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Abstract

The steadily increasing sizes of main memory capacities require cor-
responding increases in the processor’s translation lookaside buffer
(TLB) resources to avoid performance bottlenecks. Large operating
system page sizes can mitigate the bottleneck with a smaller TLB,
but most OSs and applications do not fully utilize the large-page
support in current hardware. Recent work has shown that, while not
guaranteed, some virtual-to-physical page mappings exhibit “con-
tiguous” spatial locality in which consecutive virtual pages map to
consecutive physical pages. Such locality provides opportunities to
coalesce “adjacent” TLB entries for increased reach. We observe
that beyond simple adjacent-entry coalescing, many more transla-
tions exhibit “clustered” spatial locality in which a group or cluster
of nearby virtual pages map to a similarly clustered set of physical
pages. In this work, we provide a detailed characterization of the
spatial locality among the virtual-to-physical translations. Based on
this characterization, we present a multi-granular TLB organization
that significantly increases its effective reach and reduces miss rates
substantially while requiring no additional OS support. Our evalua-
tion shows that the multi-granular design outperforms conventional
TLBs and the recently proposed coalesced TLBs technique.

1. Introduction

As processor vendors embrace the era of big data, fields like sci-
entific computing, data mining, social networks, and business man-
agement depend on processing massive, multi-dimensional data sets.
Hardware designers have responded by proposing hardware appro-
priate for workloads requiring large data reach. These architectures
demonstrate a rapid increase in on-chip hardware caches and main
memory so that workloads can quickly access large working sets.

In this context, it is critical to re-evaluate virtual memory, ubiq-
uitous across computer systems today. Virtual memory is a power-
ful abstraction crucial to programmer productivity that automates
data transfer between main memory and secondary storage, pro-
vides protection benefits, and enables software modularity. At its
core, programs operate on virtual addresses that are translated to
system-level physical addresses on data requests. Processor vendors
accelerate address translation using hardware translation lookaside
buffers (TLBs) to cache recently-used virtual-to-physical address
translations or page table entries (PTEs). Because misses in these
structures are expensive (e.g., x86 systems require the traversal of a
four-level page table to find the desired PTE), past work has shown
that TLB microarchitecture significantly influences system perfor-
mance [2, 3, 5–7, 12].

Unfortunately, as software demands more memory, TLB misses
impose a bottleneck on memory accesses. Because TLBs struggle to
map out the reach of increasing memory and cache sizes, this bottle-
neck is becoming a critical problem. In response, studies have con-
sidered optimizations like better TLB organizations [6, 8], prefetch-
ing [7, 11, 14], and speculation [2].

The most recent work has proposed coalesced large-reach TLBs
(CoLT) [12] based on the observation that, independent of large
pages, operating systems typically exhibit “contiguous” spatial lo-
cality (although this is not guaranteed) in which tens of consecu-
tive virtual pages are mapped to consecutive physical pages. This
behavior, caused in part by OS buddy allocators and memory com-
paction [12], generates many instances of contiguous PTE spatial lo-
cality, though typically not enough for large page generation. CoLT
proposes novel but modest hardware changes to a conventional TLB
to exploit contiguous spatial locality.

Our work goes beyond CoLT by observing that many translations
exhibit “clustered” spatial locality in which translations are “nearby”
in the same address region. We then introduce a multi-granular TLB
organization that exploits clustered spatial locality.

This work makes the following contributions. First, we pro-
vide a detailed characterization of PTE spatial locality across many
workloads. We use both detailed simulations and real-system ap-
proaches and show that weakly-clustered spatial locality is more
prevalent than contiguous spatial locality. Second, we propose a
low-overhead, multi-granular TLB organization that exploits PTE
clustering. Our approach uses modest hardware and no OS support,
making it robust for applications ranging from the server and desk-
top to high-performance computing and cloud-computing domains.
We consider enhancements to our design (e.g., replacement policies
and prefetching) that eliminate 46% of L2 TLB misses on average.
Third, our approach largely subsumes the prior CoLT technique by
exploiting contiguous spatial locality when it exists. Our approach
is thus effective even when OSs have been running for long periods
and are fragmented, making contiguous spatial locality scarce.

2. Related Work and Our Approach

2.1. Address Translation Overheads and Enhancements

Despite its programmability benefits, address translation typically
degrades performance by 5-15% [2, 6, 7, 12]. Emerging software
trends like big data and virtualization further increase these over-
heads to as much as 40-50% [3, 5]. In response, past studies have
considered optimizations such as novel TLB organizations [6, 8],
prefetching [7, 11], synergistic TLBs [15], speculation [2], and di-
rect segments [3].

A particularly compelling approach is to encourage the OS to al-
locate adjacent virtual pages to adjacent physical pages. It then is
possible to propose hardware that stores groups of adjacent PTEs
in a single TLB entry using a large page to reduce miss rates and
increase performance. Modern OSs generate large pages [1, 16] by
mapping hundreds of consecutive physical pages to consecutive vir-
tual pages (e.g., x86 requires 512 adjacent PTEs for baseline 4KB
pages to realize a 2MB large page). While effective in many cases,
large pages must be used carefully because they can suffer overheads
from specialized OS code and increased paging traffic [16]. Hence,
in practice, large pages are used sparingly (if at all).
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Figure 1. The figure on the left shows the presence of contiguous spatial local-
ity (sequential groups) in a page table. The figure on the right shows that if
clustered locality is also observed, the entire page table can be more efficiently
covered.

2.2. Spatial Locality in Page Table Entries

Large pages exploit cases in which large swathes of contiguous vir-
tual pages are assigned contiguous physical pages. We refer to
groups of adjacent PTEs as contiguously spatially local. Large pages
require explicit OS intervention to ensure ample contiguous spatial
locality; however, it is also possible for operating systems to gener-
ate intermediate amounts of spatial locality (in the range of tens to
a few hundreds of PTEs). For example, Figure 1(a) shows a page
table in which the PTEs for virtual page numbers (VPNs) 0-2 are
in a sequential group of physical pages. Similarly, the sequential
group of PTEs for VPNs 3-4 are contiguously spatially local. Past
work shows that this behavior occurs often even in the absence of
large page support because of OS buddy allocators and memory-
compaction daemons [12]. Overall, we find that our page table is
made up of two sequential groups of PTEs exhibiting contiguous
spatial locality and three additional “singleton” PTEs.

This work’s key insight is that there exists another form of spa-
tial locality, likely occurring in greater abundance than contiguous
spatial locality. Specifically, we find that many PTEs exhibit clus-
tered spatial locality in which a cluster of nearby virtual pages map
to a similarly clustered set of physical pages. Consider Figure 1(b),
assuming that we scan for clusters of up to eight PTEs. In our ex-
ample, PTEs demonstrate clustered spatial locality if they all share
the same VPN divided by 8 and the same physical page number
(PPN) divided by 8 (i.e., we ignore the bottom 3 VPN and PPN
bits). Therefore, the entire page table is covered by two clusters.
The first cluster matches the first two sequential group of PTEs from
Figure 1(a), and the second cluster comprises PTEs for VPNs 5-7.
The goal of our work is to show that this form of clustered locality is
abundant, even in fragmented systems, and to design low-overhead
hardware to exploit these patterns.

2.3. Past Techniques to Exploit Page Table Spatial Locality

The following three techniques have been proposed in past studies
to exploit PTE spatial locality.

Coalesced Large-reach TLBs (CoLT): Past work [12] proposed
CoLT to exploit contiguous spatial locality. Figures 2(a) and (b) con-
trast the structure of a conventional TLB entry with a CoLT entry.
While a conventional TLB entry corresponds to a single PTE (in our
example, virtual page V1 and physical page P3), a CoLT entry maps
a group of contiguous, spatially-local PTEs (in our example, PTEs
for virtual pages 1-5). Any arbitrary set of PTEs can be accommo-
dated (e.g., five PTEs in Figure 2) by recording only the base PTE
and the number of coalesced PTEs. On look-up, the offset between
the base virtual address stored in the tag is used to calculate the off-

set from the base physical page. There are no alignment restrictions
for this approach. CoLT achieves high reach but is entirely reliant
on contiguous spatial locality. Unfortunately, contiguous spatial lo-
cality becomes rare as systems are fragmented and run for longer
periods [12].

Complete sub-blocking: This approach relaxes the need for contigu-
ous spatial locality [16]. Instead, complete sub-blocking looks for
clusters of PTEs with contiguous VPNs. For a given sub-block fac-
tor N, this approach looks for B aligned virtual pages (i.e., all vir-
tual address bits apart from the bottom log2(B) bits are the same). It
then places all the PTEs corresponding to this group in one complete
entry. Figure 2(c) shows an example of this where virtual pages 0-
3 all are aligned for a sub-block factor of 4. This means that their
PTEs can be stored in one entry if it maintains a field for each PPN
(e.g., P1, P6, P3, and P5). Unfortunately, the ability of complete
sub-blocking to store any set of PPNs requires expensive hardware
(multiple PPN fields). Furthermore, unlike CoLT which accommo-
dates any length of contiguous PTEs, complete sub-blocking stores
a PTE count equal to the sub-block factor.

Partial sub-blocking: Talluri and Hill proposed partial sub-blocking
as a lower-overhead alternative to complete sub-blocking [16]. Fig-
ure 2(d) shows that partial sub-blocking searches for PTEs with an
aligned group of virtual pages and an aligned group of physical
pages. All PTEs that have VPNs and PPNs with the same offset
from the start of the aligned package are coalescable into a single
entry. In our example, PTEs for VPNs 0, 2, and 3 achieve this.
This approach permits “holes” in a group of PTEs when the physi-
cal page offset within the aligned packet is different from the virtual
page offset (e.g., the PTE for virtual page 1 in our example). Par-
tial sub-blocking achieves high reach using much simpler hardware
than complete sub-blocking by imposing alignment and offset re-
strictions on PPNs. Figure 2(d) shows each entry maintains only a
bit vector recording the presence of the physical pages rather than
the entire PPN.

Intuitively, partial sub-blocking goes beyond CoLT by exploiting
contiguous spatial locality and limited forms of clustered locality.
However, its PPN alignment and offset requirements cannot capture
many instances of clustered spatial locality (e.g., the third cluster
in Figure 1 cannot be leveraged because it requires VPNs 5 and
6 to map to PPNs 16 and 17, respectively, to be useful). In prac-
tice, we find that most instances of clustered spatial locality in PTEs
do not fit the alignment requirements of partial sub-blocking (our
measurements show that less than 10% of PTEs fit these alignment
requirements naturally). While the original partial sub-blocking ap-
proach [16] addresses this problem by adding specialized OS code to
generate the right alignment and offset features, our goal is to avoid
explicit OS modifications.

2.4. Our Approach: Clustered TLBs

We design a multi-granular TLB architecture that exploits more gen-
eral forms of spatial locality. We focus on clustered PTE spatial
locality that also largely subsumes contiguous spatial locality. We
achieve this using a novel clustered TLB architecture.

Figure 2(e) shows a clustered TLB. Like sub-blocked TLBs, a
clustered TLB is designed for a maximum cluster factor of N (in
this example, N=4). Suppose an aligned group of virtual pages is
found; if these virtual pages also point to an aligned group of phys-
ical pages, the PTEs can be placed in a single clustered TLB entry.
This means that: (1) all VPNs in a cluster share the same bits ig-
noring the bottom log2(N) bits; and (2) all PPNs in a cluster share
the same bits ignoring the bottom log2(N) bits. Unlike partial sub-
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Figure 2. Operation of CoLT, complete sub-blocking, and partial sub-blocking versus clustered TLB. For each approach, we show the structure of a single entry and a page
table with the PTEs that can be exploited.

blocking, these PPNs have no additional offset requirements in a
cluster (in our example, V0 maps to P2, but V2 to P1) and permit
holes. An N -wide vector is maintained per entry to record the off-
set of the physical pages in the aligned group (only the log2(N)
bottom-order bits are needed for this). In this way, clustered TLBs
can capture all the clusters from Figure 1.

Our approach offers key advantages relative to past work. Unlike
CoLT, it captures clustered spatial locality, making it robust even in
the presence of fragmentation. Second, unlike sub-blocking, it uses
much simpler hardware and does not require explicit OS support.
Subsequent sections detail our design. We characterize the presence
of clustered locality across a variety of workloads and system con-
figurations. We then show how a multi-granular design made up of
a clustered TLB coupled with a small conventional TLB effectively
captures this clustered spatial locality.

3. Weak Spatial Locality in Page Tables

In this section, we characterize spatial locality in page tables. We
analyzed a total of eleven benchmark traces from SPEC workloads
(xalancbmk, SPECweb, GemsFDTD, astar, omnetpp, mcf), server
workloads (TPC-C, Trade6), and CloudSuite workloads [9] (Graph
Analytics, Data Serving, Data Caching)1. These traces were cor-
related with hardware performance counters to ensure that they ex-
hibit similar behaviors. We first characterize the opportunities for
previously-proposed CoLT-like approaches, and then we relax the
constraints on how PTE entries may be coalesced and examine the
impact that has on the potential for coalescing.

3.1. CoLT-like Contiguous Spatial Locality

We measured the fraction of PTEs that exhibit CoLT-styled con-
tiguous spatial locality, in which contiguous virtual pages map to
contiguous physical pages. Each graph in Figure 3 corresponds to
one application. The x-axis shows the number of PTEs that can
be grouped, the y-axis is percentage of all PTEs, and the graphs
show cumulative distributions. For example, the bold solid line (la-
beled “Contiguous” in the legend) for omnetpp shows that 46% of
all PTEs have a grouping size of one (i.e., they cannot be coalesced
with any adjacent PTEs), about 96% of translations can be coalesced
into groups of six or fewer consecutive PTEs, and all PTEs can be
coalesced into groups consisting of no more than eight consecutive
PTEs. Across the benchmarks, there are some cases in which CoLT-
styled sequentially allocated translations provide decent coalescing
opportunities (e.g., GemsFDTD, mcf), and others in which sequen-
tially consecutive translations are less prevalent (e.g., xalancbmk,
SPECweb-B2, Data Serving).

1See Section 5 for methodology details.
2‘B’ corresponds to the SPECweb banking workload.

3.2. Clustered Spatial Locality

CoLT requires that consecutive virtual pages map to sequential phys-
ical pages. Requiring complete sequentiality for both VPNs and
PPNs restricts coalescing opportunities. We instead consider the no-
tion of clustered spatial locality: as long as nearby virtual pages map
to nearby physical pages, we consider the corresponding PTEs coa-
lescable. In Figure 3, the notation “ClusterX” indicates that transla-
tions from within an aligned cluster of 2X virtual pages that map to
an aligned cluster of 2X physical pages potentially can be combined.

For example, the curves labeled Cluster3 limit the clustering or
grouping of PTEs to those that fall within the same aligned set of
eight (i.e., 23) pages. With the CoLT-style contiguous curves, a
value of (for example) 3 on the x-axis indicates that three consec-
utive PTE entries mapped to three consecutive physical pages. With
the Cluster3 curves, the same value of three indicates that three vir-
tual pages (from within a group of eight), map to pages within an
aligned group of eight physical pages. The three VPNs need not be
consecutive, and the corresponding three PPNs also do not need to
be consecutive or even in increasing address order.

For each curve, the point at which the curve meets the y-axis
(i.e., the y-intercept) indicates the percentage of PTEs that can-
not be coalesced with any other PTEs. For most benchmarks, a
modest clustering scope of Cluster2 or Cluster3 can uncover more
opportunities for PTE coalescing than when using the more con-
strained CoLT-like contiguous criteria. For example, in the bench-
mark xalancbmk, a CoLT-like approach leaves 77% of translations
uncoalesced, whereas when considering groups of four (Cluster2)
or eight (Cluster3) pages without the sequentiality constraint, the
percentage of uncoalescable PTEs drops to 66% and 45%, respec-
tively. Furthermore, the exact curves are heavily dependent on
benchmark behavior. For example, Data Caching sees particularly
large amounts of contiguous spatial locality (and even clustered spa-
tial locality) because it uses memcached, which in turn allocates
large data structures using the slab allocator, which targets contigu-
ous memory allocation.

In almost all cases, relaxed clustering allows significantly more
coalescing opportunities than a CoLT-based approach. As the clus-
tering scope increases (i.e., larger X for ClusterX), the opportuni-
ties for coalescing increase as well (curves move further down and
to the right), but in many cases Cluster3 or Cluster4 are sufficient for
capturing a significant portion of the opportunity. Mcf is a case when
the CoLT-styled approach appears to provide significantly more co-
alescing opportunity; this arises because the ClusterX criteria limits
the coalescing scope to at most 2X pages, whereas if CoLT gets
lucky and there exists a very long run of adjacent translations, CoLT
can coalesce all of these.
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Figure 3. Cumulative distribution functions comparing the opportunity of CoLT-style contiguous spatial locality versus the clustered spatial locality that we target. In general,
clustered spatial locality covers a bigger portion of the page table than contiguous spatial locality.

3.3. Impact of Memory System Fragmentation

A potential criticism and limitation of any TLB-coalescing approach
is that after a system has been up and running for a long time, the vir-
tual memory system may become fragmented. A highly-fragmented
memory system would make it unlikely that nearby virtual pages get
mapped to nearby physical pages (let alone to completely sequential
physical pages). To quantify the impact of OS memory allocation
fragmentation, we ran a subset of the benchmarks on a real server3

and extracted live snapshots of the applications’ page tables. This
server is a highly-utilized machine mostly dedicated to running sim-
ulations, and the machine had an uptime of about 1.5 months at the
time of these experiments. We found that while the exact amounts
of coalescing opportunity are not the same as our trace-based analy-
sis, they follow the same trends. We found that despite 1.5 month’s
worth of fragmentation, clustered spatial locality is more prevalent
than contiguous spatial locality in every single case. For astar, om-
netpp, and mcf, we found that eight clustered entries cover close to
the full page table, whereas more than 64 such entries are required
if only contiguous spatial locality is leveraged.

4. The Multi-granular TLB

The overall multi-granular TLB consists of a clustered TLB that can
efficiently store multiple translations for PTEs with clustered spatial
locality, a conventional TLB for singleton translations without spa-
tial locality, coalescing logic for detecting clustered spatial locality
and populating entries of the clustered TLB, and logic for perform-
ing look-ups, evictions, and other standard TLB operations.

4.1. Clustered TLB

Structure: The basic clustered TLB is a set-associative structure,
much like a conventional TLB, but each TLB entry is designed to
store multiple clustered page table translations. Figure 4(a) shows a

332-thread x86 multiprocessor with 64GB memory, running 64-bit Ubuntu OS v12.04.

clustered TLB entry. In this example, we assume a clustering reach
of eight PTEs (i.e., Cluster3, or C3 for short). The eight VPNs all
have identical values except for the lowest-three bits. The VPN’s
upper bits (i.e., the VPN’s bits excluding the lowest three) are called
the base VPN. Likewise, any of the coalescable PPNs are identical
apart from their respective lowest-three bits, and the common prefix
of the PPN is similarly called the base PPN. The key is that because
all of the coalescable translations have identical base VPNs and base
PPNs, each of these base values needs to be stored only once per
clustered-TLB entry. Only the low-order bits of the PPN need to be
tracked individually.

The C3 TLB entry potentially can track up to eight PTEs. For
each of the individual potential translations, there is one sub-entry.
Figure 4(a) also shows these eight sub-entries, with a detail of one
such sub-entry’s contents. Each sub-entry contains a valid bit, a
dirty bit, a referenced bit (used in replacement policies described
later), and the low-order bits of the PPN (e.g., the lowest-three bits
in the case of Cluster3).

Look-up: To perform a look-up on the clustered TLB, we start with
the VPN. Instead of using the entire VPN to generate a set index,
we use only the base VPN (e.g., the lowest-three bits are omitted),
as shown in Figure 4(b). If the requested base VPN matches the
base VPN stored in the indexed clustered TLB entry4, then we have
a cluster hit, but this does not necessarily imply that the requested
VPN is tracked by the clustered TLB. Next, we take the low-order
bits of the VPN to select one of the eight sub-entries. If the se-
lected sub-entry’s valid bit is set, then this indicates an actual hit.
The translated PPN then simply is reconstructed by concatenating
the base PPN with the low-order PPN bits stored in the selected
sub-entry. The sub-entry’s referenced bit is set, and if the request
corresponded to a write operation, then the sub-entry’s dirty bit also
is set. If we do not have a cluster hit, or if the selected sub-entry is

4For simplicity, only a direct-mapped clustered TLB is shown in the figure, but extension to a
set-associative organization parallels that for a conventional TLB or cache.
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Figure 4. Our multi-granular L2 TLB uses a clustered TLB and a small con-
ventional TLB. Coalescing is performed on TLB fill. (a) Clustered TLB entry,
(b) Look-up, (c) Fill, (d) Multi-granular TLB.

not valid, then in either case this results in a cluster TLB miss.

Fill: On a clustered TLB miss, the TLB look-up is forwarded to the
hardware page-table walker (PTW). In x86-64 processors, the PTW
traverses the four-level page table and returns a cache line contain-
ing the requested PTE, as shown in Figure 4(c). In x86-64, the PTE
entry size is 8 bytes, which means that a single 64-byte cache line
contains a total of eight PTEs (i.e., the requested PTE plus seven
others). The clustered TLB’s coalescing logic examines the seven
non-requested PTEs and checks to see which of these can be coa-
lesced (shown shaded in Figure 4(c)) with the originally requested
PTE (i.e., it detects how many PTEs exhibit clustered spatial local-
ity). For the original PTE and each coalescable PTE, the correspond-
ing sub-entry will have the valid bit set, the referenced bit cleared,
and the low-order PPN bits stored. All other sub-entries have their
valid bits cleared. The common base VPN and base PPN are stored
in the overall clustered-TLB entry. All of this logic is off the critical
path because the originally requested PTE can be returned as soon
as the PTW’s page table look-up has completed.

Clustered TLB Eviction: For a set-associative clustered TLB, a clus-
tered TLB entry first must be evicted prior to installing a new set
of clustered PTEs. Each clustered TLB entry may contain a differ-
ent number of valid translations; simply relying on conventional re-
placement policies such as LRU fails to account for situations when

the LRU entry contains many valid translations and other more re-
cently used entries may contain only a few. It is not immediately
clear how to trade optimizing for recency against the retention of a
larger number of translations.

The sheer number of valid translations in a clustered TLB en-
try might not reflect the utility of those translations. The coalesc-
ing logic may prefetch up to seven additional translations (assuming
Cluster3), but it is possible that none of these other translations are
needed. We propose a simple replacement algorithm that incorpo-
rates the referenced bits from each of the sub-entries to estimate the
overall usefulness of the clustered TLB entry. Usefulness is the num-
ber of valid sub-entries with their referenced bits set. We also define
a recency value, which is the clustered TLB entry’s position in the
LRU recency stack (lower value = less recently used). Then for each
clustered TLB entry in a set, we compute a retention priority:

priority = (α * recency) + (β * usefulness)
The clustered TLB entry with the lowest priority is selected as the
victim. This provides a balance between the recency of the clustered
TLB entry, and the number of useful translations stored by the entry.
We found that setting α and β to 1 and 2, respectively, provided
good performance while maintaining very simple hardware (e.g., for
a four-way set-associative clustered TLB, the recency value is only
two bits wide, the usefulness value is four bits wide for Cluster3,
and multiplication by 1 and 2 are trivial.

To avoid the pathological situation when a clustered TLB en-
try that has not been used recently, but still is kept around due to
a large number of sub-entries that were useful (i.e., referenced) a
long time ago, we periodically decay the referenced bits. We found
that exactly how the referenced bits are cleared is not very impor-
tant; we tried periodic and pseudo-random approaches across a very
large range of decay intervals and found that overall performance is
largely insensitive if some decay occurs every now and then.

4.2. Multi-granular TLB Organization and Operation

The clustered TLB provides efficient storage of multiple PTEs by
not having to redundantly store multiple copies of the base VPN
and base PPN for translations that exhibit clustered spatial local-
ity. However, the locality characterization results from Section 3
showed that there remains a non-trivial percentage of PTEs that can-
not be coalesced with other PTEs. Storing such singleton transla-
tions in a clustered-TLB entry would be wasteful because only a
single sub-entry would be utilized. Figure 4(d) shows the high-level
organization of the multi-granular TLB (MG-TLB). The MG-TLB
consists of a clustered TLB paired with a conventionally-organized
(i.e., not clustered) TLB. For shorthand, we label the conventional
TLB “C0”.5 The conventional TLB is primarily utilized to cache
singleton translations that cannot be clustered with other PTEs.

Look-up: To perform a look-up, both structures are searched in par-
allel. A hit in either indicates a TLB hit, and the translation is pro-
vided by the hitting structure. A miss in both structures results in an
overall TLB miss, and the request is sent to the PTW to retrieve the
translation from the page table.

Fill: In the MG-TLB, when the PTW returns the cache line with the
requested PTE (along with the seven other neighboring PTEs), the
entire set of eight PTEs is delivered to the clustered TLB’s coalesc-
ing logic. At the end of the coalescing process, the MG-TLB first
checks the coalescing degree (i.e., how many PTEs were success-
fully coalesced). If the coalescing degree is greater than a threshold
value θ, then the entire set of coalesced translations is installed into

5A conventional TLB can be viewed as a degenerate case of the clustered TLB with a clustering
scope of zero (i.e., Cluster0).
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Figure 5. The number of unique values when only considering the x upper-
most bits for the VPN (a) and PPN (b), as x is varied. The upper 16 VPN bits
and 20 PPN bits change rarely in our experiments.

the clustered TLB. Otherwise, the single originally-requested trans-
lation is installed into the conventional C0 TLB. The idea is that the
clustered-TLB entries provide greater encoding density (i.e., valid
translation per unit area) when the coalescing degree is high. If it
is more efficient to store a few (less than θ) translations in C0, then
that should be done instead.

Clustered TLB Eviction: When an entry is evicted from the clustered
TLB, it is possible that it contains one or more valid translations.
One option is simply to drop them all; if any are needed, a subse-
quent TLB miss will cause them to be re-fetched by the PTW. This
could cause an increase in TLB misses. Another approach is to take
them all and place each translation in individual entries of the con-
ventional C0 TLB. This approach is unfortunately space-inefficient
(which is why we clustered them in the first place). We instead take
a middle-of-the-road approach in which only those sub-entries that
have their referenced bits set are “saved” and installed into the C0
TLB. The remaining translations are dropped. Apart from preserv-
ing useful translations, this is an important optimization because it
provides a way to convert a clustered-TLB entry with a high degree
of coalescing but low actual usefulness into more efficiently stored
conventional TLB entries (i.e., clustered spatial locality does not buy
you anything if the coalesced entries are never used, and this policy
allows such clustered TLB entries to be “de-coalesced”).

4.3. Frequent Value Locality in the Address Bits

Our baseline clustered TLB design exploits the fact that the upper
bits of the VPNs and PPNs of nearby PTE entries often contain the
same values. We observed that this spatial locality in the addresses’
bit patterns also occurs on a global scale.

Consider the layout of typical virtual address spaces. A pro-
gram’s virtual memory space usually is partitioned into a few, large
logical regions corresponding to the program’s text, heap, stack, etc.
These usually are contiguous in the virtual address space, which cre-
ates a few frequently used memory regions. When considering only
the few most-significant bits of virtual addresses of all valid PTEs,
we typically find only a few unique values.

Figure 5(a) quantifies this entropy by showing the number of
unique values (y-axis) used by the most significant bits from the
VPN (x-axis) on average across our benchmarks. For example, when
considering the 12 most-significant bits of the VPN (we use 48-bit
virtual addresses), on average we only observe five unique values.
This is similar to past work in frequent value locality (FVL) that
showed that memory locations often store values drawn from a small
set of common values (e.g., zero) [13,17]. In this case, we effectively
observe that similar FVL exists in the upper bits of the VPNs.

In a similar fashion, Figure 5(b) shows that the most significant
PPN bits tend only to use a few unique values. In particular, we find
that the 20 most-significant bits of the PPN (we use 48-bit physical
addresses) use only one of four unique values on average. This is
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Base VPN Lower 
Bits 

… 
Encoded TLB Entry 

concat 

Base VPN (a) 
Encoded TLB 

Encoded 
ways 

Un-encoded 
ways (b) 

Figure 6. (a) Hardware organization for the Virtual Upper Bits Table (VUBT)
and an encoded TLB entry, and (b) a four-way TLB with three encoded ways
and one un-encoded way.

due partially to the tendency of OSs to cluster physical pages so that
transfers to disk make good use of high disk bandwidth.

We leverage that the most-significant VPN and PPN bits typically
are drawn from a limited set of unique values to optimize the MG-
TLB further. This also can be used for the baseline TLB and CoLT.

FVL-Support for TLBs: We partition the TLB’s base VPN field into
the upper bits that tend to come only from a small set of unique
values, and the lower bits that exhibit greater value diversity. Fig-
ure 6(a) shows an auxiliary structure called the virtual upper bits
table (VUBT). This stores the commonly-occurring upper bits of
the base VPNs. The TLB entry now is modified such that the VPN’s
upper bits are removed and replaced with an index into the VUBT.
To reconstruct the entry’s VPN, the VUBT index selects one of the
VUBT entries that provides the upper bits of the VPN. The remain-
ing bits of the VPN come from the TLB entry itself. A similar phys-
ical upper bits table (PUBT) encodes the upper bits of the PPNs.
This can be applied to the clustered TLB as well as the conventional
TLB. We call such an entry an encoded TLB entry.

The VUBT (or PUBT) is limited in size, and so if a VPN’s (or
PPN’s) upper bits do not match any of the entries of the VUBT
(PUBT), then the translation cannot be stored in an encoded TLB
entry. To support situations when the number of unique VPN upper-
bit values exceeds the capacity of the VUBT, we use a hybrid TLB
structure in which some ways support the encoded scheme, and other
ways use a conventional VPN format. Figure 6(b) shows an exam-
ple four-way TLB in which the first three ways use encoded TLB
entries, and the last way uses un-encoded entries.

Look-up: Look-up proceeds as with a conventional TLB in which
the VPN (or base VPN) is used to select a set. For each encoded
way, the VUBT index first is used to look up the VPN upper bits
from the VUBT. This is concatenated with the stored lower bits to
form the overall VPN (or, more accurately, the VPN tag). For the
un-encoded ways, the entire VPN (tag) can be read directly from the
TLB entries. At this point, each way now has a fully decoded VPN
tag, and this can be compared to the requested VPN to determine if
there is a TLB hit.

If there is a hit in an encoded entry, the stored PUBT index is
used to select the upper PPN bits from the PUBT, which are then
concatenated with the lower PPN bits stored in the encoded TLB
entry. A hit in an un-encoded way simply uses the PPN already
stored in that TLB entry.



Fill: On a TLB miss, the VUBT is searched to see if any exist-
ing entries match the upper bits of the VPN (for the translation we
are installing into the TLB). At the same time, a similar search is
performed on the PUBT for the upper bits of the PPN. If there are
matches in both the VUBT and the PUBT, then the translation can be
installed in an encoded TLB entry. If the upper bits cannot be found
in one of the VUBT entries, then a new VUBT entry is allocated for
this new upper-bit value. The translation is installed into an encoded
TLB entry (assuming the PPN had a match in the PUBT) and the
encoded entry stores the index of this newly allocated PUBT entry.
A symmetric operation is performed if the PPN’s upper bits do not
match any existing PUBT entry. If a VUBT or PUBT entry cannot
be allocated (i.e., the VUBT or PUBT is full), then the translation is
installed into a un-encoded TLB entry.

VUBT and PUBT Management: When an application (process) is
first context-switched onto a core, a new page table base pointer
(i.e., CR3) is loaded and the TLB is flushed. At the same time,
we also flush the VUBT and PUBT. As previously un-encountered
VPN and PPN upper-bit values are encountered, they will be allo-
cated new entries in the VUBT and PUBT, respectively. The entries
are allocated in order; thus, instead of per-entry valid bits, a single
allocation counter per table is needed.

Eventually, one or both of these may fill up, at which point any
new VPN or PPN upper-bit values will cause the corresponding
translations to be restricted to the un-encoded entries in the TLB.
Our characterization (Figure 5) showed that typically there are only a
few unique VPN and PPN upper-bit values, and so very small VUBT
and PUBT sizes are needed in the vast majority of cases. Based on
the characterization results, we set the VUBT size at eight entries
and the PUBT size at four. A small VUBT table is desirable because
to perform the encoded TLB look-up, each encoded way needs to
perform a look-up on the VUBT, and therefore the VUBT needs to
be multi-ported (each look-up is a RAM look-up). Similarly, on a
fill operation, we need to check if the current VPN upper-bits are
already present in any of the VUBT entries, which requires a single
CAM port. Keeping the VUBT small makes the extra ports not very
expensive. The PUBT is slightly simpler because only the hitting
way needs to perform a look-up, and so it can be limited to a single
RAM port and a single CAM port.

Even if the VUBT or PUBT fills up, translations with the upper-
bit values not in these tables will continue to be cached in the
TLB’s un-encoded ways. The monotonic, write-only allocation of
the VUBT/PUBT may seem like a problem, but these will be flushed
on every context switch. If a single program runs for a very long
time without ever being context-switched out by the OS, it would
be trivial to have the processor periodically (but fairly infrequently)
flush the TLB and VUBT/PUBT. The performance impact is min-
imal if this flush interval is sufficiently long. For a simultaneous
multi-threaded (SMT) processor, we could have one set of UBTs
per hardware thread. This avoids flushing all UBTs when only a sin-
gle thread is context-switched. Given the small size of the UBTs, the
space overhead is minimal (typical SMTs are only two-threaded).

4.4. Hardware Cost

4.4.1. Basic Multi-granular TLB Hardware Cost Table 1 com-
pares area cost and reach for conventional TLB, CoLT-SA (the set-
associative version of the CoLT TLB proposed by Pham et al. [12]),
and the MG-TLB.
Conventional TLB: 512 entries, four ways. Each entry has 29 bits for
the tag, 40 bits for the PPN, and 5 bits for the attribute. In total, we
have 75 bits per entry, which adds up to 37,888 bits (4.625KB). The
other designs are configured to target a similar bit-storage budget.

Table 1. Comparison of Hardware Cost

Baseline
L2TLB CoLT-SA Cluster-

C3
Cluster-

C0
Entries 512 512 128 320
Assoc. 4 4 4 4
Max Reach 512 2,048 1,024 320
Min Reach 512 512 128 320
Attr. Bits 5 5 5 5
Tag Bits 29 27 28 30
Data Bits 40 48 85 40
Entry Bits 74 80 118 75
Total Bits 37,888 40,960 15,104 24,000

CoLT-SA: 512 entries, four ways. Each CoLT entry has only 27 bits
for the tag because we left-shift the VPN by 2 bits to compute the
set index; 40 bits for the base PPN; 8 bits for 4 sub-entries, each
sub-entry in the contiguous range has 1 valid bit and 1 dirty bit, and
5 bits for the attribute. As a result, each CoLT entry has 80 bits,
which gives us 40,960 bits total, or 8% area overhead compared to
the baseline.
Multi-granular TLB: We allocate about one-third of the storage bud-
get to C3 and two-thirds of the budget to C0. This results in 128 C3
entries, and 320 C0 entries6. Each C3 entry has 5 bits for the at-
tribute; 28 bits for the tag because we ignore the bottom 3 bits of the
VPN; 37 bits for the base PPN because we also ignore the bottom 3
bits of the PPN; and, eight sub-entries, with each sub-entry having
6 bits (valid, modified, referenced, and 3 bottom bits of the corre-
sponding PPN). Hence, 128 C3 entries requires 15,104 bits. Each
C0 entry has 5 bits for the attribute, 30 bits for the tag, and 40 bits
for the PPN. Therefore, 320 C0 entries require 24,000 bits. This
MG-TLB configuration requires 39,104 bits which is close to the
baseline (3%) and less than CoLT.

Given these configurations, the conventional TLB always has a
reach of 512 pages. CoLT-SA can have a coverage of up to 2,048
pages (i.e., if each of the 512 entries fully coalesces four PTEs),
while the MG-TLB has maximum reach of 1,024 in the C3 table
(i.e., if each of the 128 clustered-TLB entries is fully populated with
eight translations) plus the 320 entries in the C0 TLB for a total of
1,344 possible translations. In the worst case, CoLT-SA has reach of
512 pages, while the MG-TLB has a reach of 448. At first glance,
CoLT-SA may appear to be better in terms of reach than the MG-
TLB, but this is true only if CoLT-SA can find enough contiguous
spatial locality. We will show that the MG-TLB’s effective reach is
superior to CoLT-SA’s because, in practice, clustered spatial locality
is easier to find than strict contiguous locality.
4.4.2. Enhanced Multi-granular TLB Hardware Cost Table 2
shows the configuration of the MG-TLB when we exploit the FVL
in the upper bits of VPNs and PPNs. We use a similar relative area
allocation between C3 and C0 as before; however, for each encoded
TLB entry, we need to keep additional bits for the VUBT and PUBT
indexes. We assume a VUBT with eight entries, and a PUBT with
four entries; therefore, the respective indexes are 3 and 2 bits each.
In addition, a small part of the area budget is used to implement
the VUBT and PUBT (along with one small allocation counter for
each). Each VUBT or PUBT entry is 16 bits and the VUBT and
PUBT counters are 4 and 3 bits, respectively, so in total we need
132 bits for the VUBT and 67 bits for the PUBT. Overall, the total
area cost is 39,075 bits, or 3% of area overhead compared to the
baseline, which also is much less than CoLT.

Despite those additional bits, by replacing the 16 upper bits of
the VPN or the PPN with a 3-bit VUBT or 2-bit PUBT index, re-

6In a real implementation, the number of C0 entries (or at least the number of sets) would be a
power-of-two. For the purposes of maintaining similar storage budgets across each type of TLB for
fair comparisons, we used a non-power-of-two size.



Table 2. Enhanced MG-TLB Hardware Cost

C3’s Full
Len Way

C3’s
Encoded

Way

C0’s Full
Len Way

C0’s
Encoded

Way
Entries 38 114 109 327
Max Reach 304 912 109 327
Min Reach 38 114 109 327
Attr. Bits 5 5 5 5
Tag Bits 29 12 31 14
Data Bits 85 69 40 24
VEncode
Bits 3 3 3 3

PEncode Bits 2 2 2 2
Entry Bits 119 91 76 48
VUBT Bits
(Shared) 132 132 132 132

PUBT Bits
(Shared) 67 67 67 67

Total Bits 4,522 10,374 8,284 15,696

Table 3. Summary of benchmarks used in our studies
Benchmarks Suite Page Walk Overhead
xalancbmk SPEC CPU2006 9.4%
SPECweb-B SPECweb2005 9.5%
TPC-C TPC 8.6%
GemsFDTD SPEC CPU2006 9.2%
Graph Analytics CloudSuite 17.7%
Trade6 IBM WebSphere 11.1%
Data Serving CloudSuite 8.8%
Data Caching CloudSuite 20.0%
astar SPEC CPU2006 19.5%
omnetpp SPEC CPU2006 26.4%
mcf SPEC CPU2006 33.8%

spectively, we can save quite a bit of space, which allows us to add
more entries to both the C3 and C0 TLBs. While maintaining ap-
proximately the same bit-budget as the un-encoded MG-TLB, C3
and C0 TLBs that each use three encoded ways allow us to have 152
C3 entries and 436 C0 entries. This increases the maximum reach of
the MG-TLB to 1,652 (from 1,344 in the basic design) and the mini-
mum reach from 448 to 588. We will show that this design performs
the best out of all of our evaluated configurations.

5. Experimental Methodology

This section describes the infrastructure used to evaluate our multi-
granular TLB and two comparison points: a baseline conventional
TLB and the recently proposed CoLT design.

5.1. Workloads

Table 3 shows the workloads evaluated in our study. We consider a
wide range of applications, from scientific workloads to server and
cloud workloads, and select benchmarks with non-negligible TLB
miss overheads. We also evaluated eight benchmarks with low TLB
sensitivity (from SPEC CPU2006, SPECjbb2005, web browsing,
and gaming; results for these benchmarks are omitted for space),
and their results are consistent with the observations we show in
this work. We collect traces of at least 50 million instructions per
benchmark using AMD’s SimNowTM [4] full-system simulator soft-
ware. The traces capture issued user and system instruction and data
references and record the virtual and physical page address pairs.
We also correlate the traces against hardware performance counters
to ensure that they capture a representative execution phase of the
benchmarks.

5.2. Simulation Infrastructure

5.2.1. Functional Simulator For fast design-space exploration
of our multi-granular TLB in comparison to the baseline TLB and
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Figure 7. L2 TLB misses eliminated by the baseline multi-granular TLB (MG-
TLB), enhanced MG-TLBs with structures to exploit redundant most signifi-
cant VPN and PPN bits (en-MG-TLB) and CoLT. MG-TLB and en-MG-TLB
comprehensively eliminate more misses than CoLT.

CoLT, we use a functional simulator that models a two-level TLB
with 64-entry L1 instruction and data TLBs. We assume a baseline
L2 TLB of 512 entries, similar to current products [12]. Because our
multi-granular TLB targets the L2 level, we compare this against the
benefits of CoLT on just the L2 TLB. All TLBs have four-way asso-
ciativity.
5.2.2. Performance Evaluation We use an in-house trace-driven
timing simulator derived from the MacSim simulator [10], using a
two-wide in-order core. It models three-level cache hierarchies, two-
level TLBs, a hardware page-walk unit complete with a page-walk
cache, and a detailed DRAM model. The TLBs have associated
miss status holding registers (MSHRs) to model pipelined accesses.
We also calibrated the page-walk overheads of our timing simulator
against hardware measurements on a real machine. As shown in
Table 3, overheads for our benchmarks range from a problematic
9% for Data Serving to a severe 34% for mcf.

6. Multi-granular TLB Evaluations

Our multi-granular TLB (MG-TLB) enjoys a number of design op-
tions. We evaluate the performance implications of various options
in this section.

6.1. Understanding Changes in Hit Rates

Figure 7 compares the percentage of L2 TLB misses eliminated
(compared to a standard baseline four-way, 512-entry TLB) when
using CoLT (512-entry); MG-TLBs without exploiting the frequent
value locality in the VPN and PPN’s upper bits (128-entry C3 TLBs
with a 320-entry conventional C0 TLB); and the encoded MG-TLBs
(en-MG-TLB) that leverage the upper-bit frequent value locality
(152-entry C3 TLBs with 436-entry standard C0 TLB).

MG-TLBs eliminate more TLB misses than CoLT, averaging
38% miss eliminations (30% more than CoLT). FVL-based encod-
ing (en-MG-TLB) only boosts this difference, eliminating on aver-
age 46% of the TLB misses. More specifically, we note the follow-
ing three observations:

First, benchmarks that exhibit more clustered spatial locality than
contiguous spatial locality (e.g., Data Serving, TPC-C) also elim-
inate more misses with MG-TLB than with CoLT. In fact, CoLT
actually provides a negative result for Data Serving, mostly because
the change in set-indexing scheme outweighs its ability to exploit
contiguous spatial locality. Fortunately, exploiting clustered spatial
locality overcomes this issue, eliminating the vast majority (more
than 80%) of the TLB misses. Enhancements provide additional
benefits.

Second, benchmarks like mcf or Data Caching, which show more
contiguous spatial locality, still benefit more from MG-TLB than
CoLT. We find that this occurs because changes to CoLT’s set-
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Figure 8. Performance improvements when using CoLT and en-MG-TLB. Our
approach outperforms CoLT in every single case.

-‐32%	   -‐21%	  -‐20%	  
0%	  
20%	  
40%	  
60%	  
80%	  

100%	  

xa
la
nc
bm

k	  

SP
EC

w
eb

-‐B
	  

TP
C-‐
C	  

Ge
m
sF
DT

D	  

Gr
ap
h	  
An

al
yD
cs
	  

Tr
ad
e6
	  

Da
ta
	  S
er
vi
ng
	  

Da
ta
	  C
ac
hi
ng
	  

as
ta
r	  

om
ne

tp
p	  

m
cf
	  

Av
er
ag
e	  

M
is
se
s	  E

lim
in
at
ed

	  

en-‐MG-‐TLB	  
Baseline	  +	  Prefetch	  
Lazy	  en-‐MG-‐TLB	  

Figure 9. Separating the prefetch and capacity benefits of MG-TLBs.

indexing scheme undo the benefits of exploiting contiguity. Instead,
our dual approach of leveraging clustered spatial contiguity and al-
lowing a small conventional L2 TLB for singleton PTEs is more
beneficial. As a result, MG-TLB eliminates 20% more of mcf’s
TLB misses than CoLT.

Third, en-MG-TLB improvements relative to MG-TLB are non-
trivial for xalancbmk, TPC-C, Trade6, and mcf. In these bench-
marks, the FVL in the upper bits makes even relatively small VUBT
and PUBT tables highly effective.

6.2. Overall Performance Improvements

Figure 8 compares the performance improvement of en-MG-TLB
with CoLT. Our approach outperforms CoLT in every case except
astar. In some cases, the performance difference is significant (close
to 18% for Data Serving, 12% for mcf, and 10% for omnetpp). On
average, we outperform CoLT by about 5%, but we purposefully in-
cluded benchmarks in which neither has much benefit (e.g., Graph
Analytics) to demonstrate that the MG-TLB approach does not hurt
performance when the spatial locality is sufficient, as well as bench-
marks in which CoLT truly does well (e.g., astar, in which CoLT per-
forms slightly better than MG-TLB). As TLB overheads continue to
rise [3, 5], the expected benefit of TLB coalescing techniques such
as MG-TLB would be expected to increase.

6.3. Prefetching versus Capacity Improvements

Our multi-granular TLB eliminates misses in two main ways. First,
on a TLB miss, it speculates that PTEs near the one that is requested
may be useful. This benefit is similar to prefetching because it is not
known whether clustered PTEs will be useful in the future. However,
unlike classical prefetching, which must evict an existing entry to
make room for a new one, clustered TLBs use the same entry for
the entire clustered packet. Second, because each clustered entry
provides a higher reach, there is a capacity improvement relative to
the standard approach, for the same total area.

Figure 9 teases apart the relative benefits of these two factors
by plotting (1) TLB miss-elimination rates for MG-TLBs; (2) TLB
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Figure 10. TLB miss-elimination rates assuming that the clustered TLB is C2,
C3 (our default assumption so far), and C4.

miss elimination when the same clustered PTEs are prefetched into
a standard 512-entry L2 TLB; and, (3) a lazy MG-TLB approach,
in which only the desired PTE is inserted into the clustered TLB on
demand, but which then integrates the other PTEs in the cluster if
they are demanded in the future. Overall, this comparison informs
us whether most of en-MG-TLB’s benefits arise from prefetching
effects or its superior reach.

Figure 9 shows that the relative benefits vary per benchmark.
Some benchmarks (e.g., GemsFDTD, Data Caching, omnetpp) gain
from prefetching. In fact, for some of these (e.g., omnetpp), the ca-
pacity benefit is almost negligible. The other benchmarks however,
en-MG-TLB and the Lazy (no prefetch) version perform similarly,
making clear that capacity is the main benefit. For some bench-
marks, prefetching alone is negative (xalancbmk, Data Serving, etc.)
because capacity improvement is the key to overall performance
boosts.

7. Sensitivity Studies

MG-TLB has a number of parameters crucial to its overall perfor-
mance. We investigate these parameters in this section.

Cluster Size: We have thus far assumed that the MG-TLB uses a C3
clustered TLB. Figure 10 shows how TLB miss-elimination rates
change when C2 and C4 TLBs are used instead. Larger clustering
potentially exploits more clustered spatial locality. At the same time,
each entry’s size increases, decreasing the total number of entries.
Moreover, the selected index bits are further left-shifted, increasing
the possibility of conflict misses when clustered spatial locality is
insufficient.

Figure 10 shows that C3 tends to perform best on most bench-
marks. In some cases like data Caching, which is known to generate
large clustered spatial locality due to slab allocator use, C4 outper-
forms C3. However, benchmarks like Data Serving and xalancbmk
are degraded at C4.

Coalescing Thresholds: Our MG-TLB designs have assumed that
at least θ = 2 PTEs must be clustered for insertion into the clus-
tered TLB. Figure 11 shows how this assumption affects miss rates
by varying θ from 1 to 4 for en-MG-TLB with a C3 clustered TLB.
We see that a value of 2 is generally the best (and is markedly better
for some benchmarks like Data Serving and xalancbmk). Intuitively,
this makes sense because a single C3 clustered TLB consumes less
space than two conventional L2 TLB entries. Therefore, if we co-
alesce two PTEs and place them in a single C3 entry, we expend
fewer bits in storing them compared to the small conventional L2
TLB for singleton PTEs. When θ goes beyond 2, these two PTEs
are stored in two separate C0 TLB entries, wasting space.

Sizing MG-TLB Components: We now consider how the relative
sizes of the MG-TLB’s conventional small L2 TLB and clustered



-‐20%	  
0%	  
20%	  
40%	  
60%	  
80%	  

100%	  

xa
la
nc
bm

k	  

SP
EC

w
eb

-‐B
	  

TP
C-‐
C	  

Ge
m
sF
DT

D	  

Gr
ap
h	  
An

al
yC
cs
	  

Tr
ad
e6
	  

Da
ta
	  S
er
vi
ng
	  

Da
ta
	  C
ac
hi
ng
	  

as
ta
r	  

om
ne

tp
p	  

m
cf
	  

Av
er
ag
e	  

M
is
se
s	  E

lim
in
at
ed

	   θ	  =	  1	   θ	  =	  2	   θ	  =	  3	   θ	  =	  4	  

-‐51%	   -‐218%	  

Figure 11. TLB miss-elimination rates for en-MG-TLB as the cluster threshold
is changed for insertion into the clustered TLB.
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Figure 12. TLB miss eliminations for different relative sizes of the small sin-
gleton PTE’s TLB and the clustered TLB in MG-TLB. The legend shows the
ratio of the MG-TLB area for the small conventional TLB to the area for the
clustered TLB. .

L2 TLB affect TLB miss rates. Our default scheme devotes about
one-third of MG-TLB area for the clustered TLB and two-thirds for
the conventional L2 TLB. Figure 12 shows how TLB miss elimina-
tions vary when these values are changed. The x:y ratio tells us what
portion of the MG-TLB area goes to the conventional L2 TLB (x)
and the clustered TLB (y). Generally, we find that TLB misses are
best for our default configuration (2:1), though other configurations
see similar gains. However, MG-TLB effectiveness perceptibly di-
minishes when the conventional L2 TLB becomes much smaller in
comparison (e.g., 1:4), indicating that we must adequately cache the
singleton PTEs that do not experience clustered spatial locality.

Sensitivity to VUBT and PUBT Size: Our default en-MG-TLB uses
8-entry PUBTs and 4-entry VUBTs. We have varied these sizes to
study their impact on TLB miss rates. In general, PUBTs rarely
require additional entries, whereas VUBTs require the use of the
dedicated full-length way in rare instances. Overall, even 128-entry
VUBTs and PUBTs provide negligible performance improvements
to our approach.

MG-TLB Effectiveness for Different Sizes: Our evaluations compare
MG-TLB to a baseline 512-entry L2 TLB. Therefore, all our designs
are sized to meet this total area. However, we also have studied cases
in which we have half and double the total area to play with (i.e.,
our baseline L2 TLB becomes 256 or 1,024 entries). We find that
MG-TLB (and its encoded counterparts) consistently outperforms
both the baseline L2 TLB and CoLT for these sizes, and that its
performance benefits increase when more area is available for some
benchmarks (e.g., mcf, Data Serving). This bodes well for future

designs which will likely have more resources available for address
translation.

8. Conclusions

This paper is the first to observe that significant amounts of clus-
tered spatial locality exists in applications. This form of spatial lo-
cality is present across a variety of system use cases and config-
urations (e.g., even in fragmented systems) and largely subsumes
previously-observed contiguous spatial locality. In response, we
propose a multi-granular TLB that identifies PTEs in which groups
of nearby virtual pages are mapped to groups of nearby physical
pages. By coupling a clustered TLB for these types of PTEs with a
small conventional L2 TLB, we consistently outperform past work
on coalesced TLBs despite using modest hardware and requiring no
dedicated software support.

Our best-performing design point eliminates 46% of L2 TLB
misses, resulting in a 7% CPU cycle reduction for a wide range
of applications. Our proposed TLB organization substantially in-
creases the effective TLB reach with only modest hardware changes
while requiring no OS support, providing a promising solution for
emerging big data applications.
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