activity. We
perform brain surgeries on awake and anesthetized mice, and eval-
uate the ability of several branch predictors to predict neuronal
activity in the cerebellum. We find that perceptron branch predic-
tors can predict cerebellar activity with accuracies as high as 85%.
Consequently, we co-opt branch predictors to dictate when to tran-
sition between low power and normal operating modes, saving as
much as 59% of processor energy.
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1 INTRODUCTION
Recent advances in invasive/non-invasive brain monitoring tech-
nologies and neuroprostheses have begun shedding light on brain
function. Brain-machine interfaces for persons afflicted by epilepsy,
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spinal cord injuries, motor neuron diseases, and locked-in syndrome
are undergoing rapid innovation [18, 20, 38, 46, 47, 64, 74]. This is
partly because the technologies used to probe and record neuronal
activity in vivo are fast improving – we can currently monitor the
activity of hundreds of neurons simultaneously, and this number
is doubling approximately every seven years [63]. This means that
scientists can now study large-scale neuronal dynamics and draw
connections between their biology and higher-level cognition.

Consequently, scientists are integrating embedded processors
on neuroprostheses to achievemore sophisticated computation than
what was previously possible with the micro-controllers and ana-
log hardware traditionally used on these devices [6, 20, 23, 38, 45,
50, 64, 74]. For example, designers are beginning to use embedded
processors for sub-millisecond spike detection and sorting to ap-
ply stimuli to the brain whenever a specific neuron fires [52, 74].
Similarly, new-brain machine interface designs use embedded pro-
cessors rather than bulky and inconvenient wired connections to
large desktops [7, 20, 44, 54].

These processors face an obstacle – they need to be energy ef-
ficient. Consider the cerebellum, which resides in the hindbrain
of all vertebrates. Recent studies use invasive brain monitoring to
record intracellular cerebellar neuronal activity [19, 53, 65]. Inva-
sive brain-machine implants cannot typically exceed stringent 50-
300mW power budgets [6, 23, 45, 50, 64, 74]. This is because neural
implants have small form factors and must, therefore, use the lim-
ited lifetimes of their small batteries judiciously [6, 23, 45, 50, 64,
74]. Equally importantly, stretching out battery lifetimes can re-
duce how often invasive surgeries for battery replacement and/or
recharging are needed. Finally, power consumption must be kept
low, as temperature increases in excess of 1-2 degrees celsius can
damage brain tissue [39, 71, 72]. Unfortunately, the embedded pro-
cessors used on implants can currently hamper energy efficiency
in some cases, expending 30-40% of system energy [32, 64, 74].

A potential solution is to use the low powermodes already avail-
able on these processors [15–17, 22, 30, 34]. Traditional energy
management on server andmobile systems balance the energy sav-
ings of low power modes with performance degradation, by antic-
ipating periods of time when applications do not need certain re-
sources or can afford a slowdown [10, 15–17, 30, 35, 41–43]. Similar
approaches are potentially applicable to brain implants. Since em-
bedded processors on implants perform signal processing on neu-
ronal spiking data, they could theoretically be placed in low power
mode in the absence of neuronal firing and be brought back to nom-
inal operation before neuronal activity of interest. This presents
the following question – how canwe predict when future neuronal
spiking is likely to occur, both accurately and efficiently?
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Figure 1: (a) The cerebellum, shown in red, is located behind the top
of the brain stem and has two hemispheres [1]; (b) amajor cerebellar
neuron is the Purkinje neuron, imaged here from amouse brain [9].

In response, we note that architects have historically implemen-
ted performance-critical microarchitectural structures to predict
future program behavior. One such structure, the branch predic-
tor, is a natural fit for neuronal prediction too. Branch predictors
assess whether a branch is likely to be taken or not, and as it turns
out, map well to the question of whether a neuron fires or not at
an instant in time. We study many branch predictors and discover
that the perceptron predictor [5, 24–27, 69, 70] accurately predicts
future cerebellar neuronal activity. We co-opt the perceptron pre-
dictor to not only predict program behavior but to also manage the
low power modes of a cerebellar implant. Our contributions are:

1⃝We evaluate well-known dynamic hardware branch predictors,
including Smith predictors [60], gshare [40], two-level adaptive
predictors [73], and the perceptron predictor [26].We perform surg-
eries on awake and anesthetized mice to extract 26 minutes of neu-
ronal spiking activity from their cerebella and find that perceptron
branch predictors are particularly effective at predicting neuronal
activity, with up to 85% accuracy. The success of the perceptron
predictor can be attributed to the fact that it captures correlations
within long histories of branches better than other approaches.
This fits well with cerebellar neuronal activity, where groups of
neurons also tend to have correlated activity [53, 65].

2⃝ We model a cerebellar monitoring implant and use the embed-
ded processor’s branch predictor to guide energymanagement.We
place the processor in idle low power mode but leave (part of)
the predictor on. When the predictor anticipates interesting future
neuronal activity, it returns the processor to nominal operation.
We use architectural, RTL, and circuit modeling, and find that this
approach saves up to 59% processor energy.

A theme of this work is to ask – since machine learning tech-
niques inspired by the brain have been distilled into hardware pre-
dictors (e.g., like the perceptron branch predictor), can we now
close the loop and use such predictors to anticipate brain activity
andmanage resources on neuroprostheses? Our work is a first step
in answering this question. Ultimately, this approach can guide not
only management of energy but also other scarce resources.

2 BACKGROUND
The Cerebellum: The cerebellum affects motor control, language,
attention, and regulates fear and pleasure responses [19, 53, 65, 67].
It receives input from the sensory systems of the spinal cord and
from other parts of the brain, integrating them to fine-tune motor
activity. Cerebellar damage leads to movement, equilibrium, and
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Figure 2: (a) Block diagram of a cerebellar implant (dimensions not
drawn to scale) and compared against a coin [64]; (b) the Utah array
is used to collect intracellular Purkinje recordings [2, 3].

motor learning disorders. Cerebellar damage may also play a role
in hallucination and psychosis [11, 29, 56]. Figure 1 shows the lo-
cation of the cerebellum in the human brain and an in vivo image
of one of its major neuron types, the Purkinje neuron. Our goal is
to enable energy-efficient recording of Purkinje activity.

Cerebellar Monitoring: Figure 2 shows a typical cerebellar im-
plant [64, 74]. Implants are small and placed in containers embed-
ded via a hole excised in the skull, from where they probe brain
tissue. Figure 2 shows the following:

1⃝Microelectrode array: In vivo neuronal activity is picked up us-
ing microelectrode arrays, which have improved rapidly in recent
years [63]. Many implants, including our target system, use Utah
arrays made up of several tens of conductive silicon needles that
capture intracellular recordings [31, 51, 66]. Utah arrays are widely
used because of their high signal fidelity, robustness, and relative
ease of use.

2⃝ Logic/storage: Neuronal activity recorded by the Utah array is
boosted by analog amplifier arrays connected to analog-to-digital
converters (ADCs). 16-channel ADCs produce good signal integrity
without excessive energy usage [6, 64]. ADCs route amplified data
to locations in LPDDR DRAM. Flash memory is used to store neu-
ronal data [45]. Since gigabytes of neuronal activity data can be
generated in just tens of minutes of recording, most implants use
a wireless communication link (typically a GHz RF link) to trans-
mit data to a desktop system with sufficient storage for all the data
being recorded. Embedded processors (e.g., energy-efficient ARM
Cortex M cores) are integrated on these implants [6, 45, 64, 74]. We
focus on an implant with an embedded processor with similar mi-
croarchitecture to the Cortex M7 (see Section 7). These processors
run at 200-300 MHz, but maintain two low-power modes to turn
either the processor clock off (to roughly halve processor power
consumption) or turn off DRAM and flash too (to lower system
power consumption by an order of magnitude) [14].

3⃝Battery: Designers often use 3.7 Volt batteries to power implants
and target lifetimes of days to weeks for mouse studies. Target
timescales increase to several weeks for primate studies. Longer
lifetimes are better, reducing the need for surgeries to replace bat-
teries [20]. Wireless charging can also reduce the need for surg-
eries; nevertheless, energy efficiency remains important because
implants must not raise temperature beyond 1-2 degrees celsius to
prevent tissue damage [39, 71, 72]. As a result, designers aim to
run implants with power budgets of 50-100mW, occasionally per-
mitting short timescales of 300mW budgets [6, 45, 64, 74].
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Figure 3: (a) Purkinje neurons are activated by the inferior olive
and parallel fibers; and (b) an example of synchronized activity (we
surgically collect this image from the cerebellum of a mouse, with
Purkinje neurons outlined).

3 MOTIVATION
Embedded processors can consume 30-40% of system-wide energy
in modern brain-machine implants, with components like DRAM,
flash, and analog circuits consuming the rest [64]. We attack this
bottleneck using low power modes. To do this, we answer several
important questions:

What low power modes do we use? We study signal process-
ing workloads that perform useful computation when there is neu-
ronal activity of interest. Correct operation requires memory and
architectural to be preserved during low power mode. Deep low
power modes that lose state are hence infeasible. On ARM Cortex
processors, which use the low power modes detailed in Section 2,
we usemodes that turn off the processor and caches but not DRAM
or flash. In the future, as Cortex M7 processors adopt stateful low
power modes for DRAM and flash memory [15, 17], we anticipate
using them too.

When can we use low power modes? To use low power modes
until neuronal activity of interest, we must define the notion of in-
teresting activity. Since neural implants are used for many tasks,
this definition can vary. Our study monitors Purkinje neurons in
the cerebellum. Purkinje firing can be separated into two classes –
unsynchronized and synchronized firing. To understand their dif-
ferences, consider Figure 3(a), which shows the cellular anatomy
of a Purkinje neuron.

Cerebellar Purkinje neurons are driven by two inputs. The first
is a set of parallel fibers which relay activity from other parts of
the cerebellum. Parallel fibers are connected to Purkinje neurons
using the spindly outgrowths of the neurons, i.e., their dendrites.
The second input is the inferior olivary nucleus, which provides
information about sensorimotor stimulation [75]. Olivary nuclei
are connected to climbing fibers, which feed Purkinje dendrites.

When either the parallel fibers or the inferior olive fire, spikes
are activated on the Purkinje neuron. These spikes drive the deep
cerebellar nucleus, influencingmotor control and longer-term cere-
bellar plasticity [53]. The exact nature of Purkinje activity depends
on the input that triggered the Purkinje neuron. Purkinje spikes
due to parallel fibers occur at 17-150 Hz, while those prompted by
the inferior olivary nuclei occur at 1-5 Hz [53].

Neuroscientists are studying many aspects of Purkinje spiking,
but one that is important is that of synchronized spiking [29, 53, 65,
67]. While single Purkinje neurons usually fire seemingly in isola-
tion, occasionally clusters of Purkinje neurons fire close together
in time. Such synchronized firing usually occurs when neighbor-
ing olivary nuclei are activated in unison. Figure 3(b) shows imag-
ing data we collect from an anesthetized mouse, where Purkinje
neurons have been outlined. The flashing neurons represent firing
while those in black represent quiescence. In the time slice shown,
several Purkinje neurons fire synchronously.

Given their importance, synchronized firing is our focus. We en-
able energy-efficiency by using low power modes when Purkinje
synchronization is absent, and permit nominal operation when
synchronized activity occurs. In so doing, we sustain longer bat-
tery lifetime and collect longer andmore thorough neuronal record-
ing data for brain mapping studies.

Howmany Purkinje neuronsmust fire to be considered syn-
chronized? This depends on what neuroscientists are studying.
Some studies consider synchronization to require at least two neu-
rons to fire, while others require four, eight, or more neurons to fire
[53]. Naturally, requiring more neurons to fire makes synchroniza-
tion rarer, affording more opportunity to save energy. Our goal is
to save energy by exploiting any opportunity afforded by the na-
ture of how scientists define synchronization. Section 8 shows how
energy savings vary with different synchronization thresholds.

Why do we need neuronal activity prediction? One may ini-
tially expect to achieve energy efficiency by placing the proces-
sor in sleep mode until the microelectrode array captures synchro-
nized Purkinje activity. At this point, the processor could be tran-
sitioned to nominal operating frequency. The problem with this
approach is that scientists are curious not just about synchronized
activity, but also about milliseconds of individual neuronal activity
leading up to synchronized firing [53, 65]. Hence, it is better to an-
ticipate or predict neuronal synchronization ahead of time so that
events leading up to it are also recorded as often as possible.

How much energy can we potentially save with neuronal
prediction? Having qualitatively discussed the benefits of neu-
ronal activity prediction, we nowquantify these benefits.Wemodel
a baseline with a 300 MHz ARM Cortex M7 processor, and run
four neuronal processing workloads (see Section 7 for details). The
workloads read the data picked up by the Utah array and process
it to assess whether it represents synchronized activity. When the
workloads identify synchronized activity, they perform signal pro-
cessing on all neuronal activity (synchronized or unsynchronized)
in the next 500ms. They then again read neuronal data to assess
when the next synchronized event occurs. This baseline does not
use the Cortex M7’s idle low power modes because the workloads
either continuously profile the neuronal data to detect synchro-
nized activity or process neuronal spiking during and right after
synchronization. Without the ability to predict Purkinje synchro-
nization, the processor cannot know when it is safe to pause exe-
cution and use idle low power modes.

We contrast the baseline against an ideal – and hence unreal-
izable – oracle neuronal activity predictor that knows the future,
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Figure 4: (Left) energy savings from perfect synchronization pre-
diction, assuming four neurons must fire for synchronization.
Anesthesia-no-stimulus and Anesthesia-stimulus represent cases where
the mouse is under anesthesia without and with stimulus, while
Awake corresponds to non-anesthetized mice; and (right) neuronal
spiking probability of an awake mouse on average (Average) and for
a 5s phase (Phase).

and imposes no area, performance, or energy overheads. This or-
acle predictor views time in epochs, and is invoked at the end of
each epoch to predict whether synchronized Purkinje activity is
to occur in the next epoch. Based on the timescales that Purkinje
spikes are sustained [53], we assume 10ms epochs. For the pur-
poses of this discussion, we assume that four firing neurons consti-
tute synchronization for now1. The processor is suspended in sleep
state until the oracle predictor anticipates synchronization. In re-
sponse, the processor transitions to nominal operation, capturing
both the 10ms leadup time to synchronized activity, and the fol-
lowing 500ms of activity. We also model transition times between
power modes. Since these take tens of microseconds on Cortex M
processors, they have little impact on millisecond-ranging epochs
[62]. The graph on the left in Figure 4 quantifies the results for 26
minutes of neuronal activity, split into three classes:

1⃝ Anesthesia without stimulus: We anesthetize mice and extract
seven 2-minute traces of 32 Purkinje neurons. Anesthetized mice
exhibit little movement aside from occasional spontaneous twitch-
ing of the limbs, whiskers, and tail.

2⃝ Anesthesia with stimulus: To study the effect of controlled sen-
sory stimuli on Purkinje neurons, like past work [53], we apply 20-
40 psi air puffs every 1s to the whiskers of the anesthetized mice.
We collect three traces of Purkinje activity, each 2 minutes long.
The sensorimotor stimulation from the air puffs increases Purkinje
synchronization [53].

3⃝Awake:We collect three 2-minute neuronal traces from an awake
free-roamingmouse. The rate of synchronized Purkinje firing varies
depending on how the mouse moves.

Figure 4 shows that all benchmarks stand to enjoy significant
energy benefits in every single case. We separate energy benefits
into average numbers for each of the traces in 1⃝- 3⃝, also show-
ing the minimum and maximum values with error bars. With an
ideal Purkinje synchronization predictor, energy savings can span
29-65% of total processor energy. Naturally, as Purkinje synchro-
nizations become more frequent (either because mice are stimu-
lated with air puffs or are awake), energy benefits drop since the
processor cannot be placed in sleep mode as often. Still, even in
these cases, 63% of energy can be saved with ideal predictors.

1 Section 8 shows the impact of varying the number of neurons that must fire to
constitute a synchronized event.

Why do we use branch predictors? If synchronized firing were
to occur with well-defined periodicity, prediction would be simple,
but this is not the case [19, 53]. Consequently, we consider alter-
natives. We were intrigued by the prospect of using branch pre-
dictors for neuronal prediction as the binary nature of taken/not-
taken branches maps naturally to the notion of Purkinje neuron
firing/quiescence. Additionally, modern branch predictors rely on
local history and inter-branch correlations. Fundamentally, neu-
ronal prediction relies on the same features. For example, neuro-
scientists have established that different Purkinje neurons exhibit
different spiking likelihoods [53, 67]. We show, in the graph on the
right in Figure 4, what percent of neuron samples in our awake
mouse traces achieve firing probabilities of 10%, 20%, and so on.
We separate average results from a particular 5s phase in the traces.
While some neurons (8% on average) are biased towards quies-
cence and spike up to 10% of the time, as many as 40% of them
can spike 10-30% of the time. A further 34% of them spike as often
as 30-50% of the time. We also find that these spiking rates vary
substantially based on what the mouse is doing. For example, the
Phase data shows that in a particular 5s window, neuronal activ-
ity becomes more bimodal with more neurons being quiescent or
active compared to the average. The complexity and variations of
these spiking patterns mean that a simple history-based predictor
which predicts that the next epoch would have the same spiking
as the current epoch accurately predicts only 10-18% of the time.
Therefore, as with branches, local history is helpful but does not
alone yield high prediction accuracy. Fortunately, several studies
show that Purkinje neurons, like branches, exhibit correlated spik-
ing [53, 67]. Intuitively, branch prediction is a good candidate for
neuronal prediction because it is based on a combination of local
history and inter-branch/neuron correlation.

Is it feasible to use branch predictors on implants? Beyond
their functional suitability for predicting neuronal activity, branch
predictors are also a feasible choice because they are already being
used on modern implants. This may be surprising as one may ini-
tially expect implants to use only simple micro-controllers, which
do not need branch predictors. Early implant designs did just that,
recording neuronal activity and relaying it wirelessly to a desk-
top for further processing. But implant designs are now changing
rapidly. The number of neurons we can probe is doubling every
seven years [63], so we are extracting the activity of several tens
to hundreds of neurons today. The more neurons we probe from,
the more sophisticated the desired processing. Processing must of-
ten be in real time, especially if the implant is expected to stimulate
a neuron in response to neuronal activity. Designers therefore in-
creasingly prefer on-implant processing, reducing wireless trans-
mission to desktops [64]. Second, wireless transmission is a signifi-
cant contributor to the total heat burden of the implant [71]. Conse-
quently, emerging implants are integrating far more complex pro-
cessors (e.g., ARM M4/M7 cores) to reduce wireless transmission.
While many of these processors remain in-order, they routinely
incorporate optimizations like pipeline forwarding, cache hierar-
chies, and branch predictors [38, 64].

To more quantitatively show the benefits of branch predictors
on implants, consider processors like the ARM Cortex M7, which
is being studied for neural implants today and which uses Smith
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predictors with two-bit saturating counters [60]. Since we need ag-
gressive branch prediction to achieve the potential energy savings
described in Figure 4, we perform an area-equivalent energy analy-
sis of branch predictors for our baseline systemwithout low power
modes.We find that aggressive branch prediction can actually save
energy – Smith predictors save 13% average energy compared to
a case without branch prediction, by reducing workload runtime.
Gshare and two-level adaptive predictors save a further 4% average
energy by shortening runtime and reducingmispredictions/wrong-
path execution. But more complex perceptron predictors increase
average energy usage by 5% compared to Smith predictors. While
this may seem to be a problem, our results in Section 7 show that
perceptrons more accurately predict spiking; therefore, when we
do use low powermodes, perceptrons identifymore opportunitiess
to save energy than other predictors. Ultimately, this leads to more
energy-efficient implants.

Sampling or software-based prediction techniques? It is rea-
sonable to ask, at this point, whether software learning approaches
that are more flexible and powerful than hardware branch predic-
tors may be a better choice for neuronal activity prediction. In-
deed, we believe that it may be possible to run learning algorithms
on the implant to analyze neuronal behavior and more accurately
predict future spiking activity. The downside of this approach is
that valuable CPU/memory resources – and energy – must be con-
sumed to enable this. Whether the potentially higher neuronal pre-
diction accuracy of this approach ultimately leads to better energy
savings than using hardware branch predictors warrants detailed
study that we leave for future work.

Onemay also consider that using branch predictors for neuronal
prediction has similarities with non-deterministic sampling. A nat-
ural question is – howwould standard deterministic sampling tech-
niques, which can be easier to implement, fare instead?We believe
that the two approaches are orthogonal and likely complementary.
Section 8 quantifies the potential of deterministic sampling, shed-
ding light on what aspects of their operation may help neuronal
prediction, and what aspects require deeper exploration. A key
drawback with sampling is that it does not easily capture the lead-
up activity to synchronization since one cannot tell, at the moment
in time when a sample is taken, whether the activity corresponds
to pre-synchronization firing.

4 IMPLEMENTATION
We use branch predictors for neuronal prediction as they have
been implemented for decades, so vendors know how to design
them efficiently and correctly. But there are other ways in which
the branch predictor (and generally, learning-based hardware)may
be co-opted for neuronal prediction. Though we drive our design
with an implementation where the embedded processor’s existing
branch predictor predicts Purkinje spiking, we discuss other design
options in Section 6.

4.1 Energy Management Strategies
Figure 5 shows how we manage energy. Since Purkinje activity is
usually unsynchronized, the Cortex M7 is placed in idle low power
mode, turning off processor and cache clocks but not DRAM. For
this discussion, we cannibalize the branch predictor that exists in
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Figure 5: The processor is suspended in idle low power mode, but
part of the branch predictor is kept on to predict Purkinje spiking.
When it correctly predicts synchronized Purkinje firing, the proces-
sor goes to nominal operating frequency. In this example, synchro-
nization occurs when at least two of the four neurons fire.
the embedded core to perform neuronal prediction. Our Idle state
differs from traditional low power modes by keeping the branch
predictor on. We implement a hardware FSM to guide neuronal
prediction (see Section 4.2). Figure 5 shows Neuronal Predictions
and actualOutcomes, split into Epochs of time labeled A-I (10ms in
our studies). Our example monitors four neurons, shown in circles.
Yellow and black circles represent firing and quiescence, respec-
tively. In this example, synchronization occurs when at least two
neurons fire.

In epoch A, the branch predictor is used for neuronal prediction
and predicts that only a single Purkinje neuron will fire in the next
epoch, B. Consequently, the processor continues in Idle. The pre-
diction is correct as it matches theOutcome in B2. Simultaneously
in B, the predictor predicts that only one neuron will fire inC. This
turns out to be correct again – although the exact neuron that fires
does notmatch the prediction, a concept that wewill revisit shortly
– and the processor continues in Idle. However, in C, the predictor
anticipates a synchronization event between the top two Purkinje
neurons. Consequently, the processor is transitioned intoNominal
operatingmode. Since transition times on the CortexM7 are orders
of magnitude smaller than 10ms epoch times [62], our prediction
enables us to awaken the processor sufficiently early to process
not only synchronization activity but also activity leading up to it.
Once in nominal operation, the processor analyzes 500ms of Purk-
inje neuron activity, which can consist of synchronized and unsyn-
chronized spiking, as shown in D-E and F-H respectively. During
this time, the branch predictor returns to predicting branches and
not neuronal activity. Note that the time taken to analyze 500ms
of neuronal activity can exceed 500ms. Finally, the processor again
transitions to Idle, with the branch predictor returning to brain ac-
tivity prediction. Overall, there are four possible combinations of
neuronal prediction and outcomes:

1⃝ Correctly predicted non-synchronization: This is the desirable
combination, as it allows the processor to idle as long and often as
possible.

2⃝ Correctly predicted synchronization: We want most synchro-
nizations to be correctly predicted, enabling capture of both the
activity before synchronization, as well as 500ms of neuronal ac-
tivity during and after it.
2Section 4.2 explains that neuronal activity outcomes are provided by the Utah array
and ADCs, which place data in DRAM.
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Figure 6: The branch predictor can mispredict neuronal activity. In
this figure, it misses upcoming Purkinje synchronization, so the pro-
cessor does not record 10ms events leading up to synchronization (in
blue), though it is woken up when the misprediction is identified.

3⃝ Incorrectly predicted non-synchronization: Branch predictors
can mispredict. Figure 6 shows that in epoch C, the predictor ex-
pects no Purkinje neurons to fire in epoch D. This prediction is in-
correct, as the top two Purkinje neurons do fire in D. We mitigate
the damage caused by this by transitioning to Nominal operating
mode as soon as we detect the misprediction. Unfortunately, the
implant still misses the opportunity tomonitor pre-synchronization
activity. Therefore, we aim to reduce the incidence of this type of
misprediction. Note that technically, this kind of misprediction ac-
tually saves more energy because it runs the processor in Idle for
longer (see the blue arrow in Figure 6). However, since it misses
important pre-synchronization activity, this type of energy saving
is actually undesirable. Overall, we use low power modes to save
energy, running the risk that we occasionally mispredict neuronal
activity and lose some pre-synchronization activity. But if we re-
duce the incidence of this type of misprediction, this tradeoff is
worthwhile since we ultimately sustain far longer battery life and
collect considerably longer neuronal activity recordings overall.

4⃝ Incorrectly predicted synchronization: Finally, the branch pre-
dictor may incorrectly predict synchronized behavior, only to find
that this behavior does not occur in the next epoch. This represents
wasted energy usage as the processor is transitioned to Nominal
operation unnecessarily. However, as soon as we detect no Purk-
inje synchronization in the following epoch, we transition the pro-
cessor back to Idle mode.

In Figure 5, the branch predictor predicted, in B, that the up-
per left neuron would fire in C. Ultimately the lower right neuron
fired. We refer to such predictions as accidentally correct as they
represent situations where prediction of synchronization is correct
even though the prediction of the individual Purkinje neurons are
wrong. While accidentally correct predictions enable correct oper-
ation, our goal is to design predictors that are correct in a robust
manner, and do not rely on “accidental luck”. We therefore focus
on accuracy for both per-neuron and synchronized prediction.

4.2 Branch/Brain Predictor Implementation
Our modifications leave branch predictor access latencies, energy,
etc., unchanged in normal operating mode. Therefore, this section
focuses on neuronal prediction in lowpowermode. Figure 7 presen-
ts our proposed hardware. On the left, we show a mouse with an
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Figure 7: In idle low power mode, striped components are powered
off, while a hardware FSM co-opts (part of) the branch predictor for
neuronal prediction. Components are not drawn to scale.

embedded implant. Purkinje activity is digitized by the ADC, and
stored in a designated DRAM location called an activity buffer.

An important first step in managing the Utah array is to iden-
tify which conductive silicon needles on the array correspond to
Purkinje neurons. Recall that the Utah array has hundreds of nee-
dles. Many of them probe non-neuronal tissue, while others probe
neurons. Implants, therefore, run calibration code on installation
to associate needles to specific neurons by studying 1-2 seconds
of neuronal activity [33]. Since the implant stays in place, once
calibration completes, we know exactly which of the Utah array
needles correspond to Purkinje neurons.

Figure 7 shows that after calibration, when the processor is plac-
ed in low power mode, the pipeline and caches are gated off (indi-
cated by stripes). However, the branch predictor is treated differ-
ently. We show a branch predictor structure made up of pattern
history tables and branch history tables3. These branch predictor
structures are looked up and updated using combinational logic.

When the processor is in idle low power mode, the branch pre-
dictor is used to perform neuronal prediction. One option is to
leave the entire branch predictor structure on for this purpose.
However, this is needlessly wasteful since modern branch predic-
tor tables tend to use tens of KBs with thousands of entries. Mean-
while, modern recording technologies allow us to probe the activ-
ity of hundreds of neurons simultaneously [63] so we only techni-
cally require hundreds of entries in the branch predictor to make
per-Purkinje spike predictions. Therefore, we exploit the fact that
modern branch predictors are usually banked [8, 55] and turn off
all but one bank. This bank suffices to perform neuronal predic-
tion. To enable this bank to remain on while the remainder of the
branch predictor is power gated, we create a separate power do-
main for it. This requires a separate set of high Vt transistors and
control paths. We model the area, timing, and energy impact of
these changes (see Section 7).

Figure 7 shows that we add a small neuronal FSM (in green).
We modify the code run in the calibration step after implant instal-
lation to add a single store instruction. This updates the contents
of a register in the neuronal FSM maintaining a bit-vector used to
identify which of the Utah array’s silicon needles probe Purkinje
neurons. The neuronal FSM uses this bit vector to decide which en-
tries in the activity buffer store activity from neuronal (rather than
non-neuronal) tissue. The neuronal FSM then co-opts the branch

3While our example shows one branch history register, the same approach could be
applied to branch history tables too.
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Figure 8: In low power mode, the branch assesses the likelihood of
neuronal spiking in the next epoch. We show the Smith predictor as
an example.

predictor for neuronal prediction during idle low power mode. It
guides two types of operations, every time epoch:

1⃝ Updates with neuronal outcomes: In every epoch, we first up-
date predictor tables with recent Purkinje activity. Consider Fig-
ure 8, which shows the DRAM activity buffer at the start of the
epoch. The activity buffer maintains an entry for every conduc-
tive needle in the Utah array indicating firing (a bit value of 1) and
quiescence (a bit value of 0). Our example shows entries for four
conductive needles probing four neurons, two of which remained
quiet and two ofwhich fired at the start of the epoch. Consequently,
the neuronal FSM updates the branch predictor bank left on by
treating each neuron as a separate branch and updating in a man-
ner that mirrors conventional branch predictor updates. Figure 8
shows this for a Smith branch predictor with 2-bit saturating coun-
ters and hysteresis [60]. The four branch predictor entries are used
for neurons 0-3 and are updated using the state machine of a stan-
dard 2-bit branch predictor.

2⃝ Predictor lookups for neuronal predictions: Figure 8 shows that
at the end of the epoch, the neuronal FSM predicts whether Purk-
inje synchronization will occur in the next epoch. Each neuron’s
branch predictor entry is looked up to predict whether that neuron
will fire. In our example, the first three neurons are predicted to re-
main quiet while the last one is predicted to fire. Combinational
logic assesses whether enough neurons are predicted to fire to
constitute synchronization. For our example in Section 4.1, where
at least two neurons must fire for synchronization, the neuronal
FSM assesses that the next epoch will not see synchronization and
hence the processor can continue in idle low power mode.

While we do not change access times for branch prediction, we
consider timing when the branch predictor is used for neuronal
prediction. Using detailed circuit modeling, we have found that
since neuronal spiking times (and epoch times) range in the order
of milliseconds, the timing constraints of modern branch predic-
tors, which are typically designed for hundreds of MHz and GHz
clocks, are easily met.

Finally, one may consider sizing the DRAM activity buffer to
be large enough to store lead-up activity to synchronization. The
processor could be transitioned to nominal operation when syn-
chronization occurs. This approach seemingly preserves lead-up
activity to synchronization without needing synchronization pre-
diction. However, while this approach suffices for some implants,
it is not a solution for implants that cannot defer neuronal process-
ing, like the ones that provide stimuli to the brain immediately
when a specific neuron fires [52, 74]. Our goal to enable energy

management on all implant types – therefore, we tackle the harder
problem of neuronal prediction.

4.3 Saving Predictor State
In our design, the branch predictor oscillates between conventional
branch prediction and neuronal prediction. The advantage of this
approach is that it is relatively simple to implement. The disad-
vantage, however, is that we lose predictor state when we switch
between power states. This can be harmful to both branch predic-
tion and neuronal prediction. For branch prediction, the impact is
reminiscent of context switching [26]. We have found that com-
pared to a baseline that does not use idle low power modes, we
lose 3% average branch prediction accuracy. Fortunately, this does
not have a discernible performance impact on the workloads run
on our implant. However, the other overhead of losing neuronal
prediction data does have an effect. We find that neuronal predic-
tion accuracy, particularly when the mouse is awake and exhibits
more sophisticated neuronal firing patterns, drops by roughly 7%.
We have therefore also studied the benefits of augmenting the base-
line approach with mechanisms whereby predictor state is saved
when transitioning the core from lowpowermode to nominal oper-
ating frequency. Specifically, when this transition occurs, the Neu-
ronal FSM reads all the branch predictor contents and writes it to
a reserved portion of DRAM. Later, when the core is transitioned
to low power mode, the Neuronal FSM reads this state back into
the predictor. We have modeled this approach and found that it
almost doubles transition time from/to low power state; however,
since this increased time continues to remain in the microsecond-
time range, it is far lower than 10ms epochs and does not affect
operation adversely.

Despite its benefits, this approach cannot learn neuronal pat-
terns while the core runs in nominal operating mode. If there are
phase changes in neuronal firing patterns between when the core
was raised to nominal operation and when it returns to low power
mode, these are not reflected in the saved neuronal predictor state
that is recovered on entry into low power mode. Despite this draw-
back, Section 8 shows that just saving state improves neuronal pre-
diction accuracy and saves 5% average additional energy.

5 BRANCH AND BRAIN PREDICTORS
Though broadly studying all branch predictors is beyond the scope
of this paper and needs further work, we focus on:

Smith predictors: These use 2-bit saturating counters with hys-
teresis (see Figure 8). Each Purkinje neuron is allotted a counter
in the prediction table4. A branch/neuron’s local history is used to
predict future behavior (i.e., correlations among branches/neurons
are not exploited). We have found that local history can, to some
extent, enable prediction of future activity. But, this approach is
too simple to accurately predict spiking when the mouse roams
around and hence sees more complex cerebellar spiking.

Gshare predictors: Purkinje neurons often form “micro-bands”
or groups where neurons fire close together in time in a synchro-
nized manner [53, 65]. To exploit micro-bands, we study branch

4Since branch predictors use large tables with far more entries than the tens-hundreds
of neurons we can currently record, we assume one entry per neuron and no aliasing.
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Figure 9: Adapting gshare predictors for neuronal prediction.
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Figure 10: Adapting two-level predictors for neuronal prediction.

predictors that exploit correlated branches. Gshare is awell-known
example of such a predictor. Figure 9 shows how gshare predictors
can be co-opted for neuronal prediction. The neuronal FSM from
Section 4 looks up the predictor table for each individual neuron.
If enough of them are predicted to fire, a synchronization event is
predicted. Figure 9 illustrates lookup for neuron number 1. Gshare
performs an exclusive-or between this “address” (or neuron num-
ber) and an n-bit global history register, which records the last n
branch outcomes globally. For neuronal prediction, one could sim-
ilarly record spiking behavior of the last n neurons. There are two
options – (a) we can record whether there was Purkinje synchro-
nization in the last n epochs (one bit per epoch); or (b) whether
each of j individual neurons in the last k epochs (where n equals
j×k) fired or not. Recall that our goal is to perform accurate per-
neuron predictions, not just synchronization predictions (see Sec-
tion 4.2). We therefore do take the second option, (b). Figure 9
shows a global history register that stores activity from four neu-
rons in the last two epochs.

Two-level adaptive predictors:Two-level adaptive predictors ex-
ploit inter-branch correlations with global history, but also with
per-branch histories [73]. Figure 10 co-opts this approach for neu-
ronal prediction, focusing on the lookup for neuron 1. The neuron
number, like the branch address, indexes a table of local history reg-
isters. The n-bit registers record outcomes of the last n branches
and neuronal data that map to that location. In Figure 10, the local
history tables store information on how neuron 1 spiked in the last
four epochs (in our example, neuron 1 was quiet in all four epochs).
This history selects a pattern history table entry, which is used to
predict neuron 1’s activity in the next epoch.

Perceptronpredictors: Perceptrons are best able to leverage inter-
branch/neuron correlations. Figure 11 illustrates the operation of a
perceptron predictor and shows how we can adapt it for neuronal
prediction [26]. A table of perceptrons is looked up for each branch
or neuron. Each perceptron entry maintains weights for each cor-
related branch/neuron. Like branch prediction [24, 26], we use the
weights and prior branch outcomes, stored in the history register,
to calculate:

y = w0 +
n∑
i=1

xiwi

Here, w0 is a bias weight, wi are weights for correlated branc-
hes/neurons, xi are prior branch/neuron outcomes, and y is the
output prediction. If y is non-zero, the branch/neuron is predicted
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Figure 11: Adapting perceptron predictors for neuronal prediction.

taken/fired. In Figure 11, we use 2-bit weights though actual imple-
mentations use 8-bit integer weights [24–26]. The weights record
a branch/neuron’s dependence on its past behavior through a bias
weight, and its dependence on other (four other, in our example)
branches/neurons through other weights. All values are stored in
one’s complement, like the original design [26], with large positive
and negative values indicating positive and negative correlations
respectively. Figure 11 shows that the looked-up neuron is weakly
correlated with its past (a bias weight of 00) but is positively corre-
lated with neurons 2 and 3 (weights of 01), and strongly but nega-
tively correlated with neuron 1 (weight of 11).

During neuronal prediction mode, the neuronal FSM first trains
the predictor with the spiking outcomes of the current epoch. In or-
der to perform the update, each neuron’s perceptron entry and the
global history register (which maintains the spiking outcomes of
the last epoch) are used to re-calculate the perceptron’s prediction
for this epoch. When the neuron’s prediction from the last epoch
does notmatch the outcome in the current epoch or if the weighted
sum’s magnitude is less than a threshold θ (used to gauge if train-
ing is complete), the perceptron entry is updated as per usual. The
algorithm increments the ith weight if the branch/neuron outcome
agrees with xi and decrements it otherwise. We assume the θ val-
ues used in prior work for branches [26] as they suffice for neu-
ronal prediction too. Once this is done, the neuronal FSM replaces
the global history register contents with the outcomes of the most
recent activity in the activity buffer. Subsequently, each percep-
tron entry is read and using the new outcomes, a weighted sum is
calculated, and a neuronal prediction is made.

Neuronal prediction treats the global history buffer differently
from conventional branch prediction, where the first outcome is
associated with the most recent branch in time, the second out-
come with the second most recent branch in time, and so on. With
neuronal prediction, there is no time-ordering among neurons in
an epoch. This does not present correctness problems because the
neuronal FSM first uses the global history buffer values (holding
spiking from the previous epoch) to update all perceptron entries
at the start of the current epoch. It then updates the global history
buffer with current spiking outcomes and uses it with every per-
ceptron entry to make a prediction for every neuron.

As perceptron size scales linearly with the number of correlated
branches/neurons, they exploit longer branch/neuron correlation
histories than other schemes, which scale exponentially. Thismakes
perceptrons effective at capturing Purkinjemicro-bands.Moreover,
the two traditional problemswith perceptrons – access latency and
power consumption [5, 25] – are less of a concern in our design.
Access latencies are usually a problem on high-performance GHz-
range processors with tight cycle times. Instead, our implanted
processor requires branch predictions on a 300MHz clock or neu-
ronal prediction in 10ms epochs, which perceptron predictors us-
ing Wallace tree adders [27] can comfortably achieve. And despite
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Figure 12: Parasagittal neurons spaced a few micron apart are usu-
ally correlated. This is reflected in their perceptron table entries.

the higher energy requirements of perceptron predictors, their abil-
ity to accurately predict neuronal activity enables the more aggres-
sive use of low power modes and hence much lower overall system
energy. Finally, although Figure 11 shows perceptrons with global
history, we also study two-level approaches, where a table of per-
branch/neuron histories finds the desired perceptron.

5.1 Lessons Learned
In using branch predictors to performneuronal prediction, we have
learned the following:

1⃝ Correlations matter more than local history: A neuron’s
history can provide some indication of future behavior. But lo-
cal history must be coupled with inter-neuronal correlations for
good prediction accuracy. This is because micro-bands of corre-
lated neurons synchronize [53], and predictors that can exploit
longer histories of correlated neurons are hence most accurate.
Area-equivalent perceptron predictors can achieve 35% prediction
accuracy over Smith predictors.

2⃝ Correlations remain important in the presence of sen-
sorimotor stimulation: When we blow air puffs on the whis-
kers of anesthetized mice or study free-roaming mice, Purkinje
activity is often correlated and synchronization becomes more fre-
quent. Smith predictors, which rely on only local history, drop off
in accuracy. For example, awake mice see an average of 27% ac-
curacy, while gshare and two-level adaptive approaches achieve
average accuracies of only 35%. Perceptrons continue to exploit
inter-neuronal correlations and achieve much better accuracy. We
also qualitatively observe that when awake mice move more, per-
ceptron predictors are more accurate than other approaches.

3⃝Prediction accuracy trumpshigher energyneeds:Two-level
adaptive and perceptron approaches consume more power than
simpler Smith predictors. We find, however, that complex predic-
tors, especially perceptrons, predict neuronal activity somuchmore
accurately that they can use low powermodes aggressively enough
to save energy overall.

4⃝Neurons experience “phase changes”:Branchmispredictions
often occur when branch correlations change, or when branches
are not linearly separable for perceptrons. Linear separability refers
to the fact that perceptrons can perfectly predict only branches
whose Boolean function over variables xi have its true instances
separated from its false instances with a hyperplane, for some val-
ues ofwi [27]. Similarly, there are situations when perceptron pre-
dictors achieve only 30% neuronal prediction accuracy (and other
predictors achieve even less) because many neurons are not lin-
early separable. This is because neurons, just like branches, exhibit
phase-like behavior. Groups of Purkinje neurons sometimes switch
betweenmicro-bands – i.e., a neuron changes which other neurons
it correlates with. This well-known biological phenomenon [53]

can lead to mispredictions. We will explore techniques like piece-
wise linear branch prediction, which target linear separability of
branches [25], to overcome this problem for neurons in the future.

5⃝ Predictors can capture brain physiology: Parasagittal neu-
rons spaced micrometers apart are known to experience correlated
spiking [53]. Figure 12 shows that neurons have a sagittal line di-
viding their bodies into equal left and right sides. Parasagittal neu-
rons are those that are parallel to one another’s sagittal lines. In
our example, neurons 0, 1, and 4 are parasagittal and correlated.
We have found that perceptron branch predictors accurately cap-
ture correlations among parasagittal Purkinje neurons, maintain-
ing much larger weights for them. On average, the weights for
parasagittal neurons are 50%+ larger than the weights for other
neurons. Figure 12 shows an example where the weights for neu-
rons 1 and 4 are positively correlated in neuron 0’s perceptron.

6 OTHER IMPLEMENTATION STRATEGIES
Our goal is to show how neuronal prediction can be performed
using existing hardware to save energy. To do this, we have built
a proof-of-concept system. However, other design options exist:

Other predictors: While we co-opt well-known branch predic-
tors, the higher-level observation is that it is generally possible
to harness learning hardware that is sufficiently efficient for im-
plementation on modern chips, for neuronal prediction. It may be
that richer machine learning hardware for concepts like cache line
reuse [68] or more sophisticated hardware neural networks [13]
may be effective too.

Using a separate dedicated hardware block:Wemodify the ex-
isting core and co-opt its branch predictor for neuronal prediction,
but this is not the only design option. In fact, it may be fruitful to
instead embed an additional IP core for power management of the
embedded processor. While this does mean that we would need
more hardware and silicon for the IP block, it would also leave
the embedded core largely untouched. Furthermore, as our under-
standing of the brain deepens, a separate IP block may make it
easier to upgrade learning hardware for neuronal prediction, with-
out changing the embedded processor. Finally, a problem with can-
nibalizing the embedded processor’s branch predictor is that we
cannot train the predictor with neuronal activity when the proces-
sor remains in nominal operating mode (see Section 4.3). We have
run experiments to quantify the associated loss in neuronal pre-
diction accuracy and have found average losses of 3% accuracy for
anesthetized mice and 5% for awake mice. A separate IP block can
sidestep this problem. Our study paves the way for future work on
this alternative approach.

7 METHODOLOGY
Simulation infrastructure: This paper performs early-stage de-
sign exploration. Therefore, rather than implement the chip in hard-
ware, we rely on careful cycle-accurate software simulation. We
model a processor similar to the ARM Cortex M7, with the config-
uration of Table 1. Our processor runs at 300MHz and uses the stan-
dard Cortex M7 idle low power mode where pipelines and caches
can be gated off to save power.We use CACTI [48] andMcPAT [36]
for power/energy analysis. We model the area, timing, and energy
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Pipeline 2-issue, 6-stage, in-order, forwarding
Instruction and data cache 32KB with ECC
Baseline branch predictor 8KB Smith predictor

Integer/FPU 4-stage/5-stage pipe
Register file 6/4 read/write ports

Table 1: Parameters of our system.

implications of creating a separate power domain for the branch
predictor bank for neuronal prediction. The additional Vt transis-
tors and control wiring/logic increases chip area by 1.4%. Branch
prediction access latencies remain unchanged, however. Further,
we model the neuronal FSM. In general, we find that its simplicity
means that it can be implemented with area-efficient and energy-
efficient combinational logic.

Workloads:We use four neuronal spiking analysis workloads, se-
lected for their common use in the neuroscience community, to
extract biologically relevant data from neuronal recordings [33].
The four workloads are:

1⃝Compression:We usebzip2 to compress the spiking data record-
ed by the ADC for 500ms after synchronization.

2⃝ Artifact removal: Microelectrode arrays can pick up noise from
muscle movement in the scalp, jaws, neck, body, etc. These arti-
facts can be removed with principal component analysis. Our pca
benchmark stacks the data from our electrodes, and for each elec-
trode, projects into the PCA domain, yielding cleaned signals [33].

3⃝ LFP extraction: In lfp, we apply a fifth-order Butterworth fil-
ter on the neuronal data to enhance low-frequency signals in the
range of 0.5-300Hz, as is common practice [33].

4⃝ Denoising: Reducing noise in neuronal recordings is an impor-
tant step in neuronal processing. There are several ways to de-
noise, but we use discrete wavelet transforms or dwtwith Rigrsure
thresholding, similar to prior work [33].

Mouse surgeries:We extract neuronal activity from mice in vivo
using state-of-the-art optogenetics. Optogenetics gives neurosci-
entists the ability to use pulses of light to image and control al-
most any type of neuron in any area of the brain, with precise
timing. We perform surgeries on C57BL/6 mice on postnatal days
21-42. We perform small craniotomies of approximately 2mm di-
ameter over lobule 6 locations on the mice cerebella, from which
we collect Purkinje activity. For mice under anesthesia, we use
ketamine/xylazine to achieve deep anesthetized state. Further, we
load the Purkinje cells of the area of study with calcium indicator
Oregon Green BAPTA-1/AM (Invitrogen), as described previously
[65]. This indicator fluoresces under exposure to light, allowing us
to collect images such as Figure 3 using two-photon microscopes
[53]. We track the activity of 32 Purkinje neurons.

8 RESULTS
Per-neuron prediction accuracy: We quantify per-neuron pre-
diction accuracy.We study the cross-product of recordings on awake
(Awake) and anesthetizedmice (with air puffs (Anesthesia-stimulus)
and without (Anesthesia-No-Stimulus)) and our four benchmarks,
totaling 52 experiments. Note that these results assume that neu-
ronal is not saved when the processor is transitioned from low
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Figure 13: Prediction accuracies for mice under anesthesia without
stimulus, and with air puffs blown into their whisker pads. We vary
the hardware budget available for branch predictor bank left open.
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Figure 14: (Left) Prediction accuracy for awake free-roaming mice,
as a function of the predictor area budget; and (right) perceptron
predictor accuracy as a function of the neuron history length.

power to nominal mode. We show results when we save state at
the end of this section.

Figure 13 presents results for anesthetizedmice. The y-axis plots
per-neuron prediction accuracy. The x-axis shows the hardware
budget for one predictor bank, which is all we need for neuronal
prediction. Modern branch predictors are 8-16KB, and 1KB banks
are reasonable. For each hardware budget, we have exhaustively
studied predictor organizations and report results from the orga-
nization with the best average accuracy. At each hardware budget,
we find that gshare and two-level predictors perform best when
they maintain history for 0.5-0.6× the neurons as the perceptron.

Figure 13 shows that perceptrons predict neuronal activitymore
accurately than other approaches, particularly with larger budgets.
Smith predictor accuracies flatten as the smallest size (128 bytes)
has enough area to maintain per-neuron counters. But perceptrons
require more space, so they benefit from 1KB budgets. Larger bud-
gets also permit better gshare and two-level adaptive predictor ac-
curacy. At modest hardware budgets of 1KB, perceptron predictors
achieve an average prediction accuracy of 80%, and as high as 85%.
Perceptrons become even better than other approaches when sen-
sorimotor stimulation, and hence the complexity of Purkinje activ-
ity, increases (see Anesthesia-stimulus results).

The left side of Figure 14 shows results for awake mice. The
increased complexity of spiking prompts Smith, gshare, and two-
level adaptive predictors to mispredict more often but perceptrons
still achieve an average of 68%. We found that prediction accuracy
varies more when the mouse moves its tail and also its limbs (see
the larger min/max bars).

The graph on the right of Figure 14 shows how perceptrons
achieve more accuracy. We show accuracy as we vary the num-
ber of weights stored in each perceptron entry. A label of jN-kB
on the x-axis indicates 8-bit integer weights for j potentially corre-
lated neurons, totaling k bytes (assuming that we need a separate
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Figure 15: Percentage of synchronized events predicted correctly
(solid blue) and incorrectly (solid red), and percentage of unsyn-
chronized events predicted correctly (striped blue) and incorrectly
(striped red). We show average results and vary the number of neu-
rons in a synchronized event from 2, 4, to 8, and the predictor size
between 512 bytes and 1KB. All results are for perceptron predictors.

perceptron entry for every neuron we want to predict). The larger
k is, the greater the correlation history amongst branches/neurons,
and the more accurate our neuronal prediction. When we plotted
this data, we noticed an interesting relationship between the num-
ber of weights required for accurate predictions and the biology
of Purkinje neurons. Studies have shown that usually, a handful (2
to 8) of neurons form micro-bands [53]. The graph on the right of
Figure 14 mirrors this observation, with sharp accuracy benefits
when the number of weights in the perceptron goes from 2 to 8,
particularly when the mouse is awake.

Synchronizationprediction accuracy: So far, we have discussed
prediction accuracy for each individual Purkinje neuron’s behav-
ior. However, our aim is to ultimately predict synchronization be-
havior. We focus on the perceptron predictor for these studies as
they are far more accurate than other approaches. While good pre-
diction accuracy for individual neurons is a good indicator of syn-
chronization prediction, their relationship is complicated by two
competing factors. On the one hand, accidentally correct predic-
tions may occur (see Section 4.1), boosting synchronization predic-
tion accuracy. On the other hand, synchronization requires multi-
ple neurons to be simultaneously predicted correctly. The probabil-
ity that multiple neurons are concurrently predicted accurately is
lower than accuracy for an individual neuron.

Figure 15 summarizes synchronization prediction accuracy. We
separate results for awake and anesthetized mice, varying the per-
ceptron predictor hardware budget between 512 bytes and 1KB.We
vary the number of neurons that must simultaneously fire to be
considered synchronized from 2 to 8 (represented by 2N, 4N, and
8N). We plot two bars, separating correct/incorrect predictions for
synchronized and non-synchronized events.

Figure 15 shows that perceptrons accurately predict most syn-
chronized and non-synchronized events. Accuracy increases with
larger predictors, but remains consistently 75%+ under anesthesia
with no stimulus. Naturally, stimuli and awake states make pre-
diction harder, but perceptrons still consistently predict correctly
more than 60% of the time.We also find that accuracies diminish as
synchronization thresholds vary from 2 to 8 neurons. The higher
the threshold, the more the number of neurons that have to pre-
dicted correctly. Regardless, prediction accuracy remains high.
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Figure 16: (Left) Percentage of Purkinje neurons that experience
micro-grid changes (ugrid-chn.) and are linearly inseperable (lin.-
insep.) with averages, min/max shown; and (right) for each neuron
predicted to fire, percentage of total weighted sumvalue contributed
by the weights from parasagittal neurons versus others.
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Figure 17: Fraction of baseline energy saved using Ideal and Actual
prediction. We assume perceptrons with 32 8-bit weights (1KB bud-
get) and that 4 neurons must fire to be considered synchronized.

Understanding prediction characteristics:We now discuss the
source of mispredictions, focusing on perceptrons as they predict
neuronal behaviormost accurately. Like branchmisprediction,most
neuronal misprediction arises from neurons that are linearly insep-
arable. Past work identifies the fraction of static branches that are
linearly inseparable to understand mispredictions [26]. The graph
on the left in Figure 16 does the same, but for neuronal predic-
tion (lin.-insep.). There is a biological basis for linear inseparabil-
ity – neurons sometimes change which other neurons they corre-
late with. We study our neuronal traces and every 10ms, identify
micro-grids. As a fraction these samples, we plot the percentage
of time that neurons change between micro-grids (ugrid chn). Fig-
ure 16 shows that adding sensorimotor stimulation (An-Stim and
Awake) increasesmicro-grid switches and linearly inseparable neu-
rons, lowering prediction accuracy.

The graph on the right in Figure 16 shows that perceptrons also
accurately capture the biology of parasagittal correlations. Every
time the predictor predicts spiking, we log what percentage of the
perceptron’s weighted sum originates fromweights of parasagittal
neurons. The higher the percentage, the higher the correlations
between parasagittal neurons. We plot these percentages in blue
(with the rest shown in red), as a function of the perceptron predic-
tor size and the number of weights in each perceptron entry (e.g.,
jN-kB indicates j weights and k bytes). As expected, with more
weights, parasagittal correlations are more easily tracked.

Global versus global/local perceptron histories: Beyond per-
ceptrons with global history, we have also studied a mix of local
and global history [27]. Because prediction accuracy hinges on neu-
ronal correlations, we see little benefit (less than 1%more accuracy)
from the addition of local history.
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Figure 18: (Left) Average fraction of baseline energy saved when
using a perceptron predictor, for different numbers of weights. We
assume that 4 neurons must fire to be considered synchronized; and
(right) average energy savedwhen using a perceptron predictor with
32 8-bit weights (1KB total budget) and varying the number of neu-
rons that must fire to be considered synchronized from 2 to 10.

Energy savings of perceptrons: Figure 17 quantifies the frac-
tion of energy saved versus the baseline described in Section 3. We
discuss the energy benefits of using Smith, gshare, and two-level
adaptive predictors, but for now focus on perceptrons as their en-
ergy benefits far outweigh the other approaches. Figure 17 assumes
1KB perceptron predictors and that four neurons must fire close to-
gether in time to be considered a synchronized event.

Figure 17 shows that our energy savings (Actual) are within 5-
10% of the Ideal savings from oracular prediction. Overall, this cor-
responds to energy savings of 22-59%. Even with stimuli, which
decreases energy saving potential since there are more synchro-
nized events, our approach saves 22-50% energy on Awake mice.

Figure 18 sheds more light on energy trends. The graph on the
left shows the energy saved as the number of 8-bit weights per per-
ceptron entry varies from 2 to 32. More weights improve predictor
accuracy by capturingmicro-grid correlations. Increasing the num-
ber of weights from 2 to 8 doubles energy savings for anesthetized
and awake mice. The graph on the right shows the average energy
saved by a 1KB perceptron predictor (with 32 weights per entry),
as we vary the number of neurons that must concurrently fire to
be considered a synchronized event. As this number increases, en-
ergy savings decrease as there are fewer instances of synchronized
events. Nevertheless, even when we assume that 10 neurons must
fire to constitute synchronization, we save an average of 30%+ of
energy. And since scientists generally studymicro-grids of 4-8 neu-
rons [53], average energy savings are closer to 45%+.

Undesirable energy savings: In Section 4.1, we discussed situa-
tions where the predictor incorrectly predicts no synchronization.
This mistake prompts loss of pre-synchronized activity, so its en-
ergy savings are undesirable. We have found that less than 2% of
total energy savings for our workloads are undesirable in this way.
The reason this number is small is that perceptrons have good pre-
diction accuracy. The (few) mispredictions idle the processor for
an extra 10ms (the time taken to identify the misprediction). Subse-
quently, the processor transitions to nominal operation. Compared
to the long stretches of times that the processor is correctly pre-
dicted and placed in idle low power mode (10s of seconds), these
mispredictions minimally affect energy saved.
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Figure 19: (Left) Increased energy savings using perceptron pre-
dictors with 1KB budget and assuming synchronization threshold
of 4 neurons, when saving predictor state (red bars) versus not sav-
ing state (blue bars); and (right) fraction of baseline energy saved
using neuronal prediction (blue bars) versus sampling (red bars),
assuming that both approaches record an equal number of pre-
synchronization events.

Energy savings versus other branch predictors: In Section 3,
we showed that when low power modes are not used, the embed-
ded processor consumes 5% more core energy when using per-
ceptrons versus Smith prediction. However, when the perceptron
guides power management, we find that superior accuracy consis-
tently yields 5-45% energy savings compared to Smith, gshare, and
two-level adaptive approaches.

Impact of saving predictor state: Section 4.3 showed that it may
be useful to save predictor statewhen transitioning from lowpower
to nominal mode, so that whatever the predictor has learned about
neuronal firing patterns is not lost and the predictor does not have
to be retrained from scratch. The graph on the left of Figure 19
quantifies the increase in energy savings that saving predictor state
provides, assuming perceptrons and 1KB sizes for neuronal predic-
tion. We show average energy savings when state is lost (the blue
bars, which correspond to the results we have discussed in this
section so far) and when it is saved (the red bars). In all cases, the
increased accuracy of the perceptron predictor allows it to iden-
tify more opportunities to suspend the processor in idle low power
mode, saving an additional 5% energy on average across the board.

Sampling techniques: Neuronal prediction: 1⃝ captures most of
the pre-synchronization activity; 2⃝ captures all synchronization
activity, evenwhen it misses pre-synchronization, because the neu-
ronal FSM transitions the processor to nominal frequency on mis-
predictions; and 3⃝ achieves good energy savings. Deterministic
sampling techniques cannot guarantee capture of all synchroniza-
tion events (unless it also keeps track of neuronal activity with
something akin to a neuronal FSM), or all pre-synchronization
events. Nonetheless, we assess how deterministic sampling fares.
We model deterministic sampling techniques, where we wake up
the processor every Nth epoch. We vary N exhaustively from 1 to
as many epochs as in our trace. On a sample, if synchronization
is detected, we begin processing 500ms of the spiking data. If no
synchronization is detected, however, we cannot immediately re-
turn the processor to low power state as there is no way to tell if
the neurons are leading up to synchronization. Therefore, we still
kept the processor on for the epoch in case synchronization begins
at its end. We also model exponential backoff sampling, where the
absence of synchronization in a sample means that the wait time
before the next sample is twice the last number of waited epochs.
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Through exhaustive search, we found that it is possible for sam-
pling to record (close to) as many lead-up and synchronization
samples as prediction, but with a much higher energy overhead.
The key culprit is the need to conservatively leave the processor
on for the entire sample epoch. The graph on the right of Figure
19 compares the energy savings of neuronal prediction versus the
sampling approach with matching pre-synchronization coverage.
Generally, sampling loses 10-20% energy savings compared to neu-
ronal prediction. Nevertheless, we believe that it may be possible
to combine both approaches going forward. The challenge will be
to ensure that sampling remains sufficiently simple that it is worth
doing rather than augmenting the neuronal predictor.

Energy savings with dynamic voltage/frequency scaling:We
have focused on idle rather than active low power modes like dy-
namic voltage/frequency scaling (DVFS) because Cortex M proces-
sors currently support only idle modes. However, we were curious
about energy savings if DVFS were to be incorporated. We studied
and compared three schemes using a 1KB perceptron predictor: (1)
use idle low power modes as described thus far; (2) use DVFS in-
stead of neuronal prediction, to identify opportunities when the
workloads can afford to be slowed down to 0.5× and 0.75× of the
baseline frequency using standard CPU utilization based prior ap-
proaches [15]; and (3) combine (1) and (2) by showing that DVFS
and idle mode usage with neuronal prediction are orthogonal. We
found that (2) remains superior to (1), saving an average of 12%
more energy. Combining neuronal prediction and idle low power
modes with DVFS promises even more energy savings (as high as
67%, exceeding the 59% of neuronal prediction alone).

9 RELATEDWORK
This work adds to the growing body of recent literature on im-
plantable brain-machine interfaces. While recent studies propose
implants with embedded processors and study energy/power man-
agement, we present the first study on topics pertaining to the pro-
cessor architecture in these devices [6, 20, 38, 47, 64]. In the context
of studies from the architecture domain, our work relates to hard-
ware neural network accelerators [4, 12, 13, 37], but is closer to
studies linking neural biologywith architecture. Hashmi et. al. stud-
ied fault tolerance in cortical microarchitectures [21] while Nere
et. al. emulated biological neurons digitally [49]. Their work paved
the way for Smith’s pioneering studies on efficient digital neurons
for large-scale cortical architectures [61]. We are inspired by these
studies but co-opt existing hardware structures to predict neuronal
activity and manage energy.

10 CONCLUDING REMARKS
Generality of observations: How conclusively can we say that
branch predictors, or indeed any hardware predictors, can predict
brain activity? To answer this question, we need to study much
more than just 26 minutes of neuronal activity, from more loca-
tions than just lobule 6 of the cerebellum. This work is just a first
step in this research endeavor.

Broader implications: Neuronal prediction is generally useful
for implants. For example, designers of deep-brain stimulation im-
plants want to predict pathological neuronal activity, so that they

can stimulate portions of the brain like the thalamus pre-emptively
to mitigate epilepsy symptoms [59]. This approach saves implant
energy over current approaches which do not know when neu-
ronal activity of interest is likely to occur and hence continually
monitor the brain instead. Similar approaches are applicable to
hippocampal implants for memory enhancement [57]. Consider
also implants which dynamically switch between compression al-
gorithms to record neuronal activity [58]. Neuronal prediction can
enable quicker and better choices about which compression algo-
rithm to use before the advent of the activity.

Relationship with neural circuits: Neuroscientists are seeking
to model neural circuits that explain neuronal biology [28]. It may
be fruitful to consider whethermodels of well-known architectural
structures like branch predictors could aid neural circuit modeling,
particularly if they predict neuronal activity accurately.
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