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ABSTRACT
Due to increasing energy and performance gaps between general-
purpose processors and hardware accelerators (e.g., FPGA or ASIC),
clear trends for leveraging accelerators arise in various fields or
workloads, such as edge devices, cloud systems, and data centers.
Moreover, system integrators desire higher flexibility to deploy
custom accelerators based on their performance, power, and cost
constraints, where such integration can be as early as (1) at the
design time when third-party intellectual properties (IPs) are used,
(2) at integration/upgrade time when third-party discrete chip ac-
celerators are used, or (3) during runtime as in reconfigurable logic.

A malicious third-party accelerator can compromise the entire
system by accessing other processes’ data, overwriting OS data
structures, etc. To eliminate these security ramifications, a unit
similar to a memory management unit (MMU), namely IOMMU,
is typically used to scrutinize memory accesses from I/O devices,
including accelerators. Still, IOMMU incurs significant performance
overhead because it resides on the critical path of each I/O memory
access. In this paper, we propose a novel scheme, CryptoMMU,
to delegate the translation processes to accelerators, whereas the
authentication of the targeted address is elegantly performed using
a cryptography-based approach. As a result, CryptoMMU facilitates
the private caching of translation in each accelerator, providing
better scalability. Our evaluation results show that CryptoMMU
improves system throughput by an average of 2.97× and 1.13×
compared to the conventional IOMMU and the state-of-the-art so-
lution, respectively. Importantly, CryptoMMU can be implemented
without any software changes.
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1 INTRODUCTION
With the increasing diversity of workloads and the significant per-
formance and energy gap between general-purpose processors and
accelerators, modern accelerator-rich architectures are getting trac-
tion in cloud systems, edge devices, and HPC systems [38, 41, 43].
While major accelerator vendors continue to develop advanced
accelerators, many third-party vendors have emerged, offering cost-
effective alternatives and specialized expertise [26, 36]. A variety of
vendors contribute to expanding accelerator industry ecosystem by
providing complementary products and services. Thus, accelerators
can be manufactured with different form factors and integration
strategies, such as third-party intellectual property (IP) designs
embedded in a system-on-chip (SoC), soft IP designs programmed
in a reconfigurable logic fabric (e.g., FPGA), and discrete accelerator
chips integrated through I/O interconnects [22, 37, 61, 67, 79].

Recently, SoC designers have allowed these accelerators to di-
rectly tap into the host memory by introducing direct-memory
access (DMA) attributes [9, 47, 48, 75]. Furthermore, direct access to
host memory is becoming essential for modern accelerators to deal
with the memory resource scarcity problem or the pointer-based
programming model. Nevertheless, such DMA-enabled accelerators
present significant security risks, as a compromised accelerator can
potentially jeopardize the entire system [8, 66, 70]. Factors such
as bugs or vulnerabilities in the device driver, an untrusted supply
chain, or flaws in the accelerated kernel can substantially increase
the attack surface. Therefore, it is crucial to consider these secu-
rity implications when integrating third-party accelerators into a
system [27, 30, 34, 45, 46, 63, 65, 80].
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The Problem: To mitigate increasing security risks originating
from third-party accelerators, modern systems leverage I/O Memory
Management Unit (IOMMU) that scrutinizes accesses from third-
party peripheral devices and ensures they only access their cor-
responding memory locations [54]. In an integrated accelerator
setup, safe memory regions for accelerators are provisioned by
the OS and enforced by IOMMU. IOMMU must be integrated on
the trusted chip (i.e., CPU) and on the critical path of every I/O
access to the host memory, including coherence messages. Thus,
IOMMU is expected to handle high-throughput translation requests.
However, it is expected that the pressure on IOMMU will be in-
creased by the trend of integrating a large number of accelerators
to accommodate memory-intensive custom workloads [3, 4, 50]. To
address this issue, CPU manufacturers have enabled accelerators to
have private TLBs for caching translations. Given that third-party
vendors cannot always be trusted, implementing an efficient and
secure IOMMU is critical for the advancement of accelerator-rich
architectures.
The Challenge: Ensuring a robust access control mechanism is
challenging because it requires verifying all traffic originating from
accelerators. Different from conventional IOMMU that only han-
dles Address Translation Service (ATS) requests on private TLB
misses, a secure IOMMU also needs to check the access control
(or permission) on TLB hits. Figure 1 shows that a secure IOMMU
incurs 32.12× traffic overhead (i.e., ATS requests and permission
check traffic normalized to ATS-only traffic). Therefore, the extra
access control traffic needs to be adequately handled such that it
does not saturate interconnect and memory bandwidth.

Figure 1: Total traffic (ATS+Access Control) normalized to
ATS-only traffic.

To address this challenge, Olson et al., [57] have proposed Bor-
der Control (BC) that checks access permission for all traffic by
decoupling page table walks and access permission. It leverages
a contiguous bitmap-like structure located in the host memory to
store page permissions (henceforth referred to as protection table)
for each accelerator; hence, it does not need to walk the page table
for checking access permission.

Unfortunately, BC suffers from scalability, performance, and prac-
ticality challenges. Border Control manages multiple protection
tables in the OS, whose quantity is tied to the number of accelera-
tors and usage contexts. Ensuring coherence between the page table
and these new tables requires extending the TLB shootdown mech-
anism. This complicates already complex Inter-Processor Interrupts
(IPI) based TLB coherence mechanism, resulting in scalability and
performance issues [2, 49]. Furthermore, virtualization techniques

for multi-tenant support, especially in cloud systems, amplify the
complexity as they may necessitate additional synchronization be-
tween the guest and host system’s page and protection tables [23].
Although Border Control introduces a physically-indexed cache,
BCC, to limit main memory accesses by caching contiguous per-
mission information, it suffers significant bandwidth overheads
due to the poor locality of physical pages caused by consecutive
virtual pages mapping to distant physical ones based on the sys-
tem’s state. This problem becomes even more severe when handling
accelerators supporting multiple contexts, large memory footprints,
and terabyte-sized main memory. Specifically, per-accelerator BCC
configuration is not practical and scalable [31, 81]. The host should
be able to support any number of accelerators; hence, putting a
fixed number of BCCs in the host CPU that includes IOMMU is
impractical. Consequently, themain challenge in achieving scal-
able IOMMU implementation is to allow accelerators and devices to
cache their translations yet ensure the performance of address ver-
ification at IOMMU is independent of the access pattern/locality of
accelerators/devices. Also, requiring no software changes besides what
is already implemented for legacy IOMMU is expected.
Our Solution: We propose CryptoMMU to overcome the perfor-
mance and scalability challenges in the prior work. It allows pri-
vate address translation caching in the accelerator, thus improving
scalability. CryptoMMU ensures the authenticity of pre-translated
requests from accelerators through cryptographic authentication.
Authentication tags generated via key-based secure hash functions
provide cryptographic evidence cached with the translation in the
accelerator and later verified by CryptoMMU. Consequently, Cryp-
toMMU only needs to maintain a single authentication key per
accelerator, eliminating the need for IOMMU-cached metadata,
such as protection tables, dependent on access patterns. Since these
keys are generated and maintained by CryptoMMU, our method
does not require software changes or management of additional
tables.

CryptoMMU offers two designs: a baseline version tailored for
future accelerators and another for legacy accelerators. The baseline
CryptoMMU employs the authentication tag, cached by accelerators
alongside translations. It requires modification of the TLB struc-
ture to accommodate large authentication tags. On the other hand,
for legacy accelerators whose TLB structure cannot be changed,
CryptoMMU repurposes unused upper bits of the page frame num-
ber (PFN) to store a truncated tag. This allows the private TLB to
cache the authentication tag with the PFN, avoiding the need for
accelerator modification.

To evaluate CryptoMMU, we use gem5 PARADE simulator [10]
and its High-level Synthesis (HLS)-based accelerators, as in prior
work [13]. Compared to the baseline IOMMU implementation,
which is similar to CryptoMMU in terms of storage overhead, Cryp-
toMMU improves throughput by 2.97×; furthermore, it yields a
speedup of 1.13× compared to the state-of-the-art scheme (i.e., Bor-
der Control).

The rest of the paper is organized as follows. In Section 2, we de-
scribe the essential background for our study. Later in Section 3, we
explain why previous access control management schemes are not
scalable for emerging accelerator-rich architectures. Subsequently,
the proposed design, CryptoMMU, is explained in detail, followed
by its evaluation results in Section 6. We discuss the overheads of
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CryptoMMU in Section 7 and related works in Section 8. Finally,
we conclude in Section 9.

2 BACKGROUND
2.1 Threat Model

Trusted Computing Base (TCB)

Host Memory

Page TableRead-only page 
for accelerator
Writable page 
for accelerator

Mem. Ctrl

Cache Hierarchy

IOMMUMMU
CPU cores

App0 Accelerator(s)
App0

Co-processing

Figure 2: Our assumed threat model.

Our assumed threat model resembles previous studies of secure
access control for hardware accelerators [57]. As shown in Figure 2,
external accelerators outside the trusted computing base (TCB) may
need to access the host memory. Untrusted accelerators, whether
buggy or malicious, can potentially breach the permissions estab-
lished by a trusted operating system. Such permission breaching is
possible if accelerators replay outdated translations by intentionally
neglecting TLB shootdown requests. Furthermore, a malicious ac-
celerator may intercept transactions between an honest accelerator
and the IOMMU, stealing address translation information to exe-
cute a man-in-the-middle attack. Consequently, bypassing memory
access can result in security and reliability problems, including sys-
tem crashes and the exfiltration of sensitive information. Therefore,
the on-chip trusted IOMMU in TCB manages access controls. After
a process running on TCB (i.e., App0 in the figure) decides the spe-
cific access permission (e.g., read-only or writable), the IOMMUwill
enforce the access control specified by that process. Note that we
assume that host memory is inside the TCB, which can be accom-
plished through typical memory security protection schemes from
external physical attacks [25, 78, 82] or trusted memory vendors
providing point-point protection, as used in ObfusMem [7] and
InvisiMem [1].

In our threat model, we consider the operating system to be
trusted, which means we always assume the permissions granted
by the OS are valid. Data isolation for processes executed on the ac-
celerator or controlling the addresses accessible by the accelerator
falls outside the scope of our threat model. However, the on-chip
IOMMU (see Figure 2) prevents accelerators from accessing disal-
lowed memory regions; in other words, a trusted IOMMU ensures
that accelerators are allowed to read or write only the authorized
pages by scrutinizing accesses coming from these untrusted accel-
erators.

2.2 Integration of Third-Party Accelerators
Integrating third-party accelerators in an SoC can be categorized
into three approaches according to the integration moment [51].
The first approach is design-time integration, which integrates third-
party designs via system buses (e.g., AXI or PCIe) before taping out
the target SoC. These third-party designs may contain encrypted
source files; hence, detecting bugs or hardware Trojans becomes
more challenging for larger designs due to the encrypted forms
of designs [58, 71]. The second approach is integration-time inte-
gration; it interfaces taped-out chips (e.g., discrete accelerator and
processor chips). However, potential compromises in manufactur-
ing chains (e.g., untrusted manufacturing/packaging/integration)
may lead to bugs or hardware Trojans, thereby increasing the attack
surface due to the growing reliance on these accelerators [53, 74].
The third approach is run-time integration, where SoC designers
can dynamically program new accelerators on reconfigurable SoCs
as users or applications themselves seek out new soft IPs that im-
prove performance and energy efficiency [42, 68]. However, soft
IP vendors potentially provide malicious or buggy designs to com-
promise the system security [20, 69]; moreover, soft IPs are mostly
encrypted [21], further complicating security threat detection. As
a consequence, we need an innovative approach that sandboxes
the various types of aforementioned third-party accelerators and
securely validates shared memory accesses from these accelerators.

2.3 I/O Memory Management Unit (IOMMU)
Traditionally, IOMMU provides Address Translation Services (ATS)
to IO devices; it interfaces the accelerators and the main memory.
Furthermore, IOMMU allows the OS to encapsulate the accelerator
in its virtual memory space [50]. In such an environment, acceler-
ators can issue requests using IO virtual addresses (IOVA). Subse-
quently, IOMMU translates IOVAs to physical addresses and checks
the access controls of requested accelerators. Therefore, IOMMU
also protects the system from malicious/buggy accelerators.

Similar to the MMU in processor cores, IOMMU consists of three
components: a page table walker (PTW) that fetches the transla-
tions, an I/O Translation Lookaside Buffer (IOTLB) which caches
translations, and page table walking caches (PTWCs) that cache
intermediate levels of the page table. IOMMU is on a critical path
for all memory requests issued from accelerators, and the IOTLB
size is traditionally small to minimize the access latency (similar
to regular TLBs [56]). Instead of using a single IOMMU, multiple
parallel IOMMUs can distribute memory requests, which come at
the cost of power, area, and performance. Moreover, in places where
a reconfigurable logic is a part of the system, accelerator design
could comprise IPs that work collaboratively. Therefore, a design
to support a maximum number of accelerators is impractical.

In modern I/O interconnect protocols (e.g., PCIe), devices are dis-
tinguished using fixed hard-coded IDs linked to their ports, which
the devices cannot provide for security reasons. IOMMUs allow
them to supplement requests with a Process Address Space ID
(PASID), which allows multiple processes to use the same device
or accelerator concurrently. Similarly, a device can host multiple
processes, each identified by its PASID, while different devices are
distinguished by their hard-coded IDs. IOMMU cannot ensure data
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isolation within a device; it only guarantees isolation between pro-
cesses using the same device when accessing host memory with
page tables. The page table to facilitate address translation can be
achieved either with a private page table or shared page table.
We follow a shared table model as done in prior works [11, 32, 73]
but note that CryptoMMU can be applied to the private page table
model without modifications.

2.4 Message Authentication Code (MAC)
MAC is commonly used to verify the authenticity of data trans-
mitted over a network, bus, or stored outside the TCB [25, 78, 82].
MAC uses a symmetric key to verify the authenticity of the data
by applying a one-direction hashing function over the shared key
and the message. Since the key is kept confidential, any attempt to
manipulate data will fail to generate the true MAC value, which
is used to authenticate such data. Once such data is fetched along
with its MAC, the verifier will generate a MAC based on the data
and compare it with the provided one. Thus, only data that has been
authenticated and has a legitimate MAC can pass the verification
check. Formally, MAC is represented as𝑀𝐴𝐶 = 𝐻 (𝐾𝑒𝑦, 𝐷), where
𝐾𝑒𝑦 is the authentication key and𝐷 is the data. This formula implies
that any tampering by an attacker will be detected. For example, if
𝐷 was tampered with, i.e., changed to 𝐷 ′, the resulting𝑀𝐴𝐶 input
by 𝐷 ′ will not match upon verification, 𝑀𝐴𝐶 ≠ 𝐻 (𝐾𝑒𝑦, 𝐷 ′), and
thus the check fails. Therefore, the test will always fail unless the
attacker regenerates a 𝑀𝐴𝐶 ′ equal to 𝐻 (𝐾𝑒𝑦, 𝐷 ′); however, the
attacker cannot replay the true MAC value because the attacker
does not know the key, which is secured in TCB. MAC values are
generally large enough (e.g., 56 or 64 bits) to ensure negligible
collision probability. Examples of MAC algorithms include Carter-
Wegman MACs [77] generally used in the AES-GCM found in Intel
SGX [25]. A relatively new family of lightweight block ciphers
are PRINCE [33], MANTIS [28], and QARMA [44]. Particularly,
QARMA is introduced as a part of ARMv8.3-A ISA extensions to
support pointer authentication [64].

3 MOTIVATION
IOMMU becomes a major bottleneck in an accelerator-rich archi-
tecture that supports a large number of accelerators with high
bandwidth requirements [13, 57]. The scalability cannot be in-
creased by just enlarging the size of IOMMU since it sits on the
critical path between I/O devices and system memory. The limited
size maintains low latency, power, and area efficiency, limiting the
potential to improve performance. Thus, modern I/O interconnect
protocols (e.g., ATS) allow devices or accelerators to cache their
own translations internally and hence directly provide the physical
address to the IOMMU, i.e., bypass the IOMMU translation step.
The authors of [13] demonstrated that privately caching the trans-
lations is beneficial in terms of performance; however, malicious
accelerators may tamper with addresses or replay stale translations,
which contradicts the purpose of using IOMMU from a security
perspective.

For higher scalability, Olson et al. [57] propose Border Control
to allow accelerators internally caching translations while ensur-
ing security; it aims to improve the locality in IOMMU structures

Trusted Computing Base (TCB)
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Figure 3: A high-level overview of Border Control. One pro-
tection table is allocated to each device.

through decoupling translation from access control metadata. Fur-
thermore, access control metadata for each {accelerator, process}
pair can be as little as two bits (i.e., read or write) per page, leading
to the higher locality in IOMMU. As shown in Figure 3, accelerators
internally cache translations and pass the cached translations to
the IOMMU, whereas the IOMMU is responsible for checking if a
particular physical address can be accessed.

Despite the high locality of access control metadata, two main
performance challenges limit the adoption of Border Control. First,
Border Control relies on IOMMU cachingmetadata; high contention
due to many accelerators results in Border Control Cache (BCC)
thrashing, which requires extra memory bandwidth. Specifically,
per-accelerator BCC configuration has the issue of being impracti-
cal and non-scalable because the host should be able to support any
number of accelerators. Consequently, BCC will become a bottle-
neck as the number of accelerators grows, highlighting the funda-
mental problem with Border Control in more practical accelerator-
centric systems [31, 81]. Second, the flattened allocation of the
protection table, which is directly indexed by physical address, may
result in low spatial locality, depending on the runtime state of
the system. Consequently, Border Control incurs significant per-
formance overheads compared to unsecure ATS-only IOMMU and
slows down the system performance by an average of 12.51%, as
shown in Figure 4.

Figure 4: Performance of baseline Border Control relative to
the unsecure ATS-only IOMMU.

In addition to the performance and scalability limitations of
Border Control, it also introduces several other challenges. Border
Control requires non-trivial changes to the OS and its memory
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management sub-system to create, initialize, update, and free pro-
tection tables. To ensure consistency, the protection table must
be synchronized with any updates to the permissions in the page
table. In situations with high memory pressure or extensive data
sharing across accelerators, the protection table base pointer may
change frequently. This necessitates frequent updates to both the
device table managed by kernel-level software and the protection
table registers in the IOMMU. Such changes impact the software
runtime for already complex TLB maintenance operations (e.g.,
shootdown) to additionally update the protection table. Tradition-
ally, TLB shootdowns have been performed using software-based
approaches, which involve sending Inter-Processor Interrupts to all
other processors to invalidate their respective TLBs. This method
can lead to performance degradation due to overheads related to
invalidations, interrupts, context switches, and synchronization. To
alleviate this problem, hardware-basedmechanisms, such as Remote
Access Requests (RAR), have been proposed. These mechanisms
reduce software overhead and complexity by allowing the hardware
to manage TLB shootdowns without intervention from the operat-
ing system or other software components. As a result, hardware can
quickly detect changes in permissions and send targeted invalida-
tions directly to the cores that cache the stale translations [2, 17, 49].
However, it is essential to note that implementing additional pro-
tection tables and maintaining coherence between them and shoot-
down mechanisms for stale protection blocks can be quite complex.
Additionally, Border Control relies on the page table to populate the
protection table, limiting the inclusion of page table walkers and
page table walking caches within devices/accelerators [13, 60, 62].

Furthermore, Border Control incurs additional overheads. The
storage overhead of large protection tables can be significant for
modern systems with many multi-context accelerators using Tera-
Byte regime main memory [52]. Additionally, supporting huge
pages may need a complicated mechanism. A page table update of
1GB huge page may necessitate altering 1024 (assuming 4KB page
size) protection table blocks. Random access within these pages
can cause BCC thrashing, undermining the benefits of using large
pages. In Section 7, we discussed storage overhead and support for
huge pages in detail.

Border Control also faces the challenge of managing huge pages
frequently used in accelerator systems. Page Table update of a
1GB huge page could necessitate permission alterations for 1,024
protection memory blocks with a 64B size. Random access within
these pages can cause BCC thrashing, undermining the benefits of
large pages. Efficient access control for large pages would require
sophisticated mechanisms, further complicating its implementation.

Based on these observations, efficient IOMMU implementation
in accelerator-rich architectures requires the following: (1) IOMMU
should verify the access without the need to bring any extra meta-
data from host memory if a translation is cached in an accelerator;
this reduces the contentions that arise due to thrashing of IOMMU’s
internal caches with the increasing number of accelerators. (2) No
additional storage overhead such as the contiguous flat tables per
{accelerator, process}, as in Border Control. (3) The IOMMU per-
formance is independent of the access pattern of accelerators (i.e.,
does not rely on having a limited number of devices/processes or
proximity of physical pages for neighboring virtual pages), and (4)
requires no OS changes.

4 CRYPTOMMU
To obtain a secure, high-performance, and scalable IOMMU design
in an accelerator-rich architecture, the following conditions must
be satisfied:

(1) IOMMU will not need to bring any other per-page metadata
to verify the request if a translation is cached privately by
an accelerator.

(2) Minimal or zero storage overhead is incurred for storing
additional metadata per page to enable access checking by
the host (i.e., IOMMU).

(3) IOMMU performance is independent of the access pattern
of accelerators and hence oblivious to the (spatial and/or
temporal) locality of their accesses.

To achieve these criteria, CryptoMMU leverages cryptographic
guarantees to enable efficient checking of the physical addresses
provided by the accelerators. The philosophy of our CryptoMMU
is to delegate the responsibility of proving the authenticity of pre-
translated to the accelerators themselves. As a result, the IOMMU
may need to fetch minimal metadata and verify it on the latency-
critical path. Specifically, the request can proceed for the next oper-
ations if the accelerator can prove they are allowed access to the
physical address with the provided access type; otherwise, a vio-
lation will be detected. Surprisingly, we identify MAC as a simple
way to prove authenticity. Since most accelerators are known to
be latency-tolerant, however, bandwidth-demanding, unlike CPUs,
the MAC calculation latency for the address translation of acceler-
ators is negligible. Typically, the MAC tag (or authentication tag)
proves that a message is generated through a trusted party; both
communication endpoints share a common session key. However,
such a shared key approach is inapplicable because accelerators are
not ensured to provide legitimate translations.

Unlike authenticating communication, the IOMMU acts as both
a signing entity and a verification entity. The IOMMU provides
translation entries that accelerators will cache upon an internal
TLB miss; meanwhile, the IOMMU calculates the MAC by taking
translation as one of the inputs. The calculatedMAC is subsequently
cached along with the translation for authentication upon hits in
private TLB.

Furthermore, during the lifetime of a process, the page table
might be updated, and some addresses could be unmapped. There-
fore, future access to these pages must be restricted; however, accel-
erators can potentially conduct replay attacks by leveraging cached
translation and its MAC, subsequently sending requests with stale
translation. Also, relying on ATS for sending an invalidation re-
quest for such an entry to the accelerator is unsafe, as a malicious
or buggy accelerator could (intentionally) not invalidate such a
request.

Although our proposed system is expected to be popularly ap-
plied to future accelerator-rich systems, the private TLB of the
accelerator requires additional fields to co-locate the MAC value
along with the PFN. To prevent the modification of legacy accelera-
tors, we also propose a novel methodology that allows CryptoMMU
to overwrite the unused upper bits of the PFN; hence, the private
TLB can accommodate the MAC along with the PFN without intro-
ducing new hardware resources.



MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Faiz Alam, Hyokeun Lee, Abhishek Bhattacharjee and Amro Awad

As we now understand the challenges of implementing a scheme
based on cryptographic authentication, we will delve into the de-
tails of CryptoMMU. First, we will describe the baseline Cryp-
toMMU, which targets future accelerators that can adapt their
internal TLBs to accommodate all the bits from the authentica-
tion tags (Section 4.1). Later, we will describe an alternative design
that introduces no changes to the internal TLBs of accelerators,
compatible with legacy systems (Section 4.2). Finally, we discuss
how TLB maintenance operations can be handled securely in our
CryptoMMU designs (Section 4.3) and further optimizations for
CryptoMMU (Section 4.4).

4.1 Baseline CryptoMMU Design
Our baseline CryptoMMU relies on accelerators to provide MACs
that prove the authenticity of the translation. The authenticity
checking involves two parts: 1○ the physical address is allowed to
be accessed by the accelerator, and 2○ the access type for that page
is allowed by the accelerator. To prove the authenticity of such
two parts, we must define the key and the inputs used to calculate
the MAC per TLB entry. A straightforward definition of the key
can be one authentication key for each accelerator. Such external
key-based isolation may seem redundant, as isolation between pro-
cesses concurrently using the accelerator is enforced; furthermore,
a malicious accelerator can still leak the information internally1.
However, if honest accelerators rely on the IOMMU to provide such
checking externally, the IOMMU should support that too.

Rather than simply defining the above per-accelerator key, our
authentication key is defined as a per-{accelerator ID, PASID}
pair. The philosophy behind this definition for CryptoMMU is to
detect a malicious process that is running in an accelerator and
leverage a hardware bug to attempt access to the physical addresses
of another process. The only case where this cannot be detected is if
the hardware bug can change the PASID of the requests originating
from the accelerator. Nonetheless, even in that case, CryptoMMU
would still achieve the same level of security as a regular IOMMU
by allowing accelerators to access permitted pages irrespective
of which processes send requests (i.e., a collective set from all
concurrent processes using it).

As we now know the key to be used for authentication, the other
input to the authentication algorithm is the part to be authenticated.
Thus, we choose the concatenation of the physical page number
and access permissions in the page table entry (PTE) as the MAC
generation input. Additionally, we use the virtual page number as
a nonce to ensure the freshness of the generated MAC. In other
words, our MAC generation will take the following form:

𝑀𝐴𝐶𝑃𝑇𝐸 = 𝐻 (𝐾𝑒𝑦{𝐴𝑐𝑐𝐼𝐷,𝑃𝐴𝑆𝐼𝐷 }, {𝑃𝐹𝑁, 𝑅/𝑊 }, {𝑛𝑜𝑛𝑐𝑒})
The hash function 𝐻 uses a per-{accelerator, process} key and

takes as input the PFN extracted from the PTE, R/W permissions
of the {accelerator, process} for that PFN, and virtual page number
(VPN) as the nonce. Thus, as shown in Figure 5, upon a private TLB
miss (Step 1○) from an accelerator, IOMMU walks the correspond-
ing page table (Step 2○) to obtain the corresponding PTE. However,
1The accelerator is responsible for indicating which process, from those concurrently
running on it, is issuing the request. Hence, a malicious accelerator can impersonate
requests from another process currently running on that accelerator to access other pro-
cesses. Accordingly, under our threat model, the malicious accelerator can potentially
leak information between processes using it, in turn breaking their isolation.
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Figure 5: CryptoMMU is handling private TLB misses.

before it provides the accelerator with that PTE for future reference,
it additionally augments PFN with a MAC calculated based on the
attributes in the PTE resulting from the page table walk (Step 3○).
Similar to conventional IOMMU with ATS enabled, the accelerator
will be provided with the translation information to cache inter-
nally; however, in CryptoMMU, the MAC of the translation entry
is also provided (Step 4○). As we can see, IOMMU acts as a signing
entity for translation entries before supplying them to private TLB.
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Figure 6: CryptoMMU is handling private TLB hits.

Similarly, IOMMU acts as a verification entity to verify the ac-
cesses that hit in private TLB, as shown in Figure 6. On a TLB hit
(Step 1○), the accelerator is prevented from directly using the pre-
translated address to access the systemmemory without an IOMMU
check. Hence, the accelerator needs to send the request containing
both the physical address (along with access permissions) and the
MAC for authentication to the IOMMU (Step 2○). CryptoMMU
obtains the appropriate key from Authentication Key Table (AKT)
based on the Device ID (DevID) and the Process ID (PASID). The
MAC engine in CryptoMMU generates a fresh MAC based on the
attributes of the PTE information (i.e., physical address and permis-
sions) provided in the accelerator’s request (Step 3○). The generated
MAC is then compared with the MAC provided by the accelerator
(Step 4○). If both MACs match, it implies that the translation infor-
mation provided has not been tampered with, and consequently,
the system memory access is allowed (Step 5○). If a malicious accel-
erator tampers with physical addresses or permissions in its private
TLB or uses a stale translation, the MAC authentication will fail.
Moreover, any attempt to temper MAC cached in the private TLB
will also result in access failure, as discussed in Section 2.
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Allocating AKT Entries: CryptoMMU requires a single authenti-
cation key per {accelerator, PASID} to ensure isolation. There are
different options to realize and store such keys. In CryptoMMU,
we aim to achieve the followings: (1) minimal IOMMU latency for
verifying I/O requests with translated addresses and (2) no software
changes. Accordingly, the CryptoMMU is responsible for creating
and bookkeeping such keys. CryptoMMU uses a hardware table
tagged with the Device ID and Process ID to achieve these aspects.
We dub such a hardware table as Authentication Key Table (AKT).
The AKT leverages the unused IOTLB structure in IOMMU (since
private TLB is used) and features low access latency. We reserve
a certain number of entries in the IOTLB, which is typically fully
associative, to be used as AKT2, which is sufficient to allow a large
number of active {accelerator, process} sessions to leverage Cryp-
toMMU. Upon a miss in AKT, CryptoMMU checks if there exist
any invalid entries in the AKT. If there exists an invalid entry, a
newly generated authentication key corresponding to the {accel-
erator, PASID} is directly inserted into that invalid entry. On the
other hand, we have two options if there is no invalid entry in the
AKT: (a) avoid evicting valid entries and instead use conventional
IOMMU implementation, i.e., discard the provided physical address
and do the translation at CryptoMMU, or (b) use Least-Recently
Used (LRU) policy to select a victim entry. While option (b) allows
us to evict active sessions, it can potentially lead to frequent key
re-generations for the same session if more sessions than what is
cached in IOTLB are actively accessing the host memory. Although
we believe it is uncommon if that is anticipated in the system, we
allow CryptoMMU to be configured using option (a) or option (b)
but with an additional space reserved at the bootup time in memory
acting as a victim buffer for evicted sessions3. We assume the AKT
eviction table is reserved at host memory during the bootup time
to be 1MB for the whole system, allowing hundreds of thousands
of active sessions without re-generating new authentication keys
for a session.
MAC Calculation Granularity: In CryptoMMU, we employ a
Wegman-Carter-style hash function for generating authentication
tags chosen from a family of hash functions. This algorithm requires
data input, nonce, and a key to produce a 56-bit output, with both
input size and key being 128-bit [19, 39, 77]. To create a 128-bit
block, the PTE is padded with zeros, using the virtual page number
as a nonce for generating the MAC. Though some MAC algorithms
do not require a nonce, our approach incorporates it to ensure the
uniqueness and freshness of the MAC. Utilizing the virtual address
as a nonce eliminates the need for maintaining a separate nonce
with each authentication key.We anticipate that future accelerators’
private TLBs will accommodate entries large enough to store the
PTE (8 bytes) and its corresponding MAC (7 bytes). Subsequent
sections explore possible approaches to circumvent alterations to
legacy accelerators’ TLB structures.
Malicious Access Violation Exception: Although the likelihood
of access violations in CryptoMMU is minimal, it remains non-zero.
2In CryptoMMU, we use IOTLB to store AKT entries as well as invalidation buffer
(will be explained in Section 4.3). The designer has the flexibility to choose the number
of entries to be reserved for either of them depending on their requirements
3Without such a buffer changing the key of an active session renders all cached
translations of that session causing verification failure and hence reverting to baseline
IOMMU. In other words, it implicitly flushes the privately cached translations of the
session corresponding to the evicted and re-generated entry.

A malicious design could potentially brute-force authentication
codes and extract confidential data [76]. That is, if CryptoMMU
detects a malicious access attempt by the accelerator, it will trigger
an access violation exception, alerting the operating system. In re-
sponse, the OS can block the accelerator and terminate all processes
utilizing it, preventing any sensitive information leakage.

4.2 CryptoMMU in Legacy Accelerators
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Figure 7: Operation of CryptoMMU-Legacy.

Our baseline CryptoMMU that targets future accelerator-rich
systems needs to have additional fields on the private TLB of the
accelerator to accommodate MAC values along with the PFN. To
prevent such modifications on the legacy accelerators, we propose
an alternative version of CryptoMMU, called CryptoMMU-Legacy.
In CryptoMMU-Legacy, we allow the CryptoMMU to overwrite the
unused upper bits of the PTE brought with the page table walk, as
shown in Figure 7. However, the bit width of unused bits is limited;
for instance, a system with 512GB of physical memory would use
27 bits of the 52-bit page frame number, leaving 25 bits of unused
bits [16]. Therefore, the truncated version of MAC is allowed to be
overwritten on unused bits in CryptoMMU-Legacy.
Security Analysis:We examined CryptoMMU’s security guaran-
tees in legacy accelerator systems by analyzing the probability of
a malicious accelerator breaching its security boundaries. With
a 25-bit authentication tag, the probability of malicious access is
2.98 × 10−8, which is higher than acceptable access violation prob-
abilities in current systems. For instance, ARM’s Pointer Authen-
tication techniques [55, 64], employed in products like the Apple
iPhone XS, introduce instructions for signing and verifying virtual
pointers. PAC tag sizes typically range from 3 to 31 bits, depending
on the memory addressing scheme. PAC tags with 3 bits and 31
bits have access violation probabilities of 0.13 and 4.65 × 10−10,
respectively [64]. With memory tagging disabled, 11-bit PAC tags
have a 4.88 × 10−4 guessing probability. Despite being developed
for different threat models, these probabilities are acceptable in
commercial systems. Similarly, ARM’s MTE and TBI use 4 bits and
8 bits, respectively, and have higher probabilities. Therefore, we can
safely adopt this probabilistic solution of CryptoMMU, which has a
much higher probability of denying arbitrary memory requests.

4.3 TLB Maintenance Operation
TLB maintenance operations, namely TLB shootdown, are required
upon updating the page table. Fortunately, only updating the page
table requires informing the accelerator to invalidate the updated
entry, because CryptoMMU avoids adding new tables (e.g., pro-
tection table). Upon an update of the page table, the OS sends an
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invalidation request to all TLBs in the system to update the affected
page mapping. However, since accelerators and their private TLBs
are not trusted, they could intentionally attempt to replay previ-
ously valid translations by not invalidating impacted TLB entries.
To prevent any replay attacks from malicious or buggy accelera-
tors, CryptoMMU can naively generate a new key associated with
{accelerator, process} upon receiving a TLB shootdown request. Sub-
sequently, re-generating the key for MAC would prevent replay
attacks by invalidating all the cached translations (i.e., TLB flush).
Although this approach indeed allows CryptoMMU to use a light-
weight MAC algorithm that does not have the additional overhead
of maintaining stronger nonce (e.g., per-address counter), it would
negatively impact performance since TLB flush would penalize
valid cached entries.

Therefore, we propose a scalable shootdown mechanism to pre-
vent accelerators from replaying stale translations. We introduce
an on-chip invalidation buffer to store invalidated PTEs for each
accelerator. A few entries of the IOTLB can be reserved as an inval-
idation buffer. On an authentication request, CryptoMMU checks
the invalidation buffer to prevent the accelerator from using out-
dated (i.e., previously invalidated) translations; any violation results
in the accelerator being blocked. When the invalidation buffer is
full, CryptoMMU sends a batched TLB shootdown request to the
accelerator, changes the key for {accelerator, process}, and flushes
the invalidation buffer4. The invalidation buffer can be adopted to
transparently reduce the performance penalty of individual shoot-
downs, effectively batching their effect on accelerators. In previous
studies [2, 72], TLB shootdown occurrences due to page table up-
dates are rare; hence, we believe that even a small invalidation
buffer can significantly reduce the impact of these relatively infre-
quent TLB shootdown operations. Furthermore, we have evaluated
the performance impact of batched invalidation in Section 6.3.

4.4 Accelerating Read Requests
A key characteristic of accelerator workloads is that it invokes thou-
sands of address translations when transferring data between the
main memory and the scratchpad memory (SPM) [32]. In such sce-
narios, read hits in the private TLB can be serviced by CPU caches or
main memory containing a clean copy of the data block. However,
write requests from the accelerator can invalidate copies in other
accelerators or CPU caches, making the requester the exclusive
owner of the data block. Consequently, it is crucial to thoroughly
scrutinize access permissions before allowing the accelerator to
update the data block to avoid data corruption/modification. In
contrast, read requests may not necessitate stringent access per-
mission evaluations. For these reasons, we propose accelerating
read requests by expediting permission checks. The key idea is to
overlap read access with access permission checks at CryptoMMU.
This strategy enables read requests to access main memory directly
while permission checks are conducted concurrently. Similarly, we
optimize read misses from the private TLB by queuing up requests
4The key re-generation, i.e., forced invalidation, is necessary only when a physical
page is unmapped and should no longer be accessed by the accelerator, a relatively
rare event. In a unified memory programming model, for example, unmapping may
occur for data consistency rather than security reasons, as accelerator access could
cause coherence issues. Nonetheless, in our design, only upon a certain number of
invalidations does the key need to be updated, which we expect to be extremely
infrequent given its known overheads in today’s systems[6, 72].

for an already in-flight page walk. Once a page walk request is
serviced, we can generate the MAC and store it in the supplied PTE,
removing redundant page walks and authentication tag generation.

…
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VPN 1V Page Offset 0 Page Offset n-1…V V

VPN k-1V Page Offset 0 Page Offset n-1…V V

Figure 8: Data structure of RRMB.

To accelerate reads, we propose to augment CryptoMMU with a
structure called the Read Request Merging Buffer (RRMB). As shown
in Figure 8, RRMB is tagged with virtual page numbers and can
hold up to k entries. The second field denotes whether the request
is a read hit or a miss. Each RRMB entry allows up to n outstanding
read requests to the same page and stores their page offsets. When a
read request hit occurs in the private TLB, a new entry for the VPN
will be allocated in the RRMB, the reads proceed to the memory
hierarchy, and the data is supplied once the verification is complete.
The page offsets of subsequent read-hits are stored in the RRMB,
which can be serviced immediately right after the page verification.
Similarly, outstanding read misses can be queued for an in-flight
page walk to the same virtual page, which can be removed once the
PTE is fetched and hashed. This optimization, named CryptoMMU
(Read Acc.), further improves the performance of CryptoMMU, as
we will show later in Section 6.1.

5 METHODOLOGY

Table 1: Simulation configuration
Processor

CPU 1 Core, x86, OoO, 2.00GHz
L1 Cache 2-way, 32KB, 64B block, access latency: 2 cycles
L2 Cache 2MB, 8-way, 64B block, access latency: 20 cycles

DRAM Parameters

Memory 2GB, DDR3-1600, 800MHz
tRCD/tCL/tRP/tRAS: 13.75/13.75/13.75/35ns

Accelerator
AFU n = 4, 8, 16, 32
Private TLB 32-entry, 2-way (600B)

Latency of security scheme
MAC Latency 20 cycles [25] (refer analysis to Section 6.2)

IOMMU
Page size 4KB
RRMB 8 entries, 8 outstanding requests (141B)
IOTLB 64-entry, fully-associative (752B)

To evaluate the performance of our CryptoMMU design, we
use gem5 PARADE, a cycle-accurate full-system simulator with
high-level synthesis support [10, 15]. As shown in Table 1, we sim-
ulate an 8-issue out-of-order x86 CPU core at 2GHz with DDR3
DRAM shared by accelerators and cores. The host and the accelera-
tor utilize a shared page table and a page table walker to manage
memory access. The number of accelerators is varied between 4 to
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32, each of which has a 32-entry, 2-way private TLB. The PTE of
the accelerator’s translation is also cached in the host, as [13] does.
Each accelerator contains various Function Units (FUs) designed
to accelerate different algorithms for an application. A collection
of FU s compose an Accelerator Functional Unit (AFU) with its own
private TLB, SPM, and DMA Controller. The accelerators are tightly
coupled with the host and can access the host cache as in prior
works [18, 24, 29]. Application data can be tiled (split) and mapped
to multiple accelerator instances, thereby leveraging data paral-
lelism. The accelerators concurrently co-process data with CPU
cores and receive virtual pointers to load/store application data.
Each accelerator instance (AFU) invokes independent translation
requests to load/store their data tiles from the host memory hierar-
chy into its software-managed scratchpad memory. However, when
these accelerators issue concurrent requests, it can significantly
stress the IOMMU [13, 14].

We compare our CryptoMMU against three prior approaches
that support address translations to accelerators. First, the ATS-
only IOMMU, which caches pre-translated addresses in a private
TLB for subsequent accesses, and hence it is unsecure. Second, Full
IOMMU approach, which does not allow the accelerator to cache
translations, instead uses a shared IOTLB in the host. We model
our Full IOMMU with a 752B 64-entry fully-associative IOTLB [56],
without PTE cached in the host cache, similar to prior work [13].
Note that each IOTLB entry has 36 bits of VPN (48 bits of virtual
address), 40 bits of PFN (52 bits of physical address extension),
16 bits of PASID, and 2 bits of valid and dirty information. The
Full IOMMU suffers significant performance overhead from IOTLB
thrashing and subsequent long latency page walks. Third, we also
explored Border Control access control mechanism, which relies
on a software-based protection table that becomes unwieldy for
numerous accelerators. The size of the Border Control Cache, BCC,
is the same as that of IOTLB. We allow the protection table to be
cached in host caches apart from caching it into the BCC because
our accelerators are tightly coupled with the host core and can
directly access the host cache.

We evaluate our CryptoMMU design with two variants. First,
CryptoMMU uses parallel MAC engines per accelerator for fast au-
thentication tag generation and verification. Second,CryptoMMU(Read
Acc.) accelerates read requests since they do not modify data blocks
in the host. It introduces two optimizations to accelerate the read
access: (1) access control verification on a read hit is overlapped
with memory access to hide the access control latency; (2) subse-
quent read misses to an in-flight page table walk are queued and
serviced when the CryptoMMU returns the MAC-augmented PTE.
We leverage Read Request Merging Buffer (RRMB) to store both
outstanding read hits and misses. Our heuristics indicate that an
8-entry RRMB containing eight pending requests is adequate for
our workloads.

Workloads: We evaluate all the aforementioned approaches
using accelerator benchmarks provided by PARADE [12]. These
benchmarks are organized into four application domains: Medical
Imaging, Computer Navigation, Computer Vision, and Commercial
benchmarks, as shown in Table 2. Our benchmarks cover vari-
ous ranges of memory access patterns, latency requirements, and
memory footprints, hence representative of workloads of modern
accelerator-rich architecture. For example, Commercial benchmarks

Table 2: Description of workloads

Domain Application Number of FUs

Medical imaging Denoise 2
Segmentation 1

Commercial from PARSEC
BlackScholes 1
SteramCluster 5
Swaptions 4

Computer vision Disparity Map 4

Computer navigation EKF SLAM 2
Robot Localization 1

from PARSEC are simpler and have varied access streams. Com-
puter Navigation benchmarks have high memory footprints but
regular access patterns, while Computer Vision benchmarks are
latency-sensitive. Finally, Medial Imaging benchmarks have a high
footprint and irregular access patterns [12].

6 EVALUATION
6.1 CryptoMMU Performance

Figure 9: Normalized performance relative to the baseline
Border Control.

In this section, we compare the performance of CryptoMMU,
CryptoMMU (Read Acc.), Full IOMMU, and unsecure ATS-only
IOMMU relative to the baseline Border Control, where the number
of accelerators is set as 8 in this subsection. As shown in Figure 9, the
parallel MAC generation and verification engines of CryptoMMU
provide a low latency authentication path for accelerators with
1.07× speedup relative to Border Control. CryptoMMU(ReadAcc.),
our novel read request acceleration, yields a 1.13× speedup, which
is 5.6% higher than that of normal CryptoMMU. This improvement
originates from overlapping access control checks with memory
requests on a TLB hit and avoiding redundant page walks and
authentication tag generation for in-flight requests on TLB miss.
This optimization is completely safe as it is done for read requests
that cannot modify/corrupt data in the main memory. As a result,
CryptoMMU reduces the memory traffic of Border Control by 2.84%
on average, leading to higher performance.

The unsecure ATS-only IOMMU has an improvement of 1.15×,
whereas Full IOMMU suffers from a slow-down of 62% relative
to Border Control. Additionally, Full IOMMU has a slow-down of
66.42% relative to CryptoMMU(Read Acc.). In particular, the un-
secure ATS-only IOMMU has the highest speedup because all the
accelerators have private pre-translated addresses to access the
physical memory. In contrast, the Full IOMMU does all address
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translations at the IOMMU, leading to considerable performance
degradation. Medical imaging benchmarks, such as Denoise and
Segmentation, exhibit large page reuse distances that can cause
thrashing in the Border Control Cache (BCC). In contrast, Cryp-
toMMU effectively achieves higher speedup by hiding verification
latency. StreamCluster and DisparityMap involve multiple itera-
tions using distinct accelerators on identical input data. This results
in protection table entries for different accelerators constantly evict-
ing BCC entries, leading to CryptoMMU’s superior performance,
as it remains unaffected by such access patterns. BlackScholes and
Swaption are benchmarks with low memory footprints, primarily
involving simple arithmetic operations. Consequently, they exhibit
smaller speedup improvements than other, more complex bench-
marks. On the other hand, EKF SLAM and Robot Localization are
computer navigation benchmarks that utilize large data arrays with
consistent access patterns. These patterns fit well within the BCC,
resulting in a comparable performance for all schemes except for
Full IOMMU.

6.2 Sensitivity Analysis

Figure 10: Sensitivity to the number AFUs.

In this subsection, we rigorously conduct various sensitivity
studies regarding different architecture parameters in CryptoMMU.
Varying the Number of AFUs: We study the impact of different
numbers of AFUs on CryptoMMU. Figure 10 shows the speedup
of CryptoMMU with Read Acceleration relative to baseline Border
Control. In general, growing the number of accelerators improves
data parallelism, resulting in improved performance on average.
CryptoMMU performance improves with the increasing number of
AFUs, with average speedups of 1.11×, 1.13×, 1.14×, and 1.16× for
4, 8, 16, and 32 AFUs, respectively. The Border Control design is not
well-suited for scaling to several accelerators sharing a fixed-size
BCC, which may result in thrashing. As the number of accelerators
increases, they compete for a fixed number of cache lines for per-
mission checks, leading to additional protection table accesses to
the main memory.

Particularly,Denoise and Segmentation show the highest speedups
due to their irregular access patterns, which cause thrashing of the
BCC. Disparity Map is a latency-sensitive computer vision appli-
cation that performs poorly due to long-latency protection table
access. In contrast, Swaption and BlackScholes are low-footprint
benchmarks with regular access patterns which do not put much
pressure on the BCC; hence, the improvements from data paral-
lelism dominate with increasing AFU. Finally, StreamCluster has

high data locality, as it sweeps streams of large arrays, resulting in
a high BCC hit rate. The performance improvement between AFU
counts of 16 and 32 suggests degradation due to BCC thrashing
outweighs the benefits of increased data parallelism.

Figure 11: Sensitivity to varying sizes of LLC.

Varying LLC Size: The accelerators in our design are tightly cou-
pled with the CPU core and share L1 cache and LLC. Therefore, we
are caching the accelerator’s PTEs, data, and protection table (in
Border Control) in L1 and LLC. Figure 11 presents the performance
improvement of CryptoMMU (Read Acc.) relative to Border Control
with varying LLC sizes. Generally, the relative performance of Cryp-
toMMU improves as the LLC size decreases. CryptoMMU yields
average speedups of 1.13×, 1.12×, 1.13×, 1.14×, and 1.15× when
the LLC sizes are 8MB, 2MB, 1MB, 512KB, and 256KB, respectively.
As the LLC size decreases below 2MB, the relative performance of
CryptoMMU improves due to reduced caching of security metadata
in Border Control. However, a large 8MB LLC results in increased
cache access time, degrading the performance of Border Control
due to the higher latency while fetching the protection table from
the LLC.

Figure 11 shows that Denoise and Segmentation exhibit the high-
est speedups, similar to results in Figure 10. Their irregular access
patterns cause BCC thrashing, leading to frequent protection table
block fetches in the host cache. These protection table blocks cre-
ate cache pollution in the host by evicting useful blocks. However,
an 8MB LLC alleviates cache pollution for Segmentation. In con-
trast, navigation workloads like Robot Localization and EKF-SLAM
display lighter cache pollution due to more regular access patterns.

DisparityMap demonstrates better performance with 1MB LLC
than 2MB. This is because L1 and LLC are inclusive caches; a smaller
LLC can result in fewer back invalidations in L1 upon eviction in
LLC. BlackScholes displays similar performance tendencies. Con-
versely, StreamCluster extremely regular access pattern allows pro-
tection tablemetadata to be cached longer before eviction, providing
low service latency compared to CryptoMMU, which requires MAC
generation and verification.
Varying MAC Latency: CryptoMMU incurs additional MAC la-
tency for every TLB hit (i.e., MAC verification) or a miss (i.e., MAC
generation). The MAC latencies are determined by various factors,
including input size, key size, area budget, power budget, security
margin, and latency requirements. A recent work, QARMA, incor-
porated in Arm’s Pointer Authentication Code [64], consistently
reported latency of less than 10ns for 64-bit and 128-bit blocks
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across latency and area-optimized designs [5]. For AES-GCM’s re-
cent commercial implementation, e.g., in Intel’s memory encryption
engine, the throughput is 1 AES block per cycle, and for polyno-
mial multiplier (to calculate the MAC) is one multiplication per
cycle with a frequency of 3.2GHz [25]. Thus, 10ns in Table 1 is a
conservative assumption for AES-GCM in commercial products.
We choose the design latency for both MAC generation and MAC
verification to be 10ns. To show the robustness of our design in
hiding the authentication latency, we stressed our model by varying
the MAC latency up to five times. Our results show that the parallel
authentication tag generation/verification scheme of CryptoMMU
is very robust in hiding the latency of MAC authentication (i.e.,
both MAC generation and verification) and only show a slow-down
of 3.76% at 50ns relative to the design latency.

6.3 CrytoMMU Overheads

Figure 12: Percentage slowdown of CryptoMMU(Read Acc.)
with batched invalidation for 200 invalidations per second.

In this section, we present a quantitative evaluation of Cryp-
toMMU, specifically focusing on the impact of batched invalidation
to prevent replay attacks. As shown in Figure 12, we evaluated the
number of batch invalidations (i.e., number of key re-generations)
and corresponding percentage slowdown in CryptoMMU(Read
Acc.). CryptoMMU does batch invalidations of TLB entries once
the invalidation buffer is full. In our design, we allocate half of the
IOTLB entries, specifically 32, as an invalidation buffer for eight
accelerators. Each accelerator is assigned four entries of the inval-
idation buffer, allowing them to store up to 8 invalidated pages.
It is important to highlight that CryptoMMU provides flexibility
to configure a larger invalidation buffer for performance-critical
workloads. We assumed 200 invalidations per accelerator per sec-
ond based on the prior work [57]. Based on our evaluation, Denoise
receives 27 TLB shootdown requests, which implies CryptoMMU
must execute four key changes. The average slowdown is 0.017%
relative to the design without batched invalidation (i.e., changing
the MAC key). DisparityMap experiences the most significant slow-
down, a modest 0.14%, given its sensitivity to latency. StreamCluster,
on the other hand, has a high locality in the device’s private TLB;
hence, it experiences a slowdown by 0.07% due to forced flushing
of private TLB.

7 DISCUSSION
Estimation of Storage Overheads: CryptoMMU does not store
security metadata in main memory but may use minimal storage
for cryptographic keys. It relies on unused or extra TLB bits for
authentication tags. In contrast, Border Control uses physically
tagged protection tables per accelerator, causing storage overhead
to scalewith processes, accelerator units, andmainmemory size. For
a system with 1TB of memory, 16 accelerators, and 20 concurrent
processes, Border Control needs 10GB for protection tables, while
CryptoMMU needs just 5KB for 320 128-bit keys per accelerator-
process pair.
Support for Huge Pages: CryptoMMU can efficiently support
huge pages, providing a performance boost for high-memory work-
loads and reduced verification traffic due to the large spatial cover-
age. For example, using a 1GB page instead of a 4KB page can have
higher spatial coverage up to 262,144×. In contrast, Border Control
keeps the protection table granularity at 4KB, requiring updates
to 262,144 protection table entries. It has lesser spatial coverage
compared to CryptoMMU due to a smaller caching granularity.
Irregular access patterns within a huge page eventually result in
more frequent evictions from the BCC. Therefore, design choices
like larger protection table granularity would limit flexibility.

8 RELATEDWORK
Secure Translation in Accelerator-rich Architectures: Mod-
ern processors are equipped with IOMMUs, facilitating efficient
address translation and data isolation among devices. However,
existing solutions, such as [50], [59], and [4] primarily, focus on
improving IOMMU capabilities for a limited number of devices (e.g.,
Ethernet controllers or PCIe SSD controllers); these approaches do
not address the case of larger domain-specific accelerator pools. In
contrast, CryptoMMU can support an extensive array of external
devices and domain-specific accelerators.
Hardware-Software Co-design of IOMMU: To mitigate the bot-
tleneck incurred by IOMMU, a hardware and software co-design
methodology has been proposed. In [73], a software-centric frame-
work is proposed to support shared virtual memory for FPGA-
included in heterogeneous systems. In this study, a configurable
IOMMU, which Linux kernel API manages, can walk the host page
table that can be deployed on FPGA for better performance. More-
over, a customized TLB is proposed for applications deployed on
FPGA fabric, where the latency or capacity can be tuned. However,
this framework has no access control mechanism, leading to an
extremely vulnerable design.
Industry Patents andPatentApplicationsRelated toAddress
Authentication: Leveraging address authentication and crypto-
graphic means to realize access control appears at a high level in
recent industrial patent applications and patents [35, 40]. Cryp-
toMMU builds upon similar primitives; however, CryptoMMU is
the first academic work that thoroughly evaluates the design space
of cryptographic access control, demystifies its impact on hardware
and software, and uniquely explores how to realize it in legacy
accelerators. Finally, CryptoMMU uniquely addresses the serializa-
tion of access control checking and memory access latency through
speculative read requests.
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9 CONCLUSION
Growing demands for integrating third-party IPs pose new threats
not only in the data center but also in edge devices. Therefore,
the role of IOMMU becomes crucial to achieve a scalable and high-
performance system, as it is responsible for both address translation
and security preservation. In this study, CryptoMMU, an innova-
tive cryptography- and hardware-based IOMMU, is proposed to
facilitate secure and scalable integration of untrusted accelerators.
It supports a wide range of architecture, system, and programming
models while ensuring maximum security with negligible perfor-
mance, area, and storage penalties.

Our evaluation demonstrates that CryptoMMU yields 1.13×
speedup compared to the state-of-the-art scheme (i.e., Border Con-
trol). It incurs only a 1.73% slowdown compared to the unsecure
ATS-only IOMMU. CryptoMMU explores a large design space,
including performance, area, storage, and ease of integration. Cryp-
toMMU will promote the adoption of access control mechanisms
in SoC integration.
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact provides a virtual machine environment that contains
different ready-to-build-and-run IOMMU models for the evaluation
results provided in Section 6.1 and Section 6.2 (i.e., Figure 9 - Fig-
ure 11). The models are implemented by extending the gem5-parade
simulator as described in Section 5. In this section, we provide de-
tailed instructions to set up the environment and run each model.

A.2 Artifact check-list (meta-information)
Our artifact is provided with a virtual machine (VM) image; hence,
the checklist below indicates requirements on the guest OS. Please
note that all the necessary tools are already installed in the VM
image, which is made on VMWare Workstation 14.

• Program: Five directories are provided: Full IOMMU, ATS-only
IOMMU, Border Control, CryptoMMU, and CryptoMMU(Read Acc.)

• Compilation: GCC/G++ 4.8.5, Python 2.7.17, Scons-1.3.1, Swig-
2.0.9, Protobuf-2.5.0, Mono-6.12.0.200

• Run-time environment: Ubuntu 18.04.06 LTS Desktop 64-bit
• Hardware: The machine whose main memory is larger than 32 GB
(64 GB is recommended for a VM)

• Metrics: Total execution time
• Output: Simulation statistics
• Experiments: Provided scripts
• How much disk space required (approximately)?: 38 GB for a
virtual machine image

• Howmuch time is needed to complete experiments (approx-
imately)?: around 1-4 hours per experiment (Full IOMMU takes
much longer)

• Publicly available?: Yes
• Code licenses (if publicly available)?: BSD-3
• Workflow framework used?: No
• Other utilities installed in VM (after doing apt update and
apt upgrade): build-essential, vim, git, m4, zlib1g, zlib1g-dev, libgoogle-
perftools-dev, python-dev, python, libtool, kmod, uuid-dev, libfabric-
dev, cmake, glib2.0, bison, doxygen, perl, libtool-ltdl, valgrind, htop,
iptables, libhdf5, patch

A.3 Description
We provide virtual machine images of our CryptoMMU infrastruc-
ture used in this paper on Zenodo.

A.3.1 How to access. Both VMX (for VMWare) and OVF-based
(for VirtualBox) VM images can be downloaded from the Zenodo
link: https://doi.org/10.5281/zenodo.8287142

CryptoMMU is evaluated under the full system simulation mode,
which requires disk image and kernel binaries that contain pre-
compiled workloads. All these requirements are also included in the
provided VM images. We used the disk image and kernel binaries
available on the original gem5-parade repo:
http://www.sfu.ca/~zhenman/files/software/disk-binary.tar.gz

A.3.2 Hardware dependencies. There is no restriction on CPUs, as
we only need an environment that can run VMWare. However, it is
recommended to have main memory larger than 32 GB for the VM,
because each workload consumes at least 16 GB of main memory,
moreover, some workloads of Full IOMMU (e.g., Denoise) consume
nearly 32 GB of main memory.

A.3.3 Software dependencies. For artifact evaluation, the simula-
tion infrastructure is sensitive to not only dependencies but also
operating systems, because some certain versions of dependencies
are not supported on newer operating systems. Therefore, we made
a VM image wherein the guest OS is Ubuntu 18.04.06 LTS Desktop
64-bit, which is similar to our simulation infrastructure built on the
real machine.

Our application has several dependencies of legacy packages. The
packages that need to be installed to build and run the simulation
are listed as follows:

• GCC/G++-4.8.5
• Python 2.7.17
• Scons-1.3.1
• Swig-2.0.9
• Protobuf-2.5.0
• Mono-6.12.0.200

Regarding the compilation of benchmarks, the older version of
GCC is required (i.e., GCC/G++-4.1.2), since gem5-parade simulates
an older version of Linux OS.

A.3.4 Workloads. The workloads that we simulated in our experi-
ment are present in the disk image. It is not required to re-compile
the workloads. There is a shell script that is provided in each repos-
itory to run these workloads.

A.4 Installation
Here are the steps to prepare the VM on VMWare.

(1) Extract Ubuntu18_64_vmx.tar.gz and get a directory Ubuntu18_64/
(2) Open VMWare software. Under the GUI of VMWareWorksta-

tion, click File-Open and load the VM image by navigating
to /path/to/Ubuntu18_64/Ubuntu18_64.vmx. Also, please
provision the main memory size and the number of cores to
the VM by navigating to VM-Settings-Memory

(3) Start up the VM by clicking VM-Power-Start Up Guest
under the GUI of VMWare Workstation. You will see a pop-
up message and select "I Copied It" option, which generates
a new UUID and MAC address; this procedure ensures no
conflicts in the network

(4) Login to VM, wherein the ID and the password are saca and
cryptommu, respectively

Here are the steps to prepare the VM on VirtualBox.

(1) Extract Ubuntu18_64_ovf.tar.gz and get a directory Ubuntu18_64/
(2) Under the GUI of VirtualBox, click File-Import Appliance

and load the VM image by navigating to /path/to/Ubuntu18_64/
Ubuntu18_64.ovf. Under the CLI, you can import the image
by typing the command below (e.g., dual-core with 16 GB
main memory):
$ VBoxManage import /path/to/Ubuntu18_64_ovf/Ubuntu18_64.ovf
--vsys 0 --vmname vm_cryptommu --cpus 2 --memory
16384 --basefolder /path/to/generate/your/vm

(3) Sometimes, you need to explicitly specify the graphics con-
troller for the VM if the default controller (i.e., VBoxVGA) is
not supported on some host OSes by navigating toMachine-
Settings-Displays-Graphics Controller-VMSVGA, or:

https://doi.org/10.5281/zenodo.8287142
http://www.sfu.ca/~zhenman/files/software/disk-binary.tar.gz
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$ VBoxManage modifyvm "vm_cryptommu" --graphicscon
troller vmsvga

(4) Start up the VM by clicking Machine-Start-Normal Start
under the GUI of VirtualBox. You can also access the VM in
headless mode by leveraging tools, such as rdesktop or ssh,
after opening the session with the following command line:
$ VBoxManage startvm "vm_cryptommu" --type headless

(5) Login to VM, wherein the ID and the password are saca and
cryptommu, respectively

Here are the steps to build simulation infrastructure on the VM:

(1) Open the terminal and directly head to the objective direc-
tory for evaluation. Say CryptoMMU:
$ cd CrytoMMU-sim-artifact/CryptoMMU

(2) Set environment variables as below:
$ export PARADE_HOME=$(pwd)
$ export M5_PATH=$PARADE_HOME

(3) Build the binary by running the provided script (Please re-
move the existing build/ directory if you want to build from
the blank-whiteboard status):
$ ./build.gem5.sh

Making checkpoints: The VM image contains the checkpoint of
the simulator, which contains the simulation snapshot after the
initial startup and booting of Linux OS. The checkpoint is present in
the directory, ckpt-1core/. Additionally, we have provided steps
to generate the checkpoint (not required in our VM image).

(1) Download the master repository of gem5-parade
$ git clone https://github.com/cdsc-github/parade-ara-
simulator.git

(2) Enable SIM_DEDICATED_ARAmacro in three files: src/mem/ruby
/profiler/Profiler.cc, src/mem/ruby/system/System.cc,
and src/sim/simulate.cc

(3) Build the binary as follow:
$ ./build.gem5.sh

(4) Run the binary to generate the checkpoint:
$ build/X86/gem5.opt configs/example/fs.py --cpu-
type=atomic -n 1 --mem-size=2GB --script=configs/
boot/hack_back_ckpt.rcS

(5) Copy the generated checkpoint to the objective directory
looked up by gem5. If your working directory is in CrytoMMU-
sim-artifact/CryptoMMU/:
$ cp -r cpt.5176168078500 ckpt-1core/

A.5 Experiment workflow
run_bench.sh is used to simulate all five models. The output files
will be generated at the directory, result_cXaY/TDLCA_Z, where
X, Y, and Z denote the cache size, the number of accelerators, and
the workload name, respectively; -h option can be used to infer
these X, Y, and executable workloads. For example, we can run a
workload, Denoise, by typing the command below (Please note that
X=8 and Y=64 as default values if no explicit option is conferred):

$ ./run_bench.sh Denoise -c X -a Y

Below items are the explanation of importantmacros in run_bench.sh:

(1) BENCH_LIST: It contains all benchmarks that have been run
in our evaluation. Please run with "-h" option to observe
runnable workloads in this artifact

(2) DIR_OUT_BENCH: It contains all output files, including stats
(i.e., stats.txt), for each benchmark. The output messages
will be dumped as result.txt in each benchmark directory.
In this artifact, this directory is formatted as result_cXaY/TDLCA_Z

(3) FILE_BOOTSCRIPT: It contains the boot scripts of full system
simulation for each benchmark (i.e., .rCS file)

(4) DIR_CKPT: It contains the simulation checkpoint generated
in the previous section

(5) CFG_OPTIONS: It indicates the common gem5-parade config-
uration parameters in our evaluation

Running differentmodels: After running the CryptoMMUmodel,
you may want to run the binary of a different model. To do this,
you need to update environment variables (i.e., PARADE_HOME and
M5_PATH). Say Border Control:

$ export PARADE_HOME=/path/to/Border_Control
$ export M5_PATH=$PARADE_HOME
$ /path/to/Border_Control/run_bench.sh Denoise

A.6 Experiment customization
To evaluate different scenarios presented in Section 6.2, we pro-
vide two optional configuration options to propagate values to the
following flags of gem5-parade in run_bench.sh:

(1) "-c [val]": The LLC size per bank (in KB), which will be
propagated to the flag --l2_size. In our environment, the
number of LLC banks is fixed at 32; hence, a 2 MB of LLC
should be configured as -c 64

(2) "-a [val]": The number of accelerators, which will be propa-
gated to the flag --num_accinstance

A.7 Evaluation and expected results
Our artifact is provided to reproduce Figure 9 - Figure 11 in Sec-
tion 6.1 and Section 6.2. In these figures, we compared the total
execution time of the benchmark, which is the value associated with
system.switch_cpus.numCycles in stats.txt; this value is the
total CPU cycles simulated after restoring the checkpoint.

After running the evaluation for all configurations, the normal-
ized performance values can be obtained by taking the inverse of
Border Control’s total execution time as a denominator and the
inverse of other models’ total execution time as numerators (Equiv-
alently, the Border Control’s execution time as numerator and the
others’ execution time as denominator). For Figure 9, Denoise will
show the normalized values of 0.10, 1.13, 1.23, and 1.27 with respect
to Border Control for Full IOMMU, CryptoMMU, CryptoMMU(Read
Acc.), and ATS-only IOMMU, respectively; these values are close to
the bars presented in Figure 9.

Similarly, for Figure 10 and Figure 11, the execution time values
should be normalized with the execution time values of Border
Control, which are configured as the corresponding number of
accelerators and LLC size, respectively. For example, in terms of the
bar AFU 4 in Figure 11, it is equivalent to the total execution time
of Border Control divided by the total execution time of CryptoMMU
(Read Acc.); both are configured as four accelerators.

https://github.com/cdsc-github/parade-ara-simulator.git
https://github.com/cdsc-github/parade-ara-simulator.git
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