
TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5

Parallelization Libraries: Characterizing and Reducing Overheads

ABHISHEK BHATTACHARJEE, Rutgers University
GILBERTO CONTRERAS, Nvidia Corporation
and MARGARET MARTONOSI, Princeton University

Creating efficient, scalable dynamic parallel runtime systems for chip multiprocessors (CMPs) requires
understanding the overheads that manifest at high core counts and small task sizes.

In this article, we assess these overheads on Intel’s Threading Building Blocks (TBB) and OpenMP. First,
we use real hardware and simulations to detail various scheduler and synchronization overheads. We find
that these can amount to 47% of TBB benchmark runtime and 80% of OpenMP benchmark runtime. Second,
we propose load balancing techniques such as occupancy-based and criticality-guided task stealing, to boost
performance.

Overall, our study provides valuable insights for creating robust, scalable runtime libraries.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming—Par-
allel Programming

General Terms: Experimentation, Measurement, Performance

Additional Key Words and Phrases: Parallel libraries, Intel Threading Building Blocks, OpenMP, task
stealing, performance

ACM Reference Format:
Bhattacharjee, A., Contreras, G., and Martonosi, M. 2011. Parallelization libraries: Characterizing and
reducing overheads. ACM Trans. Architec. Code Optim. 8, 1, Article 5 (April 2011), 29 pages.
DOI = 10.1145/1952998.1953003 http://doi.acm.org/10.1145/1952998.1953003

1. INTRODUCTION

With chip multiprocessors (CMPs) quickly becoming the new norm in computing, pro-
grammers require tools that allow them to create parallel code in a quick and efficient
manner. Industry and academia have, for years, worked to develop parallel runtime
systems and libraries that aim at improving application portability and programming
efficiency [Kale and Krishnan 1993; Blumofe et al. 1996; OpenMP 2002; Palatin et al.
2006; Gordon et al. 2006; Halstead 1985; Gelernter 1985]. This is achieved by allowing
programmers to focus their efforts on identifying parallelism rather than worrying
about how parallelism is managed and/or mapped to the underlying CMP architecture.

Programmers today have a few different options when considering parallelization
libraries. Older runtime systems such as OpenMP [2002] are one option. OpenMP,
developed by the OpenMP Architecture Review Board (ARB), was created in 1997 for
multiplatform shared-memory applications. OpenMP applications include support for
parallel tasks with a data environment conducive for task-based load balancing.

Another, more recent option likely to see wide use is the Intel Threading Building
Blocks (TBB) runtime library [Reindeers 2007]. Based on the C++ language, TBB pro-

Author’s addresses: A. Bhattacharjee, email: abhib@cs.rutgers.edu; M. Martonosi, email: mrm@princeton.
edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1544-3566/2011/04-ART5 $10.00

DOI 10.1145/1952998.1953003 http://doi.acm.org/10.1145/1952998.1953003

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:2 A. Bhattacharjee et al.

vides programmers with an API used to exploit parallelism through the use of tasks
rather than parallel threads. Moreover, TBB is able to significantly reduce load imbal-
ance and improve performance scalability through task stealing, allowing applications
to exploit concurrency with little regard to the underlying CMP characteristics (number
of cores).

Available as a commercial product and under an open-source license, TBB has become
an increasingly popular parallelization library. Adoption of its open-source distribution
into existing Linux distributions is likely to increase its usage among programmers
looking to take advantage of present and future CMP systems. Given its growing
importance, it is natural to perform a detailed characterization of TBB’s performance.

While parallel runtime libraries such as TBB make it easier for programmers to
develop parallel code, software-based dynamic management of parallelism often comes
at a cost. The parallel runtime library is expected to take annotated parallelism and
distribute it across available resources. This dynamic management entails instructions
and memory latency—cost that can be seen as parallelization overhead. With CMPs
demanding ample amounts of parallelism in order to take advantage of available execu-
tion resources, applications will be required to harness all available parallelism, includ-
ing fine-grain parallelism. Fine-grain parallelism, however, may incur high overhead
on many existing parallelization libraries. Identifying and understanding paralleliza-
tion overheads is the first step in the development of robust, scalable, and widely used
dynamic parallel runtime libraries. We also offer proposals to reduce these overheads.

This article makes the following contributions.

—We use real-system measurements and cycle-accurate simulation of CMP systems to
characterize and measure basic parallelism management costs of the TBB runtime
library, studying their behavior under increasing core counts.

—We port a subset of the PARSEC benchmark suite to the TBB environment. Bench-
marks are originally parallelized using a static arrangement of parallelism. Porting
them to TBB increases their performance portability due to TBB’s dynamic manage-
ment of parallelism.

—Using these and other benchmarks, we dissect TBB activities into four basic cate-
gories and show that the runtime library can contribute up to 47% of the total per-core
execution time on a 32-core system. While this overhead is much lower at low core
counts, it hinders performance scalability by placing a core count dependency on
performance.

—We study the performance of TBB’s random task stealing, showing that while effec-
tive at low core counts, it provides suboptimal performance at high core counts. This
leaves applications in need of alternative stealing policies.

—We show how an occupancy-based stealing policy can improve benchmark perfor-
mance by up to 17% on a 32-core system, demonstrating how runtime knowledge of
parallelism availability can be used by TBB to make more informed decisions.

—We also propose and evaluate criticality-guided task stealing, showing its perfor-
mance benefits over both the default random TBB task stealer and occupancy-based
stealer. On average, we see a performance improvement of 22% on a 32-core sys-
tem, showing that runtime knowledge of relative thread speeds can greatly aid in
intelligent load balancing.

—To better showcase the behavior of TBB, we also need to compare it to existing
parallelization libraries. To this end, we also characterize and measure basic man-
agement costs of the OpenMP. Our set of workloads for this section consists of the
NAS benchmarks. We break down the costs into a number of categories, showing
that lock contention can lead to high overheads.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:3

—We then propose mechanisms to mitigate lock overheads in OpenMP by using an
iteration-stealing strategy similar to the occupancy-based stealer proposed for TBB.
Our approaches achieve speedups as high as 3–4X over the default dynamic schedules
at 32 cores.

Overall, our article’s insights can help parallel programmers better exploit avail-
able concurrency, while aiding runtime developers to create more efficient and robust
parallelization libraries.

Our article is organized as follows Section 2 gives a general description of Intel
Threading Building Blocks and its dynamic management capabilities. Section 3 illus-
trates how TBB is used in C++ applications to annotate parallelism. Our methodology
is described in Section 4 along with our set of benchmarks. In Section 5 we evaluate
the cost of some of the fundamental operations carried by the TBB runtime library dur-
ing dynamic management of parallelism. Section 6 studies the performance impact of
TBB on our set of parallel applications, identifying overhead bottlenecks that degrade
parallelism performance. Section 7 performs an in-depth study of TBB’s random task
stealing, the cornerstone of TBB’s dynamic load-balancing mechanism. Section 8 then
introduces the OpenMP API and scheduler. Section 9 quantifies the various overheads
of the scheduler followed by Section 10, which offers application programmers and run-
time library developers a set of recommendations for maximizing performance in these
environments. Section 11 discusses related work, and Section 12 offers our conclusions
and future work.

2. THE TBB RUNTIME LIBRARY

The Intel Threading Building Blocks (TBB) library has been designed to create
portable, parallel C++ code. Inspired by previous parallel runtime systems such as
OpenMP [2002] and Cilk [Blumofe et al. 1996], TBB provides C++ templates and con-
current structures that programmers use in their code to annotate parallelism and
extract concurrency from their code. In this section we provide a brief description
of TBB’s capabilities and functionality, highlighting three of its major features: task
programming model, dynamic task scheduling, and task stealing.

2.1. Task Programming Model

The TBB programming environment encourages programmers to express concurrency
in terms of parallel tasks rather than parallel threads. Tasks are special regions of code
that perform a specific action or function when executed by the TBB runtime library.
They allow programmers to create portable, scalable parallel code by offering two im-
portant attributes. (1) Tasks typically have much shorter execution bodies than threads
since tasks can be created and destroyed in a more efficient manner, and classes, of-
fering programmers object-oriented capabilities. (2) Tasks are dynamically assigned to
available execution resources by the runtime library to reduce load imbalance.

In TBB applications, tasks are described using C++ classes that contain the class
tbb:task as the base class, which provides the virtual method execute(), among oth-
ers. The method execute(), which the programmer is expected to specify, completely
describes the execution body of the task. Once a task class has been specified and in-
stantiated, it is ready to be launched into the runtime library for execution. In TBB, the
most basic way for launching a new parallel task is through the use of the spawn(task
*t) method, which takes a pointer to a task class as its argument. Once a task is sched-
uled for execution by the runtime library, the execute() method of the task is called in
a nonpreemptive manner, completing the execution of the task.

Tasks are allowed to instantiate and spawn additional parallel tasks through hier-
archical dependencies. In this way, derived tasks become children of the tasks that

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:4 A. Bhattacharjee et al.

Table I. TBB Templates for Annotating Common Types of Parallelism

Template Description

parallel for<range, body>
Template for annotating DOALL loops. range indicates the limits of
the loop while body describes the task body to execute loop iterations

parallel reduce<range, body>
Used to create parallel reductions. The class body specifies a join()
method used to perform parallel reductions.

parallel scan<range, body> Used to compute a parallel prefix.

parallel while<body>
Template for creating parallel tasks when the iteration range of a
loop is not known

parallel sort<iterator, compare> Template for creating parallel sorting algorithms.

created them, making the creator the parent task. This hierarchical formation allows
programmers to create complex task execution dependencies, making TBB a versatile
dynamic parallelization library capable of supporting a wide variety of parallelism
types. For example, TBB includes algorithms, highly concurrent containers, locks and
atomic operations, a task scheduler, and a scalable memory allocator. These enable TBB
to support not only simple task parallelism but also more complex data and pipeline
parallelism.

Since manually creating and managing hierarchical dependencies for commonly
found types of parallelism can quickly become a tedious chore, TBB provides a set
of C++ templates that allow programmers to annotate common parallelism patterns
such as DOALL and reductions. Table I provides a description of the class templates
offered by TBB.

Regardless of how parallelism is annotated in applications (explicitly through
spawn() or implicitly through the use of templates), all parallelism is exploited through
parallel tasks. Conversely, even though the programmer might design tasks to execute
in parallel, TBB does not guarantee that they will do so. If only one processor is avail-
able at the time, or if additional processors are busy completing some other task,
newly-spawned tasks may execute sequentially. When processors are available, creat-
ing more tasks than available processors allows the TBB dynamic runtime library to
better mitigate potential sources of load imbalance.

2.2. Dynamic Scheduling of Tasks

The TBB runtime library consists of a dynamic scheduler that stores and distributes
available parallelism as needed in order to improve performance. While this dynamic
management of parallelism is largely hidden from the programmer, its overhead can
sometimes be detrimental to parallelism performance. To better understand the prin-
cipal sources of overhead that we measure in Sections 5 and 6, this section describes
the main scheduler loop of the TBB runtime library.

When the TBB runtime library is first initialized, a set of slave worker threads is
created and the caller of the initialization function becomes the master worker thread.
Worker thread creation is an expensive operation, but since it is performed only once
during application startup, its cost is amortized over application execution.

When a worker thread is created, it is immediately associated with a software task
queue. Tasks are explicitly enqueued into a task queue when their corresponding
worker thread calls the spawn() method. Dequeueing tasks, however, is implicit and
carried out by the runtime system.

This process is better explained by Figure 1, which shows the procedure
wait for all(), the main scheduling loop of the TBB runtime library. This proce-
dure consists of three nested loops that attempt to obtain work through three different
means: explicit task passing, local task dequeue, and random task stealing.

The inner loop of the scheduler is responsible for executing the current task by calling
the method execute(). After the method is executed, the reference count of the task’s

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:5

Fig. 1. Simplified TBB task scheduler loop. The scheduling loop is executed by all worker threads until
the master thread signals their termination. The inner, middle, and outer loops of the scheduler attempt to
obtain work through explicit task passing, local task dequeue, and random task stealing, respectively.

parent is atomically decreased. This reference count allows the parent task to unblock
once its children tasks have completed. If this reference count reaches one, the parent
task is set as the current task and the loop iterates. The method execute() has the
option of returning a pointer to the task that should execute next (allowing explicit
task passing).

If a new task is not returned, the inner loop exits and the middle loop attempts to
extract a task pointer from the local task queue in FILO order by calling get task(). If
successful, the middle loop iterates, calling the most inner loop once more. If get task()
is unsuccessful, the middle loop ends and the outer loop attempts to steal a task from
other possibly existing worker threads. If the steal is unsuccessful, the worker thread
waits for a predetermined amount of time. If the outer loop iterates multiple times and
stealing continues to be unsuccessful, the worker thread gives up and waits until the
main thread wakes it by generating more tasks.

2.3. Task Stealing in TBB

Task stealing is the fundamental way by which TBB attempts to keep worker threads
busy, maximizing concurrency and improving performance through reduction of load
imbalance. If there are enough tasks to work with, worker threads that become idle
can quickly grab work from other worker threads.

When a worker thread runs out of local work, it attempts to steal a task by first
determining a victim thread. TBB utilizes random selection as its victim policy. Once
the victim is selected, the victim’s task queue is examined. If a task can be stolen, the
task queue is locked and a pointer describing the task object is extracted, the queue
is unlocked, and the stolen task is executed in accordance with Figure 1. If the victim
queue is empty, stealing fails and the stealer thread backs off for a predetermined
amount of time.

Random task stealing, while fast and easy to implement, may not always select the
best victim to steal from. As core counts increase, the number of potential victims also
increases, and the probability of selecting the best victim decreases. This is particularly
true under severe cases of work imbalance, where a small number of worker threads
may have more work than others. Moreover, with process variations threatening to
transform homogeneous CMP designs into an heterogeneous array of cores [Humenay
et al. 2007], effective task stealing becomes even more important. We will further study
the performance of task stealing in Section 7.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:6 A. Bhattacharjee et al.

Fig. 2. TBB code example that creates a root task and two children tasks. In this example, the parent task
(rootTask) blocks until its children terminate. Bold statements signify special methods provided by TBB
that drive parallelism creation and behavior.

3. PROGRAMMING EXAMPLE

Figure 2 shows an example of how parallel tasks can be created and spawned in the
TBB environment. The purpose of this example is to highlight typical steps in executing
parallelized code. Sections 5 and 6 then characterize these overheads and show their
impact on program performance.

For the given example, two parallel tasks are created by the root task (the parent
task), which blocks until the two child tasks terminate. The main() function begins by
initializing the TBB runtime library through the use of the init()method. This method
takes the number of worker threads to create as an input argument. Alternatively, if
the parameter AUTOMATIC is specified, the runtime library creates as many worker
threads as available processors.

After initialization, a new instance of rootTask is created using an overloaded
new() constructor. Since it is the main thread and not a task that is creating this
task, allocate root() is given as a parameter to new(), which attaches the newly-
created task to a dummy task. Once the root task is created, the task is spawned
using spawn root and wait(), which spawns the task and calls the TBB scheduler
(wait for all()) in a single call. Once the root task is scheduled for execution, rootTask
creates two children tasks and sets its reference count to three (two children tasks plus
itself). When the children tasks execute and then terminate, the reference count of the
parent is decreased by one. When this count reaches one, the parent is scheduled for
execution. The corresponding task hierarchy is shown to the right of Figure 2.

It is possible for childTask() to create additional parallel tasks in a recursive man-
ner. As worker threads use task stealing to avoid becoming idle, child tasks start
creating local tasks until the number of available tasks exceeds the number of avail-
able processors. At this point, worker threads dequeue tasks from their local queue
until their contents are exhausted.

This simple example shows how parallel code can be created with little regard to
the underlying machine characteristics (number of cores). While easy to use, the ab-
straction layer provided by the runtime library makes it difficult for programmers to
assess the performance cost of exploiting available parallelism. In Section 5 we use real
and simulated measurements of CMP systems to characterize the cost of basic TBB
operations in order to better understand their contribution to overall parallelization
overhead.

4. CHARACTERIZATION METHODOLOGY

4.1. Software Characteristics

We study the impact of the TBB runtime library on parallel applications by porting a
subset of the PARSEC benchmark suite: fluidanimate, swaptions, blackscholes, and

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:7

Table II. Our Benchmark Suite Consists of a Subset of the PARSEC Benchmarks Parallelized Using TBB as
Well as TBB Microbenchmarks. The Value N Represents the Number of Processors Being used

Benchmark Description Num. of tasks Avg. cycles per task
fluidanimate Fluid sim. for interactive animation 420 × N 19M
swaptions Heath-Jarrow-Morton framework 120,000 25K

to price portfolio of options
blackscholes Calculation of prices of a portfolio 1, 200 × N tasks 256K (@ 32 cores)

of European options
streamcluster Online Clustering Problem 11, 000 + 6, 000 × N 23M

Micro-benchmarks
Bitcounter Vector bit-counting with a highly 5,740 5K

unbalanced working set
Matmult Block matrix multiplication 12,224 6K

LU LU dense-matrix reduction 31,200 4K
Treeadd Tree-based recursive algorithm 12,290 Highly variant

streamcluster. These benchmarks are chosen because they provide task sizes in the
hundreds of kiloinstructions while having a total task count that is sufficiently large
to thoroughly exercise the TBB scheduler’s load-balancing techniques. Out-of-the-box
versions of these benchmarks are parallelized using a coarse-grain, static paralleliza-
tion approach, where work is statically divided among N threads and synchronization
directives (barriers) are placed where appropriate. We refer to this approach as static;
it will serve as the base case when considering TBB performance.

In porting these benchmarks to the TBB environment, we use version 2.0 of the Intel
Threading Building Blocks library [Intel Threading Building Blocks 2.0 Open Source]
for the Linux OS. We use release tbb20 010oss, which at the start of our study was the
most up-to-date commercial aligned release available (October 244, 2007). More recent
releases address internal casting issues, the memory allocator, add new and improved
parallel algorithm templates and data containers and makes modifications to internal
task allocation and deallocation; these issues do not modify the outcome of our results.

We compile TBB using gcc 4.0, use the optimized release library, and configure it to
utilize the recommended scalable allocator rather than malloc for dynamic memory
allocation. The memory allocator scalable allocator offers higher performance in
multithreaded environments and is included as part of TBB.

Porting benchmarks is accomplished by applying available parallelization templates
whenever possible and/or by explicitly spawning parallel tasks. Since we want to take
advantage of TBB’s dynamic load-balancing, we aim at creating M parallel tasks in
an N-core CMP system where M ≥ 4 · N. In other words, at least four parallel tasks
are created for every utilized processor. In situations where this is not possible (eg.
in DOALL loops with a small number of iterations), we further subpartition parallel
tasks in order to create ample opportunity for load-balancing. An example of how a
PARSEC benchmark is ported to the TBB environment is shown in Figure 3.

In addition to porting existing parallel applications to the TBB environment, we
created a set of microbenchmarks with the purpose of stressing some of the basic TBB
runtime procedures. Table II gives a description of the set of benchmarks utilized in
this study.

4.2. Physical Performance Measurements

Real-system measurements are made on a system with two 1.8GHz AMD chips, each
with dual cores, for a total of four processors. Cores includes 64KB of private L1
instruction cache, 64KB of private L1 data cache, and 1MB of L2 cache. Performance
measurements are taken using oprofile, a system-wide performance profiler that uses
processor performance counters to obtain detail performance information of running

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:8 A. Bhattacharjee et al.

Fig. 3. This example shows how blackscholes is ported to the TBB environment. The original code consists
of pthreaded code, where each thread executes the function bs thread(). In TBB, bs thread() is only
executed by the main thread, and the template parallel reduce is used to annotate DOALL parallelism
within the function’s main loop (in bold font). For clarity, not all variables and parallel regions are shown.

applications and libraries. We configure oprofile to sample the event CPU CLK UNHALTED,
which counts the number of unhalted CPU cycles on each utilized processor.

4.3. Simulation Infrastructure

Since real-system measurements are limited in processor count, we augment them with
simulation-based measurements. For our simulation-based studies, we use a cycle-
accurate CMP simulator modeling a 1 to 32 core chip-multiprocessor similar to that
used by Chen et al. [2005]. Each core models a 2-issue, in-order processor similar to
the Intel XScale core [Intel Corporation 2003]. Cores have private 32KB L1 instruction
and 32KB L1 data caches and share a distributed 4MB L2 cache. Since the L1 data
caches are private, coherence must be maintained. For this purpose, we use an MSI
directory-based protocol. Each core is connected to an interconnection network modeled
as a mesh network with dimension-routing. Router throughput is one packet (32 bits)
per cycle per port.

Our simulated processors are based on the ARM ISA. Our choice of the ARM
ISA instead of IA32 was influenced by the slow execution speeds of existing IA32

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:9

simulation platforms. Since this study requires a detailed analysis of the various
sources of overheads, we need to capture the full range of application behavior by
running to completion. The slow speeds of IA32 timing simulators precludes this op-
tion; nevertheless, we do modify the ARM ISA to use atomic support (e.g. IA32’s LOCK,
XADD, XCHG instructions) equivalent to those in the IA32 architecture. This avoids pe-
nalizing TBB for its reliance on ISA support for atomicity and allows for a more direct
comparison between our simulation and real-system results.

5. CHARACTERIZATION OF BASIC TBB FUNCTIONS

Dynamic management of parallelism requires the runtime library to store, schedule,
and reassign parallel tasks. Since programmers must harness parallelism whose execu-
tion times are long enough to offset parallelization costs, understanding how runtime
activities scale with increasing core counts allows us to identify potential overhead
bottlenecks that may undermine parallelism performance in future CMPs.

In measuring some of the basic operations of the TBB runtime library, we focus on
five common operations.

(1) spawn(). This method is invoked from user code to spawn a new task. It takes a
pointer to a task object as a parameter and enqueues it in the task queue of the
worker thread executing the method.

(2) get task(). This method is called by the runtime library after completing the
execution of a previous task. It attempts to dequeue a task descriptor from the
local queue. It returns NULL if it is unsuccessful;

(3) steal(). This method is called by worker threads with empty task queues. It first
selects a worker thread as the victim (at random), locks the victim’s queue, and
then attempts to extract a task class descriptor.

(4) acquire queue(). This method is called by get task() and spawn() in order to lock
the task queue before a task pointer can be extracted. It uses atomic operations to
guarantee mutual exclusion.

(5) wait for all(). This is the main scheduling loop of the TBB runtime library. It
constantly executes and looks for new work to execute and is also responsible for
executing parent tasks after all children are finished. We report this cost as the
total time spent in this function minus the time reported by the procedures outlined
in the preceding.

All of the procedures listed are directly or indirectly called by the scheduler loop
shown in Figure 1, which is the heart of the TBB runtime library. They are selected
based on their total execution time contribution as indicated by physical and simulated
performance measurements.

5.1. Basic Operation Costs

Figure 4 shows measured and simulated execution costs of some of the basic functions
performed within the TBB runtime library. We report the average cost per operation
by dividing the total number of cycles spent executing a particular procedure by the
total number of times the procedure is used. Physical measurements are used to show
function costs at low core counts, while simulated measurements are used to study
the behavior at higher core counts (up to 32 cores). Since our simulation infrastructure
allows us to obtain detailed performance measurements, we divide steal into successful
steals and unsuccessful steals. Successful steals are stealing attempts that successfully
return stolen work, while unsuccessful steals are stealing attempts that fail to extract
work from another worker thread due to an empty task queue.

Figure 4 shows results for two micro-benchmarks, bitcounter, and treeadd. The first
one, Bitcounter, exploits DOALL parallelism through TBB’s parallel for() template.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:10 A. Bhattacharjee et al.

stnemerusaeMnoitalumiSstnemerusaeMerawdraH

1 core 2 cores 3 cores 4 cores 4 cores 8 cores 12 cores 16 cores 32 cores

B
it

co
un

te
r

0

100

200

300

400

500

600

700

800

get_task spawn steal acquire_queue wait_for_all

C
yc

le
s

0

100

200

300

400

500

600

700

800

get_task spawn stealing

(successful)

stealing

(unsuccessful)

acquire_queue wait_for_all

C
yc

le
s

T
re

ea
dd

0

100

200

300

400

500

600

700

800

get_task spawn steal acquire_queue wait_for_all

C
yc

le
s

0

100

200

300

400

500

600

700

800

get_task spawn stealing

(successful)

stealing

(unsuccessful)

acquire_queue wait_for_all

C
yc

le
s

Fig. 4. Measured (hardware) and simulated costs for basic TBB runtime activities. The overhead of basic
action such as acquire queue() and wait for all() increases with increasing core counts above 4 cores for
our simulated CMP.

Its working set is highly unbalanced, which makes the execution time of tasks highly
variable. The microbenchmark treeadd is part of the TBB source distribution and
makes use of recursive parallelism.

5.2. Hardware Measurements

On the left-hand side of Figure 4, real-system measurements show that at low core
counts, the cost of some basic functions is relatively low. Functions such as get task(),
spawn(), and acquire queue() remain relatively constant and even show a slight drop
in average runtime with increasing number of cores. This is because as more worker
threads are added, the number of function calls increases as well. However, because
the cost of these functions depends on their outcomes, (task get() and steal(), for
example, have different costs depending on whether the call is successful or unsuccess-
ful), the total cost of the function remains relatively constant, lowering its average cost
per call.

Figure 4 also shows an important contrast in the stealing behavior of DOALL and
recursive parallelism. In bitcounter, for example, worker threads rely more on steal-
ing for obtaining work, allowing the average cost of stealing to increase slightly with
increasing cores due to increasing stealing activity. For treeadd, where worker threads
steal work once and then recursively create additional tasks, the cost of stealing re-
mains relatively constant. Treeadd performs a small number of steals (less than 7,000
attempts), while bitcounter performs approximately 4 million attempts at 4 cores.
Note that one-core results do not include stealing since all work is created and exe-
cuted by the main thread.

5.3. Simulation Measurements

Similar to our physical measurements, simulated results show that functions such
as get task() and spawn() remain relatively constant, while the cost of other func-
tions such as acquire queue() and wait for all() increase with increasing cores. For
bitcounter, the cost of acquire queue() increases with increasing core counts, while
for treeadd it remains relatively constant. Further analysis reveals that since task
variables are more commonly shared among worker threads for bitcounter, the cost of

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:11

queue locking increases due to memory synchronization overheads. For treeadd, task
accesses remain mostly local, avoiding cache coherence overheads.

The function wait for all() increases in cost for both studied microbenchmarks.
Treeadd utilizes explicit task passing (see Section 2.2) to avoid calling the TBB sched-
uler, reducing its overall overhead. Nonetheless, for both of these benchmarks, atomi-
cally decreasing the parent’s reference count creates memory coherence overheads that
significantly contribute to its total cost. For bitcounter, memory coherence overheads
account for 40% of the cost of wait for all().

As previously noted, the two benchmarks studied in Figure 4 have different stealing
behaviors, and thus different stealing costs. For bitcounter, the cost of a successful
steal remains relatively constant at about 560 cycles per successful steal, while a failed
steal attempt takes less than 200 cycles. By design, bitcounter sees greater increases
in stealing opportunities at lower core counts; therefore from 4 to 32 cores, the stealing
overheads remain roughly constant. On the other hand, the cost of a successful steal
for treeadd increases with increasing cores, from 460 cycles at 4 cores to more than
1,100 cycles for a successful steal on a 32-core system. Despite this large overhead, the
number of successful steals is small and has little impact on application performance.

While many of these overheads can be amortized by increasing task granularity, fu-
ture CMP architectures will require applications to harness all available parallelism,
which in many cases may present itself in the form of fine-grain parallelism. Previous
work has shown that in order to efficiently parallelize sequential applications as well
as future applications, support for task granularities in the range of hundreds to thou-
sands of cycles is required [Ottoni et al. 2005; Kumar et al. 2007]. By supporting only
coarse-grain parallelism, programmers may be discouraged from annotating readily
available parallelism that fails to offset parallelism management costs, losing valuable
performance potential.

6. TBB BENCHMARK PERFORMANCE

The previous section focused on a per-cost analysis of basic TBB operations. In this
section, our goal is to study the impact of TBB overheads on overall application per-
formance (the impact of these costs on parallelism performance). For this purpose, we
first present TBB application performance (speedup) followed by a distilled overhead
analysis via categorization of TBB overheads.

6.1. Benchmark Overview

Figure 5 shows simulation results for static versus TBB performance for 8 CMP con-
figurations: 2, 4, 8, 9, 12, 16, 25, and 32 cores. While the use of 9, 12, or 25 cores is
unconventional, it addresses possible scenarios where core scheduling decisions made
by a high-level scheduler (such as the OS, for example) prevent the application from
utilizing some round number of cores.

One of the most noticeable benefits of TBB is its ability to support greater perfor-
mance portability across a wide range of core counts. In swaptions, for example, a
static arrangement of parallelism fails to equally distribute available coarse-grain par-
allelism among available cores, causing severe load imbalance when executing on 9, 12,
and 25 cores. This improved performance scalability is made possible thanks to the ap-
plication’s task programming approach, which allows for better load-balancing through
the creation of more parallel tasks than available cores. This has prompted other par-
allel programming environments such as OpenMP 3.0 to include task programming
model support.

While TBB is able to match or improve performance of static at low core counts, the
performance gap between TBB and static increases with increasing core counts, as in
the case with swaptions, matmult, and LU. This widening gap is caused by synchroniza-

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:12 A. Bhattacharjee et al.

Ideal Linear Static TBB

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32 36

Number of cores

S
p

ee
d

u
p

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32 36

Number of cores

S
p

ee
d

u
p

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32 36

Number of cores

S
p

ee
d

u
p

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32 36

Number of cores

S
p

ee
d

u
p

streamcluster

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32 36

Number of cores

S
p

ee
d

u
p

`

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32 36

Number of cores

S
p

ee
d

u
p

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32 36

Number of cores

S
p

ee
d

u
p

bitcounter matmult LU

fluidanimate swaptions blackscholes

Fig. 5. Speedup results for four PARSEC benchmarks (top) and three microbenchmarks (bottom) using
static versus TBB. TBB improves performance scalability by creating more tasks than available processors,
however, it is prone to increasing synchronization overheads at high core counts.

Table III. TBB Overheads as Measured on a 4-Processor AMD
System Using Medium and Large Datasets

Benchmark Medium Large
fluidanimate 2.6% 5%
swpations 2.4% 2.6%

blackscholes 14% 14.8%
streamcluster 11% 11%

tion overheads within wait for all() and a decrease in the effectiveness of random
task stealing. To better identify sources of significant runtime library overheads, we
categorize TBB overheads and study their impact on parallelism performance. The
performance of random task stealing is studied in Section 7.

The performance impact of the TBB runtime library on our set of applications is
confirmed by our hardware performance measurements. Table III shows the aver-
age percent time spent by each processor executing the TBB library as reported by
oprofile for medium and large datasets. From the table it can be observed that the
TBB library consumes a small, but significant amount of execution time. For example,
streamcluster spends up to 11% executing TBB procedures. About 5% of this time is
spent by worker threads waiting for work to be generated by the main thread, 4% is
dedicated to task stealing, and about 3% to the task scheduler.

TBB’s contribution at 4 cores is relatively low. However, it is more significant than
at 2 cores. Such overhead dependency on core counts can cause applications to perform
well at low core counts, but experience diminishing returns at higher core counts.

6.2. Categorization of TBB Overheads

Section 5 studied the average cost of basic TBB operations: spawn(), get task(),
steal(), acquire queue(), and wait for all(). To better understand how the TBB
runtime library influences overall parallelism performance, we categorize the time
spent by these operations as well as the waiting activity of TBB (described in the fol-
lowing) during program execution into different overhead activities. However, since the
net total execution time of task allocation, task spawn, and task dequeuing is less than

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:13

streamcluster
N

or
m

al
A

to
m

ic
O

pe
ra

tio
ns

0%

5%

10%

15%

20%

25%

30%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

0%

5%

10%

15%

20%

25%

30%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

41% 47%

0%

5%

10%

15%

20%

25%

30%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

0%

5%

10%

15%

20%

25%

30%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

34% 54%
Id

ea
lA

to
m

ic
O

pe
ra

tio
ns

0%

5%

10%

15%

20%

25%

30%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

0%

5%

10%

15%

20%

25%

30%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

0%

5%

10%

15%

20%

25%

30%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

0%

5%

10%

15%

20%

25%

30%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

40% 47%

Synchronization Waiting Scheduler Stealing

fluidanimate swaptions blackscholes

Fig. 6. Average contribution per core of the TBB runtime library on four PARSEC benchmarks. TBB con-
tribution is broken down into four categories. The top row shows TBB contribution when latency of atomic
operations is appropriately modeled. The bottom row shows TBB contributions when atomic operations are
modeled as 1-cycle latency instructions.

0.5% on a 32 core system for our tested benchmarks, only the following four categories
are considered.

—Stealing. This category captures the number of cycles spent determining the victim
worker thread and attempting to steal a task (pointer extraction).

—Scheduler. This category included the time spent inside the wait for all() loop.
—Synchronization. This category captures the time spent in locking and atomic oper-

ations.
—Waiting. This category is not explicitly performed by parallel applications. Rather it

is performed implicitly by TBB when waiting for a resource to be released or during
the back-off period of unsuccessful stealing attempts.

Figure 6 plots the average contribution of the aforementioned categories. Two sce-
narios are shown: the top row considers the case where the latencies of all atomic
operations are modeled, while the bottom row considers the case where the cost of
performing atomic operations within the TBB runtime library is idealized (1-cycle ex-
ecution latency). We consider the latter case since TBB employs atomic operations to
guarantee exclusive access to variables accessed by all worker threads. Some of these
variables include the reference count of parent tasks. As the number of worker threads
is increased, atomic operations can become a significant source of performance degra-
dation when a relatively large number of tasks are created. For example, in swaptions,
synchronization overheads account for an average of 3% per core at 16 cores (achieving
a 14.8X speedup) and grow to an average of 52% per core at 32 cores, limiting its per-
formance to 14.5X. When atomic operations are made to happen with ideal single-cycle
latency, this same benchmark achieves a 15X speedup at 16 cores and 28X at 32 cores.
Swaptions is particularly prone to this overhead due to the relatively short duration
of tasks being generated. This is typical, however, of the aggressive fine-grained ap-
plications we expect in the future. For our set of microbenchmarks, synchronization
overheads degrade performance beyond 16 cores, as shown in Figure 5.

Excessive creation of parallelism can also degrade performance. For example, the
benchmark blackscholes contains the procedure CNDF, which can be executed in par-
allel with other code. When we attempt to exploit this potential for concurrency, the

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:14 A. Bhattacharjee et al.

performance of blackscholes decreases from 19X to 10X. This slowdown is caused
by the large quantities of tasks that are created (from 6K tasks on a simulated
8-core system to more than 6M tasks from parallelizing the CNDF procedure), quickly
overwhelming the TBB runtime library as scheduler and synchronization costs over-
shadow performance gains.

Discouraging annotation of parallelism due to increasing runtime library overheads
reduces programming efficiency as it forces extensive application profiling in order
to find cost-effective parallelization strategies. Runtime libraries should be capable
of monitoring parallelism efficiency and of suppressing cost-ineffective parallelism by
executing it sequentially or under a limited number of cores. While the design of such
runtime support is outside the scope of this article, the next section demonstrates how
runtime knowledge of parallelism can be used to improve task stealing performance.

7. PERFORMANCE OF TASK STEALING

In this section, we take a closer look at the performance of task stealing. Task stealing is
used by worker threads to avoid becoming idle by attempting to steal tasks from other
worker threads. A number of past studies have shown that adequate and prompt steal-
ing is necessary to reduce potential sources of imbalance. For example, Blumofe and
Leiserson [1999] investigated the theoretical runtimes of various parallelism classes
with work stealing, while other work has been conducted on mechanisms to improve
the performance and scalability of task stealing [Acar et al. 2000; Dinan et al. 2009].
The overriding observation is that work stealing is required to mitigate load imbalance,
particularly at barrier boundaries, since failure to promptly reschedule the critical path
(the thread with the most amount of work) can lead to suboptimal performance.

To study the behavior of random task stealing in TBB, we monitor the following two
metrics.

—Success rate The ratio of successful steals to the number of attempted steals.
—False negatives The ratio of unsuccessful steals and steal attempts given that a

worker in the system had at least one stealable task.

With these metrics, we proceed to quantify the performance of random task stealing
on both the microbenchmarks and TBB-ported PARSEC programs. After showing the
inherent limitations of random task stealing, we then focus on two alternatives—a
purely software approach called occupancy-based task stealing and a hardware-aided
approach called criticality-guided task stealing.

7.1. Initial Results

Figure 7 plots the success and false negatives rates for the microbenchmarks across a
number of core counts. As noted, random stealing suffers from performance degrada-
tion (decreasing success rate) as the number of cores is increased. This variability in
performance is more noticeable in microbenchmarks that exhibit inherent imbalance
(bitcounter and LU), where the drop in the success rate is followed by an increase in
the number of false negatives as the number of cores increases.

Similarly, Figure 8 shows the performance of random task stealing on the TBB-
ported PARSEC benchmarks. As with the microbenchmarks, random task stealing
becomes notably less effective at higher core counts. This occurs despite the fact that
load imbalance typically increases with more cores, leading to more potential steal
possibilities. However, the random nature of the task stealer is unable to exploit these
additional tasks. Even at lower core counts, random task stealing performs poorly for
Streamcluster. This is because a few threads operate on longer tasks here and random
stealing does not successfully steal these as victims.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:15

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

P4 P8 P12 P16 P25 P32 P4 P8 P12 P16 P25 P32 P4 P8 P12 P16 P25 P32

Bitcounter tlumtaMUL

Success Rate False Negatives

Fig. 7. Stealing behavior for three microbenchmarks. For benchmarks with significant load imbalance such
as bitcounter and LU, random task stealing loses accuracy as the number of worker threads is increased,
increasing the amount of false negatives and decreasing stealing success rate.

Fig. 8. Random stealing prompts a large false negatives contribution, leading to poor perfor-
mance.

Overall, our results show that random victim selection, while effective at low core
counts, provides suboptimal performance at high core counts by becoming less accurate,
particularly in scenarios where there exists significant load imbalance.

7.2. Improving Task Stealing with Occupancy-Based Approach

We now consider mechanisms to improve stealing performance by focusing on alterna-
tive occupany-centric victim selection policies. The first is an occupancy-based selection
policy, in which a victim thread is selected based on the current occupancy level of the
queue. For this purpose, we have extended the TBB task queues to store their current
task occupancy, increasing its value on a spawn() and decreasing it on a successful
get task() or steal.

Our occupancy-based stealer requires all queues to be probed in order to determine
the victim thread with the most work (highest occupancy). This is a time consuming
process for a large number of worker threads. Therefore, we also develop a variant on
the pure occupany-based approach, the group-based approach. In this, stealer mitigates
the temporal overheads of pure occupancy-based stealing by forming groups of cores of
at most 5 worker threads. When a worker thread attempts to steal, it searches for the
worker thread with the highest occupancy within its own group. If all queues in the
group are empty, the stealer selects a group at random and performs a second scan. If
it is still unsuccessful, the stealer gives up, waits for a predetermined amount of time,
and then tries again. Note that while we choose at most 5 worker threads for our group,

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:16 A. Bhattacharjee et al.

Table IV. Microbenchmark Performance Improvements Over Default Ran-
dom Task Stealing When Using Occupancy-Based Victim Selector, and
Group-Occupancy-Based Victim Selector. Our Stealing Policies Improve
Performance by Nearly 20% Over Random Stealing and Come Close to
Ideal Bounds. We Expect Larger Improvements for Larger Core Counts

Our Approach
Benchmark Occupancy Group-Occupancy

P16 P25 P32 P16 P25 P32
bitcntr 2.5% 2.5% 3.7% 2.3% 3.5% 4.2%

LU 10% 4.1% 9.7% 9.9% 4.3% 8.3%
matmult 9.5% 6% 19% 8.2% 5.3% 17.8%

Table V. Microbenchmark Performance Improvements Over Default Random
Task Stealing When Using an Ideal Occupancy-Based Victim Selector, and an
Ideal Occupancy-Based Victim Selector with Ideal Task Extraction

Ideal
Benchmark Ideal Occupancy Ideal Stealer

P16 P25 P32 P16 P25 P32
bitcntr 2.41% 2.8% 3.7% 4.7% 6.9% 7.8%

LU 10.2% 4.6% 8.0% 16.0% 10.4% 20.6%
matmult 9.8% 7.0% 21.1% 10.8% 9.8% 28.7%

our scheme does not restrict us to this quantity. The choice of the number is based on a
trade-off between the time taken to do a scan through all the queues of a group and the
success rate of steals. By maintaining a relatively low number of threads in a group,
as in our experiments, we test the performance benefits that this scheme could provide
while keeping intercore communication for queue-checks on the lower side. While our
results provide a first analysis of the benefits of this approach, future avenues may
involve varying the maximum number of threads per group.

Table IV shows the performance gain of our occupancy-based and group-based selec-
tion policies for 16, 25, and 32 core systems. Table V additionally shows two scenarios:
ideal occupancy, and ideal stealer. Ideal occupancy, similarly to our occupancy-based
stealer, selects the worker thread with the highest queue occupancy as the victim,
however, the execution latency of this selection policy is less than 10 cycles.1 Our ideal
stealer is the same as ideal occupancy stealer, but also performs actual task extraction
in less than 10 cycles (as opposed to the hundreds of cycles reported in Section 5).

Overall,Table IV shows that occupancy-based and group-based victim selection poli-
cies achieve better performance on the microbenchmarks than a random selection pol-
icy. As Table V shows, when the latency of victim selection is idealized (ideal occupancy),
the performance marginally improves. However, when both selection and extraction of
work is idealized, speedup improvements of up to 28% can be seen (matmult), suggest-
ing that most of the overhead in stealing comes from instruction and locking overheads
associated with task extraction.

We have also studied the performance improvements of occupancy-based stealing
(with nonidealities included) for the TBB-ported PARSEC workloads. Figure 9 shows
the performance improvements across a number of core counts. As with the microbench-
marks, occupancy-based stealing provides performance improvements over random
stealing, particularly for load-imbalanced Streamcluster. Moreover, this improvement
is magnified at greater core counts, where random stealing becomes less effective. On
average, we see that occupancy-based stealing provides a 13% improvement against
random stealing with 32 cores.

1This latency is imposed by our CMP simulator.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:17

Fig. 9. Occupancy-based stealing greatly improves the performance of TBB-ported PARSEC benchmarks
with an average of 13% against random task stealing at 32 cores.

7.3. Improving Task Stealing with Criticality-Guided Approach

While occupancy-based task stealing successfully selects steal victims with tasks
present, it has no understanding of the relative complexities and lengths of tasks.
Since different tasks could take varying amounts of time to complete, this means that
occupancy-based stealing may not necessarily steal a task from the slowest or most
critical thread. Since stealing from the critical thread however, holds greater perfor-
mance improvement potential, we now focus on criticality-guided task stealing. We
begin by introducing how to create thread criticality predictors and then investigate
their application to task stealing.

7.3.1. Thread Criticality Prediction. Predicting thread criticality is a fundamental re-
search problem for parallel programs. If a system can accurately gauge the critical
or slowest threads of a parallel program, this information can be used for load rebal-
ancing, or stealing work from the critical thread for performance improvements.

While criticality in the context of instructions has been explored in the past in
detail [Fields et al. 2001; Tune et al. 2001], research on thread criticality has been
more recent. Bhattacharjee and Martonosi [2009] were the first to propose metrics for
thread criticality and use these to implement simple criticality predictors. This research
indicates that differences in thread speeds in a parallel program can be primarily
attributed to memory hierarchy statistics. Specifically, poorly cached threads tend to
be slower and hence critical in computation. We use this insight to develop a criticality-
guided TBB task stealer.

7.3.2. Integrating Thread Criticality with TBB. Figure 10 details the hardware changes re-
quired to accommodate thread criticality prediction, similar to hardware presented in
Bhattacharjee and Martonosi [2009]. The thread criticality predictor is located at the
shared, unified L2 cache where all cache miss information is centrally available. Our
proposed hardware includes Criticality Counters, which count L1 and L2 cache misses
resulting from each core’s references. As cache misses define thread progress, these
counters track thread criticalities, with larger ones indicative of slower, poorly cached
threads. Since individual L1 cache misses contribute less to thread stall times and
criticality than individual L2 misses and beyond, we propose a weighted combination
of L1 instructions, L1 data, and L2 cache misses, and others when needed. Currently,
our weighted criticality counter values may be expressed by:

N(Crit.Count.) = N(L1miss) + (L1L2penalty) × N(L1L2miss)
L1penalty

. (1)

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:18 A. Bhattacharjee et al.

Fig. 10. High-level predictor design with per-core Criticality Counters placed with shared L2 cache, Interval
Bound Register, and Prediction Control Logic. Hardware units are not drawn to scale.

Fig. 11. Criticality-guided task stealing algorithm improves victim selection by choosing the core with the
largest Criticality Counter value as the steal victim.

In this equation, N(Crit.Count.) represents the value of the criticality counter, while
N(L1miss) and N(L1L2miss) are equal to the number of L1 misses that hit in the L2
cache and the L1 misses that also miss in the L2 cache. Thus, since L2 misses incur a
larger penalty, their weight is proportionately higher.

The counters are controlled by light-weight Predictor Control Logic, which is in
charge of handling task stealing requests from TBB. An Interval Bound Register, which
is incremented on every clock cycle, ensures that criticality predictions are based on
relatively recent application behavior. This is accomplished by resetting all Criticality
Counters whenever the Interval Bound Register reaches a predefined threshold. A
threshold of 100K provides accurate readings of thread criticality [Bhattacharjee and
Martonosi 2009].

With this hardware, Figure 11 details the predictor algorithm applied to task steal-
ing. Cache misses are recorded by the Criticality Counters. When the TBB scheduler
informs the predictor of a steal attempt, the predictor’s control logic scans its criticality
counters for the maximum value and replies to the stealer core that this maximum
counter’s corresponding core number should be the steal victim. If the steal is un-
successful, the stealer sends a message to the predictor to reset the victim counter,
minimizing further incorrect victim prediction. As before, the Criticality Counters are
reset every Interval so that stealing decisions are based on recent application behavior.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:19

Fig. 12. Criticality-guided task stealing algorithm yields up to 32% performance improvements against
random task stealing and regularly outperforms occupancy-based stealing.

Clearly, with this approach, stealing now occurs from the thread predicted to be the
slowest or the most critical.

Note that unlike the random or occupancy stealing approaches, criticality-guided
stealing relies on the addition of hardware. Therefore, we must account for the latency
overhead of accessing this hardware. Since the predictor is placed next to the L2 cache,
we assume that a predictor access imposes an additional delay equivalent to an L2
latency. This is in contrast to the random stealer, or occupancy-based stealer which are
not charged this delay.

7.3.3. Results. Figure 12 plots the performance improvements of criticality-guided
task stealing (parallel region of the benchmarks only) against TBB’s random task
stealing in the dark bars. Furthermore, we also plot the performance improvements
of the occupancy-based approach, again versus random stealing in the light bars. As
shown, criticality-guided stealing offers significant performance improvements over
random stealing, particularly at higher core counts (average of 21.6% at 32 cores).
Moreover, we also improve upon the occupancy-based stealing results. This is because
occupancy-based techniques only count the number of tasks in each queue, but do
not gauge their relative complexity or expected execution time. In contrast, criticality-
based approaches can better account for the relative work in each task, by tracking
cache miss behavior. This generally improves performance, especially at higher core
counts (13.8% at 32 cores). The only exception is Streamcluster where a few threads
hold a large number of stealable tasks of similar duration. In such a scenario, thread
criticality yields little benefit over simple occupancy statistics. Generally however, the
performance benefits of our approach are evident.

7.4. Summary of Observations

With future CMP systems running multiple parallel applications and sharing CPU
and memory resources, future runtime libraries will require dynamic approaches that
are able to scale with increasing core counts while maximizing performance. We have
shown how current random stealing approaches provide suboptimal performance as
the probability of selecting the best victim decreases with increasing core counts.
Occupancy-based and criticality-guided policies are able to better identify the criti-
cal path and reassign parallelism to idle worker threads.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:20 A. Bhattacharjee et al.

Table VI. The OpenMP API Provides Programmers with a Set of Language Pragmas Used to Annotate
Parallelism in Applications. This Table Describes a Few of the Most Commonlyused Pragmas

Pragma Description
omp parallel Annotates code that should be executed by all available worker

threads.
omp single The body of this pragma is executed by only one thread in the

team.
omp for Used inside omp parallel, this pragma distributes the itera-

tions of a DOALL loop across available worker threads.
omp parallel for Combination of omp parallel and omp for.
omp critical Forces the body of this pragma to be executed sequentially by

worker threads.
omp barrier Establishes a synchronization barrier across threads execut-

ing the same parallel region.

8. THE OPENMP RUNTIME LIBRARY

The OpenMP API was proposed by the OpenMP Architecture Review Board (ARB)
for creating multiplatform shared-memory parallel applications. Version 1.0, released
in 1997, offered OpenMP support for the FORTRAN language. Version 2.0 for the
FORTRAN language was released in 2000 and in 2002 it was extended to the C/C++
programming language. The most recent revision of the OpenMP Specification, Ver-
sion 3.0, adds support for parallel tasks, or encapsulated bodies of executable code
with their own data environment that are dynamically assigned to worker threads, as
well as better support for nested parallelism [OpenMP 2007]. When we undertook this
research, no widely-available compiler support for the OpenMP 3.0 specification ex-
isted. Thus, for this chapter, and for the rest of this work, we will focus on an OpenMP
2.0 compliant runtime library. However, the methodology of our study, as well as our
proposed solution in upcoming chapters, are not dependent on a specific environment
and can be readily applied to upcoming software-based runtime libraries.

In OpenMP applications, programmers extract parallelism by using a series of prag-
mas that annotate specific types of parallelism. Pragmas provide programmers with a
clean way of creating N-way parallelism in their applications, as it hides much of the
underlying complexity of directly using threading packages such as POSIX pthreads.
For example, one of the most important pragmas is the omp parallel pragma. This
pragma annotates regions of code that are executed by all worker threads in paral-
lel. With each worker thread having a unique ID, the programmer can then assign a
unique subset of the problem to each worker thread. While the same mechanism can
be achieved by directly using the pthread package, OpenMP offers a way of creating
parallel applications without tying the application to a specific threading substrate.

OpenMP offers pragmas for the most basic types of parallelism operations. Criti-
cal sections within parallel regions are annotated using omp critical, which forces a
code region to be executed sequentially by worker threads. Similarly, the pragma omp
single can be used to force a block of code to be executed by only one worker, and syn-
chronization among worker threads can be imposed by using the pragma omp barrier.
Table VI describes some of the most common OpenMP pragmas.

8.1. Scheduling of Parallelism

In addition to parallel sections, many applications contain loops in which every iteration
is independent of every other. For this type of parallelism, commonly referred as DOALL
parallelism, OpenMP offers the pragma omp for for easy annotation. Used inside omp
parallel code blocks, omp for allows participating worker threads to divide available
loop iterations using one of three different loop scheduling policies.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:21

Fig. 13. (Left) OpenMP code example. Statements in bold are OpenMP pragma statements used to annotate
parallelism. (Right) Diagram illustrating two OpenMP threads executing the code shown to the left. The
pragma omp parallel configures both worker threads to execute the same code body. Code region (2) is
executed only as single thread (thread 0 in our example) while all other thread, wait. The pragma omp for
divides the iterations of a DOALL loop across available worker threads.

—Static. For this schedule, each worker thread is assigned an equal number of iter-
ations (if possible). Iteration assignment occurs only once and it is not allowed to
change at runtime. While this schedule offers the lowest management cost, it is
particularly susceptible to load imbalance.

—Dynamic. This schedule attempts to dynamically assign parallel iterations to worker
threads. Rather than assigning iteration counts statically, threads grab chunks of
iterations as soon as they become idle. This approach reduces load imbalance, but
suffers from locking contention as the number of worker threads is increased.

—Guided. This schedule works by progressively partitioning the iteration space across
worker threads in an attempt to better load-balance computation. It attempts to re-
duce locking contention by initially distributing a large number of iterations followed
by a smaller number in order to eliminate any remaining imbalance.

To better illustrate how programmers create parallel applications using the OpenMP
API, the next section provides a short programming example.

8.2. OpenMP Programming Example

Figure 13 shows an example of how applications use OpenMP pragmas to annotate
parallelism. The left side of the figure shows a code fragment from CG, while the right
side of the figure illustrates how parallelism is executed by two worker threads.

The example starts by using an omp parallel pragma in line 1, which implies that
all available worker threads will concurrently execute the body of the pragma (lines
2–17). Inside the parallel region we find a loop (line 3) as well as the procedure,
conj grad() in line 4. Since this code is being executed by all threads, the right side of
the figure shows conj grad() as being executed by both threads. In line 5, the pragma
omp simple is used to annotate code that should only be executed by a single thread.
The right side of the figure depicts the execution behavior of this pragma by showing
only the master thread executing the code region labeled (2) while the other thread
waits for its completion through an implied barrier at the end. In line 10, the pragma
omp for annotates a loop containing DOALL parallelism and uses a dynamic schedule,
which allows worker threads to dynamically grab loop iterations as needed. The figure
on the right illustrates this behavior by showing the master thread executing (3’) and
the slave thread executing (3”).

As with many other runtime libraries, programmers have little information regard-
ing the actual management cost of parallelism. There seems to be, however, the general
idea that dynamic management of parallelism is more expensive than static arrange-
ments, and that coarse-grain parallelism is preferred over fine-grain parallelism in

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:22 A. Bhattacharjee et al.

Table VII. OpenMP NAS benchmarks used to characterize the Omni OpenMP runtime library.

OpenMP Pragmas
Benchmark Description for critical single barrier

LU LU dense matrix decomposition. 29 2 2 3
MG Multigrid method to compute the solu-

tion of a 3D scalar Poisson equation.
11 3 10 11

CG Conjugate gradient method to compute
an approximation of an unstructured
sparse matrix.

22 2 12 9

SP Simulated computational fluid dynam-
ics.

63 1 0 2

order to hide runtime library overheads. This may discourage programmers from us-
ing dynamic management of parallelism, or from annotating parallelism that does not
seem sufficiently large to be cost-effective. Both of these approaches are contradictory
to the needs of future CMP systems. It is of prime importance, then, to understand the
major sources of overheads of existing runtime libraries and improve their performance
through alternative, more cost-effective dynamic approaches.

The following section characterizes the Omni runtime library, an OpenMP-compliant
runtime library, identifying some of its most significant sources of overheads. It also
proposes an alternative loop-scheduling mechanism, which offers static-like costs while
providing dynamic loop management capabilities.

8.3. Methodology

For the study of OpenMP, we use the Omni 1.6 infrastructure [The Omni OpenMP
Compiler Project 2007], which consists of a C-language front-end compiler and a run-
time library. The front-end compiler is responsible for reading C files annotated with
OpenMP pragmas and creating an intermediate C file containing calls to the Omni
runtime library. The runtime library is a high-performance [Kusano et al. 2000] open-
source runtime library for the Linux OS that implements the OpenMP 2.0 specifica-
tions.

Our benchmarks consist of a subset of the OpenMP NAS benchmarks [Jin et al. 1999]
described in Table VII. We use dataset W and compile the benchmarks using the Omni
compiler front-end and gcc 3.0 as the back-end compiler with optimization flags -O3.

9. OPENMP RESULTS

9.1. Characterization of the Omni Runtime Library

Using a similar approach to that used in the characterization of the TBB runtime
library in Section 5, we classify the time spent by each core during the execution of an
OpenMP benchmark into four different categories.

(1) Scheduler. This category captures the time spent determining the next loop itera-
tion to execute.

(2) Barrier. Captures the time spent executing implicit or explicit barriers.
(3) Lock. This category includes the time spent trying to obtain a lock to a shared

resources within the runtime library.
(4) Support. Accounts for the time spent executing other runtime functionality, such

as determining the number of active worker threads and/or obtaining local data
structures.

Figure 14 shows the average time spent by cores executing these categories when
executing CG and MG OpenMP benchmarks under static and dynamic schedules. The
figure shows that for both static and dynamic schedules, the overall contribution of the
runtime library increases with increasing core counts. For static, barrier costs from

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:23

Static Dynamic
C

G

0%

10%

20%

30%

40%

50%

60%

70%

80%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

0%

10%

20%

30%

40%

50%

60%

70%

80%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

M
G

0%

10%

20%

30%

40%

50%

60%

70%

80%

P8 P12 P16 P25 P32

Number of cores

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

0%

10%

20%

30%

40%

50%

60%

70%

80%

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

S
P

0%

10%

20%

30%

40%

50%

60%

70%

80%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

0%

10%

20%

30%

40%

50%

60%

70%

80%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

L
U

0%

10%

20%

30%

40%

50%

60%

70%

80%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

0%

10%

20%

30%

40%

50%

60%

70%

80%

P8 P12 P16 P25 P32

Number of cores

A
ve

ra
g

e
ti

m
e

p
er

 c
o

re

Barrier LockScheduler Support

Fig. 14. Average time spent per core executing OpenMP activities. For dynamic loop scheduling, high lock
contention decreases performance as the number of cores increases.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:24 A. Bhattacharjee et al.

implicit synchronization at the end of parallel loops account for a significant portion
of the runtime execution. For dynamic, lock contention becomes a major bottleneck
with increasing core counts. This is because in the Omni runtime library, threads
are required to lock the centralized location where the remaining iterations are being
stored. Thus, as more worker threads attempt to grab work, synchronization overheads
become significant, eventually overshadowing any parallelism performance gains.

Increasing synchronization overheads decreases the performance potential of appli-
cations, even when the annotated parallelism in the applications is able to scale well.
For example, for the benchmark CG, dynamic loop scheduling achieves a speedup of
only 1.6X on a 32-core system. When artificially treating atomic operations as 1-cycle
latency instructions, the performance of CG increases to 15X. Similarly, for MG, which
achieves a speedup of 1.9X on a 32 core CMP, 1-cycle latency instructions causes it to
achieve a speedup of 20X.

It is possible to reduce lock contention by increasing the number of iterations that
worker threads are allowed to grab (increasing chunk size). However, as worker threads
grab a larger number of iterations, there remains little opportunity for scalability as
there might not be sufficient number of iterations to keep all cores busy. Given the
abstraction layer provided by runtime libraries, it is difficult for programmers to assess
these trade-offs without extensive profiling.

9.2. Improving the Performance of OpenMP

The previous section demonstrated that locking contention within the Omni runtime
library can significantly degrade the performance of dynamic loop scheduling. As a
way of improving parallelism management, we propose a scheduling mechanism that
offers management cost very close to that of static scheduling while offering the ben-
efits of a dynamic schedule. For this, we have extended the Omni runtime system to
support iteration stealing. Iteration stealing is implemented on the Omni runtime sys-
tem by first dividing the iteration space equally across active worker threads—much
like static scheduling—but rather than working on the entire assigned iteration space
at once, threads extract iteration chunks from their local assignment. Extracting iter-
ation chunks from their local assignment requires local locking, avoiding global lock
contention and improving application scalability. When a worker runs out of local it-
erations, it attempts to steal from other threads using a highest-occupancy selection
policy.

Our OpenMP occupancy-based stealing policy is similar to that used in the TBB
runtime library, except that instead of using the number of task pointers stored in the
container, it uses the number of pending iterations as an indication of occupancy. Hence,
when worker threads consume their assigned iterations, they select a victim thread by
scanning the occupancy of other worker threads and selecting the one with the highest
occupancy (number of unfinished iterations). To further improve the performance of
this policy, assembly code is used in critical sections to reduce instruction overheads.

Figure 15 shows the performance of CG and MG when using static, dynamic, and steal-
ing schedules. As shown, iteration stealing offers significant performance improve-
ments over a dynamic loop schedule. Despite significant performance improvements,
however, the runtime library continues to exhibit significant overhead for large core
counts. Barrier completion overhead continues to be a significant source of performance
degradation. Furthermore, iteration stealing introduces its own cost as well. Scanning
available worker threads for potential work consumes an average of 3% of the exe-
cution time of worker threads. Locking overhead, while less significant, continues to
be expensive at large core counts as stealing threads are required to obtain exclusive
access to the victim’s data structures during stealing.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:25

Ideal Linear Static Dynamic Stealing

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32 36

Number of cores

S
p

ee
d

u
p

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32 36

Number of cores

S
p

ee
d

u
p

CG MG

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32 36

Number of cores

S
p

ee
d

u
p

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32 36

Number of cores

S
p

ee
d

u
p

SP LU

Fig. 15. Iteration stealing is able to offer higher performance by replacing global locking of variables by local
locking. However, for large core counts, synchronization costs from application barriers continue to degrade
performance.

The implementation of policies such as occupancy-based stealing shows that it is
possible to create parallelism redistribution approaches that more adequately adapt to
system behavior. Unfortunately, the implementation of these policies through software-
based approaches causes them to be too heavyweight as overheads begin to dominate
at high core counts, quickly overshadowing any benefits they provide.

Support such as container access, container locking, and assignment of parallelism to
available processors are basic operations carried by runtime libraries that inherently
contribute to overall parallelization overhead. Any solution that aims at reducing the
overheads of these basic operations is likely to provide greater support for fine-grain
parallelism and faster parallelism redistribution among execution resources.

10. GENERAL RECOMMENDATIONS

Based on our characterization results and experience with the TBB and OpenMP run-
time libraries, we offer the following recommendations for programmers and runtime
library developers:

—For programmers. At low core counts (2 to 8 cores), most of the overhead comes
from the use of various library runtime procedures. For example, for TBB, creating
a relatively small number of tasks might be sufficient to keep all processors busy
with sufficient opportunity for load balancing. At higher core counts, synchronization

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:26 A. Bhattacharjee et al.

overheads start becoming significant. Excessive task creation can induce significant
overhead if task granularity is not sufficiently big (approximately 100K cycles). In
either case, using explicit task passing (see Section 2.2) is recommended to decrease
some of these overheads.

—For TBB developers. While it might be difficult to reduce synchronization overheads
caused by atomic operations within the TBB runtime library (unless specialized
synchronization hardware becomes available [Sampson et al. 2006]), offering alter-
native task stealing policies that consider the current state of the runtime library
(queue occupancy, for example) can offer higher parallelism performance at high core
counts. Moreover, knowledge of existing parallelism can help drive future creation
of concurrency. For example, when too many tasks are being created, the runtime
library might be able to throttle the creation of additional tasks. In addition, while
not highly applicable to our tested benchmarks, we noted an increase in simulated
memory traffic caused by the random assignment of tasks to available processors.
An initial deterministic assignment of tasks followed by stealing for load-balancing
might help maintain data locality of tasks.

—For OpenMP developers. The primary overheads associated with the OpenMP sched-
uler revolve around synchronization primitives. For example, barrier overheads be-
come particularly severe at higher core counts, while locking overheads, though less
severe, continue to be expensive at large core counts. While the implementation of
policies like iteration stealing can possible redistribute parallelism to better adapt
to system behavior, overheads are likely to remain dominant at high core counts.
Therefore it is key to devise new mechanisms to address overheads associated with
container access, container locking, and parallelism assignment. Any progress on
these fronts would provide greater support for fine-grain parallelism and faster re-
distribution among execution resources.

11. RELATED WORK

CMPs demand parallelism from existing and future software applications in order
to make effective use of available execution resources. The extraction of concurrency
from applications is not new however. Multiprocessor systems previously influenced
the creation of software runtime libraries and parallel languages in order to efficiently
make use of available processors. Classical UNIX semantics (fork(), posix threads) are
widely used though they are error-prone and may be unsuitable for the management
of fine-grained parallelism. Alternate approaches like Hood [Blumofe and Dionisios
1999] or Continuations [Hieb and Dybvig 1990] aid in hiding low-level primitives while
allowing the programmer to handle concurrency access.

At the same time, parallel languages such as Linda [Gelernter 1985], Orca, Emerald
and Cilk [Blumofe et al. 1996], among many others, were designed with the purpose of
extracting course-grain parallelism from applications. Some of these languages have
been further refined to aid programmers; for example, Cilk++ builds upon Cilk by addi-
tionally providing new constructs to solve data race problems [Leiserson 2009]. Never-
theless, the coarse-grained parallel nature of these languages remains. Furthermore,
many of these paradigms, including Orca and MGS [Giavitto and Michel 2001], are
domain-specific. In response, intentional programming, generative programming, and
language-oriented programming [Ward 1994] allow for domain-specific programming
but also permit the generation of standard code automatically. Additional approaches
exist in the form of X10 [Charles et al. 2005] and Fortress [Allen et al. 2006], where
implicit transactions and weak atomicity have been used to express concurrency con-
straints. Moreover, speculative synchronization [Martinez and Torrellas 2002] has been
proposed to overcome expensive lock checking through rollback mechanisms.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:27

Despite these benefits however, libraries that extended sequential languages for par-
allelism extraction, such as Charm++ [Kale and Krishnan 1993], STAPL, and OpenMP
[OpenMP 2002] have become valuable tools, as they allow programmers to create par-
allel applications in an efficient and portable way. Many of these tools and techniques
can be directly applied to existing CMP systems, but in doing so, runtime libraries also
bring their preferred support for coarse-grain parallelism. In this regard, our work
is an important step towards the development of efficient runtime libraries targeted
at CMPs with high core counts. By highlighting the critical overheads of TBB and
Open MP, we provide programmers and developers with guidance on how best to tailor
parallel libraries to CMPs.

There has also been important characterization work in the context of suites of par-
allel programs. For example, the SPLASH suite was one of the first workload suites
for the purpose of studying shared-address cache-coherent systems. The associated
SPLASH characterization study looked at a number of parallelization issues such
as scalability, working set sizes, and communication to computation ratios [Woo et al.
1995]. More recently, in recognition of the prevalence of CMPs, the PARSEC benchmark
suite [Bienia et al. 2008b] has been developed to represent workloads with the com-
plexity and computational demands expected for future parallel applications. Ensuing
characterization studies have been undertaken for PARSEC [Bienia et al. 2008b], again
addressing scalability issues, synchronization overheads, and memory demands. More-
over, comparison studies of both the PARSEC and Splash-2 suites have been conducted
[Bienia et al. 2008a]. We view our work as a logical extension of these characterization
studies in the context of parallelization libraries.

Aside from the development and characterization of parallel languages, libraries,
and benchmarks, much work has also addressed hardware and software mechanisms
to reduce parallelization overheads. For example, Hoffman et al. [2004a, b] explore a
variety of task-queue implementations to reduce overheads with a number of software
and hardware synchronization primitives. While some of the surveyed applications
do see benefits with the proposed hardware approaches, they are modest. Hankins
et al. [2006] propose the alternate approach of Multiple Instruction Stream Process-
ing (MISP), which allows for fast spawn and manipulation of user-level threads on
CMP hardware contexts. These threads are not visible to the OS and can be invoked
and terminated quickly by application threads, allowing for efficient fine-grained task
management. However, task scheduling is retained in software. Unlike this proposal,
Kumar et al. [2007] propose Carbon, which not only supports high performance for
fine-grained parallelism through hardware task queues, but also minimizes scheduling
overheads by implementing scheduling and task prefetching techniques in hardware.
Our work is partly inspired by this body of previous work to propose hardware/software
techniques to improve load-balancing issues on both the TBB and OpenMP libraries.

12. CONCLUSIONS AND FUTURE WORK

The advent of CMPs and expected increase in core counts necessitates the creation of
parallelization libraries that can create and manage parallelism in an efficient manner
across a range of granularities. To this end, Intel’s Threading Building Blocks (TBB)
runtime library is an increasingly popular parallelization library, which encourages
the creation of portable, scalable parallel applications through the creation of parallel
tasks. This allows TBB to dynamically store and distribute parallelism among available
execution resources, utilizing task stealing for improving resilience to sources of load
imbalance.

This article has presented a detailed characterization and identification of some of the
most significant sources of overhead within the TBB runtime library. Through the use of
a subset of PARSEC benchmarks ported to TBB, we show that the TBB runtime library

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

5:28 A. Bhattacharjee et al.

can contribute up to 47% of the total execution time on a 32-core system, attributing
most of this overhead to synchronization within the TBB scheduler. We have studied the
performance of random task stealing, which fails to scale with increasing core counts,
and shown how a queue occupancy-based stealing policy can improve performance of
task stealing by up to 17%.

In conjunction with our studies on TBB, we have also explored the sources of critical
overheads in the OpenMP runtime system. Our results show that synchronization
primitives are a primary bottleneck in performance and become more critical at higher
core counts. While the implementation of more intelligent load-balancing techniques
like iteration stealing can better redistribute parallelism among cores, overheads are
likely to remain high at higher core counts.

The community’s future work should focus on approaches that aim at reducing many
of the overheads identified in our work. For example, one could accomplish this through
an underlying support layer capable of offering low-latency, low-overhead parallelism
management operations [Kumar et al. 2007]. One way to achieve such support is
through a synergistic cooperation between software and hardware layers, giving paral-
lel applications the flexibility of software-based implementations and the low-overhead,
low-latency response of hardware implementations.

REFERENCES

ACAR, U., BLELLOCH, G., AND BLUMOFE, R. 2000. The data locality of work stealing. Proceedings of the Symposium
on Parallel Algorithms and Architectures.

ALLEN, A., CHASE, D., LUCHANGCO, V., MAESEN, J. W., RYU, S., STEELE, G., AND TOBIN-HOCHSTADT, S. 2006. The
Fortress Language specification. Sun Microsystems.

BHATTACHARJEE, A., AND MARTONOSI, M. 2009. Thread criticality predictors for dynamic performance, power,
and resource management in chip multiprocessors. Proceedings of the International Symposium on
Computer Architecture.

BIENIA, C., KUMAR, S., AND LI, K. 2008. PARSEC vs. SPLASH-2: A quantitative comparison of two multi-
threaded benchmark suites on chip multiprocessors. Proceedings of the International Symposium on
Workload Characterization.

BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. 2008. PARSEC-2.0: Characterization and architectural implica-
tions. Proceedings of the International Conference on Parallel Architectures and Compilation Techniques.

BLUMOFE, R. AND DIONISIOS, D. 1999. Hood: A user-level threads library for multiprogramming multiprocessors.
Tech. rep. University of Texas-Austin.

BLUMOFE, R. AND LEISERSON, C. 1999. Scheduling multithreaded computations by work stealing. J. ACM.
BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISERSON, C. E., RANDALL, K. H., AND ZHOU, Y. 1996. Cilk: An

efficient multithreaded runtime system. J. Parall. Distrib. Comput. 37, 1, 55–69.
CHARLES, P., GROTHOFF, C., SARASWAT, V., DONAWA, C., KIELSTRA, A., EBCIOGLU, K., PRAUN, C., AND SARKAR, V. 2005.

X10:An object-oriented approach to non-uniform cluster computing. Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and Applications.

CHEN, J., JUANG, P., KO, K., CONTRERAS, G., PENRY, D., RANGAN, R., STOLER, A., PEH, L.-S., AND MARTONOSI, M.
2005. Hardware-modulated parallelism in chip multiprocessors. Proceedings of the Workshop on Design,
Architecture and Simulation of Chip Multiprocessors (dasCMP).

DINAN, J., LARKINS, D., SADAYAPPAN, P., KRISHNAMOORTHY, S., AND NIEPLOCHA, J. 2009. Scalable work stealing.
Proceedings of the Conference on High Performance Computing Networking, Storage, and Analysis.

FIELDS, B., RUBIN, S., AND BODIK, R. 2001. Focusing processor policies via critical-path reduction. Proceedings
of the International Symposium on Computer Architecture.

GELERNTER, D. 1985. Generative Communication in Linda. ACM Trans. Program. Lang. Syst. 7, 1, 80–112.
GIAVITTO, J. AND MICHEL, O. 2001. MGS: A rule-based programming language for complex objects and collec-

tions. Proceedings of the International Workshop on Rule-Based Programming.
GORDON, M. I., THIES, W., AND AMARASINGHE, S. 2006. Exploiting coarse-grained task, data, and pipeline

parallelism in stream programs. In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems.

HALSTEAD, R. H. 1985. MULTILISP: A language for concurrent symbolic computation. ACM Trans. Program.
Lang. Sys. 7, 4, 501–538.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

TACO0801-05 ACM-TRANSACTION April 11, 2011 15:4

Parallelization Libraries: Characterizing and Reducing Overheads 5:29

HANKINS, R., CHINYA, G., COLLINS, J., WANG, P., RAKVIC, R., WANG, H., AND SHEN, J. 2006. Multiple instruction
stream processor. Proceedings of the International Conference on parallel Processing.

HIEB, R. AND DYBVIG, R. 1990. Continuations and concurrency. Proceedings of the Symposium on Principles
and Practices of Parallel Programming.

HOFFMAN, R., KORCH, M., AND RAUBER, T. 2004a. Performance evaluation of task pools based on hardware
synchronization. Proceedings of the International Symposium on Supercomputing.

HOFFMAN, R., KORCH, M., AND RAUBER, T. 2004b. Using hardware operations to reduce the synchronization
overhead of task pools. Proceedings of the International Conference on Parallel Processing.

HUMENAY, E., TARJAN, D., AND SKADRON, K. 2007. Impact of process variations on multicore performance
symmetry. In Proceedings of the Conference on Design, Automation and Test in Europe. ACM Press,
1653–1658.

Intel Corporation 2003. Intel PXA255 Processor: Developer’s Manual. Intel Corporation. Order Number
278693001.

INTEL THREADING BUILDING BLOCKS 2.0 OPEN SOURCE. http://threadingbuildingblocks.org/.
JIN, H., FRUMKIN, M., AND YAN, J. 1999. The OpenMP implementation of NAS parallel benchmarks and its

performance. Tech. Rep. NAS-99-011.
KALE, L. V. AND KRISHNAN, S. 1993. CHARM++: A portable concurrent object oriented system based on C++. In

Proceedings of the Conference on Object-oriented Programming Systems, Languages, and Applications.
KUMAR, S., HUGHES, C., AND NGUYEN, A. 2007. Carbon: Architectural support for fine-grained parallelism in

chip multiprocessors. In Proceedings of the International Symposium on Computer Architecture.
KUSANO, K., SATOH, S., AND SATO, M. 2000. Performance evaluation of the omni OpenMP compiler. Lecture

Notes in Computer Science vol. 1940, 403+.
LEISERSON, C. 2009. The cilk++ concurrency platform. Proceedings of the Design Automation Conference.
MARTINEZ, J. AND TORRELLAS, J. 2002. Speculative Synchronization: Applying thread-level speculation to ex-

plicitly parallel applications. Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems.

OPENMP. 2002. OpenMP C/C++ Application Programming Interface.
OpenMP. 2007. OpenMP Application Program Interface. Draft 3.0.
OTTONI, G., RANGAN, R., STOLER, A., AND AUGUST, D. I. 2005. Automatic thread extraction with decoupled

software pipelining. In Proceedings of the International Symposium on Microarchitecture.
PALATIN, P., LHUILLIER, Y., AND TEMAM, O. 2006. CAPSULE: Hardware-assisted parallel execution of component-

based programs. In Proceedings of the International Symposium on Microarchitecture.
REINDEERS, J. 2007. Intel threading building blocks: Outfitting C++ for multicore parallelism. O’Reilly Pub-

lishers.
SAMPSON, J., GONZALEZ, R., COLLARD, J.-F., JOUPPI, N. P., SCHLANSKER, M., AND CALDER, B. 2006. Exploiting fine-

grained data parallelism with chip multiprocessors and fast barriers. In Proceedings of the International
Symposium on Microarchitecture.

THE OMNI OPENMP COMPILER PROJECT. 2007. http://phase.hpcc.jp/omni.
TUNE, E. LIANG, D., TUKSEN, D. M., AND CALDER, B. 2001. Dynamic prediction of critical path instructions.

Proceedings of the International Symposium on High Performance Computer Architecture.
WARD, M. 1994. Language oriented programming. Soft. Concepts Tools 15, 4, 146–161.
WOO, S., OHARA, M., TORRIE, E., AND SINGH, J. 1995. The SPLASH-2 Programs: Characterization and method-

ological Considerations. Proceedings of the International Symposium on Computer Architecture.

Received November 2009; revised September 2010; accepted October 2010

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 1, Article 5, Publication date: April 2011.

