
Dataflow-Specific Algorithms for Resource-Constrained
Scheduling and Memory Design

Abhishek Bhattacharjee

Yale University

abhishek@cs.yale.edu

Quanquan C. Liu

Yale University

quanquan.liu@yale.edu

Rajit Manohar

Yale University

rajit.manohar@yale.edu

Raghavendra Pradyumna

Pothukuchi

Yale University

raghav.pothukuchi@yale.edu

Muhammed Ugur
∗

Yale University

muhammed.ugur@yale.edu

Abstract
We introduce the Weighted Red-Blue Pebble Game, an extension of

the classic red-blue pebble game with weighted operation costs.

Thisweighted formulation enables constant-factor analysis of highly

resource-constrained systemswith bounded fast memory, unlimited

slow memory, and strict energy and power constraints.

We apply our model to computational kernels in ultra-low-power

brain-computer interfaces (BCIs) implanted near the brain. We

express these kernels as computational directed acyclic graphs

(CDAGs), enabling modular composition of operation schedules

with data movement. We derive theoretically optimal schedules for

a broad class of tree-structured CDAGs and apply them to on-chip

memory design with circuit-level validations for power and area.

Our algorithms result in an average 63% memory area reduc-

tion and 43% static power reduction for BCI workloads—critical

improvements for ensuring safe, thermally constrained operation

in implantable devices. Beyond BCIs, our results underscore the

broader utility of weighted pebble games in optimizing memory

and I/O across resource-constrained computing environments.

CCS Concepts
• Theory of computation→ Theory and algorithms for ap-
plication domains; • Hardware→ Application-specific VLSI
designs.

Keywords
Red-Blue Pebble Games, Data Movement, Computational Dataflow

Graphs, Memory Design, Resource-Aware Algorithms

ACM Reference Format:
Abhishek Bhattacharjee, Quanquan C. Liu, Rajit Manohar, Raghavendra

Pradyumna Pothukuchi, and Muhammed Ugur. 2025. Dataflow-Specific

Algorithms for Resource-Constrained Scheduling and Memory Design. In

37th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA
’25), July 28-August 1, 2025, Portland, OR, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3694906.3743342

∗
Corresponding author

This work is licensed under a Creative Commons Attribution 4.0 International License.

SPAA ’25, Portland, OR, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1258-6/2025/07

https://doi.org/10.1145/3694906.3743342

1 Introduction
Efficient scheduling of computation is a foundational challenge

across computer science. Theoretically-backed scheduling strate-

gies have traditionally been used to minimize runtime and memory

usage in software. A cornerstone of these strategies is the field

of pebble games—combinatorial models originally developed to

study register allocation [37, 45], and later extended to the formal

analysis of computation scheduling and I/O complexity [4, 5, 7, 12–

14, 19, 23, 26, 27, 31, 32, 36, 38].

In this work, we introduce theWeighted Red-Blue Pebble Game,
an extension of the classic red-blue pebble game [22] that incorpo-

rates weights to model cost-sensitive constraints in modern sys-

tems. While traditional pebble games offer fine-grained scheduling

insights, their reliance on low-level CDAGs have limited their prac-

tical use. Coarser-grained theoretical models have emerged, but

their large constant factors often make them unsuitable for highly

resource-constrained domains [44]. We seek to revive pebble games

to address limitations in asymptotic analysis and formalize design

choices in emerging power-, energy-, and area-constrained settings.

To showcase the benefits of the weighted model, we study a

system that uses mixed-memory technologies and mixed numerical

precision to maximize performance under power constraints. By

mixed-memory, we refer to a capacity-constrained fast memory

with relatively high power consumption that is backed by a slower,

larger, and more power-efficient memory. By mixed precision, we

refer to the case of compute logic attached to memory which may

vary in bit-width to the lowest possible value that still achieves the

desired accuracy for the computational task, thereby minimizing

power. These optimizations are widely used in resource-constrained

domains, motivating the need for fine-grained weighted pebbling.

In the classic red-blue pebble game [22], computations are mod-

eled as CDAGs, where each node represents either input data or a

compute operation. Placement of a red pebble on a node represents

performing that operation and placing its result in fast memory. A

blue pebble can be placed on a node with a red pebble to perform

a red-blue transition (and vice versa). These transitions represent

data copies between fast and slow memories. The first placement of

a red pebble on a node can only occur if all of the node’s predeces-

sors contain red pebbles; i.e., all operation dependencies have been

satisfied. In this classical model, all operations are assumed to have

the same cost. Our Weighted Red-Blue Pebble Game maintains the

same rules, but models the diverse memory costs of operations in

workloads using node weights.

https://doi.org/10.1145/3694906.3743342
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3694906.3743342

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Abhishek Bhattacharjee, Quanquan C. Liu, Rajit Manohar, Raghavendra Pradyumna Pothukuchi, and Muhammed Ugur

The objective of the classic red-blue pebble game is to mini-

mize red-blue transitions while respecting a limit on the number

of red pebbles in the graph (representing the bounded fast mem-

ory). Instead, our Weighted Red-Blue Pebble Game uses weights

to represent the impact of operation heterogeneity, such as mixed

precision, on memory usage, minimizing the total weighted red-

blue transitions while respecting a limit on the total weight of all

red pebbles in the graph at any point. This minimizes the total data

transferred, and by extension, the energy cost of the schedule.

Our weighted model is designed to facilitate reusable analy-

sis with applications to many domains through modularization.

Our approach yields optimum, exact schedules (i.e., not asymptotic

schedules) for modules within the broad class of tree-based graphs;

these modules are CDAGs that can be reused within large graphs

or across graphs to perform different computational tasks. The de-

signer can therefore express computational tasks in parts, where

each part is associated with an efficient pebbling algorithm that

produces minimum-cost schedules. These schedules can then be

stitched together and reordered to obtain an efficient schedule for

the overall computational task.

To demonstrate the power of our approach, we focus on BCIs

implanted near the brain—a fast-emerging neurotechnology critical

to treating severe neurological and psychiatric disorders. BCIs in-

volve surgically implanted electrodes that read from and stimulate

neurons in the brain, and have shown success in treating diseases

like epilepsy, Parkinson’s, chronic pain, and paralysis in multiple

studies [1, 15, 18, 30, 33, 41]. Realizing the potential of BCIs rests on

designing ultra-efficient computation and data movement schedules

under severe power limits—often under a few milliwatts, nearly

100× less than smartphone processors [24, 41]. Implanted BCIs

that even slightly increase brain temperature can induce seizures,

or long-term neurological damage, making power efficiency para-

mount to safe implantation [25].

OurWeighted Red-Blue Pebble Game is well-suited to BCI design,

as neuroengineers are exploring the design of mixed-memories

(i.e., fast SRAM with slow non-volatile memory such as Flash) and

numerical precision to balance the quality of disease treatment with

power [24, 41, 43]. Thus far, they have used ad hoc approaches to

identify data movement schedules for their processors.

In this paper, we show how our weighted model can systemati-

cally help BCI design via a comprehensive experimental analysis

on two key graph constructions—the Discrete Wavelet Transform

(DWT) and Matrix-Vector Multiplication (MVM)—by comparing

the weighted I/O cost and minimum fast memory size of our sched-

ules against the best-known prior work of IOOpt [34, 35]. These

workloads are familiar to BCI designers and capture the core signal

processing and linear algebra kernels used in detection of seizures

and in assessing the intended movement of paralyzed individu-

als [24, 41]. They are also more broadly representative of other

algorithms used in BCIs; e.g., DWT’s recursive divide-and-conquer

structure appears in filters and fast Fourier transforms, while MVM

extends to classification and principal-component analysis, and

builds the foundation for the broad set of tensor operations.

Our evaluations quantify improvements in metrics like data

transferred and minimum fast memory size, and for hardware de-

sign, circuit power, performance, and area. We perform detailed

physical synthesis and hardware modeling to accurately capture

these metrics down to the circuit and wire-level. Moreover, since

previous approaches did not account for mixed-precision work-

loads, we adapt their lower and upper bounds to preserve workload-

specific characteristics for fair comparison. For the DWT graphs,

we employ a layer-by-layer scheduling heuristic as an upper bound.

Overall, we demonstrate that the Weighted Red-Blue Pebble

Game offers superior hardware implementation of application-

specific designs. The average memory size reduction in the node-

weighted case reaches 46.8% and 36.2% for the DWT and MVM,

respectively. This leads to a practical on-chip area savings of 89.5%

and 52.6%which reduces static power dissipation by 64.7% and 39.4%

respectively compared to memory sizes given by other approaches.

In summary, our technical contributions are:

• The introduction of the Weighted Red-Blue Pebble Game to

formally study the interaction between data movement on a

two-level memory hierarchy and operation weights.

• Polynomial-time pebbling algorithms for generating opti-

mum weighted schedules on specific dataflows, particularly

the broad class of 𝑘-ary trees. We motivate our algorithm

design with DWT and MVM tiling.

• Evaluation of our dataflow-specific algorithms in terms of

data transferred and minimum fast memory size with de-

tailed physical synthesis, improving leakage and area.

In Section 2, we describe ourWeighted Red-Blue Pebble Game. In

Section 3, we describe our approach to designing dataflow-specific

pebbling algorithms. We extend our algorithms to include data

reuse and memory states in Section 4. We evaluate DWT and MVM

in Section 5. An overview of related work is given in Section 6.

2 Weighted Red-Blue Pebble Game
In this section, we describe the Weighted Red-Blue Pebble Game

(WRBPG). The WRBPG introduces weighted graph vertices and a

weighted red pebble constraint. This variation is played on a CDAG

with the same moves, two-level memory hierarchy, and rules as the

original game, namely:

• 𝑀1, copy to fast memory (add a red pebble to a node with a

blue pebble)

• 𝑀2, copy to slow memory (add a blue pebble to a node with

a red pebble)

• 𝑀3, perform a computation (if all nodes with incoming edges

have a red pebble, add a red pebble)

• 𝑀4, delete a red pebble (blue pebbles are never deleted).

We constrain the red pebbles placed on the CDAG at any given

time not by their number (as in the original game), but by their total

weighted cost (Definition 2.1). The subsequent sections formally

define the model, describe the weighted constraint and model prop-

erties, and outline how this model can be used to study efficient

resource-constrained scheduling and memory design.

2.1 Model Definitions
Let 𝐺 = (𝑉 , 𝐸,𝑤, 𝐵) be a node-weighted CDAG, where 𝑉 is the set

of nodes, 𝐸 ⊆ 𝑉 ×𝑉 is the set of edges, 𝐵 ∈ R>0 is the weighted

red pebble budget, and 𝑤 = (𝑤𝑣)𝑣∈𝑉 assigns a weight 𝑤𝑣 ∈ R>0

to each node 𝑣 ∈ 𝑉 . We assume each weight𝑤𝑣 and the budget 𝐵

Dataflow-Specific Algorithms for Resource-Constrained Scheduling and Memory Design SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

have polynomial precision, i.e., they can be represented using at

most poly(|𝑉 | + |𝐸 |) bits.
We define the source (input) nodes of 𝐺 , i.e., all nodes with in-

degree zero, asA(𝐺), and the sink (output) nodes of𝐺 , i.e., all nodes
with out-degree zero, asZ(𝐺). We assume A(𝐺) ∩ Z(𝐺) = ∅. In
the WRBPG, all 𝑣 ∈ A(𝐺) starts with a blue pebble, and the game

is finished once all 𝑣 ∈ Z(𝐺) have a blue pebble. This is referred to
as the starting and stopping condition respectively. We additionally

defineH(𝑣) ⊂ 𝑉 as the set of immediate predecessors (parents) for

a node 𝑣 ∈ 𝑉 , i.e., if 𝑣 ∈ A(𝐺), thenH(𝑣) = ∅.
A red-blue pebbling of 𝐺 is a sequence of moves𝑀1(𝑣),𝑀2(𝑣),

𝑀3(𝑣), or𝑀4(𝑣) performed on nodes 𝑣 ∈ 𝑉 that adhere to the rules

defined above and fulfills the stopping condition. This sequence is

denoted as 𝑆𝐺 = (𝜎1, . . . , 𝜎𝑡) and is referred to as a schedule.
Schedules are equivalently represented as a sequence of snap-

shots (𝐶0,𝐶1,𝐶2, . . . ,𝐶𝑡). A snapshot is a node-labeled graph 𝐶𝑖 =

(𝑉 , 𝐸, 𝜆) corresponding to each 𝜎𝑖 in a schedule and 𝜆 = (𝜆𝑣)𝑣∈𝑉
assigns a label 𝜆𝑣 ∈ {𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒, 𝑏𝑜𝑡ℎ, 𝑛𝑜𝑛𝑒} to each node. Perform-

ing a move 𝜎𝑖 involves changing the label of a node in the previous

snapshot 𝐶𝑖−1. Figure 1 shows the label transitions of a move and

previous node label based on the rules of the red-blue pebble game.

Furthermore, the snapshots 𝐶0 and 𝐶𝑡 correspond to the starting

and stopping conditions respectively.

For a given snapshot 𝐶𝑖 , we define R(𝐶𝑖) ⊆ 𝑉 as the nodes

with 𝜆𝑣 = 𝑟𝑒𝑑 or 𝑏𝑜𝑡ℎ, B(𝐶𝑖) ⊆ 𝑉 as the nodes with 𝜆𝑣 = 𝑏𝑙𝑢𝑒 or

𝑏𝑜𝑡ℎ, and N(𝐶𝑖) ⊆ 𝑉 as the nodes with 𝜆𝑣 = 𝑛𝑜𝑛𝑒 . Using these

definitions, the red pebble game constraint in the original game

ensures that |R(𝐶𝑖) | ≤ 𝑅 for some number of red pebbles 𝑅 ∈ Z>0
and 0 ≤ 𝑖 ≤ 𝑡 given any red-blue pebble game schedule [22]. We

modify this constraint for the weighted setting as follows:

Definition 2.1 (Weighted Red Pebble Constraint). Let 𝐺 =

(𝑉 , 𝐸,𝑤, 𝐵) be a node-weighted CDAG with budget 𝐵, and let 𝐶 =

(𝐶0,𝐶1,𝐶2, . . . ,𝐶𝑡) be a sequence of snapshots corresponding to a
schedule which adheres to the rules of the red-blue pebble game and
satisfies the stopping condition. For each snapshot 𝐶𝑖 ∈ 𝐶 , the follow-
ing constraint must hold in the WRBPG:∑︁

𝑣∈R(𝐶𝑖)
𝑤𝑣 ≤ 𝐵

All rule-abiding schedules that satisfy the above weighted budget

constraint are valid schedules in the WRBPG. Note that the exis-

tence of a valid schedule is not necessarily guaranteed for a given

graph, its weights, and budget. We now define the cost of a schedule

in terms of its weighted data movements. This cost function is used

to find optimum data movement schedules in the WRBPG.

Definition 2.2 (Weighted Schedule Cost). Let 𝑆𝐺 = (𝜎1, . . . , 𝜎𝑡)
be any valid WRBPG schedule for 𝐺 = (𝑉 , 𝐸,𝑤, 𝐵). We define I =

{𝜎𝑖 ∈ 𝑆𝐺 | 𝜎𝑖 = 𝑀1(𝑣)} to be all 𝑀1 moves (inputs) in 𝑆𝐺 and
O = {𝜎𝑖 ∈ 𝑆𝐺 | 𝜎𝑖 = 𝑀2(𝑣)} to be all 𝑀2 moves (outputs) in 𝑆𝐺 .
The weighted cost of 𝑆𝐺 is defined to be the total sum of node weights
for each input/output (I/O) performed during the schedule, i.e.,

𝐶𝑜𝑠𝑡 (𝑆𝐺) =
∑︁

𝑀1(𝑣) ∈I
𝑤𝑣 +

∑︁
𝑀2(𝑣) ∈O

𝑤𝑣

In this cost model, a natural assignment of node weights is the

amount of memory needed for the result of the node’s operation.

M3

M2

M1

M4

Figure 1: Label transitions for a single node based on the
moves of the game. The node labels are 𝑛𝑜𝑛𝑒 (top left), 𝑟𝑒𝑑
(top right), 𝑏𝑙𝑢𝑒 (bottom left), and 𝑏𝑜𝑡ℎ (bottom right).

The weighted schedule cost will then represent the total amount of

data transferred between fast and slow memory.

2.2 Basic Properties
In this section, we first show the condition for the existence of a

valid WRBPG schedule on a CDAG, and then, we provide a trivial

lower bound for any CDAG given the start and stop conditions

introduced in Section 2.1.

Proposition 2.3 (Schedule Existence). Let 𝐺 = (𝑉 , 𝐸,𝑤, 𝐵) be
a node-weighted CDAG with budget B. A valid WRBPG schedule for𝐺
exists if and only if, for all 𝑣 ∈ (𝑉 \ A(𝐺)), the following inequality
holds:

𝑤𝑣 +
∑︁

𝑝∈H(𝑣)
𝑤𝑝 ≤ 𝐵

Proof. If a valid schedule for 𝐺 exists, then move𝑀3(𝑣) must

have been performed on all non-source nodes 𝑣 ∈ (𝑉 \ A(𝐺))
to satisfy the stopping condition. This move requires the place-

ment of a red pebble on 𝑣 and its parents H(𝑣) simultaneously

by definition. Thus, 𝑤𝑣 +
∑
𝑝∈H(𝑣) 𝑤𝑝 ≤ 𝐵 must hold based on

the weighted budget constraint in Definition 2.1. Conversely, if

𝑤𝑣 +
∑
𝑝∈H(𝑣) 𝑤𝑝 ≤ 𝐵 for 𝑣 ∈ (𝑉 \ A(𝐺)), then a schedule can be

trivially constructed by computing each node based on a topologi-

cal ordering and performing moves𝑀2 and𝑀4 to free up weighted

fast memory resources. □

Proposition 2.4 (Algorithmic Lower Bound). Let 𝐺 = (𝑉 , 𝐸,
𝑤, 𝐵) be any node-weighted CDAG with a valid budget 𝐵. For any
valid schedule 𝑆𝐺 , the 𝐶𝑜𝑠𝑡 (𝑆𝐺) is lower bounded as follows:∑︁

𝑣∈A(𝐺)
𝑤𝑣 +

∑︁
𝑣∈Z(𝐺)

𝑤𝑣 ≤ 𝐶𝑜𝑠𝑡 (𝑆𝐺).

Proof. The starting condition of 𝐺 assumes blue pebbles on

all 𝑣 ∈ A(𝐺). Pebbling the graph will therefore require perform-

ing move 𝑀1(𝑣) on all source nodes at least once, resulting in∑
𝑣∈A(𝐺) 𝑤𝑣 weighted input cost. Similarly, the stopping condition

assumes all sink nodes have a blue pebble which must be performed

once using move𝑀2(𝑣), resulting in∑
𝑣∈Z(𝐺) 𝑤𝑣 weighted output

cost. Since we assume that all source nodes are distinct from sink

nodes, the cost of any valid schedule is at least the weighted sum

of the sources and sinks. □

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Abhishek Bhattacharjee, Quanquan C. Liu, Rajit Manohar, Raghavendra Pradyumna Pothukuchi, and Muhammed Ugur

2.3 Model Applications
We apply the WRBPG to two key system problems: generating

efficient data movement schedules under fast memory constraints,

and determining minimal fast memory sizes for application-specific

hardware design. Both leverage the weighted schedule cost (Defini-

tion 2.2) combined with pebbling algorithms (Section 3) to optimize

data transfer between fast and slowmemory. Our objective is to find

valid schedules that minimize this data movement. We formalize

these two optimization targets as follows:

Definition 2.5 (Minimum Weighted Schedule). Let S𝐺 be
the set of all valid WRBPG schedules on a graph 𝐺 = (𝑉 , 𝐸,𝑤, 𝐵). A
minimal schedule is defined as a schedule 𝑆𝐺 ∈ S𝐺 that pebbles the
graph with the lowest weighted schedule cost, i.e.,

𝑆𝐺
min

= arg min

𝑆𝐺 ∈S𝐺
𝐶𝑜𝑠𝑡 (𝑆𝐺)

Definition 2.6 (Minimum Fast Memory Size). Let F be the
set of all valid budgets on the nodes 𝑉 , edges 𝐸, and node weights𝑤
for a given CDAG. We define the minimum fast memory size as the
smallest budget 𝑏 ∈ F with a valid WRBPG schedule that matches
the algorithmic lower bound (Proposition 2.4), i.e.,

𝐵min = min

𝑏∈F
𝑏 subject to

𝐶𝑜𝑠𝑡 (𝑆𝐺
𝑏

min
) =

∑︁
𝑣∈A(𝐺𝑏)

𝑤𝑣 +
∑︁

𝑣∈Z(𝐺𝑏)
𝑤𝑣 s.t. 𝐺𝑏 = (𝑉 , 𝐸,𝑤,𝑏)

3 Dataflow-Specific Pebbling Algorithms
Optimizing over the space of valid schedules and budgets requires

search procedures that are both efficient and agnostic to weighted

resources. Procedures which output optimum results for any CDAG

in the original red-blue pebble game are known to be PSPACE-

complete [14]. The WRBPG simulates the original game when𝑤𝑣 =

1 for all 𝑣 ∈ 𝑉 and fast memory budget 𝐵 = 𝑅 for any number

of red pebbles 𝑅, so designing procedures for arbitrary CDAGs to

optimally solve the weighted variant is difficult.

Our approach instead focuses on designing dataflow-specific

pebbling algorithms since our domain primarily consists of com-

putations with structured graph representations. These structures

have regular dataflow patterns which assist our search procedures

and allow us to solve the game more efficiently. To highlight our

approach, we provide an example graph construction and optimum

pebbling algorithm for the DWT kernel. This kernel is an exam-

ple of a core signal processing workload for BCIs and exhibits a

recursive dataflow pattern commonly found across the domain.

Our DWT pebbling algorithm exploits the implicit tree structure

in the dataflow and efficiently generalizes across weights and all

budgets. This result extends to 𝑘-ary trees, covering a wide class of

dataflows which are the building blocks for most CDAGs, enabling

the modeling of multi-operand computations.

3.1 The Discrete Wavelet Transform (DWT)
DWT is a signal processing transformation used for time-frequency

analysis on signals and data compression pipelines [24]. The input

to the transform is a real-valued signal, and the output of the trans-

form is the scaling function (averages) and the wavelet function

(coefficients). In this section, we provide a parameterized dataflow

graph for the commonly used Haar wavelet transforms (Defini-

tion 3.1). Then, we provide a pebbling algorithm that outputs op-

timum WRBPG schedules for any instantiation of the dataflow

(Algorithm 1).

3.1.1 Dataflow Given an input vector ®𝑥 ∈ R𝑁
representing a

signal of length 𝑁 , the Haar wavelet transform will translate ®𝑥 into

a set of averages ®𝑎𝑑 ∈ R𝑁 /2𝑑
and a set of coefficients ®𝑐𝑑 ∈ R𝑁 /2𝑑

for

𝑑 = 1, . . . , log
2
(𝑁), where 𝑑 represents the level of the transform.

For 𝑑 = 1, the averages/coefficients are computed using the input

vector ®𝑥 , but for 𝑑 > 1, ®𝑎𝑑 and ®𝑐𝑑 are computed using the previous

averages ®𝑎𝑑−1 recursively.
Given two consecutive samples 𝑥 [𝑗] and 𝑥 [𝑗 + 1] in the input

signal, the average is computed as

𝑎[𝑗] = 𝑥 [𝑗] + 𝑥 [𝑗 + 1]
√
2

and, given the same two samples, the coefficient is computed as

𝑐 [𝑗] = 𝑥 [𝑗] − 𝑥 [𝑗 + 1]
√
2

.

For level 𝑑 = 1, the first set of averages and coefficients are

®𝑎1 =
[
𝑥 [0] + 𝑥 [1]
√
2

,
𝑥 [2] + 𝑥 [3]
√
2

, . . . ,
𝑥 [𝑁 − 2] + 𝑥 [𝑁 − 1]

√
2

]
®𝑐1 =

[
𝑥 [0] − 𝑥 [1]
√
2

,
𝑥 [2] − 𝑥 [3]
√
2

, . . . ,
𝑥 [𝑁 − 2] − 𝑥 [𝑁 − 1]

√
2

]
For level 𝑑 > 1, the averages and coefficients are

®𝑎𝑑 =

[
𝑎𝑑−1 [0] + 𝑎𝑑−1 [1]√

2

,
𝑎𝑑−1 [2] + 𝑎𝑑−1 [3]√

2

, . . . ,

𝑎𝑑−1 [𝑁 /2𝑑−1 − 2] + 𝑎𝑑−1 [𝑁 /2𝑑−1 − 1]√
2

]
®𝑐𝑑 =

[
𝑎𝑑−1 [0] − 𝑎𝑑−1 [1]√

2

,
𝑎𝑑−1 [2] − 𝑎𝑑−1 [3]√

2

, . . . ,

𝑎𝑑−1 [𝑁 /2𝑑−1 − 2] − 𝑎𝑑−1 [𝑁 /2𝑑−1 − 1]√
2

]
This recursion happens for at most log

2
(𝑁) steps, which determines

the maximum level for the transform.

Definition 3.1 (DWT Graphs). Let 𝐷𝑊𝑇 (𝑛,𝑑) = (𝑉 , 𝐸,𝑤, 𝐵)
be the DWT graph consisting of a level 𝑑 ∈ Z≥1 and inputs 𝑛 ∈{
𝑘 · 2𝑑

��� 𝑘 ∈ Z≥1}. This graph contains𝑑+1 sets of nodes 𝑆1, 𝑆2, . . . , 𝑆𝑑 ,
𝑆𝑑+1, where 𝑆1 contains the input nodes and 𝑆𝑑+1 contains the final
set of averages/coefficients. For each 𝑆𝑖 where 𝑖 > 2, there are |𝑆𝑖−1 |/2
nodes in 𝑆𝑖 . Suppose we index each 𝑆𝑖 from 1 to |𝑆𝑖 |. Then, we have
the following directed edges:

(1) For each 𝑣1
𝑗
∈ 𝑆1, where 𝑗 is the index of the node, there exists a

directed edge (𝑣1
𝑗
, 𝑣2

𝑗
); also, if 𝑗 mod 2 = 1, then there is exists

a directed edge
(
𝑣1
𝑗
, 𝑣2

𝑗+1

)
; otherwise, if 𝑗 mod 2 = 0, then there

exists a directed edge
(
𝑣1
𝑗
, 𝑣2

𝑗−1

)
.

(2) For each 𝑣𝑖
𝑗
∈ 𝑆𝑖 where 2 ≤ 𝑖 ≤ 𝑑 and 𝑗 mod 4 = 1, there

exists directed edges
(
𝑣𝑖
𝑗
, 𝑣𝑖+1(𝑗+1)/2

)
and

(
𝑣𝑖
𝑗
, 𝑣𝑖+1(𝑗+3)/2

)
.

Dataflow-Specific Algorithms for Resource-Constrained Scheduling and Memory Design SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

S1 S2

v1
1

v2
1

v3
1

v4
1

v1
2

v2
2

v3
2

v4
2

(a) 𝐷𝑊𝑇 (4, 1) where 𝑛 = 4 and 𝑑 = 1.

S1 S2 S3

v1
1

v2
1

v3
1

v4
1

v1
2

v2
2

v3
2

v4
2

v1
3

v2
3

(b) 𝐷𝑊𝑇 (4, 2) where 𝑛 = 4 and 𝑑 = 2.

Figure 2: 𝐷𝑊𝑇 (𝑛,𝑑) graphs for the same number of inputs 𝑛 but different levels 𝑑 based on Definition 3.1.

(3) For each 𝑣𝑖
𝑗
∈ 𝑆𝑖 where 2 ≤ 𝑖 ≤ 𝑑 and 𝑗 mod 4 = 3, there

exists directed edges
(
𝑣𝑖
𝑗
, 𝑣𝑖+1(𝑗−1)/2

)
and

(
𝑣𝑖
𝑗
, 𝑣𝑖+1(𝑗+1)/2

)
.

Figure 2 shows example graphs based on this definition.

Our DWT construction is for the Haar wavelet and its recursive

implementation; however, there are many other wavelets that can

be used for the DWT. In general, the DWT performs a convolu-

tion with a low pass filter to compute the averages and another

convolution with a high pass filter to compute the coefficients. In

our example,

[
1√
2

, 1√
2

]
and

[
1√
2

,− 1√
2

]
are the low-pass and high-

pass filters respectively. These convolutions include downsampling

and are performed recursively in multiple levels. The dataflow in

Definition 3.1 is applicable to any wavelet of size two and any

normalization factor (i.e.,
√
2, 2, etc.). Furthermore, the non-input

nodes in the DWT graph represent addition or subtraction oper-

ations plus a scale factor. Coarser or finer operation granularities

are possible and functionally equivalent. We opt for finer granular-

ities given our extreme resource constraints. Wavelet transforms

that perform convolutions with more than two inputs/averages or

coarser operations are left to future work.

3.1.2 Optimum Pebbling For any given node-weighted DWT(n,

d) graph, our proof strategy first prunes the output coefficients of

the initial graph such that the pruned graph forms a binary tree. We

then introduce a recursive approach to find the minimum schedule

for this binary tree. The minimal schedule for the pruned graph is

then trivially updated to find the minimal schedule for the initial

graph. An example pruning of the initial graph is shown in Figure 3.

Lemma 3.2 (Minimum Weighted Schedule for DWT). Let 𝐺
be any node-weighted 𝐷𝑊𝑇 (𝑛,𝑑) = (𝑉 , 𝐸,𝑤, 𝐵) graph such that
𝑤𝑣𝑖

𝑗
≤ 𝑤𝑣𝑖

𝑘
for 𝑖 > 1, 𝑗 mod 2 = 0, and 𝑘 mod 2 = 1. Let 𝐺 ′ be

the graph 𝐺 with all 𝑣𝑖
𝑗
∈ 𝑉 and (𝑢, 𝑣𝑖

𝑗
) ∈ 𝐸 removed. 𝑆𝐺

min
can be

constructed from 𝑆𝐺
′

min
by computing/moving 𝑣𝑖

𝑗
without excess cost.

Proof. To compute any node (i.e., move 𝑀3), there must be

red pebbles on their immediate predecessors. Let 𝑣 be any node

𝑣𝑖
𝑗
∈ 𝑉 and 𝑢 any node 𝑣𝑖

𝑗+1 ∈ 𝑉 where 𝑖 > 1 and 𝑗 mod 2 = 1. By

construction, 𝑣 and 𝑢 have the same immediate predecessors, i.e.,
H(𝑣) = H(𝑢).

Suppose that 𝜎𝑘 = 𝑀3(𝑣) is the location in the minimum sched-

ule 𝑆𝐺
′

min
= (𝜎1, . . . , 𝜎𝑡) where 𝑣 was computed. Then, we update the

schedule by inserting the sequence (𝑀3(𝑢), 𝑀2(𝑢), 𝑀4(𝑢)) after
position 𝑘 −1 and before position 𝑘 . This corresponds to computing

𝑢, moving it to slow memory, and then removing it from fast mem-

ory. This is possible because the parents of 𝑣 are shared with 𝑢 and

they are already pebbled red given the valid schedule. Furthermore,

we assume 𝑤𝑢 ≤ 𝑤𝑣 , so the weighted budget constraint remains

valid. Inserting these sequences constructs a new schedule 𝑆𝐺𝑛𝑒𝑤
which pebbles all nodes and fulfills the stopping condition since

all 𝑢 nodes are outputs. This implies that 𝑆𝐺𝑛𝑒𝑤 = 𝑆𝐺
min

because the

only additional costs relative to 𝑆𝐺
′

min
stem from𝑀2(𝑢) which must

be performed regardless to fulfill the stopping condition for 𝐺 , and

thus, a schedule with a lower weighted cost does not exist. □

Using this insight, we introduce a procedure for calculating the

cost of the minimumweighted schedule for the pruned DWT graph.

Lemma 3.3 (Minimum Weighted Cost for Pruned DWT). Let
𝑆 ′
1
, 𝑆′

2
, . . . , 𝑆 ′

𝑑
, 𝑆′

𝑑+1 be the layers for any pruned graph𝐺
′. The cost of

the minimum weighted schedule for 𝐺 ′ with its budget 𝐵 is given by

𝐶𝑜𝑠𝑡 (𝑆𝐺
′

min
) =

∑︁
𝑣∈𝑆 ′

𝑑+1

𝑤𝑣 +
∑︁

𝑣∈𝑆 ′
𝑑+1

𝑃 (𝑣, 𝐵) (1)

where

𝑃 (𝑣, 𝑏) =

∞
if𝑤𝑣+∑

𝑝∈H(𝑣) 𝑤𝑝 > 𝑏

min

𝑃 (𝑝1, 𝑏) + 𝑃 (𝑝2, 𝑏) + 2 ·𝑤𝑝1 ,

𝑃 (𝑝1, 𝑏) + 𝑃 (𝑝2, 𝑏 −𝑤𝑝1),
𝑃 (𝑝2, 𝑏) + 𝑃 (𝑝1, 𝑏) + 2 ·𝑤𝑝2 ,

𝑃 (𝑝2, 𝑏) + 𝑃 (𝑝1, 𝑏 −𝑤𝑝2)

if 𝑝1, 𝑝2 ∈ H (𝑣)

𝑤𝑣 ifH(𝑣) = ∅
(2)

Proof. The first observation is that DWT graphs could have

multiple independent subgraphs based on the values 𝑛 and 𝑑 (e.g.,

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Abhishek Bhattacharjee, Quanquan C. Liu, Rajit Manohar, Raghavendra Pradyumna Pothukuchi, and Muhammed Ugur

S1 S2 S3

v1
1

v2
1

v3
1

v4
1

v1
2

v2
2

v3
2

v4
2

v1
3

v2
3

v5
1

v6
1

v7
1

v8
1

v5
2

v6
2

v7
2

v8
2

v3
3

v4
3

S4

v1
4

v2
4

(a) Original graph𝐺 based on Definition 3.1.

S1 S2 S3

v1
1

v2
1

v3
1

v4
1

v1
2

v3
2

v1
3

v5
1

v6
1

v7
1

v8
1

v5
2

v7
2

v3
3

S4

v1
4

(b) Pruned graph𝐺 ′ based on Lemma 3.2.

Figure 3: The original 𝐷𝑊𝑇 (8, 3) graph 𝐺 (left) and the pruned graph 𝐺 ′ (right) without nodes 𝑣𝑖
𝑗
where 𝑗 mod 2 = 0 and 𝑖 > 1.

Figure 2a). Placing red pebbles across independent subgraphs con-

currently only lowers the budget for each subgraph without im-

proving weighted I/O cost. In other words, any minimum weighted

schedule which pebbles subgraphs concurrently can be trivially

reordered to have each subgraph pebbled sequentially. Therefore,

it is sufficient to produce a minimum weighted schedule for each

subgraph given that they all have the same node and edge structure.

The cost of the minimum weighted schedule for 𝐺 ′ is therefore
calculated as the sum of costs across each independent subgraph.

The second observation is that each subgraph has a recursive

binary tree structure. We prove the minimum weighted cost of

computing this structure using induction. For simplicity, we set the

stopping condition to be computing the sink of the (sub)tree by

placing a red pebble on it.

Our base case considers the weighted cost of computing layer

𝑆 ′
2
in an independent subgraph. Assuming that a valid WRBPG

schedule exists, each node 𝑣 ∈ 𝑆 ′
2
can be computed by moving its

parents into fast memory and placing its result in fast memory. Since

each 𝑣 ∈ 𝑆 ′
2
and its parents 𝑝1, 𝑝2 ∈ H (𝑣) form an independent

subgraph as well, the minimum schedule for each subgraph is to

move each parent once using 𝑀1, which has a cost of 𝑤𝑝1 +𝑤𝑝2 .

This exactly equals 𝑃 (𝑣, 𝑏) = 𝑃 (𝑝1, 𝑏) + 𝑃 (𝑝2, 𝑏 −𝑤𝑝1) = 𝑃 (𝑝2, 𝑏) +
𝑃 (𝑝1, 𝑏−𝑤𝑝2) = 𝑤𝑝1 +𝑤𝑝2 by definition becauseH(𝑝1) = H(𝑝2) =
∅ and𝑤𝑣 +𝑤𝑝1 +𝑤𝑝2 ≤ 𝑏 must hold for any valid budget 𝑏 ≤ 𝐵. If

𝑏 is not valid, then no WRBPG schedule exists and the cost is set to

∞. Thus, the minimum weighted cost of the entire layer is simply∑
𝑣∈𝑆 ′

2

(𝑤𝑝1 +𝑤𝑝2) =
∑

𝑣∈𝑆 ′
2

𝑃 (𝑣, 𝑏).

Then, for every node 𝑣𝑖 ∈ 𝑆 ′
𝑖
where 𝑖 > 2, we assume via induc-

tion that the minimum weighted cost of computing the node 𝑣𝑖 is

𝑃 (𝑣𝑖 , 𝑏) and the minimum weighted cost of computing the layer 𝑆 ′
𝑖

is

∑
𝑣𝑖 ∈𝑆 ′

𝑖
𝑃 (𝑣𝑖 , 𝑏) for any budget 𝑏 ≤ 𝐵. Now, we show the cost of

computing the nodes 𝑣𝑖+1 ∈ 𝑆 ′
𝑖+1.

To compute any node 𝑣𝑖+1, we must first have a red pebble on the

parents 𝑝1, 𝑝2 ∈ H (𝑣𝑖+1). There are only eight possible strategies

for computing 𝑣𝑖+1. These are determined by the choice of which

parent to compute first in the schedule and whether the parent

maintains its red pebble when computing the remaining parent.

The best choice will be the lowest weighted cost of all possible

strategies. We outline each strategy and cost function as follows:

min

𝑃 (𝑝1, 𝑏) + 𝑃 (𝑝2, 𝑏) + 2 ·𝑤𝑝1 + 2 ·𝑤𝑝2 ,

𝑃 (𝑝1, 𝑏) + 𝑃 (𝑝2, 𝑏 −𝑤𝑝1) + 2 ·𝑤𝑝2 ,

𝑃 (𝑝1, 𝑏) + 𝑃 (𝑝2, 𝑏) + 2 ·𝑤𝑝1 ,

𝑃 (𝑝1, 𝑏) + 𝑃 (𝑝2, 𝑏 −𝑤𝑝1),
𝑃 (𝑝2, 𝑏) + 𝑃 (𝑝1, 𝑏) + 2 ·𝑤𝑝1 + 2 ·𝑤𝑝2 ,

𝑃 (𝑝2, 𝑏) + 𝑃 (𝑝1, 𝑏 −𝑤𝑝2) + 2 ·𝑤𝑝1 ,

𝑃 (𝑝2, 𝑏) + 𝑃 (𝑝1, 𝑏) + 2 ·𝑤𝑝2 ,

𝑃 (𝑝2, 𝑏) + 𝑃 (𝑝1, 𝑏 −𝑤𝑝2)

(1) 𝑏𝑙𝑢𝑒 𝑝1, 𝑏𝑙𝑢𝑒 𝑝2
(2) 𝑟𝑒𝑑 𝑝1, 𝑏𝑙𝑢𝑒 𝑝2
(3) 𝑏𝑙𝑢𝑒 𝑝1, 𝑟𝑒𝑑 𝑝2
(4) 𝑟𝑒𝑑 𝑝1, 𝑟𝑒𝑑 𝑝2
(5) 𝑏𝑙𝑢𝑒 𝑝2, 𝑏𝑙𝑢𝑒 𝑝1
(6) 𝑟𝑒𝑑 𝑝2, 𝑏𝑙𝑢𝑒 𝑝1
(7) 𝑏𝑙𝑢𝑒 𝑝2, 𝑟𝑒𝑑 𝑝1
(8) 𝑟𝑒𝑑 𝑝2, 𝑟𝑒𝑑 𝑝1

(3)

Each entry in this equation corresponds to a sequence of moves.

For example, entry (3) corresponds to computing 𝑝1, placing its

blue pebble, removing its red pebble, computing parent 𝑝2, then

moving 𝑝1 back into fast memory to compute 𝑣𝑖+1. We enumerate

all possible orderings and whether to keep the red pebble or replace

with a blue pebble when computing each parent, ensuring that red

pebble placements reduce the budget of the remaining parent.

Dataflow-Specific Algorithms for Resource-Constrained Scheduling and Memory Design SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

Furthermore, this equation can be simplified. (3) and (4) will

always be a better strategy than (1) and (2) respectively. Similarly, (7)

and (8) will always be better than (5) and (6) respectively. Therefore,

the representative set of strategies are the following:

min

𝑃 (𝑝1, 𝑏) + 𝑃 (𝑝2, 𝑏) + 2 ·𝑤𝑝1 ,

𝑃 (𝑝1, 𝑏) + 𝑃 (𝑝2, 𝑏 −𝑤𝑝1),
𝑃 (𝑝2, 𝑏) + 𝑃 (𝑝1, 𝑏) + 2 ·𝑤𝑝2 ,

𝑃 (𝑝2, 𝑏) + 𝑃 (𝑝1, 𝑏 −𝑤𝑝2)

(3) 𝑏𝑙𝑢𝑒 𝑝1, 𝑟𝑒𝑑 𝑝2
(4) 𝑟𝑒𝑑 𝑝1, 𝑟𝑒𝑑 𝑝2
(7) 𝑏𝑙𝑢𝑒 𝑝2, 𝑟𝑒𝑑 𝑝1
(8) 𝑟𝑒𝑑 𝑝2, 𝑟𝑒𝑑 𝑝1

(4)

By our induction hypothesis, the minimum weighted cost to

compute each parent with a red pebble is 𝑃 (𝑝1, 𝑏) and 𝑃 (𝑝2, 𝑏)
respectively for any 𝑏 ≤ 𝐵 since 𝑝1, 𝑝2 ∈ 𝑆 ′

𝑖
. These procedures

correspond to valid schedules which can be concatenated into the

schedule for 𝑣𝑖+1. Therefore, the minimum weighted cost of com-

puting 𝑣𝑖+1 is determined by Eq. (4) which corresponds exactly to

𝑃 (𝑣𝑖+1, 𝑏). This hold for any 𝑣𝑖+1 ∈ 𝑆 ′
𝑖+1 given their independence

among each other, and thus, the minimum weighted cost of the

layer is

∑
𝑣𝑖+1∈𝑆 ′

𝑖+1
𝑃 (𝑣𝑖+1, 𝑏).

Additionally, each output node must be pebbled blue to fulfill the

stopping condition of the WRBPG. This can be done as soon as a

node 𝑣 ∈ 𝑆 ′
𝑑+1 is computed. The additional cost of this is

∑
𝑣∈𝑆 ′

𝑑+1
𝑤𝑣

in the schedule. Thus, the cost of the minimum weighted schedule

for 𝐺 ′ under budget 𝐵 is

∑
𝑣∈𝑆 ′

𝑑+1
𝑤𝑣 +

∑
𝑣∈𝑆 ′

𝑑+1
𝑃 (𝑣, 𝐵). □

Lemma 3.4 (Minimum Weighted Cost for DWT). The cost of
the minimum weighted schedule for any 𝐷𝑊𝑇 (𝑛,𝑑) = (𝑉 , 𝐸,𝑤, 𝐵)
graph 𝐺 is calculated as follows:∑︁

𝑣𝑖
𝑗
∈𝑉

𝑖>1, 𝑗 mod 2=0

𝑤𝑣𝑖
𝑗
+

∑︁
𝑣𝑘 ∈𝑆𝑑+1

𝑘 mod 2=1

𝑤𝑣𝑘 +
∑︁

𝑣𝑘 ∈𝑆𝑑+1
𝑘 mod 2=1

𝑃 (𝑣𝑘 , 𝐵) (5)

Proof. Lemma 3.2 shows that the graph 𝐺 can be constructed

from the minimum schedule of the pruned graph 𝐺 ′. This is done
by placing a blue pebble on every pruned node 𝑣𝑖

𝑗
∈ 𝑉 where

𝑗 mod 2 = 0 and 𝑖 > 1; the total cost of this transformation is

∑
𝑤𝑣𝑖

𝑗
.

The remaining cost of the minimum schedule follows directly from

Lemma 3.3. Crucially, this cost is associated with a schedule gener-

ation procedure that adheres to the WRBPG rules. □

3.1.3 Schedule Generation In this section, we bridge the mini-

mum cost characterization established in Lemma 3.4 with a concrete,

polynomial-time algorithm that generates an optimal schedule for

the DWT. We present an algorithm that produces a minimum-

weight schedule while ensuring computational efficiency relative

to the input size.

Theorem 3.5 (Optimal Schedule Generation for DWT). For
any instance of the DWT graph 𝐷𝑊𝑇 (𝑛,𝑑) = (𝑉 , 𝐸,𝑤, 𝐵), Algo-
rithm 1 computes a minimum-weight WRBPG schedule for the graph
in time Θ(poly(𝐵 · |𝑉 |)).

Proof. We first establish that Algorithm 1, specifically the func-

tion PebbleDWT, produces an optimal schedule for the WRBPG.

This result follows directly from Lemma 3.4, which characterizes

the construction of a minimum-weight schedule over the DWT

graph. The implementation in Algorithm 1 closely mirrors this

procedure. In particular, the schedule construction in PebbleTree,

defined on Lines 25–38, computes the minimum-weight schedule

Algorithm 1 Optimum WRBPG Schedule Generator for DWT

1: procedure PebbleDWT(𝐺)

2: M← ∅ ⊲ Memo

3: 𝑆𝐺 ← ∅ ⊲ Schedule

4: for 𝑣 𝑗 ∈ Z(𝐺) do
5: if 𝑗 mod 2 = 1 then
6: 𝑆 𝑗 ← PebbleTree(𝑣 𝑗 , 𝐵,M) ++ (𝑀2(𝑣 𝑗), 𝑀4(𝑣 𝑗))
7: 𝑆𝐺 ← 𝑆𝐺 ++ 𝑆 𝑗
8: end if
9: end for
10: return 𝑆𝐺

11: end procedure
12:

13: procedure PebbleTree(𝑣𝑖
𝑗
, 𝑏,M)

14: 𝑣 ← 𝑣𝑖
𝑗
, 𝑢 ← 𝑣𝑖

𝑗+1
15: if M[𝑣] [𝑏] ≠ ⊥ then
16: return M[𝑣] [𝑏]
17: end if
18: if parents(𝑣) = ∅ then
19: return𝑀1(𝑣)
20: end if
21: 𝑝1, 𝑝2 = parents(𝑣)
22: if 𝑤𝑣 +𝑤𝑝1 +𝑤𝑝2 > 𝑏 then
23: return 𝐼𝑁𝑉 ⊲ Invalid entry,∞ cost

24: end if
25: 𝐶 ← (𝑀3(𝑢), 𝑀2(𝑢), 𝑀4(𝑢), 𝑀3(𝑣))
26: 𝑃1← PebbleTree(𝑝1, 𝑏,M)
27: 𝑃2← PebbleTree(𝑝2, 𝑏,M)
28: 𝐿𝑃1← PebbleTree(𝑝1, 𝑏 −𝑤𝑝2 ,M)
29: 𝐿𝑃2← PebbleTree(𝑝2, 𝑏 −𝑤𝑝1 ,M)
30: 𝑅1← 𝑀1(𝑝1), 𝑅2← 𝑀1(𝑝2)
31: 𝐵1← 𝑀2(𝑝1), 𝐵2← 𝑀2(𝑝2)
32: M[𝑣] [𝑏] ← ArgMin(⊲ Returns schedule

33: Cost(𝑃1 ++ 𝐵1 ++ 𝑃2 ++ 𝑅1 ++𝐶),
34: Cost(𝑃1 ++ 𝐿𝑃2 ++𝐶),
35: Cost(𝑃2 ++ 𝐵2 ++ 𝑃1 ++ 𝑅2 ++𝐶),
36: Cost(𝑃2 ++ 𝐿𝑃1 ++𝐶)
37:)
38: return M[𝑣] [𝑏]
39: end procedure

for each subtree rooted at a node. Line 25 handles the moves re-

quired for the pruned node and includes the computation of the

current node. The base case of the recursion is implemented on

Lines 18–20, while the budget feasibility check is enforced on Lines

22-24. Memoization of subproblem solutions is performed in Lines

15–17. Finally, the outer PebbleDWT function iterates over the

output nodes in Lines 4–9. Line 6 performs the final blue pebble

placement for the outputs of each tree.

We now analyze the runtime of Algorithm 1. The PebbleDWT

procedure iterates over every other output node in the graph, peb-

bling each independent subgraph of the DWT. Each recursive call

requires at most 𝐵 · |𝑉 | operations due to the memoization. The

algorithm stores the minimum-weight schedule for every node at

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Abhishek Bhattacharjee, Quanquan C. Liu, Rajit Manohar, Raghavendra Pradyumna Pothukuchi, and Muhammed Ugur

𝑃𝑡 (𝑣, 𝑏) =

∞ if𝑤𝑣 +
∑
𝑝∈H(𝑣) 𝑤𝑝 > 𝑏

min

𝛿∈{0,1}𝑘
𝜎∈Perm(H(𝑣))

𝑘∑︁
𝑖=1

𝑃𝑡 (𝜎 (𝑖), 𝑏 −
𝑖−1∑︁
𝑗=1

𝛿 𝑗 ·𝑤𝜎 (𝑗)) + 2 ·
𝑘∑︁
𝑖=1

(1 − 𝛿𝑖) ·𝑤𝜎 (𝑖)

 ifH(𝑣) ≠ ∅

𝑤𝑣 ifH(𝑣) = ∅

(6)

each possible budget value, avoiding redundant computations. Con-

structing individual moves within the schedule occurs in constant

time, while evaluating the cost of a schedule naively takes time

linear in the number of nodes; however, this cost can be stored and

updated incrementally with each step to maintain constant-time

access. Since the total number of iterations is bounded by O(𝐵 · |𝑉 |)
and each operation within an iteration executes in polynomial time,

the overall runtime of the algorithm lies withinΘ(poly(𝐵 · |𝑉 |)). □

This completes our dataflow-specific algorithm design for the

DWT. Through this example, we demonstrate how the WRBPG

framework can be effectively applied to generate schedules that are

both provably optimal and computationally efficient for relevant

classes of graphs. We further leverage this procedure in our evalu-

ation to compare I/O costs (Section 5.2) and to analyze minimum

fast memory requirements (Section 5.3).

3.2 𝑘-ary Trees
Our recursive approach to optimal schedule generation is broadly

applicable to the class of 𝑘-ary tree graphs. In this section, we

extend our recursive cost procedure for the minimum weighted

schedule to handle arbitrary in-degrees instead of considering only

binary trees. This approach is efficient up to some bound on the

in-degree relative to the inputs.

Definition 3.6 (k-ary Tree Graphs). Let 𝑘 ∈ N≥1. A 𝑘-ary tree

graph is a node-weighted graph 𝑇 = (𝑉 , 𝐸,𝑤, 𝐵) under the resource
budget 𝐵 with the following properties:

(1) 𝑇 is a rooted tree with a unique sink node 𝑟 ∈ 𝑉 such that
every node in 𝑉 \ {𝑟 } has a directed path to 𝑟 .

(2) Each node 𝑣 ∈ 𝑉 has at most 𝑘 incoming edges:

in-deg(𝑣) ≤ 𝑘.

(3) Each edge (𝑢, 𝑣) ∈ 𝐸 is directed from a parent node 𝑢 to its
child 𝑣 , forming a computation directed toward the sink 𝑟 .

We denote the class of such graphs with parameter 𝑘 as T𝑘 .

Lemma 3.7 (Minimum Weighted Cost for 𝑘-ary Trees). Let
𝑇 = (𝑉 , 𝐸,𝑤, 𝐵) ∈ T𝑘 be a weighted 𝑘-ary tree graph with 𝑛 nodes,
where each node has in-degree at most 𝑘 . The cost of the minimum
weighted schedule of 𝑇 for its sink node 𝑟 ∈ 𝑉 and its budget 𝐵 is
given as follows:

𝐶𝑜𝑠𝑡 (𝑆𝑇
min
) = 𝑤𝑟 + 𝑃𝑡 (𝑟, 𝐵) (7)

where 𝑃𝑡 (𝑣, 𝑏) is defined in Equation (6).

Proof. We prove this calculation through induction similar to

Lemma 3.3. For simplicity, we set the stopping condition to be

computing the sink of the (sub)tree by placing a red pebble on it.

The base case considers any input node 𝑣 ∈ A(𝑇). Placing a red

pebble on an input node requires moving them into fast memory

using𝑀1(𝑣) with a trivial weighted cost of𝑤𝑣 .

Assume via induction that the minimum weighted cost of the

computing any subtree rooted at node 𝑣ℎ with ℎ levels is 𝑃𝑡 (𝑣ℎ, 𝑏)
for any budget 𝑏 ≤ 𝐵. The cost of computing the subtrees rooted

nodes with ℎ + 1 levels is as follows. Each root will have up to 𝑘

parents, i.e., 𝑝1, 𝑝2, . . . , 𝑝𝑘 ∈ H (𝑣ℎ+1), and each parent will have

ℎ levels by definition. The minimum cost strategy will be to enu-

merate ordering of the parents, and for each ordering, selecting

whether to keep the red pebble on a parent or placing a blue peb-

ble on it instead. This is a binary decision so there are 2
𝑘
possi-

ble placement choices. Combined with the 𝑘! possible orderings,

there are 2
𝑘 (𝑘!) possible schedules. The best schedule is the lowest

weighted cost among them. By our induction hypothesis, 𝑃𝑡 (𝑝𝑖 , 𝑏)
for 1 ≤ 𝑖 ≤ 𝑘 is the minimum cost schedule for each parent, and

therefore, 𝑃𝑡 (𝑣ℎ+1, 𝑏) calculates the minimum schedule cost for any

subtree with ℎ + 1 levels. The final step is to place a blue pebble on

the root 𝑟 ∈ 𝑉 of the 𝑘-ary tree𝑇 . This cost is simply𝑤𝑟 . Therefore,

𝐸𝑞. (7) is the optimum weighted cost for any 𝑘-ary tree𝑇 ∈ T𝑘 . □

We now show that this optimal procedure is efficient up to some

bound on 𝑘 . Together, this translates directly to polynomial-time

schedule generation for most computational 𝑘-ary trees with any

resource budget and assignment of node weights.

Theorem 3.8 (Optimal Schedule Generation for Bounded

In-degree Trees). Let 𝑇 = (𝑉 , 𝐸,𝑤, 𝐵) ∈ T𝑘 be a weighted 𝑘-ary
tree graphwith𝑛 nodes, where each node has in-degree atmost𝑘 . Then,
for any budget 𝐵, the optimal schedule for 𝑇 under the WRBPG can
be constructed in polynomial time, provided that 𝑘 = O(log log𝑛).

Proof. The optimality proof in Lemma 3.7 performs up to 2
𝑘 (𝑘!)

recursive steps for each node in the tree. If 𝑘 is O(log log𝑛), then
this is O(log𝑛 · (log log𝑛)!) steps for each node. By Stirling’s Ap-

proximation, (log log𝑛)! is bounded as follows (assuming base-2

logarithm):

2
log((log log𝑛)!) = 2

O(log log𝑛 ·log log log𝑛)

which is further bounded by O(𝑛), i.e.,

2
O(log log𝑛 ·log log log𝑛) = 2

O((log log𝑛)2)

= 2
O(2log log𝑛)

= 2
O(log𝑛)

= O(𝑛)

Thus, (log log𝑛)! = O(𝑛), and the number of recursive calls is

O(𝑛 log𝑛) for each node at a given budget. Through dynamic pro-

gramming, the minimum schedule cost can be cached for each

node and budget. The total runtime is therefore O(𝐵 · |𝑉 |2 log |𝑉 |)
assuming 𝑘 = O(log log𝑛). In practice, 𝑘 is typically O(1) with

Dataflow-Specific Algorithms for Resource-Constrained Scheduling and Memory Design SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

𝑃𝑚 (𝑣, 𝑏, 𝐼 , 𝑅) =

∞ if

∑
𝑟 ∈𝑅∪H(𝑣)∪{𝑣} 𝑤𝑟 > 𝑏

min

𝑃𝑚 (𝑝1, 𝑏 −

∑
𝑗∈𝐼𝑝

2

𝑤 𝑗 , 𝐼𝑝1 , 𝑅𝑝1) + 𝑃𝑚 (𝑝2, 𝑏 −
∑
𝑟 ∈𝑅𝑝

1

𝑤𝑟 , 𝐼𝑝2 , 𝑅𝑝2) + 2 ·𝑤𝑝1 ,

𝑃𝑚 (𝑝1, 𝑏 −
∑

𝑗∈𝐼𝑝
2

𝑤 𝑗 , 𝐼𝑝1 , 𝑅𝑝1) + 𝑃𝑚 (𝑝2, 𝑏 −
∑
𝑟 ∈𝑅𝑝

1
∪{𝑝1 } 𝑤𝑟 , 𝐼𝑝2 , 𝑅𝑝2),

𝑃𝑚 (𝑝2, 𝑏 −
∑

𝑗∈𝐼𝑝
1

𝑤 𝑗 , 𝐼𝑝2 , 𝑅𝑝2) + 𝑃𝑚 (𝑝1, 𝑏 −
∑
𝑟 ∈𝑅𝑝

2

𝑤𝑟 , 𝐼𝑝1 , 𝑅𝑝1) + 2 ·𝑤𝑝2 ,

𝑃𝑚 (𝑝2, 𝑏 −
∑

𝑗∈𝐼𝑝
1

𝑤 𝑗 , 𝐼𝑝2 , 𝑅𝑝2) + 𝑃𝑚 (𝑝1, 𝑏 −
∑
𝑟 ∈𝑅𝑝

2
∪{𝑝2 } 𝑤𝑟 , 𝐼𝑝1 , 𝑅𝑝1)

if 𝑣 ∉ 𝐼 and 𝑝1, 𝑝2 ∈ H (𝑣)

𝑤𝑣 if 𝑣 ∉ 𝐼 andH(𝑣) = ∅∑
𝑟 ∈ (𝑅\𝐼) 𝑤𝑟 if 𝑣 ∈ 𝐼

(8)

respect to 𝑛 and many recursive calls are redundant during the

permutations. □

4 Fast Memory States and Data Reuse
Many computational dataflows have nodes with out-degree more

than one. Finding the minimum cost schedule for these CDAGs

requires exploring data reuse. Data is said to be reused when a value

is kept in fast memory across consecutive operations—avoiding I/Os

which are expensive in time and energy. Exploiting data reuse must

consider multiple options regarding the choice of operations, their

order, when to keep a value in fast memory, and when to release it.

To incorporate data reuse, we extend our 𝑘-ary tree pebbling

algorithm to schedule under arbitrary fast memory states before

and after computing a node. We then apply these procedures to the

Matrix-Vector Multiplication (MVM) graph defined in Section 4.2.

This kernel represents a fundamental operation to compare/classify

independent signals with opportunities for data reuse. We tile MVM

using our memory state extensions to optimize data reuse. Our data

reuse approach not only extends to dense and structured sparse

tensor multiplication, but to less regular CDAGs as well.

4.1 Initial and Reuse States
In this section, we augment the recursive pebbling procedure to

include user-defined memory states. The user provides an initial

state, a reuse state, a budget, and a node 𝑣 to compute. Initial states

are subsets of nodes which already exist in fast memory before com-

puting 𝑣 . Reuse states are subsets of nodes who should be present

in fast memory after 𝑣 has been computed. The 𝑘-ary scheduling

procedure can be extended to include these states into its input

conditions. For simplicity, we will take the case where 𝑘 = 2.

Let 𝑇 = (𝑉 , 𝐸,𝑤, 𝐵) ∈ T𝑘 be a weighted 𝑘-ary tree graph with

root 𝑟 ∈ 𝑉 . Let 𝑋 ⊆ 𝑉 be any subset of nodes and 𝑢 ∈ 𝑉 be any

in the graph, then Let 𝑋𝑢 denote the subset of nodes in 𝑋 that are

either predecessors of a node 𝑢 or 𝑢 itself in the tree 𝑇 , i.e.,

𝑋𝑢 ≜ 𝑋 ∩ (pred𝑇 (𝑢) ∪ {𝑢})

We set 𝐼 ⊆ 𝑉 to be an initial memory state and 𝑅 ⊆ 𝑉 be a reuse

memory state provided by the user. The procedure 𝑃𝑚 (𝑟, 𝐵, 𝐼𝑟 , 𝑅𝑟)
returns the cost of the WRBPG schedule under these memory state

semantics. Eq. (8) includes changes to the minimum cost procedure

for scheduling the pruned DWT graph in Eq. (2). These changes

are explained as follows.

From the perspective of the current node being computed 𝑣 ,

there are two cases: whether the node has already been computed

in the initial memory state or not. If 𝑣 ∈ 𝐼 , then we do not need

to move 𝑣 , but we need to ensure that all nodes that are in the

reuse state 𝑅 are present in fast memory. We assume that these

nodes have blue pebbles on them and do not need to be recomputed.∑
𝑟 ∈ (𝑅\𝐼) 𝑤𝑟 brings these nodes into fast memory to preserve the

reuse semantics while considering the initial state of memory.

If 𝑣 ∉ 𝐼 , then we consider whether 𝑣 is an input node or whether

it has parents. If 𝑣 is an input node, then we need to bring it into

fast memory which incurs a cost of 𝑤𝑣 . If 𝑣 is not an input node,

then we need to incorporate these memory states into the budget of

the individual parents 𝑝1, 𝑝2 ∈ H (𝑣) based on their ordering. The

parent that is computed first must take into account the weighted

cost of all nodes that are in the initial memory state from the

remaining parent. Similarly, the parent that is computed second
must take into account the weighted cost of all nodes that are

reused and kept in fast memory from the first parent. Given that

each parent and its predecessors forms an independent subgraph

and are computed sequentially, these budget adjustments occur

recursively and each parent need only consider its predecessor

nodes for its initial and reuse states.

Finally, the budget constraint must include the current node 𝑣 ,

its parentsH(𝑣), and the nodes in its reuse set 𝑅𝑣 for the weighted

red pebble constraint. This is because all of these nodes must at

some point be present in fast memory to preserve the memory state

semantics. We additionally make the assumption that once a node

𝑟 ∈ 𝑅 is computed or brought into fast memory, it remains in fast

memory. Other valid schedules exist which can perform additional

I/Os for the reuse nodes after 𝑣 and its parents have been computed;

however, this is typically not common when trying to reuse an

already computed result.

We use Eq. (8) and its derivatives to model data reuse in our

pebbling algorithms. By providing sets of initial and reuse nodes

(e.g., accumulator results, nodes with out-degree greater than one,

etc.), we can optimize over different WRBPG schedules to find

those that produce the least weighted cost. We use these insights

to implement a tiling approach for Matrix-Vector Multiplication in

Section 4.3.

4.2 Matrix-Vector Multiplication (MVM)
MVM computes the product of a matrix 𝐴 ∈ R𝑚×𝑛 and a vector

®𝑥 ∈ R𝑛
, producing an output vector ®𝑦 ∈ R𝑚 such that

𝑦𝑖 =

𝑛∑︁
𝑘=1

𝑎𝑖𝑘𝑥𝑘 , for 𝑖 = 1, . . . ,𝑚.

Based on this definition, we construct an equivalent CDAG repre-

sentation for arbitrary matrix dimensions𝑚 and 𝑛.

Definition 4.1 (MVM Graphs). Let𝑀𝑉𝑀 (𝑚,𝑛) = (𝑉 , 𝐸,𝑤, 𝐵)
be the MVM graph consisting of a number of rows𝑚 ∈ Z≥2 and a

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Abhishek Bhattacharjee, Quanquan C. Liu, Rajit Manohar, Raghavendra Pradyumna Pothukuchi, and Muhammed Ugur

S1 S2 S3

v1
1

v2
1

v3
1

v4
1

v1
2

v3
2

v1
3

v5
1

v6
1

v7
1

v8
1

v4
2

v6
2

v 2
3v2

2

v5
2

v3
3

v1
3

v 2
3

v3
3

(a)𝑀𝑉𝑀 (3, 2) where𝑚 = 3 and 𝑛 = 2.

S1 S2 S3

v1
1

v2
1

v3
1

v1
2 v1

3

v4
1

v5
1

v6
1

v3
2

v 2
3v2

2

v4
2

v1
3

v 2
3

v7
1

v8
1

v9
1

v5
2

v6
2

S4

v1
3

v 2
3

v1
4

v 2
4

(b)𝑀𝑉𝑀 (2, 3) where𝑚 = 2 and 𝑛 = 3.

Figure 4:𝑀𝑉𝑀 (𝑚,𝑛) graphs with𝑚 rows and 𝑛 columns based on Definition 4.1.

number of columns 𝑛 ∈ Z≥1. This graph contains 𝑛 + 1 sets of nodes
𝑆1, 𝑆2, . . . , 𝑆𝑛, 𝑆𝑛+1, where 𝑆1 are the input nodes and 𝑆𝑛+1 are the
output nodes. For 𝑆1, there are 𝑚𝑛 + 𝑛 nodes corresponding to all
matrix and vector inputs. For 𝑆2, there are𝑚𝑛 nodes for the initial
products of matrix-vector entries, and for 𝑆𝑖 where 𝑖 > 2, |𝑆𝑖 | =𝑚 for
the accumulation operations. Suppose we index the sets of nodes in
each 𝑆𝑖 from 1 to |𝑆𝑖 |. Then, we have the following directed edges:

(1) For each 𝑣1
𝑗
∈ 𝑆1 and 𝑘 = ⌊(𝑗−1)/(𝑚+1)⌋, if 𝑗 mod (𝑚+1) =

1, there is a directed edge (𝑣1
𝑗
, 𝑣2

𝑗−𝑘+𝑖) for 𝑖 = 0, 1, . . . ,𝑚 − 1;
if 𝑗 mod (𝑚 + 1) ≠ 1, there is a directed edge (𝑣1

𝑗
, 𝑣2

𝑗−𝑘−1).
(2) For each 𝑣𝑖

𝑗
where 2 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚, there is a directed

edge (𝑣𝑖
𝑗
, 𝑣𝑖+1

𝑗
).

(3) For each 𝑣2
𝑗
where 𝑚 < 𝑗 ≤ 𝑚𝑛, if 𝑗 mod𝑚 = 0, there is a

directed edge (𝑣2
𝑗
, 𝑣

2+⌊ (𝑗−1)/𝑚⌋
𝑚); if 𝑗 mod𝑚 ≠ 0, there is a

directed edge (𝑣2
𝑗
, 𝑣

2+⌊ (𝑗−1)/𝑚⌋
𝑗 mod𝑚

).
Some examples of this construction are shown in Figure 4.

4.3 Dataflow-Specific Tiling
In this section, we provide an overview for a tiling approach de-

signed using initial/reuse memory states. This forms the basis for

our evaluation in Section 5. For𝑀𝑉𝑀 (𝑚,𝑛), this dataflow-specific
pebbling algorithm constructs minimal WRBPG schedules for sec-

tions of the graph called tiles. The schedules for these tiles are then

stitched together in a particular order to build the schedule for the

entire graph. In this case, we consider two-dimensional tiles with

a tile height and a tile width. The tile height in the context of the

𝑀𝑉𝑀 (𝑚,𝑛) graph construction corresponds to the number of out-

put trees being pebbled concurrently. The tile width corresponds

to the relative depth of the output trees to compute by the end of

the tile schedule.

For each tile, our algorithm uses the 𝑘-ary tree procedure (for

𝑘 = 2) with initial/reuse memory states shown in Eq. (8). The overall

approach is parameterized for any tile height and width and accepts

arbitrary memory states. The tile sizes to optimize over are based

on the memory budget and workload dimensions𝑚 and 𝑛. Different

combinations of memory reuse, both in terms of the𝑚 outputs and

𝑛 vector inputs in the matrix-vector product, are considered, and

the minimal weighted schedule is selected among them.

The tiling strategy that performs the best in most cases is when

the width has size one and the height is a function of the budget 𝐵.

In our case, the tile height represents the number of accumulators

simultaneously in fast memory. If𝑚 accumulators can fit into fast

memory, plus extra space to perform the computations based on

the rules of the pebble game, then this corresponds to the lowest

weighted cost when𝑚 < 𝑛. If 𝑛 < 𝑚, then giving priority to the

vector in fast memory will lead to a smaller fast memory size. With

arbitrary node weights, the relative cost of an accumulator must be

taken into account when deciding how many accumulators should

be placed in fast memory versus the vector. For smaller fast memory

Dataflow-Specific Algorithms for Resource-Constrained Scheduling and Memory Design SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

102 103

Fast Memory Size (bits, log scale)

8000
9000

10000
11000
12000
13000
14000
15000
16000

Bi
ts

 Tr
an

sf
er

re
d

Algorithmic LB
Layer-by-Layer
Optimum (Ours)

(a) Equal 𝐷𝑊𝑇 (256, 8)

102 103 104

Fast Memory Size (bits, log scale)

12000
14000
16000
18000
20000
22000
24000
26000
28000

Bi
ts

 Tr
an

sf
er

re
d

Algorithmic LB
Layer-by-Layer
Optimum (Ours)

(b) DA DWT(256, 8)

102 103

Fast Memory Size (bits, log scale)

200000
225000
250000
275000
300000
325000
350000
375000

Bi
ts

 Tr
an

sf
er

re
d

IOOpt Lower Bound
IOOpt Upper Bound
Tiling (Ours)

(c) Equal 𝑀𝑉𝑀 (96, 120)

102 103

Fast Memory Size (bits, log scale)

200000
225000
250000
275000
300000
325000
350000
375000

Bi
ts

 Tr
an

sf
er

re
d

IOOpt Lower Bound
IOOpt Upper Bound
Tiling (Ours)

(d) DA𝑀𝑉𝑀 (96, 120)

Figure 5: Bits transferred between fast and slow memory as a function of fast memory size. The bitwidth for each input node
and memory location (i.e., word) is set to 16 bits, a common sample size for BCI sensor data. DA refers to Double Accumulator.

0 50 100 150 200 250
n

102

103

104

M
in

. F
as

t M
em

or
y

Si
ze

 (b
its

)

Layer-by-Layer
Optimum (Ours)

(a) Equal 𝐷𝑊𝑇 (𝑛,𝑑∗)

0 50 100 150 200 250
n

102

103

104

M
in

. F
as

t M
em

or
y

Si
ze

 (b
its

)

Layer-by-Layer
Optimum (Ours)

(b) DA 𝐷𝑊𝑇 (𝑛,𝑑∗)

0 20 40 60 80 100 120
n

102

103

M
in

. F
as

t M
em

or
y

Si
ze

 (b
its

)

IOOpt Upper Bound
Tiling (Ours)

(c) Equal 𝑀𝑉𝑀 (96, 𝑛)

0 20 40 60 80 100 120
n

102

103

M
in

. F
as

t M
em

or
y

Si
ze

 (b
its

)

IOOpt Upper Bound
Tiling (Ours)

(d) DA𝑀𝑉𝑀 (96, 𝑛)

Figure 6: Minimum fast memory size (log scale), which is when the I/Os are equal to the algorithmic lower bound, as a function
of the workload parameter 𝑛. The memory word size is 16 bits. For 𝐷𝑊𝑇 (𝑛,𝑑∗), 𝑑∗ is set to the largest level possible for the
value of 𝑛. DA refers to Double Accumulator.

sizes, there are trade-offs between tile height and vector reuse. For

example, if the largest tile height for accumulators is less than𝑚,

then it may be better to reduce the tile height and give the extra

fast memory space to the vector.

These choices are included in the tiling scheduler by searching

over different ways of computing a single tile, orderings across tiles,

tile sizes, and memory states that could be preserved after com-

puting a tile, including boundary conditions. Furthermore, because

the underlying pebbling algorithms are based on dynamic pro-

gramming, there is significant overlap among subproblems across

these choices. Overall, this tiling approach enables fine-grained data

movement optimization over the dataflow and is extensible to more

complicated tensor computations and their graph representations.

5 Evaluation
We evaluate the weighted schedules derived from our WRBPG

model, focusing on weighted I/O costs — accounting for data trans-

fers with varying precision — and the minimum fast memory size

defined in Definition 2.6. For these fast memory sizes, we perform

physical memory synthesis to generate circuit-level designs from

our theoretical models, enabling measurement of power consump-

tion (static and dynamic), performance, and silicon area.

5.1 Experimental Setup
We evaluate our scheduling approach using two benchmark graphs:

𝐷𝑊𝑇 (256, 8) and𝑀𝑉𝑀 (96, 120), as defined in Definition 3.1 and

Definition 4.1, respectively. For the DWT graph, we set 𝑛 = 256

and 𝑑 = 8, where 𝑑 represents the maximum number of wavelet

decomposition levels for an input of size 256. For the MVM graph,

we set 𝑚 = 96 and 𝑛 = 120, corresponding to a typical configu-

ration in BCI systems, where 96 electrodes from a Utah array are

used to process neural signals at 20–30 kHz sampling rates within

millisecond latency constraints.

We evaluate each benchmark graph under two node weight

configurations: Equal and Double Accumulator. In the Equal con-
figuration, all nodes are assigned the same weight, corresponding

to the classic unweighted red-blue pebble game [22]. In the Double
Accumulator configuration, each non-input node—representing a

partial or accumulated result—has twice the weight of an input

node. This reflects a common mixed-precision scenario where accu-

mulated values require higher numerical precision than raw inputs.

In both configurations, input nodes are assigned 16-bit weights.

In the Double Accumulator configuration, accumulated values are

assigned 32-bit weights.

For 𝑀𝑉𝑀 (96, 120), we compare our optimal tiling-based ap-

proach (Section 4.3) against IOOpt, a memory-constrained I/O min-

imization strategy from prior work [34, 35]. For 𝐷𝑊𝑇 (256, 8), we
compare against a layer-by-layer baseline instead of IOOpt, because

it does not support the recursive dataflow structure of DWT.

The layer-by-layer baseline schedules nodes sequentially by

traversing graph layers 𝑆2 through 𝑆𝑑+1. Within each layer 𝑆𝑘 ,

nodes are scheduled in index order from 1 to |𝑆𝑘 |. When the fast

memory budget is exceeded, nodes that are red-pebbled but not yet

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Abhishek Bhattacharjee, Quanquan C. Liu, Rajit Manohar, Raghavendra Pradyumna Pothukuchi, and Muhammed Ugur

Table 1: Minimum fast memory size comparison among the workloads in Fig. 5 (* indicates our proposed approaches).

Workload Node
Weights

Scheduling
Approach

Minimum
Fast Memory
Size (words)

Word Size
(bits)

Minimum
Capacity
(bits)

Power-of-
Two Capacity

(bits)
DWT(256, 8) Equal Optimum* 10 16 160 256

DWT(256, 8) Equal Layer-by-Layer 445 16 7120 8192

DWT(256, 8)

Double

Accumulator

Optimum* 18 16 288 512

DWT(256, 8)

Double

Accumulator

Layer-by-Layer 636 16 10176 16384

MVM(96, 120) Equal Tiling* 99 16 1584 2048

MVM(96, 120) Equal IOOpt UB 193 16 3088 4096

MVM(96, 120)

Double

Accumulator

Tiling* 126 16 2016 2048

MVM(96, 120)

Double

Accumulator

IOOpt UB 289 16 4624 8192

used by their children are spilled to slow memory in first-in, first-

out (FIFO) order based on when they were placed in fast memory.

If a node has no remaining children to compute, its red pebble is

deleted or, if it is an output node, moved to slow memory. To reduce

I/O costs, we alternate the traversal direction in each layer: ascend-

ing index order (1, . . . , |𝑆𝑘 |) followed by descending (|𝑆𝑘+1 |, . . . , 1)
in the next layer. This optimization helps retain recently computed

values across adjacent layers.

All evaluated scheduling strategies—optimal, layer-by-layer, and

tiling—are implemented in C++ and designed to construct valid

WRBPG schedules under any fast memory constraint.

5.2 I/O Comparison
In this section, we evaluate the weighted I/O cost of each workload

described in Section 5.1 as a function of the fast memory size. Fig-

ure 5 reports the number of bits transferred for eachworkload under

varying memory budgets. Across all configurations and memory

sizes, our algorithms consistently achieve lower I/O cost compared

to prior methods. We also include two lower bounds for reference:

the Algorithmic Lower Bound and the IOOpt Lower Bound [35] for

𝐷𝑊𝑇 (256, 8) and𝑀𝑉𝑀 (96, 120), respectively.
The Algorithmic Lower Bound, defined in Proposition 2.4, is

the weighted sum of all inputs and outputs—i.e., all source and

sink nodes of the CDAG. This bound is widely used in hardware

and systems design as a best-case estimate of I/O complexity [20].

The IOOpt Lower Bound, in contrast, is automatically derived us-

ing a geometric and parametric analysis of loop nests under the

polyhedral model.

IOOpt, however, presents two limitations in our analysis. First,

it is not directly applicable to recursive graph structures such as

𝐷𝑊𝑇 (256, 8), since it assumes loop nest representations. This limi-

tation also prevents us from using IOOpt’s upper bound for compari-

son, motivating our use of the layer-by-layer scheduling baseline in-

stead. Second, IOOpt does not support weighted or mixed-precision

schedules, making it unsuitable for evaluating the Double Accumu-
lator variant of𝑀𝑉𝑀 (96, 120). To compensate, we manually adjust

IOOpt’s bounds in the following way: for the lower bound, we dou-

ble the weight of each accumulator output (i.e., multiply the output

term by 2); for the upper bound, we assume all non-input/output

data movements are double-weighted. To remain conservative, we

avoid making assumptions about the exact proportion of single- vs.

double-weighted transfers. Additionally, we increase the memory

budget in IOOpt’s model to include twice the accumulator alloca-

tion used in their original fast memory split (which typically gives

just under half to outputs).

Both of our methods—optimum and tiling—outperform or match

the respective baselines (layer-by-layer and IOOpt [34]) across all
fast memory sizes. The superiority of our optimum algorithm over

the layer-by-layer baseline is guaranteed by Theorem 3.5, which

proves that the schedule is both a lower and upper bound—hence

optimal—for all weight assignments on 𝐷𝑊𝑇 (256, 8). The tiling

approach used for𝑀𝑉𝑀 (96, 120) surpasses IOOpt for two reasons.

First, IOOpt allocates a fixed ratio of fast memory to inputs and

outputs, typically splitting memory in half, while our tiling method

flexibly assigns fast memory based on tile height. This allows us

to prioritize outputs as long as sufficient input reuse is maintained,

enabling more rows to be processed with fewer I/Os. Second, IOOpt

requires each of the𝑚 output values to be read and written, whereas

our tiling approach writes each output exactly once—eliminating a

significant portion of unnecessary transfers.

5.3 Minimum Fast Memory Size Comparison
We now evaluate the minimum fast memory size required for each

scheduling approach. Specifically, we report the smallest fast mem-

ory capacity at which the schedule achieves the I/O lower bound

from Figure 5. These results are summarized in Table 1 for the

workloads defined in Section 5.1.

Dataflow-Specific Algorithms for Resource-Constrained Scheduling and Memory Design SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

Equal
DWT(256,8)

DA
DWT(256,8)

Equal
MVM(96,120)

DA
MVM(96,120)

0

10000

20000

30000

40000

M
em

or
y

Ar
ea

 (λ
2)

Optimum (Ours)
Layer-by-Layer
Tiling (Ours)
IOOpt UB

(a) Physical area.

Equal
DWT(256,8)

DA
DWT(256,8)

Equal
MVM(96,120)

DA
MVM(96,120)

0

5

10

15

20

25

Le
ak

ag
e

Po
we

r (
m

W
)

Optimum (Ours)
Layer-by-Layer
Tiling (Ours)
IOOpt UB

(b) Leakage power.

Equal
DWT(256,8)

DA
DWT(256,8)

Equal
MVM(96,120)

DA
MVM(96,120)

0

5

10

15

20

25

30

35

40

Re
ad

 P
ow

er
 (m

W
)

Optimum (Ours)
Layer-by-Layer
Tiling (Ours)
IOOpt UB

(c) Read power.

Equal
DWT(256,8)

DA
DWT(256,8)

Equal
MVM(96,120)

DA
MVM(96,120)

0

5

10

15

20

25

30

35

40

W
rit

e
Po

we
r (

m
W

)

Optimum (Ours)
Layer-by-Layer
Tiling (Ours)
IOOpt UB

(d) Write power.

Equal
DWT(256,8)

DA
DWT(256,8)

Equal
MVM(96,120)

DA
MVM(96,120)

0

10

20

30

40

50
Re

ad
 P

er
fo

rm
an

ce
 (G

B/
s)

Optimum (Ours)
Layer-by-Layer
Tiling (Ours)
IOOpt UB

(e) Peak read performance.

Equal
DWT(256,8)

DA
DWT(256,8)

Equal
MVM(96,120)

DA
MVM(96,120)

0

10

20

30

40

50

W
rit

e
Pe

rfo
rm

an
ce

 (G
B/

s)

Optimum (Ours)
Layer-by-Layer
Tiling (Ours)
IOOpt UB

(f) Peak write performance.

Figure 7: Memory read power, write power, leakage power, read performance, write performance, and physical area based on
the power-of-two capacities in Table 1, synthesized with AMC in TSMC 65 [2]. DA refers to Double Accumulator.

We conduct two additional analyses. First, Figure 6 shows how

the minimum fast memory size scales with the problem size pa-

rameter 𝑛, which reflects the number of nodes in the underlying

tree of each graph. Second, we study how the reduced memory

requirements translate into concrete hardware benefits—power, per-

formance, and area—through physical synthesis of SRAM designs.

These results appear in Figure 7, with corresponding transistor-

level layouts in Figure 8. Across all configurations, our approaches

consistently yield smaller fast memory requirements than prior

methods.

As shown in Table 1, for 𝐷𝑊𝑇 (256, 8), our optimum scheduling

algorithm reduces the required memory size by 97.8% and 97.2%

compared to the layer-by-layer baseline under the Equal andDouble
Accumulator weightings, respectively. For𝑀𝑉𝑀 (96, 120), our tiling
algorithm achieves a memory size reduction of 48.7% and 56.4%

compared to the IOOpt Upper Bound [34].

To examine scaling behavior, we vary the problem size. For

𝐷𝑊𝑇 (𝑛,𝑑), we set 2 ≤ 𝑛 ≤ 256 with even values of 𝑛, and select

the maximum resolution level 𝑑 as the largest power of two less

that is a multiple of 𝑛. On average, our optimum approach reduces

the minimum memory size by 47.3% and 46.8% under the Equal and
Double Accumulator settings, respectively. For𝑀𝑉𝑀 (𝑚,𝑛), we fix
𝑚 = 96 and vary 1 ≤ 𝑛 ≤ 120. Our tiling method yields average

memory size reductions of 18.6% and 36.2% respectively.

To assess how our reduced memory sizes impact hardware im-

plementation, we synthesize SRAM arrays using the TSMC 65 nm

process node. We employ a variant of AMC [2], an open-source

memory compiler specialized for this process. The synthesis results

in Figure 7 reveal reductions in area, leakage power, read power,

and write power, while maintaining comparable performance.

For synthesis, we round each requiredmemory size to the nearest

power of two (a standard design practice). These rounded values

appear in the final column of Table 1. Figure 7a shows the physical

area in 𝜆2, a standard unit in layout scaling [46]. For 𝐷𝑊𝑇 (256, 8),
our designs reduce physical area by 85.7% and 89.5% for the Equal
and Double Accumulator variants, respectively—a 32× difference in

power-of-two size. Layouts are shown in Figures 8a and 8b.

For𝑀𝑉𝑀 (96, 120), area reductions are 24.3% and 52.6% for Equal
and Double Accumulator respectively, corresponding to 2× and

4× power-of-two differences. These are illustrated in Figures 8c

and 8d. The average area reduction is 63% across our workloads.

Notably, our tiling approach equalizes memory capacity across

both variants, unlike IOOpt, which incurs a 2× overhead in the

Double Accumulator case. This demonstrates our scheduler’s ability

to better utilize memory under mixed-precision settings.

Figure 7b presents the leakage power comparison, showing an

average reduction of 43.4% mW across workloads, with a peak

savings of 15.8 mW. Read and write power reductions are shown

in Figures 7c and 7d, averaging 34.6% and 35.4% mW, respectively,

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Abhishek Bhattacharjee, Quanquan C. Liu, Rajit Manohar, Raghavendra Pradyumna Pothukuchi, and Muhammed Ugur

(a) Equal DWT(256, 8). Optimum
(left, 256 bits) versus layer-by-
layer (right, 8192 bits).

(b) DA DWT(256, 8). Optimum
(left, 512 bits) versus layer-by-
layer (right, 16384 bits).

(c) Equal MVM(96, 120). Our
tiling approach (top, 2048 bits)
versus IOOpt (bottom, 4096 bits).

(d) DA MVM(96, 120). Our tiling
approach (top, 2048 bits) versus
IOOpt (bottom, 8192 bits).

Figure 8: Physical layout comparison between power-of-two memory sizes among the different approaches described in
Section 5.1 using the results in Table 1. DA refers to Double Accumulator.

with peaks at 18.3 and 19.3 mW. Read/write throughput remains

nearly constant (Figures 7e and 7f) due to fixed synthesis parame-

ters and gate sizing in AMC. Though these settings can be further

optimized, they are sufficient to highlight the primary benefit: our

Weighted Red-Blue Pebble Game-based schedulers significantly re-

duce memory area and power usage without performance degrada-

tion—crucial for embedded, power-constrained hardware designs.

6 Related Work
Pebble games are combinatorial abstractions which have a rich his-

tory of being used to model various problems in computing. First in-

troduced to model register allocation [13, 39] and storage costs [40],

they have since been used to study I/O complexity [14, 22, 27, 28, 31],

high performance computation [17, 29, 42], reversible computa-

tion [3, 38], non-deterministic straight-line programs [11, 19], proof

complexity [8, 9, 12, 32] and, more recently, re-materialization costs

in deep neural networks [21, 26], peak memory scheduling [23],

and cryptographic applications [4–6, 16]. Despite their expressive

power, finding an optimal schedule in the red-blue pebble game is

known to be PSPACE-hard [14], and many natural variants are also

computationally intractable [14, 36].

Jin et al. [23] recently introduced a weighted variant of the stan-

dard (non-red-blue) pebble game, providing optimal algorithms for

specific graph families like series-parallel graphs, and new hardness

results showing that optimal schedules are difficult to compute on

pumpkin graphs. Their work also introduced the notion of dom-
inating schedules, which guarantee lower memory usage than all

alternatives. While they focus on the standard pebble game, our

work extends the red-blue pebble game to the weighted setting.

To our knowledge, Chen et. al. [10] is the only work that has

applied red-blue pebble games directly to hardware design. Their

focus is on deriving asymptotic I/O lower bounds for convolutional

operators using loop nest representations, which inform hardware

mappings and memory hierarchy designs. In contrast, our work em-

phasizes deriving provably optimal schedules—upper bounds—for

classes of CDAGs in a weighted model. While lower bounds provide

valuable theoretical limits, they may significantly underestimate

real I/O behavior in power- and memory-constrained settings. Our

results show that in such regimes, the gap between lower bounds

and feasible schedules can widen, especially when mixed-precision

or data-dependent weights are introduced.

7 Conclusion
This paper introduces the Weighted Red-Blue Pebble Game, a novel

approach for the co-design of algorithms and architectures in highly

resource-constrained systems. Using representative kernels from

the domain of implantable BCIs—a setting with extreme power

and energy constraints—we develop efficient scheduling strategies

for modular computational constructs within the CDAGs of these

workloads. In particular, we derive exact, optimum schedules for a

broad class of tree-based CDAGs, which can be composed to scale

across diverse applications. Through detailed software and hard-

ware evaluation with physical memory synthesis, we demonstrate

significant gains in area and power over existing approaches. Our

work advances pebbling theory, and broadly, theoretical research

for resource-efficient hardware design.

8 Acknowledgments
We thank Jim Aspnes, Anna Gilbert, and Ole Richter for their

feedback and guidance at different stages of this work. This work

is supported in part by grant CNS-2112562 from the NSF, and a

Computing Innovation Fellowship from the CRA for Raghavendra

Pradyumna Pothukuchi (under NSF grant 2127309).

References
[1] A Bolu Ajiboye, Francis R Willett, Daniel R Young, William D Memberg, Brian A

Murphy, Jonathan P Miller, Benjamin L Walter, Jennifer A Sweet, Harry A Hoyen,

Michael W Keith, P Hunter Peckham, John D Simeral, John P Donoghue, Leigh R

Hochberg, and Robert F Kirsch. 2017. Restoration of reaching and grasping move-

ments through brain-controlled muscle stimulation in a person with tetraplegia:

a proof-of-concept demonstration. The Lancet 389, 10081 (May 2017), 1821–1830.

doi:10.1016/s0140-6736(17)30601-3

https://doi.org/10.1016/s0140-6736(17)30601-3

Dataflow-Specific Algorithms for Resource-Constrained Scheduling and Memory Design SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

[2] Samira Ataei and Rajit Manohar. 2019. AMC: An Asynchronous Memory Com-

piler. In 2019 25th IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC). IEEE. doi:10.1109/async.2019.00009

[3] Charles H Bennett. 1989. Time/space trade-offs for reversible computation. SIAM
J. Comput. 18, 4 (1989), 766–776.

[4] Jeremiah Blocki, Blake Holman, and Seunghoon Lee. 2022. The parallel reversible

pebbling game: Analyzing the post-quantum security of iMHFs. In Theory of
Cryptography Conference. Springer, 52–79.

[5] Jeremiah Blocki, Blake Holman, and Seunghoon Lee. 2024. The Impact of Re-

versibility on Parallel Pebbling. Cryptology ePrint Archive (2024).
[6] Jeremiah Blocki, Ling Ren, and Samson Zhou. 2018. Bandwidth-hard functions:

Reductions and lower bounds. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. 1820–1836.

[7] Toni Böhnlein, Pál András Papp, and Albert-Jan N Yzelman. 2024. Brief An-

nouncement: Red-Blue Pebbling with Multiple Processors: Time, Communication

and Memory Trade-offs. In Proceedings of the 36th ACM Symposium on Parallelism
in Algorithms and Architectures. 285–287.

[8] SiuMan Chan. 2013. Just a pebble game. In 2013 IEEE Conference on Computational
Complexity. IEEE, 133–143.

[9] Siu Man Chan, Massimo Lauria, Jakob Nordstrom, and Marc Vinyals. 2015. Hard-

ness of approximation in PSPACE and separation results for pebble games. In

2015 IEEE 56th Annual Symposium on Foundations of Computer Science. IEEE,
466–485.

[10] Xiaoming Chen, Yinhe Han, and Yu Wang. 2020. Communication lower bound

in convolution accelerators. In HPCA.
[11] Stephen Cook and Ravi Sethi. 1974. Storage requirements for deterministic/poly-

nomial time recognizable languages. In Proceedings of the sixth annual ACM
symposium on Theory of computing. 33–39.

[12] Anuj Dawar and Bjarki Holm. 2012. Pebble games with algebraic rules. In

International Colloquium on Automata, Languages, and Programming. Springer,
251–262.

[13] Erik D Demaine and Quanquan C Liu. 2017. Inapproximability of the standard

pebble game and hard to pebble graphs. In Workshop on Algorithms and Data
Structures. Springer, 313–324.

[14] Erik D Demaine and Quanquan C Liu. 2018. Red-blue pebble game: Complexity of

computing the trade-off between cache size and memory transfers. In Proceedings
of the 30th on Symposium on Parallelism in Algorithms and Architectures. 195–204.

[15] Phillip Demarest, Nabi Rustamov, James Swift, Tao Xie, Markus Adamek, Hohyun

Cho, Elizabeth Wilson, Zhuangyu Han, Alexander Belsten, Nicholas Luczak,

Peter Brunner, Simon Haroutounian, and Eric C. Leuthardt. 2024. A novel theta-

controlled vibrotactile brain–computer interface to treat chronic pain: a pilot

study. Scientific Reports 14, 1 (Feb. 2024). doi:10.1038/s41598-024-53261-3
[16] Thaddeus Dryja, Quanquan C Liu, and Sunoo Park. 2018. Static-memory-hard

functions, and modeling the cost of space vs. time. In Theory of Cryptography:
16th International Conference, TCC 2018, Panaji, India, November 11–14, 2018,
Proceedings, Part I 16. Springer, 33–66.

[17] PatrickWDymond and Martin Tompa. 1983. Speedups of deterministic machines

by synchronous parallel machines. In Proceedings of the fifteenth annual ACM
symposium on Theory of computing. 336–343.

[18] Jay L. Gill, Julia A. Schneiders, Matthias Stangl, Zahra M. Aghajan, Mauricio

Vallejo, Sonja Hiller, Uros Topalovic, Cory S. Inman, Diane Villaroman, Ausaf Bari,

Avishek Adhikari, VikramR. Rao, Michael S. Fanselow,Michelle G. Craske, Scott E.

Krahl, JamesW. Y. Chen,Merit Vick, Nicholas R. Hasulak, Jonathan C. Kao, Ralph J.

Koek, Nanthia Suthana, and Jean-Philippe Langevin. 2023. A pilot study of closed-

loop neuromodulation for treatment-resistant post-traumatic stress disorder.

Nature Communications 14, 1 (May 2023). doi:10.1038/s41467-023-38712-1

[19] Martin Grohe and Martin Otto. 2015. Pebble games and linear equations. The
Journal of Symbolic Logic 80, 3 (2015), 797–844.

[20] Qijing Huang, Po-An Tsai, Joel S. Emer, and Angshuman Parashar. 2024. Mind

the Gap: Attainable Data Movement and Operational Intensity Bounds for Tensor

Algorithms. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). IEEE, 150–166. doi:10.1109/isca59077.2024.00021

[21] Akifumi Imanishi, Zijian Xu, Masayuki Takagi, Sixue Wang, and Emilio Castillo.

2024. A fast heuristic to optimize time-space tradeoff for large models. Advances
in Neural Information Processing Systems 36 (2024).

[22] Hong Jia-Wei and H. T. Kung. 1981. I/O complexity: The red-blue pebble game.

In Proceedings of the thirteenth annual ACM symposium on Theory of computing -
STOC ’81 (STOC ’81). ACM Press. doi:10.1145/800076.802486

[23] Ce Jin, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang. 2023. New

Tools for Peak Memory Scheduling. arXiv:2312.13526 [cs.DS]

[24] Ioannis Karageorgos, Karthik Sriram, Ján Veselỳ, MichaelWu, Marc Powell, David

Borton, Rajit Manohar, and Abhishek Bhattacharjee. 2020. Hardware-software co-

design for brain-computer interfaces. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 391–404.

[25] Sohee Kim, Prashant Tathireddy, Richard A. Normann, and Florian Solzbacher.

2007. Thermal Impact of an Active 3-D Microelectrode Array Implanted in the

Brain. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15, 4

(Dec. 2007), 493–501. doi:10.1109/tnsre.2007.908429

[26] Ravi Kumar, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua Wang. 2019.

Efficient rematerialization for deep networks. Advances in Neural Information
Processing Systems 32 (2019).

[27] Grzegorz Kwasniewski, Tal Ben-Nun, Lukas Gianinazzi, Alexandru Calotoiu,

Timo Schneider, Alexandros Nikolaos Ziogas, Maciej Besta, and Torsten Hoe-

fler. 2021. Pebbles, graphs, and a pinch of combinatorics: Towards tight I/O

lower bounds for statically analyzable programs. In Proceedings of the 33rd ACM
Symposium on Parallelism in Algorithms and Architectures. 328–339.

[28] Grzegorz Kwasniewski, Marko Kabic, Tal Ben-Nun, Alexandros Nikolaos Zio-

gas, Jens Eirik Saethre, André Gaillard, Timo Schneider, Maciej Besta, Anton

Kozhevnikov, Joost VandeVondele, et al. 2021. On the parallel i/o optimality of

linear algebra kernels: Near-optimal matrix factorizations. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1–15.

[29] Grzegorz Kwasniewski, Marko Kabić, Maciej Besta, Joost VandeVondele, Raffaele

Solcà, and TorstenHoefler. 2019. Red-blue pebbling revisited: near optimal parallel

matrix-matrix multiplication. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1–22.

[30] Mikhail A. Lebedev and Miguel A. L. Nicolelis. 2017. Brain-Machine Interfaces:

From Basic Science to Neuroprostheses and Neurorehabilitation. Physiological
Reviews 97, 2 (April 2017), 767–837. doi:10.1152/physrev.00027.2016

[31] Quanquan Catherine Liu. 2017. Red-blue and standard pebble games: Complexity

and applications in the sequential and parallel models.

[32] Jakob Nordstrom. 2013. Pebble games, proof complexity, and time-space trade-

offs. Logical Methods in Computer Science 9 (2013).
[33] Carina R Oehrn, Stephanie Cernera, Lauren H Hammer, Maria Shcherbakova,

Jiaang Yao, Amelia Hahn, Sarah Wang, Jill L Ostrem, Simon Little, and Philip A

Starr. 2023. Personalized chronic adaptive deep brain stimulation outperforms

conventional stimulation in Parkinson’s disease. (Aug. 2023). doi:10.1101/2023.

08.03.23293450

[34] Auguste Olivry, Guillaume Iooss, Nicolas Tollenaere, Atanas Rountev, P. Sadayap-

pan, and Fabrice Rastello. 2021. IOOpt: automatic derivation of I/O complexity

bounds for affine programs. In Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation (PLDI
’21). ACM, 1187–1202. doi:10.1145/3453483.3454103

[35] Auguste Olivry, Julien Langou, Louis-Noël Pouchet, P. Sadayappan, and Fabrice

Rastello. 2020. Automated derivation of parametric data movement lower bounds

for affine programs. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’20). ACM, 808–822.

doi:10.1145/3385412.3385989

[36] Pál András Papp and Roger Wattenhofer. 2020. On the Hardness of Red-Blue

Pebble Games. In Proceedings of the 32nd ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA ’20). ACM. doi:10.1145/3350755.3400278

[37] Michael S Paterson and Carl E Hewitt. 1970. Comparative schematology. In Record
of the Project MAC conference on concurrent systems and parallel computation.
119–127.

[38] Arend-Jan Quist and Alfons Laarman. 2023. Optimizing quantum space using

spooky pebble games. In International Conference on Reversible Computation.
Springer, 134–149.

[39] Ravi Sethi. 1973. Complete register allocation problems. In Proceedings of the
fifth annual ACM symposium on Theory of computing. 182–195.

[40] Ravi Sethi. 1982. Pebble games for studying storage sharing. Theoretical Computer
Science 19, 1 (1982), 69–84.

[41] Karthik Sriram, Raghavendra Pradyumna Pothukuchi, Michal Gerasimiuk,

Muhammed Ugur, Oliver Ye, Rajit Manohar, Anurag Khandelwal, and Abhishek

Bhattacharjee. 2023. SCALO: An Accelerator-Rich Distributed System for Scal-

able Brain-Computer Interfacing. In 2023 ACM/IEEE 50th Annual International
Symposium on Computer Architecture (ISCA). IEEE.

[42] Yuya Uezato. 2021. Accelerating XOR-based erasure coding using program

optimization techniques. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–14.

[43] Muhammed Ugur, Raghavendra Pradyumna Pothukuchi, and Abhishek Bhat-

tacharjee. 2024. Swapping-Centric Neural Recording Systems. (2024). doi:10.

48550/ARXIV.2409.17541

[44] Jeffrey Scott Vitter. 2001. External memory algorithms and data structures:

dealing with massive data. Comput. Surveys 33, 2 (June 2001), 209–271. doi:10.
1145/384192.384193

[45] SAWalker. 1971. Some graph games related to the efficient calculation of expressions.
IBM Thomas J. Watson Research Center.

[46] Neil Weste and David Harris. 2010. CMOS VLSI Design: A Circuits and Systems
Perspective (4th ed.). Addison-Wesley Publishing Company, USA.

https://doi.org/10.1109/async.2019.00009
https://doi.org/10.1038/s41598-024-53261-3
https://doi.org/10.1038/s41467-023-38712-1
https://doi.org/10.1109/isca59077.2024.00021
https://doi.org/10.1145/800076.802486
https://arxiv.org/abs/2312.13526
https://doi.org/10.1109/tnsre.2007.908429
https://doi.org/10.1152/physrev.00027.2016
https://doi.org/10.1101/2023.08.03.23293450
https://doi.org/10.1101/2023.08.03.23293450
https://doi.org/10.1145/3453483.3454103
https://doi.org/10.1145/3385412.3385989
https://doi.org/10.1145/3350755.3400278
https://doi.org/10.48550/ARXIV.2409.17541
https://doi.org/10.48550/ARXIV.2409.17541
https://doi.org/10.1145/384192.384193
https://doi.org/10.1145/384192.384193

	Abstract
	1 Introduction
	2 Weighted Red-Blue Pebble Game
	2.1 Model Definitions
	2.2 Basic Properties
	2.3 Model Applications

	3 Dataflow-Specific Pebbling Algorithms
	3.1 The Discrete Wavelet Transform (DWT)
	3.2 k-ary Trees

	4 Fast Memory States and Data Reuse
	4.1 Initial and Reuse States
	4.2 Matrix-Vector Multiplication (MVM)
	4.3 Dataflow-Specific Tiling

	5 Evaluation
	5.1 Experimental Setup
	5.2 I/O Comparison
	5.3 Minimum Fast Memory Size Comparison

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

