
TLB Shootdown Mitigation for Low-Power
Many-Core Servers with L1 Virtual Caches

Binh Pham , Derek Hower,
Abhishek Bhattacharjee, and Trey Cain

Abstract—Power efficiency has become one of the most important design

constraints for high-performance systems. In this paper, we revisit the design of

low-power virtually-addressed caches. While virtually-addressed caches enable

significant power savings by obviating the need for Translation Lookaside Buffer

(TLB) lookups, they suffer from several challenging design issues that curtail their

widespread commercial adoption. We focus on one of these challenges–cache

flushes due to virtual page remappings. We use detailed studies on an ARM

many-core server to show that this problem degrades performance by up to 25

percent for a mix of multi-programmed and multi-threaded workloads. Interestingly,

we observe that many of these flushes are spurious, and caused by an

indiscriminate invalidation broadcast on ARM architecture. In response, we

propose a low-overhead and readily implementable hardware mechanism using

bloom filters to reduce spurious invalidations and mitigate their ill effects.

Index Terms—Virtual Cache, virtual memory, TLB, multicores, multiprogramming,

multithreading

Ç

1 INTRODUCTION

EFFICIENT hardware support for virtual memory has been an
important topic in the computer systems community because of its
impact on performance and power. That hardware support is
anchored by a variety of virtually-addressed tructures throughout
the system, including Translation Lookaside Buffers (TLBs) and
virtually-addressed caches. While much prior work has focused on
TLB reach and hit rates [2], [13], [14], [15], this paper sheds light on
the increasing importance of another source of overhead-that of
TLB coherence or shootdown operations.

Virtually-indexed virtually-tagged or VIVT caches use the virtual
address for both cache indexing and tagmatching, obviating the need
for prior TLB lookup. This has several benefits. For example, it elimi-
nates TLB lookup power consumption for every instruction or data
access. For the same reason, it reduces cache access latency. Onemight
initially expect virtually-indexed physically-tagged (VIPT) caches to
eliminate some of these problems too. While this can be the case (e.g.,
VIPT caches reduce access latency by overlapping TLB and part of the
cache access), VIPT caches introduce problems of their own. Specifi-
cally, since VIPT caches overlap TLB lookup with cache indexing,
they require the index bits to fit within the page offset. This limits the
number of sets that a cache can support andmeans that caches can be
grown only through higher associativity, consuming significantly
more power. Consequently, there is a resurgence of interest in study-
ing alternate VIVT caching in low-power server designs [6].

VIVT caches face some key challenges. First, they require special
support to correctly manage address synonyms, the situation when
multiple virtual addresses map to the same physical address. Syno-
nyms are often used to support, for example, data sharing among
multiple processes. VIVT caches use multiple cache lines to store

synonyms, creating coherence issues. Second, VIVT caches require
special support to correctlymanage address homonyms,which occur
when a virtual address maps to different physical addresses. This
may occurwhenmultiple processes simultaneously use the same vir-
tual address to map different physical addresses, in disjoint address
spaces. Synonyms and homonyms have seen significant research in
the last fewdecades [3], [7], [9], [12], [21], with varying degrees of suc-
cess. Our focus, however, is on a third, unaddressed, problem–page
remappings. This is the situation when privileged software (e.g., an
OS or hypervisor) modifies the content of a virtual-to-physical page
mapping in a page table entry (PTE). PTE changes can occur for
many reasons–permission changes, remapping a virtual page to a
physical page, etc. The challenge with PTE modifications is that they
require all stale VIVT cache lines to be made coherent. Maintaining
VIVT cache coherencewith page tables is a vexing problem.

PTE modifications are becoming increasingly important. Histori-
cally, they have been used for optimizations like copy-on-writes,
memory defragmentation to create superpages, and page migration
between NUMA nodes [11]. As systems embrace heterogeneous
memories, combining high-bandwidth DRAM technologies with
lower-cost, higher-capacity DRAM devices [1], operations like page
migration are likely to become even more frequent. In any of these
cases, a PTE modification means that VIVT cache lines from the vir-
tual page of the PTE are now stale andmust be invalidated. The natu-
ral mechanism to accomplish this is to use the standard TLB
shootdown operation to also perform cache invalidations. This
presents a problem, mainly due to the fact that traditional shoot-
downs operate at the granularity of a page ofmemory. Because cache
lines are smaller than pages, a single pagemodification and its shoot-
downmay require the invalidation of many VIVT cache lines. Identi-
fying the exact set of lines affected by the page invalidation requires a
scan of all cache lines in that page. Such an operation is not practical
for several reasons:

� A cache scan takes multiple cycles, proportional to the
number of lines in the largest page size. This can poten-
tially require millions of cycles as the largest page size in
architecture like ARM aarch64 is 16GB.

� If the time taken to scan the cache becomes long, a large
number of incoming scan requests are queued, particularly
in modern systems with multiple invalidations.

� The cache scan interferes with demand requests coming
from the core.

� The core initiating the shootdown cannot progress until the
scan operation completes, increasing the TLB shootdown
latency and delaying the execution of subsequent depen-
dent instructions.

� The high power consumed by the cache scan jeopardizes
the low-power benefits of VIVT.

For these reasons, TLB shootdowns flush VIVT caches entirely,
a quicker operation than scans. We characterize the impact of these
flushes on the performance of a large-scale ARM systems, which
represent an emerging class of server SoCs forthcoming from com-
panies such as Applied Micro, Broadcom, Cavium Semiconduc-
tors, and Qualcomm. Our focus is ARM’s TLB shootdown
mechanism, which is based on several variants of tlbi instructions.
These instructions include two operands encoded in a single 64 bit
register operand: a 48 bit virtual address, and a 16 bit address space
identifier (ASID). Upon execution, the tlbi instruction invalidate
any translations (system-wide) with the following properties:

� Virtual pagesmatching the page number specified by the tlbi.
� Translations either marked as global and accessible by any

ASID, or marked with the ASID specified by the tlbi
instruction.

� B. Pham and A. Bhattacharjee are with the Department of Computer Science, Rutgers
University, Piscataway, NJ 08854. E-mail: {binhpham, abhib}@rutgers.edu.

� D.Hower is with Qualcomm Technologies, Inc. E-mail: dhower@qti.qualcomm.com.
� Trey Cain is with Qualcomm Datacenter Technologies, Inc.

E-mail: tcain@qti.qualcomm.com.

Manuscript received 23 Nov. 2016; revised 28 Feb. 2017; accepted 17 Mar. 2017. Date of
publication 4 June 2017; date of current version 19 Mar. 2018.
(Corresponding author: Binh Pham.)
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2017.2712140

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018 17

1556-6056� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0336-3777
https://orcid.org/0000-0002-0336-3777
https://orcid.org/0000-0002-0336-3777
https://orcid.org/0000-0002-0336-3777
https://orcid.org/0000-0002-0336-3777
mailto:
mailto:
mailto:

Furthermore, tlbi incorporates ”broadcast” semantics-when any
processor executes the tlbi, its effect must be observed in any trans-
lation cache system-wide. This whole-system operation invalidates
the TLBs and VIVT caches of all CPUs, though it does so without
the expensive inter-processor interrupts of x86 systems. Unfortu-
nately, the indiscriminate nature of the invalidations cannot selec-
tively target remote cores. As a result, cores in a large-scale system
observe TLB invalidations more frequently, exacerbating shoot-
down overheads.

2 PROBLEM AND SOLUTION

2.1 Performance Impact of TLB Shootdowns

We quantify the TLB shootdown overheads on a many-core ARM
system using a simulator based on the open source QEMU virtual
machine. We use a map-reduce multithreaded implementation of
word counting (WordCount [16]) and the Graph500 benchmark
[10]. We use these workloads as the TLB shootdown initiators and
run them concurrently with integer benchmarks in SPEC CPU 2006
[8] as the shootdown victims. We use QEMU as a dynamic memory
request generator that feeds a timing approximate performance
model, which includes detailed multi-level caches, DDR control-
lers, and interconnect.The QEMU component runs slightly ahead
of the timing model, allowing us to queue enough work to simulate
out-of-order execution. Our basic out-of-order CPU model respects
true dependencies but lacks important components such as branch
predictor. For that reason, we focus primarily on memory-bound
workloads whose performance is dominated by the performance
of the memory system and interconnect. We simulate a system
with 48 ARMv8 cores running unmodified Linux 3.15 kernel as
shown in Fig. 1. Each core employs L1 VIVT caches backed by a
unified TLB and L2. L1 misses look up the TLB, and then all lower
levels of the memory hierarchy are looked up using physical
addresses. TLB misses are handled using a hardware page table
walker (PTW) that traverses the page table and fills the per-core
TLBs. L2 caches are backed by a coherent interconnect connecting
a collection of distributed L3 cache instances and DDR4 memory
controller.

Fig. 2a and Fig. 2b show the frequency of TLB shootdowns dur-
ing the execution of WordCount and Graph500 respectively. Each
point on the x-axis represents an interval of one million cycles. The
y-axis plots the number of TLB shootdowns. As shown, these
benchmarks frequently experience shootdowns, often in a bursty
manner. This is because there are multiple threads in the two pro-
grams, parsing a common memory-mapped file and writing to the
mapped pages subsequently. This triggers the kernel’s copy-on-
write policy if the file is mapped with the corresponding flags set.

As explained in Section 1, each of these TLB shootdowns is
broadcast to every all CPUs and flushes all L1 VIVT caches.

Because of the indiscriminate nature of those broadcast invalida-
tions, even the cores running “victim” SPEC benchmarks flush
their L1 caches. We are interested in measuring the performance
impact of those spurious shootdowns on our simulated system.
Our baseline is an “ideal” case where we do not flush L1 instruc-
tion and data cache state.

We first compare the ideal CPI of our “victim” benchmarks with
the regular case where we do flush the L1 caches upon TLB shoot-
down. In this experiment, we allocate forty CPUs to run either
WordCount or Graph500 (our shootdown initiators), and the
other eight CPUs to run copies of a SPEC application, which has
very low or zero TLB shootdowns. We plot the CPI increase with
respect to the “ideal” case in Fig. 3. As shown, the performance
degradation measured of all victim applications remains consis-
tently high, up to 25 percent when we pair WordCount with
sjeng. On average, running SPEC applications concurrently with
WordCount degrades performance by 12 percent while pairing
with Graph500 is 6 percent.

Due to space constraints, we omit the performance degradation
results of the shootdown “initiators”. However, we find that both
WordCount and Graph500 suffer 1-2.5 percent CPI increase when
running on a single CPU system, and this increases up to 5 percent
for a 48 CPU system. We expect higher core counts to further exac-
erbate this problem. Because the “victim” applications experience
much higher overheads from cache flushes under TLB shoot-
downs, the rest of this paper focuses on describing a technique to
reclaim this lost performance.

2.2 Filtering Spurious Invalidations using Approximate
History of Virtual Page Accesses

A seemingly straightforward solution is to employ a Bloom filter
[4] to approximately track a set of addresses, similar to its use in
other contexts [18]. In this context, the Bloom filter tracks the set of
pages whose translations have been cached since the last time that
the VIVT cache was invalidated, and incoming tlbi operations are
checked against the Bloom filter. In the absence of a match, the tlbi
operation can be safely dropped, otherwise one must conserva-
tively assume that the cache may contain a cached translation entry,
and the cache is invalidated.

Fig. 1. System configuration: VIVT L1I and L1D caches backed by a PIPT L2 and
distributed L3. A TLB access is not on the critical path for L1 cache access, but is
looked up on L1 cache miss.

Fig. 2. Variation of TLBI frequency in (a) WordCount and (b) Graph500.

Fig. 3. Percent increase in the victim app CPI due to VIVT cache flushes that are
induced by frequent TLB shootdown from initiator applications graph500 and
WordCount.

18 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018

In order for the Bloom filter to track the pages correctly, the
page size of the translation needs to be known. Bloom filter inser-
tion is done at L1 VIVT cache fill time, and the page size informa-
tion can be provided by the address translation unit after the L1
VIVT miss. Bloom filter check is performed anytime a tlbi operation
is received on a core. Here a complication arises since the tlbi oper-
ations do not include the page size of the translation being invali-
dated. Without knowing the page size, extremely conservative
assumptions need to be made about its potential size. For example,
ARMv8 supports up to a 16 GB page size, so one might have to
assume that a tlbi operation conflicts with any number of cache
lines that fall in the referenced 16 GB region. Even though page
size can be added to the tlbi operations in later ARM generations,
here we propose an alternative solution that has very low overhead
and can be implemented easily in hardware.

We couple the Bloom filter with a “largest observed page size”
(LOPS) register that designates the largest page size forwhich a trans-
lation entry is cached. By tracking the largest observed page size, and
conservatively assuming that any incoming TLB shootdown is of this
page size, we can avoid having to assume that the incoming TLB
shootdownmust target the largest possible page size, but can instead
assume a much smaller typical page. A block diagram of the compo-
nents is shown in Fig. 4. Based on the contents of the LOPS register,
we treat all addresses that update or check the Bloom filter as if they
are based on that page size. Initially, the register is set to 4KB.As lines
are inserted into the cache, the register is used to determine the num-
ber of lower-order bits that are masked off of the address before it is
used to update the Bloom filter. On the receipt of a tlbi operation, we
similarly use the register to truncate the low order bits of the incom-
ing tlbi’s address that is checked against the Bloomfilter.

Since the addresses used to set the Bloom filter depend on the
contents of the LOPS register, if a larger page size is observed
therefore resulting in a register update, the Bloom filter must be
invalidated, and along with it the VIVT cache. For example, as
increasing page sizes are observed, some number of spurious cache
invalidations may occur as the LOPS register homes in on the
actual largest page size used in practice. We then retain the LOPS
register, and only periodically reset it to 4 KB, allowing it to retain
its value for long periods of time. The success of this scheme
depends on the fact that it is rare for more that a small handful of
page sizes to be used. In our study, we observe that the largest of
which is still sufficiently small (e.g., 2 MB) to serve as a useful filter
of the address space (as opposed to 16 GB).

For the purposes of this work, we assume that a Bloom filter is
employed per cache, although it is also possible to share this unit
across a group of virtually tagged structures. We use one of the H3
hash functions by Carter and Wegman [5] to compute the hashed
value of a page number to index in our Bloom filters.

3 PERFORMANCE RESULTS

Fig. 5 shows the performance improvement of using bloom filters,
comparing compared to the baseline. Our baseline, as before,

assumes that a core’s L1D and L1I caches are flushed on the receipt
of a TLB invalidation command.

Fig. 5 shows that bloom filters greatly improve performance by
shielding the CPUs that run victim applications (and don’t share
the address space of the multi-threaded applications initiating
shootdowns) from unnecessary shootdown activity. For all the
benchmarks, we also include the results from a run in which
the caches are never flushed, approximating the ideal case where
the cache is oblivious to tlbi operations (i.e., as in a physically
tagged cache). Bloom filters improve performance by an average of
12 percent, and achieve close to ideal performance in in every sin-
gle case. Omitted for space reason, but we also show that this
technique improves the performance of the application initiating
the shootdowns. The primary source of this benefit is better
instruction cache performance because our bloom filters help pro-
tect instruction caches from shootdowns that target pages in the
data address space (rather than the instruction address space),
and vice versa. We see a performance boost of 3 percent on aver-
age for shootdown initiators.

To help us understand why using bloom filters helps improve
the performance of both victim and initiator applications, Fig. 6
compares the number of spurious cache flushes per kilo instruc-
tions observed between the baseline, where we always flush caches
on receipt of a tlbi command, and the bloom filter design. As can
be seen from Fig. 6, using bloom filters reduces the number of
unnecessary d-cache flushes significantly across all workloads, and
more than 80 percent on average. This reduction is even better for

Fig. 4. Bloom filter with page size adjustment.
Fig. 5. Performance improvements of victim applications when using Bloom filters
to reduce spurious cache flushes induced by TLB shootdowns.

Fig. 6. Number of spurious cache flushes observed in victim applications in the
baseline versus using bloom filters for a) instruction caches, b) data caches.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018 19

the instruction caches. The combination of this large cache flush
reduction from both types of caches explains why our victim appli-
cation speedup is close to ideal.

4 RELATED WORK

The bulk of recent work to improve TLB shootdown performance
has focused on IPI-based mechanisms typical of x86 [11], [17], [19].
While operating systems, e.g., Linux, already has mechanisms
such as tracking thread migration to shield TLB shootdowns from
cores that never execute a particular process, Villavieja et al. [19]
showed that this results in a very high false positive rate, which
happens when the target translation has been evicted from the core
TLB but the OS has no knowledge about this. Together with the
costly IPI handling, TLB shootdown presents a serious problem to
multicore system scalability. Instead, they proposed a shared direc-
tory to precisely track location of all address translations present in
the first-level TLBs of the whole-system in order to know exactly
which core to forward TLB shootdowns to. However, their pro-
posal does not protect icaches from shootdowns targeting dcaches
and vice versa . They also rely on updating a centralized structure
for every insertion or deletion from all first level TLBs, which
potentially hampers the scalability of the system. Our design does
not suffer from these limitations.

Yoon and Sohi [21] recently proposes a hardware mechanism to
group all synonymous pages of the same physical page to a single
leading virtual page. Their design involves using the active synonym
detection table (ASDT) to check whether lines from a physical page
are present in the virtual cache, and they discussed the possibility of
using this structure to filter out TLB shootdown events. However, as
TLB shootdowns target virtual pages, while ASDT is indexed by
physical pages, this would require scanning ASDT for matching vir-
tual pages. Our bloom filter design can be integrated with their
design to speed up this operation, andwe leave it for futurework.

Several other studies look at engineering non-intrusive micro-
coded versions of the shootdown code on recipient cores [11], and
mechanisms to replace IPIs entirely by leveraging existing cache
coherence protocols to also perform TLB coherence [17], [20].

Overall, most of past work focuses on multi-threaded work-
loads, where threads running on different cores do indeed share
the same address space and hence may genuinely require the TLB
shootdowns. This however, ignores the more common multi-
programmed case, where multi-threaded workloads may share the
system with simultaneously running single- or multi-threaded
workloads. TLB shootdowns (and their harmful cache effects when
using virtually-tagged caches) are often spurious in this scenario,
injuring “victim” applications needlessly.

5 CONCLUSION

In this work, we have explored the challenge of VIVT translation
coherence in the the context of the emerging class of low-power/
high-core count ARM-compatible servers. We have demonstrated
the tlbi-shootdown scaling problem both for applications that
include significant shootdown activity, as well as applications that
suffer without any shootdown activity of their own. In response,
we propose a filtering technique that augments traditional ISA-
based shootdown operations to lower their performance over-
heads. We show that this can help reduce VIVT translation shoot-
down overheads to nearly nil. Given the simplicity of our
implementation, we expect our technique to be readily deployed in
the emerging class of low-power/high core-count servers.

REFERENCES

[1] N. Agarwal, D. Nellans, M. O’Connor, S. Keckler, and T. Wenisch,
“Unlocking bandwidth for GPUs in CC-NUMA systems,” in Proc. Int.
Symp. High Performance Comput. Archit., 2015, pp. 354–365.

[2] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient virtual
memory for big memory servers,” in Proc. 40th Annu. Int. Symp. Comput.
Archit., 2013, pp. 237–248.

[3] A. Basu, M. D. Hill, and M. M. Swift, “Reducing memory reference energy
with opportunistic virtual caching,” in Proc. 39th Annu. Int. Symp. Comput.
Archit., 2012, pp. 297–308.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[5] J. L. Carter and M. N. Wegman, “Universal classes of hash functions
(extended abstract),” in Proc. 9th Annu. ACM Symp. Theory Comput., 1977,
pp. 106–112.

[6] Cavium, ThunderX Family of Workload Optimized Processors. 2015.
[7] M. Cekleov and M. Dubois, “Virtual-address caches, part 2: Multiprocessor

issues” IEEE Micro, vol. 17, no. 6, pp. 69–74, Nov. 1997.
[8] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH

Comput. Archit. News, 2006.
[9] S. Kaxiras and A. Ros, “A new perspective for efficient virtual-cache

coherence,” in Proc. 40th Annu. Int. Symp. Comput. Archit., 2013, pp. 353–
546.

[10] R. C. Murphy, K. B. Wheele, B. W. Barrett, and J. A. Ang, “Introducing the
graph 500,” 2010.

[11] M. Oskin and G. H. Loh, “A software managed approach to die-stacked
DRAM,” in Proc. Int. Conf. Parallel Archit. Compilation, 2015, pp. 188–200.

[12] C. H. Park, T. Heo, and J. Huh, “Efficient synonym filtering and scalable
delayed translation for hybrid virtual caching,” in Proc. ACM/IEEE 43rd
Annu. Int. Symp. Comput. Archit., 2016, pp. 90–102.

[13] B. Pham, A. Bhattacharjee, Y. Eckert, and G. Loh, “Increasing TLB reach by
exploiting clustering in page translations,” in Proc. IEEE 20th Int. Symp.
High Performance Comput. Archit., 2014, pp. 558–567.

[14] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT: Coa-
lesced large-reach TLBs,” in Proc. 45th Annu. IEEE/ACM Int. Symp. Micro-
architecture, 2012, pp. 258–269.

[15] B. Pham, J. Vesely, G. H. Loh, and A. Bhattacharjee, “Large pages and light-
weight memory management in virtualized environments: Can you have it
both ways?” in Proc. 48th Annu. IEEE/ACM Int. Symp. Microarchitecture,
2015, pp. 1–12.

[16] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating MapReduce for multi-core and multiprocessor systems,” in
Proc. IEEE 13th Int. Symp. High Performance Comput. Archit., 2007, pp. 13–24.

[17] B. Romanescu, A. Lebeck, D. Sorin, and A. Bracy, “Unified instruction/
translation/data (UNITD) coherence: One protocol to rule them all,” in
Proc. 16th Int. Symp. High-Performance Comput. Archit., 2010, pp. 1–12.

[18] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam, “Implementing sig-
natures for transactional memory,” in Proc. 40th Annu. IEEE/ACM Int.
Symp. Microarchitecture, 2007, pp. 123–133.

[19] C. Villavieja, et al., “Didi: Mitigating the performance impact of TLB shoot-
downs using a shared TLB directory,” in Proc. Int. Conf. Parallel Archit. Com-
pilation Techn., 2011, pp. 340–349.

[20] Z. Yan, J. Vesely, G. Cox, and A. Bhattacharjee, “Hardware translation
coherence for virtualized systems,” in Proc. 40th Annu. Int. Symp. Comput.
Archit, 2017.

[21] H. Yoon and G. S. Sohi, “Revisiting virtual l1 caches: A practical design
using dynamic synonym remapping” in Proc. IEEE Int. Symp. High Perfor-
mance Comput. Archit., 2016, pp. 212–224.

20 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

