
Architectural Support for Address Translation on GPUs

Designing Memory Management Units for CPU/GPUs with Unified Address Spaces

Bharath Pichai∗ Lisa Hsu† Abhishek Bhattacharjee∗
∗Department of Computer Science †Qualcomm Research

Rutgers University Qualcomm, Inc.
{bsp57, abhib}@cs.rutgers.edu hsul@qti.qualcomm.com

Abstract

The proliferation of heterogeneous compute platforms, of
which CPU/GPU is a prevalent example, necessitates a man-
ageable programming model to ensure widespread adoption.
A key component of this is a shared unified address space be-
tween the heterogeneous units to obtain the programmability
benefits of virtual memory.

To this end, we explore GPU Memory Management
Units (MMUs) consisting of Translation Lookaside Buffers
(TLBs) and page table walkers (PTWs) in unified heteroge-
neous systems. We show the challenges posed by GPU warp
schedulers on TLBs accessed in parallel with L1 caches,
which provide many well-known programmability benefits.
In response, we propose modest TLB and PTW augmen-
tations that recover most of the performance lost by intro-
ducing L1-parallel TLB access. We also show that a little
TLB-awareness can make other GPU performance enhance-
ments (e.g., cache-conscious warp scheduling and dynamic
warp formation on branch divergence) feasible in the face
of cache-parallel address translation, bringing overheads in
the range deemed acceptable for CPUs (10-15% of runtime).
We presume this initial design leaves room for improvement
but anticipate the bigger insight, that a little TLB-awareness
goes a long way in GPUs, will spur further work in this area.

Categories and Subject Descriptors C.1.2 [Processor Ar-
chitectures]: Multiple Data Stream Architectures

Keywords GPUs, MMUs, TLBs, Unified address space

1. Introduction

The computer systems community has recently proposed
many heterogeneous systems where CPUs are aided by

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’14, March 1–5, 2014, Salt Lake City, Utah, USA.
Copyright c© 2014 ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2541940.2541942

accelerators targeting, among others, massive multidimen-
sional data-sets [58], common signal processing operations
[50], object caching [38], and spatially-programmed archi-
tectures [47]. To ensure widespread adoption of accelerators,
their programming models must be efficient and easy to use.

A key determinant of programming model efficacy is how
main memory is addressed by CPUs and accelerators. Tradi-
tionally, acceleration technologies like graphics processing
units (GPUs) [13, 17, 45, 46] have maintained separate vir-
tual and physical address spaces from CPUs. Main memory
may be physically shared but is usually partitioned or allows
unidirectional coherence (e.g., ARM CPU/GPUs allow ac-
celerators to snoop CPU memory partitions but not the other
way around [55]). There is, however, increasing evidence
that processor vendors are shifting towards unified virtual
and physical address spaces between CPUs and accelerators
because of their programmability benefits. Among other ad-
vantages, unified address spaces make data structures and
pointers globally visible among compute units, obviating the
need for expensive memory copies between CPUs and accel-
erators. They also unburden CPUs from pinning data pages
for accelerators in main memory, improving memory effi-
ciency. As a result, vendors like Intel, AMD, ARM, Qual-
comm, and Samsung are embracing integrated CPU/GPUs
with fully unified address space support, as detailed in the
Heterogeneous Systems Architecture (HSA) [37] specifica-
tions. AMD’s upcoming Berlin processor, for example, com-
mits fully to HSA with its heterogeneous uniform memory
access (hUMA) technology [51].

A key requirement for unified address spaces is effective
hardware support for GPU virtual-to-physical address trans-
lation. In the CPU world, address translation is achieved
using per-core Memory Management Units (MMUs) with
Translation Lookaside Buffers (TLBs) and page table walk-
ers (PTWs) to access frequently-used address translations
from operating system (OS) page tables. Commercial CPU
TLBs and PTWs are usually accessed before (or in parallel
with) hardware caches, making caches physically-addressed.
While this organization imposes stringent access time re-
quirements on TLBs, it also efficiently supports multiple
contexts, dynamically-linked libraries, and cache coherence.

In this work, we study address translation for acceler-
ators and its role in the impending unified address space
programming paradigm. We focus on general-purpose pro-
gramming on GPUs because of their ubiquity and relative
research maturity [18, 19, 29, 39, 43, 52, 54]. To realize
the same programmability benefits as for CPUs, we tar-
get designing TLBs and PTWs accessed before (or in par-
allel with) the GPU’s hardware caches. Our high-level in-
sight is that the GPU’s warp-based execution model and its
scheduler have a critical impact on MMU performance. In
particular, we find that implementing a strawman CPU-like
TLB and PTW degrades GPU performance severely. Fur-
thermore, we find that previously-proposed warp schedul-
ing enhancements like cache-conscious wavefront schedul-
ing and dynamic warp formation lose most of their effective-
ness with naively-designed CPU-like MMUs. Fortunately
however, we also show that modest optimizations recover
most of this lost performance. Overall, our approaches re-
duce GPU TLB overheads to levels deemed acceptable in
the CPU world (5-15% [6, 7, 9, 10, 16]), showing that a lit-
tle TLB-awareness goes a long way in GPU design. More
specifically, our contributions are:

First, we show that a CPU-like design which places TLBs
and PTWs before (or in parallel with) cache access degrades
performance by 20-50%. This is because: (1) cache-parallel
accesses mean latency (and thus sizing) is restricted; and (2)
multiple warp threads execute in lock-step, meaning that a
TLB miss from a single thread can stall all warp threads,
magnifying miss penalties. In response, we redesign MMUs
to better match GPU execution models, finding that modest
changes recover most lost performance.

Second, we show the impact of TLBs on cache-conscious
warp/wavefront scheduling (CCWS) [52], recently proposed
to boost GPU cache hit rates. While naively adding TLBs
offsets CCWS, simple modifications yield close to ideal
CCWS performance. We also study TLB-based CCWS
schemes that are simpler and higher-performance.

Third, we show how TLBs affect dynamic warp forma-
tion for branch divergence. Using thread block compaction
(TBC) [18], we find that dynamically assimilating threads
from disparate warps increases memory divergence and
TLB misses. Though naive designs degrade performance
by over 20%, adding TLB-awareness mitigates these over-
heads, boosting performance close to ideal TBC.

Overall, this work shows that while GPUs do require
careful TLB and PTW designs to ensure reasonable perfor-
mance, their architecture presents non-drastic changes from
the CPU world. We therefore conclude that a little TLB-
awareness is highly effective in GPUs, opening up the pos-
sibility of much follow-up research in this fruitful area.

2. Background

2.1 Address Translation on CPUs

CPU TLB design and performance have long been stud-
ied by the academic community [6, 7, 9, 10, 30, 48]. Most

CPUs currently access TLBs prior to (or in parallel with) L1
cache access, realizing physically-addressed caches. This
approach dominates commercial systems (over virtually-
addressed caches [14, 35]) because of programmability ben-
efits. Physically-addressed caches prevent coherence prob-
lems from address synonyms (multiple virtual addresses
mapping to the same physical address) and homonyms (a
single virtual address mapping to multiple physical ad-
dresses) [14]. This efficiently supports multiple contexts,
dynamically-linked libraries, cache coherence among multi-
ple cores and with direct memory access (DMA) engines.

2.2 Address Translation on CPU/GPUs

Current heterogeneous systems use rigid programming mod-
els that require separate page tables, data replication, and
manual data movement between the CPU and GPU. This
is especially problematic for pointer-based data structures
(e.g., linked lists, trees)1. Recent work tries to address this
using various smarter memory management schemes [20,
21, 25, 26]. Furthermore, latest CUDA releases permit lim-
ited CPU/GPU virtual address sharing [57]. However, none
solve the problem using as general and flexible an approach
as unified address spaces.

A critical step to unified address spaces is to implement
address translation in GPUs. As a first step, Intel and AMD
equip today’s GPUs with Input Output Memory Manage-
ment Units [1, 2, 23] (IOMMUs) with their own page tables,
TLBs, and PTWs. These IOMMUs have large TLBs and
are placed in the memory controller, making GPU caches
virtually-addressed.

3. Our Approach

Our goal is to provide to the GPU the same programmabil-
ity benefits enjoyed by the CPU. This implies that GPU ad-
dress translation must support physically-addressed caches.
Therefore, we study GPU MMUs where TLBs are accessed
in parallel with the L1 cache. Figure 1 shows our approach,
with per shader core TLBs and PTWs. Like CPUs, we as-
sume that L1 caches are virtually-indexed and physically-
tagged, allowing TLB access to overlap with L1 cache ac-
cess. This contrasts with past academic work ignoring ad-
dress translation [18, 19, 52] or using IOMMUs resident in
the memory controller.

This approach has many benefits. First, cache-parallel
TLB access eliminates the current need for CPUs to initial-
ize, copy, pin data pages (in main memory), duplicate page
tables for GPU IOMMUs, and set up IOMMU TLB entries
[11]. It also allows GPUs to support page faults (using tradi-
tional or non-traditional techniques that do not support pre-
cise exceptions [34, 40]) and access memory mapped files,
features desired in hUMA specifications [51] (though their

1 Some platforms provide pinning mechanisms that do not need data trans-
fers. Both CPU and GPU maintain pointers to the pinned data and the offset
arithmetic is the same; however, the pointers are distinct. This suffers over-
heads from pinning and pointer replication (which can lead to buggy code).

Interconnection Network

…

Off-chip DRAM channel

Shader
core

Shader
core

Shader
core

Memory partition

Shared cache

Memory controller

TLB

L1$

PTW TLB

L1$

PTW TLB

L1$

PTW

Figure 1. Our approach embeds a TLB and PTW per shader core

so that all caches become physically-addressed.

feasibility requires a range of hardware/software studies be-
yond the scope of this work).

Second, physically-addressed caches support multiple
contexts (one of the goals of HSA [37]) more efficiently.
Virtually-addressed caches struggle due to incoherence from
address synonyms [35]. Workarounds like cache flushing on
context switches can ensure correct functionality, but do so
at a performance and complexity cost versus physically-
addressed caches.

Third, address translation placement that allows physically-
addressed caches also efficiently supports application li-
braries (mentioned by HSA as a design goal). Traditional
virtually-addressed GPU caches suffer from address homonyms
[14], which can arise when executing libraries.

Finally, cache coherence between CPU and GPU caches
has long been deemed desirable [32, 37, 54]. In general,
cache coherence is greatly simplified if GPU caches are
physically-addressed, in tandem with CPU caches.

4. Understanding the Impact of Warp

Scheduling on MMU Design

For all its programmability benefits, address translation at
the L1-level is challenging because it constrains TLB ac-
cess times, and hence, size. Figure 2 shows that naive de-
signs that do not consider the distinguishing characteristics
of GPUs can severely degrade performance. The plots show
speedups (values higher and lower than 1 are improvements
and degradations) of general purpose GPU benchmarks us-
ing naive 128-entry, 3-port TLBs with 1 PTW per shader
core (With TLB). Not only do naive TLBs degrade per-
formance, they also lose 30-50% performance versus con-
ventional cache-conscious wavefront scheduling and thread
block compaction [18, 52]. These degradations far exceed
the 5-15% overheads deemed acceptable for CPUs and may
be attributed to the critical affect that warp-level execution
and scheduling has on GPU MMU performance. Specifi-
cally, this occurs because:

Default GPU round robin warp scheduling interleaves
the memory accesses of individual threads such that their
effective temporal locality is stretched beyond the ability
of the caches and TLBs to contain them. The graph on the
left in Figure 3 quantifies this by plotting: (1) the number

�

���

���

���

���

�

���

���

���

���

�
	

�
�
�
�

��
�
�

�
�

�
�

�

�
��
��

�

�
�
�
�
��
�

�

�

�
�
��
	�
�
�

�

�
�

�
�
�

��������

 ��

 ���!��������"

��

�� �!��������"

Figure 2. Compared to a baseline architecture without TLBs,

speedup of naive, 3-ported TLBs per shader core, with and with-

out cache-conscious wavefront scheduling, with and without thread

block compaction. Naive TLBs degrade performance in every case.

of memory references in each workload as a percentage of
the total instructions; and (2) miss rates of 128-entry TLBs.
While the number of memory references are generally low
compared to CPUs (under 25% for all benchmarks), TLB
miss rates are very high (ranging from 22% to 70%).

Second, shader cores run warps with multiple threads in
lock-step in warps/wavefronts [18, 19, 39]. Therefore, a TLB
miss on one warp thread effectively stalls all warp threads,
magnifying the miss penalty. Furthermore, multiple warp
threads often TLB miss in tandem, stressing conventional
PTWs that serialize TLB miss handling. The graph on the
right in Figure 3 shows this effect by plotting page diver-
gence (the number of distinct translations requested by a
warp). We show both average page divergence and the max-
imum page divergence of any warp through execution. As
shown, the average page divergence for some benchmarks
(bfs and mummergpu) is more than 4 and 8, meaning that
multiple translations are needed for a warp to progress, in-
creasing the likelihood of multiple TLB misses. Further-
more, the maximum page divergence is consistently high,
magnifying TLB miss latencies. Figure 4 quantifies these ef-
fects, comparing the latency of a GPU L1 cache miss to a
TLB miss. As shown, TLB misses are about twice as expen-
sive as L1 cache misses because they involve multiple mem-
ory references to walk the page table and because separate
TLB misses are serialized using a single PTW. This, with
high miss rates, explains why naive blocking GPU TLBs de-
grade performance.

Third, Figure 2 shows that sophisticated warp scheduling
techniques beyond the traditional round robin approach lose
much of their effectiveness with naively designed MMUs.
Consider, for example, cache conscious wavefront schedul-
ing [52], which introduces cache-awareness in the traditional
warp scheduler to boost cache hit rates. Figure 2 compares
the speedup of CCWS with and without TLBs versus a base-
line setup with no TLBs. One may initially expect that warp
schedulers that boost cache hit rates also improve TLB per-
formance substantially. While CCWS with TLBs does im-
prove performance over a baseline round-robin warp sched-
uler with TLBs, it still underperforms a baseline GPU with-

�
�
�

��
��
��
��
��
��

�
	

�
�
�
�

��
�
�

�
�

�
�

�

�
��

��

�

�
�
�
�
��
�

�

�

�
�
��
	�
�
�

�

�
�
�

��
��

��

�
� ����� ��

�

��

��

��

��

���

�
	

�
�
�
�

��
�
�

�
�

�
�

�

�
��

��

�

�
�
�
�
��
�

�

�

�
�
��
	�
�
�

�

�

��

�
��
�

��!�"�#	
$ %&'���

Figure 3. The left diagram shows the percentage of total instruc-

tions that are memory references and TLB miss rates; the right di-

agram shows the average number of distinct translations requested

per warp (page divergence) and the maximum number of transla-

tions requested by any warp through the execution.

�

��

���

���

���

���

���

�
��

	

	
	
�
�
�

�
	
�
�
�
�

	
�
	
��
��
�
�

��
��
�
	
��

��
�
�

�
�
��
��
�
�
�
�

�
�
��
�
�

���������������� ������	�����������

Figure 4. Average cycles per TLB miss, compared to L1 cache

misses. TLB miss penalties are typically twice as long as L1 cache

miss penalties.

out TLBs. The performance gap is even higher (30-50%)
compared to CCWS without TLBs. As we will show, the
CCWS warp scheduler must be adjusted with some notion
of the relative penalties of TLB misses and cache misses to
recover this lost performance.

Finally, Figure 2 also shows that warp schedulers that dy-
namically form warps with threads with similar control flow
also lose their effectiveness with cache-parallel TLB access.
Specifically, we compare thread block compaction with and
without TLBs. We find that performance differences in ex-
cess of 20-25% are common between the two cases. We will
show that this occurs because TBC dynamically compacts
threads which access data in wildly disparate locations, in-
creasing page divergence and hence both TLBmiss rates and
latencies. Specifically, we have found that TBC increases
page divergence by an average of 2-4 in our workloads, and
TLB miss rates by 5-10%.

The remainder of this paper refashions MMUs to match
warp scheduling characteristics and improve GPU perfor-
mance. Modest but informed modifications significantly re-
duces the degradations of Figure 2 to address translation
overheads of 5-15% of system runtime (just like CPUs).

5. Methodology

5.1 Evaluation Workloads

We use server workloads from past studies on control-
flow divergence and cache scheduling [18, 52]. From the

Rodinia benchmarks [15], we use bfs (graph traversal),
kmeans (data clustering), streamcluster (data mining),
mummergpu (DNA sequence alignment), and pathfinder

(grid dynamic programming). In addition, we use memcached,
a key-value store and retrieval system, stimulated with a rep-
resentative portion of the Wikipedia traces [22]. Our base-
line versions of these benchmarks have memory footprints
greater than 1GB.

Ideally, we would run benchmarks targeted at future inte-
grated CPU/GPU platforms. Unfortunately, there is a dearth
of such workloads because of the lack of abstractions that
ease CPU/GPU programming (like unified address spaces
themselves). We do include applications like memcached

which will likely run on these systems but expect that fu-
ture workloads supporting braided parallelism (a mix of task
and data parallelism from a single source) [41] will particu-
larly benefit from unified address spaces. Our studies enable
these applications and provide insights, albeit indirectly, on
how GPU address translation may affect their performance.

5.2 Evaluation Infrastructure

We use GPGPU-Sim [4] with parameters similar to past
work [18, 52]. We assume 30 SIMT cores, 32-thread warps,
and a pipeline width of 8. We have per core, 1024 threads,
16KB shared memory, and 32KB L1 data caches (with 128
byte lines and LRU). We also use 8 memory channels with
128KB of unified L2 cache space per channel. We run bina-
ries with CPU and GPU portions, but report timing results
for the GPU part. GPGPU-Sim uses single instruction mul-
tiple data (SIMD) pipelines, grouping SIMD cores into core
clusters, each of which has a port to the interconnection net-
work with a unified L2 cache and the memory controller.

Most of our results focus on 4KB pages due to the ad-
ditional challenge imposed by small page size; however, we
also present initial results for large 2MB pages later in the
paper. Note that large pages, while effective, don’t come for
free and can have their own overheads in certain situations
[3, 7, 44]. As a result, many applications are restricted to
4KB page sizes; it is important for our GPUs with address
translation to be compatible with them.

6. Address Translation for GPUs

We now consider GPU MMU design with baseline warp
scheduling. We first study the space of TLB and page table
walker design options, and show their interaction with tra-
ditional round-robin warp scheduling techniques. We then
present GPU-appropriate modifications to MMUs to recover
much of the lost performance.

6.1 Address Translation Design Space

We consider the following address translation design points.

Number and placement of TLBs: CPUs traditionally place a
TLB in each processor core so that pipelines enjoy fast TLB
lookup. One might consider the same option for each GPU
shader core. It is possible to implement one TLB per SIMD
lane; this provides the highest performance, at the cost of

power and area (e.g., we assume 240 SIMD lanes, so this
approach requires 240 TLBs per shader core). Instead, we
assume a more power- and area-frugal approach, with one
TLB per shader core (shared among lanes).

TLB sizes and port counts: While larger TLBs have higher
hit rates, they also require more area and access latency.
Since TLB access must complete by the time the L1 cache
set is selected (for virtually-indexed, physically-tagged caches),
overly-lengthy hit times degrade performance. Furthermore,
since TLBs use power-hungry content-addressable memo-
ries [8], their sizes must be carefully chosen. Finally, more
TLB ports permit parallel address translation, which can be
crucial in high-throughput shader cores. Unfortunately, they
also consume area and power.

Blocking versus non-blocking TLBs: One way of reducing
the impact of TLB misses is to overlap them with useful
work. Traditional approaches involve augmenting TLBs to
support hits under the original miss or additional misses un-
der the miss. Both approaches improve performance, but re-
quire additional hardware likeMiss Status Holding Registers
(MSHRs) and access ports.

Page table walker management, counts, and placement: It is
possible to implement page table walking with either hard-
ware or software (where the operating system is interrupted
on a TLB miss [27]). Hardware approaches require more
area but are typically perform better [27], as they obviate
the need to run an interrupt handler. When using hardware
PTWs, it is possible to implement one or many per TLB.
While a single PTW per TLB saves area, multiple PTWs
can potentially provide higher performance if multiple TLB
misses occur. Finally, placing PTWs with TLBs encourages
faster miss handling; alternately, using a single shared PTW
saves area at the cost of performance.

Page table walk scheduling: Each page table walk requires
multiple memory references (four in x86 [5]) to find the de-
sired PTE, some of which may hit in caches. In multicore
systems, it is possible that more than one core concurrently
experience TLB misses. In response, one option (which has
not been studied to date) is to consider the page table walks
of the different cores and see if some of their memory refer-
ences are to the same locations or cache lines. In response, it
is possible to interleave PTW memory references from dif-
ferent cores to reduce the number of memory references and
boost cache hit rates (while retaining functional correctness).

System-level issues (TLB shootdowns, page faults): The
adoption of unified address spaces means that there are many
options for handling TLB shootdowns and page faults. In
one possibility, we interrupt a CPU to execute the shoot-
down code or page fault handler on the GPU’s behalf. This
CPU could be the one that launched the GPU kernel or any
other idle core. Alternately, GPUs could themselves run the
shootdown code or the page fault handler, as suggested by
hUMA [51]. Moreover, recent work shows ways of achiev-
ing this without precise exception support [34, 40].

�����

������

������

�����	

��������

�������

�
�
��
�
��
��
��

�
�
�
�

�
�
�
�
�
�

�
�
�
��
��
��
�
�
�
�

�

!

�
��
��
"
�
�
#

$
�
%
�
�&
�

'
��
��
��
�
&

'
��

$
��
�

$�%��&�!���

�
��

�
�
�
�

(

)

*
�$

+
'
�
�

(

)
�

$
+
'
�
�

$
�
%
�
�&
�
�
��

�
�
�
��
�
�
��
�

(�

�
�
�
,�
-
�
�
,

Figure 5. Shader core pipeline with address translation. We as-

sume that L1 data caches are virtually-indexed and physically-

tagged (allowing TLB lookup in parallel with cache access). All

caches are physically-addressed.

6.2 Mirroring CPU Address Translation in GPUs

We begin with the natural question of how CPU-style TLBs
perform in GPUs. Understanding its benefits and limitations
with regard to the warp scheduler provides insights on how
to better tailor MMUs for GPUs.

Figure 5 shows our initial strawman design. Each shader
core maintains a TLB/PTW and has 48 warps (the minimum
scheduling unit) per shader core. Threads of a warp execute
the same instruction in lock-step. Instructions are fetched
from an I-cache and operands read from a banked register
file. Loads and stores access the memory unit.

The memory unit’s address generator calculates virtual
addresses, which are coalesced into unique cache line ref-
erences. We enhance this logic by also coalescing multi-
ple intra-warp requests to the same virtual page (and hence
PTE). This reduces TLB access traffic and port counts. At
this point, two sets of accesses are available: (1) unique
cache accesses; and (2) unique PTE accesses. These are pre-
sented in parallel to the TLB and data cache. Note that we
implement virtually-indexed, physically-tagged L1 caches.
We now elaborate on the design space options from Section
6.1, referring to Figure 5 when necessary.

Number and placement of TLBs: We assume 1 TLB per
shader core shared among SIMD lanes, to save power and
area. This is similar to the CPU approach approach of main-
taining per-core TLBs.

TLB sizes and port counts: Commercial CPUs currently
implement 64-512 entry TLBs per core [9, 24]. These sizes
are typically picked to be substantially smaller and lower-
latency than CPU L1 caches. Using a similar methodology
with CACTI [42], we have found that 128-entry TLBs are
the are the largest possible structures that do not increase the
access time of 32KB GPU L1 data caches. We use 128-entry
TLBs in our baseline GPU design, studying other sizes later.

Blocking versus non-blocking TLBs: There is evidence that
that some CPU TLBs do support hits under misses because
of their relatively simple hardware support [28]. However,
most commercial CPUs typically use blocking TLBs [6, 48]
because of their high hit rates. We therefore assume blocking
TLBs in our baseline GPU design. This means that similar
to cache misses, TLB misses prompt the scheduler to swap

another warp into the SIMD pipeline. Swapped-in warps ex-
ecuting non-memory instructions proceed unhindered (until
the original warp’s page table walks finish and it completes
the Writeback stage). Swapped-in threads with memory
references, however, do not proceed in this naive design as
they require non-blocking support.

Figure 5 shows that TLBs have their own (MSHRs). We
assume, like both GPU caches and past work on TLBs [39],
that there is one TLB MSHR per warp thread (32 in total).
MSHR allocation triggers page table walks, which inject
memory requests to the shared caches and main memory.

Page table walker mechanisms, counts, and placement: Our
GPU assumes hardware PTWs because: (1) they achieve
higher performance than software-managed TLBs [27]; and
(2) they do not need to run OS code (which GPUs cannot
currently execute), unlike software-managed TLBs.

CPUs usually place PTWs close to each TLB so that
page table walks can be quickly initiated on misses. We use
the same logic to place PTWs next to TLBs. Finally, while
it is possible to consider multiple PTWs per GPU TLB,
our baseline design mirrors CPUs (which have 1 PTW per
core) and has one PTW per shader core. We investigate the
suitability of this decision in subsequent sections.

Page table walk scheduling: CPU PTWs do not typically
interleave memory references frommultiple concurrent TLB
misses for increased cache hit rate and reduced memory
traffic. This is because the low incidence of concurrent TLB
misses on CPUs [10] isn’t worth the complexity and area
overheads of such logic (though this is likely to require
relatively-simple combinational logic). Similarly, our naive
baseline GPU also doesn’t include PTW scheduling logic.

System-level issues (shootdowns, page faults): CPUs usually
shootdown TLBs on remote cores when its own TLB updates
an entry, using software inter-processor interrupts (IPIs). We
assume the same approach for GPUs (i.e., if the CPU that
initiated the GPU modifies its TLB entries, GPU TLBs are
flushed). Similarly, we assume that a page fault interrupts a
CPU to run the handler. In practice, our performance was not
affected by these decisions (because shootdowns and page
faults almost never occur on our workloads). If these become
a problem, as detailed in hUMA, future GPUs may be able
to run dedicated OS code for shootdowns and page faults
without interrupting CPUs. We leave this for future work.

Unfortunately, we have already seen in Figure 2 that
this basic design suffers from performance degradations. In
response, the next section proposes a set of low-overhead
optimizations to recover this lost performance.

6.3 Augmenting Address Translation for GPUs

As we have noted, the primary challenge with GPU MMUs
is the nature of warp-based execution. Our baseline design
assumes a warp width of 32, so it is possible for multiple
threads (in the worst case, 32 threads) to demand different
address translations. In the pathological case, this results in
32 simultaneous TLB misses. This section shows, however,

���

���

���

���

�

�
�

�
	
�

	

�

�
	

�
�

�
	
�

	

�

�
	

�
�

�
	
�

	

�

�
	

�
�

�
	
�

	

�

�
	

�
�

�
	
�

	

�

�
	

�
�

�
	
�

	

�

�
	

�� ������� ����� ����� ������ �����

�
�
�
�
�
�
�

������ �

!��"��

���"��

���"��

!	��"��

Figure 6. Performance for TLB size and port counts, assuming

fixed access times. Note that TLBs larger than 128 entries and 4

ports are impractical to implement and actually have much higher

access times that degrade performance.

that not only do modest TLB and PTW augmentations over-
come these problems, they can actually exploit the fact that
warps have threads operating in lock-step.

TLB size and port counts: An ideal (but impractical) TLB is
large, low-latency, and heavily multi-ported, with one port
per warp thread (32 in total). While more ports facilitate
quick lookups and miss detection, they also significantly in-
crease area and power. Figure 6 sheds light on size, access
time, and port count tradeoffs for naive baseline GPU ad-
dress translation. We vary TLB sizes from 64 to 512 entries
(the range of CPU TLB sizes) and port count from 3 (like L1
CPU TLBs) to an ideal number of 32. We present speedups
versus against the no-TLB case (speedups are under 1 since
adding TLBs degrades performance). We use CACTI to as-
sess access time increases with size.

Figure 6 shows that larger sizes and more ports greatly
improve GPU TLB performance. In general, 128-entry
TLBs perform best; beyond this, increased access times
reduce performance. Figure 6 also shows that while port
counts do impact performance (particularly for mummergpu
and bfs), modestly increasing from 3 ports (in our naive
baseline) to 4 ports recovers much of this lost performance.
This matches results from the page divergence plots of Fig-
ure 3, which showed that warps usually request far less than
their maximum of 32 translations. This is because coalescing
logic before TLBs reduce requests to the same PTE into a
single lookup. Only bfs and mummergpu have average page
divergence higher than 4. While this does mean that some
warps have higher lookup time (e.g., when mummergpu en-
counters its maximum page divergence of 32), simply aug-
menting the port count of the naive implementation to 4
recovers much of the lost performance.

Blocking versus non-blocking TLBs: Using blocking TLBs,
the only way to overlap miss penalties with useful work is
to execute alternate warps which do not have memory ref-
erences and hence do not need access to the MMU. Unfor-
tunately however, GPU TLB miss penalties are extremely
long. Therefore, GPU address translation requires more ag-
gressive non-blocking facilities. Specifically, we investigate:

(1) Hits from one warp under misses from another warp: In
this approach, the swapped-in warp executes even if it has

���

���

���

���

���

�

	

�

�

�
�
�
��
�

�
�
�
�
�
�

�
�
�
��
��
�
�

��
��
�
�
��

��
�
�

�
�
��

�
�
�
�
�

�
�
�
�
�

�

�������� ����������������

 !��"��������������������� #�������$%����&'�($%�����)*�

Figure 7. On a 128-entry, 4-port TLB, adding non-blocking sup-

port improves performance closer to an ideal (no increasing access

latency) 32-port, 512-entry TLB.

memory references, as long as they are all TLB hits. When
swapped-in thread TLB misses, it too must be swapped out.
This approach leverages already-existing TLB MSHRs and
requires only simple combinatorial logic updates to the warp
scheduler. In fact, hardware costs are similar to CPU TLBs
which already support hits under misses [28]. We leave more
aggressive miss under miss support for future work.

(2) Overlapping TLB misses with cache accesses within a
warp: Beyond overlapping a warp’s TLB miss penalty with
the execution of other warps, it is also possible to overlap
TLB misses with work from the warp that originally missed.
Since warps have multiple threads, even when some miss,
others may hit in the TLB. Since hits immediately yield
physical addresses, it is possible to look up the L1 cache with
these addresses without waiting for the warp’s TLB misses
to be resolved. This boosts cache hit rates since this warp’s
data is likelier to be in the cache before a swapped-in warp
evicts its data. Furthermore if these early cache accesses do
miss, subsequent cache miss penalties can be overlapped
with the TLB miss penalties of the warp.

In this approach, threads that hit in the TLB immediately
look up the cache even if the same warp has a TLB miss on
a different thread. Data found in the cache is buffered in the
standard warp context state in register files (from past work
[19, 52]) before the warp is swapped out. This approach
requires only simple combinational logic in the PTW and
MSHRs to allow TLB hits to proceed for cache lookup.

Results: Figure 7 quantifies the benefits of non-blocking
TLBs, normalized to a baseline without TLBs. We first per-
mit hits under misses, then also allow TLB hits to access the
cache without waiting for all misses from the same warp to
be resolved. We compare these to an impractical 512-entry
TLB with 32 ports without increased access latencies.

While hits under misses improve performance, immedi-
ately looking up the cache for threads that TLB hit and PTW
scheduling is even more effective. For example, streamcluster
gains an additional 8% performance from overlapped cache
access. We will show how additional enhancement further
bring performance close to the impractical, ideal case.

Page table walk scheduling: Our page divergence results
show that GPUs execute warps that can suffer TLB misses

���������	��
����

� �

��� �����	

��� ������

��� �������

� �

� �

��� �������

��� ������

��� ����	��

� �

� �

��� ����	��

��� ����	��

��� ����	��

� �

� �

��	 �����

��� ������

��� ������

� �

� �

��� �����	�

��� �����	�

��
 �������

� �

���� ��� ��

��

� �

�

�

� �

�

�

	 �

��

��

�����������������������	��
�����

� �

�

�

�

�

�

� � �

� � ��

Figure 8. Three threads from a warp TLB miss on ad-

dresses (0xb9, 0x0c, 0xac, 0x03), (0xb9, 0x0c, 0xac,

0x04), and (0xb9, 0x0c, 0xad, 0x05). A conventional page

table walker carries out three serial page walks (shown with dark

bubbles) , making references to (1-4), (5-8), and (9-12), a total of

12 loads. Our cache-aware coalesced page walker (shown with light

bubbles) reduces this to 7 and achieves better cache hit rate.

on multiple threads, often to distinct PTEs. Consider the
example in Figure 8, which shows three concurrent x86 page
walks. x86 page table walks require a memory reference to
the the Page Map Level 4 (PML4), Page Directory Pointer
(PDP), Page Directory (PD), and Page Table (PT). A CR3

register provides the base physical address of the PML4.
A nine bit index (bits 47 to 39 of the virtual address) is
concatenated with the base physical address to generate a
memory reference to the PML4. This finds the base physical
address of the PDP. Bits 38-30 of the virtual address are then
used to look up the PDP. Bits 29-21, and 20-12 are similarly
used for the PD and PT (which has the desired translation).

Figure 8 shows multilevel page lookups for a warp
that has three threads missing on virtual pages (0xb9,

0x0c, 0xac, 0x03), (0xb9, 0x0c, 0xac, 0x04), and
(0xb9, 0x0c, 0xad, 0x05). We present addresses in
groups of 9-bit indices as these correspond directly to the
page table lookups. Naive baseline GPU PTWs perform the
three page table walks serially (shown with dark bubbles).
This means that each page table walk requires four memory
references; (1-4) for (0xb9, 0x0c, 0xac, 0x03), (5-8)
for (0xb9, 0x0c, 0xac, 0x04), and (9-12) for (0xb9,
0x0c, 0xad, 0x05). Each of the references hits in the
shared cache (several tens of cycles) or main memory. We
now exploit commonality in the accesses of these different
page table walks in two ways to improve performance:

(1) Reducing the number of page table walk memory refer-
ences: Higher order virtual address bits tend to remain un-
changed across memory references. For example, bits 47-
39, and 38-30 of the virtual address change infrequently as
lower-order bits (29 to 0) cover 1GB. Since these bits in-
dex the PML4 and PDP during page table walks, multiple
page table walks usually traverse similar paths. In Figure 8,
all three page walks read the same PML4 and PDP loca-
tions. We therefore remember PML4 and PDP reads so that
they can be reused among page walks. This means that three
PML4 and PDP reads are replaced by a single read.

(2) Increasing page table walk cache hit rates: 128-byte
cache lines hold 16 consecutive 8-byte PTEs. Therefore,

�������
��	
���
���
���

������
��	
���
���
����

������
��	
���
���
����

�����

������

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�������
��	
���
���
���

������
��	
���
���
����

������
��	
���
���
����

�����

������

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�������
��	
���
���
���

������
��	
���
���
����

������
��	
���
���
����

�����

������

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

� � � �

�������
��	
���
���
���

������
��	
���
���
����

������
��	
���
���
����

�����

�����

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

� � �

Figure 9. Our page table walk scheduler attempts to reduce the

number of memory references and increase cache hit rate. The

highlighted entries show what memory references in the page walks

are performed and in what order. This hardware assumes a mux per

MSHR, with a tree-based comparator circuit. We show 4 MSHRs

though this approach generalizes to 32 MSHRs.

cache lines may be reused across distinct page table walks.
For example, in Figure 8, two PD entries from the same
cache line are used for all walks. Similarly, the PT entries for
virtual pages (0xb9, 0x0c, 0xac, 0x03) and (0xb9,

0x0c, 0xac, 0x04) are on the same cache line. To ex-
ploit this, we interleave memory references from different
page table walks (shown in lighter bubbles). In Figure 8, ref-
erences 3 and 4 (from three different page table walks) are
handled successively, as are references 5 and 6 (from page
walks for virtual pages (0xb9, 0x0c, 0xac, 0x03) and
(0xb9, 0x0c, 0xac, 0x04)), boosting hit rates.

Implementation: Figure 9 shows PTW scheduling. MSHRs
store the virtual page numbers causing TLB misses. We pro-
pose combinational hardware that scans theMSHRs, extract-
ing, in four consecutive steps, PML4, PDP, PD, and PT in-
dices. Each stage checks whether the memory accesses for
its level are amenable to coalescing (they are repeated) or lie
on the same cache line. The PTW then injects references (for
each step, we show the matching reference from Figure 8).

Figure 9 shows that a comparator tree matches indices in
each stage of the algorithm. It scans the PML4 indices look-
ing for a match in bits 47-44 because both a repeated mem-
ory reference and PTEs within the same cache line share all
but the bottom 4 index bits. Once the comparator discovers
that all the page walks can be satisfied from the same cache
line in step 0, a memory reference for PML4 commences.
In parallel with this memory reference, the same compara-
tor tree now compares the upper 5 bits of the PDP indices
(bits 38-34). Again, all indices match, meaning that in step
1, only one PDP reference is necessary. In step 2, PD indices
are studied (in parallel with the PDP memory reference).
We find that the top 5 bits match but that the bottom 4 bits
don’t (indicating that they are multiple accesses to the same
cache line). Therefore step 2 injects two memory references
(3 and 4) successively. Step 3 uses similar logic to complete
the page walks for (0xb9, 0x0c, 0xac, 0x03), (0xb9,
0x0c, 0xac, 0x04), and (0xb9, 0x0c, 0xad, 0x05).

To reduce hardware, we use a comparator tree rather than
comparators between every pair of MSHRs (which provides

���

���

���

���

���

�

	

�

�

�
�
�
��
�

�
�
�
�
�
�

�
�
�
��
��
�
�

��
��
�
�
��

��
�
�

�
�
��

�
�
�
�
�

�
�
�
�
�

�

�������� ����	�������

 !"#$%"��������� &����"��'�����()"*'�����"$+�

Figure 10. On a 128-entry, 4-port TLB, adding non-blocking and

PTW scheduling logic achieves close to the performance of an ideal

(no increasing access latency) 32-port, 512-entry TLB.

���

���

���

���

���

�

	

�

�

�
�
�
��
�

�
�
�
�
�
�

�
�
�
��
��
�
�

��
��
�
�
��

��
�
�

�
�
��

�
�
�
�
�

�
�
�
�
�

�

������ �!����� ������"�������

������� �!����� #�������$%����&'�($%�!����)

Figure 11. Our augmented TLB (with hits under misses and over-

lapped cache accesses), with 1 PTW outperforms 8 PTWs.p

maximum performance). We have found that this achieves
close to pairwise comparator performance. Furthermore, we
share one comparator tree with multiplexers for all page
table levels. This is possible because MSHRs scans can
proceed in parallel with loads from the previous step.

Results: Figure 10 shows that PTW scheduling significantly
boosts GPU performance. For example, bfs and mummergpu
gain from PTW scheduling because they have a higher page
divergence (so there are more memory references from dif-
ferent TLB misses to schedule). We find that PTW schedul-
ing achieves its performance by completely eliminating 10-
20% of the PTW memory references and boosting PTW
cache hit rates by 5-8% across the workloads. Consequently
the number of idle cycles (due in large part to TLB misses)
reduces from 5-15% to 4-6%, boosting performance.

Overall, Figure 10 shows that thoughtful non-blocking
and PTW scheduling extensions to naive baseline GPUs
boosts performance to the extent that it is within 1% of
an ideal, impractical, large and heavily-ported 512-entry,
32-port TLB with no access latency penalties. In fact, all
the techniques reduce GPU address translation overheads
under 10% for all benchmarks, well within the 5-15% range
considered acceptable on CPUs.

Multiple PTWs: Multiple PTWs are an alternative to PTW
scheduling. Unfortunately, their higher performance comes

���������	�
���	�

�	��������

���	���	�
�������������

���������

����
�������	�

����
����	

���������	
�����

��� ������!	

���"�������	����	�" ��

���"�������	����	�" ��

������������ 		����#�� $

���!	�%���������
����

�&
���
���

��
���
���

�'
���
���

���(���
����	��

����

��!	���	
�	������)�*

�+
���
���

Figure 12. Conventional CCWS, with a cache victim tag array.

�

���

���

���

���

�

���

���

���

�
	

�
�
�
�
�

�
�
�
�

�
�
�
��

�
��
�
�
�

�
�
��
�

�
�
�
�
�
�
�

��������� �� ����������

!!"��#�$����% !!"��#���������%

!!"��#�� ����������%

����

Figure 13. Compared to a baseline GPU without TLBs, speedup

of naive, 4-ported TLBs per shader core, augmented TLBs and

PTWs (non-blocking TLBs with PTW scheduling and cache ac-

cess overlap), CCWS without TLBs, CCWS with naive TLBs and

PTWs, and CCWS with augmented TLBs and PTWs.

with far higher area and power overheads. In our studies,
we have found that a single PTW with augmented TLBs (4-
ports with non-blocking extensions, PTW scheduling, over-
lapped cache access) consistently outperform naive TLBs
with more PTWs. Specifically, Figure 11 shows a 10% per-
formance gap between the augmented 1 PTW approach and
8 naive PTWs. For the rest of this paper, we therefore use a
single lower-overhead PTW with non-blocking support (hit
under miss and cache overlap) and PTW scheduling.

7. Cache Conscious Warp Scheduling

Our optimizations have, to this point, targeted better MMU
designs for typical warp-based round-robin scheduling.
There are, however, more advanced scheduling schemes that
have been proposed to improve GPU cache behavior and
performance on control flow divergence. In this section, we
focus on the relationship between cache-conscious wave-
front scheduling (CCWS) [52] and MMU design.

7.1 Baseline Cache-Conscious Wavefront Scheduling

Basic operation: CCWS observes that conventional warp
scheduling (e.g., round robin) is oblivious to intra-warp lo-
cality, touching data from enough threads to thrash the L1
cache [52]. Carefully limiting the warps that overlap with
one another promotes better cache reuse and boosts perfor-
mance. CCWS accomplishes this using the baseline hard-

ware shown in Figure 13. The cache holds tags and data,
but also an identifier for the warp that allocated the cache
line. A lost locality detector (LLD) maintains per-warp, set-
associative cache victim tag arrays (VTAs), which store the
tags of evicted cache lines. The LLD, with lost locality scor-
ing (LLS), identifies warps that share cache working sets and
those that increase cache thrashing. CCWS scheduling logic
encourages warps that share working sets to run together.

We now explain how CCWS operates. Suppose a warp
issues a memory reference. After coalescing, the address is
presented to the data cache. On a cache miss, CCWS logic
is invoked to determine whether multiple warps are thrash-
ing the cache. The victim tag array of the current warp is
probed to see if the desired cache line was recently evicted.
A hit indicates the possibility of inter-warp interference. If
the warp making the current request were prioritized by the
scheduler, intra-warp reuse would be promoted and cache
misses reduced. This information is communicated to the
LLD, which maintains a counter per warp. A VTA hit incre-
ments the warp counter; whenever this happens, lost locality
scoring logic sums all counter values. The LLS cutoff logic
checks if the total is larger than a predefined cutoff; if so,
warps with the highest counter values are prioritized since
they hit most in VTAs, indicating that their lines are most-
recently evicted and hence most likely to gain if not swapped
out. We refer readers to the CCWS paper [52] for more de-
tails and sensitivity studies on the update and cutoff values,
LLS, and LLD hardware overheads. The remainder of our
work, like the original CCWS studies, assumes 16-entry, 8-
way victim VTAs per warp.

Performance of basic approach: While baseline CCWS ig-
nored address translation [52], one might expect that boost-
ing cache hit rate should also increase TLB hit rates. Figure
13 quantifies the speedup (against a baseline without TLBs)
of (1) naive blocking 128-entry, 4-port TLBs with one PTW
(no non-blocking or PTW scheduling); (2) augmented TLBs
that overlap misses with cache access and allow hits under
misses (non-blocking), with PTW scheduling; (3) CCWS
without TLBs; (4) CCWS with naive TLBs; and (5) CCWS
with augmented TLBs.

Baseline CCWS (without TLBs) consistently improves
performance by at least 20%. However, adding CCWS to
naive TLBs and augmented TLBs outperform vanilla naive
and augmented versions by only 5-10%. Also, the gap be-
tween CCWS with and without TLBs remains large (even
augmented TLBs and PTWs have a 50-120% difference).

7.2 Adding Address Translation Awareness

In response to the limitations of standard CCWS, we now
propose two schemes which better design MMUs to cooper-
ate with cache aware warp scheduling.

TLB-aware CCWS (TA-CCWS): CCWS loses performance
when integrating TLBs (even augmented non-blocking ones
with cache overlap and PTW scheduling) because it treats all
cache misses equivalently. In reality, some cache misses are

���������	�
���	�

���	���	�
�������������

���������

����
�������	�

����
����	

���������	
�����

�������
���������

�� 	���	
�	������

!	��������

�"�#������ 	

���$�������	����	�$#��

���$�������	����	�$#��

������������#		����%��#&

��� 	�'���������
����

�(
���
���

�"
���
���

�)
���
���

�*
���
���

���+���
����	��

!���

���

Figure 14. TLB-aware cache conscious wavefront scheduling up-

dates locality scores with TLB misses.

���������	�
���	�

�	��������

���	���	�
�������������

���������

����
�������	�

����
����	

���������	
�����

��� ������!	

���" ��

���" ��

���#��

����$���������
����

�%
���
���

��
���
���

�&
���
���

�'
���
���

���(���
����	��

��������
$�

)�*

��!	���	
�	������

���

���"�� "��+

���"�� "��+

Figure 15. TLB conscious warp scheduling, which replaces cache

VTAs with TLB VTAs to outperform TA-CCWS, despite using less

hardware.

accompanied by TLBmisses, others with TLB hits. Baseline
CCWS should be modified so that lost locality scoring logic
weighs cache misses with TLB misses more heavily than
those with TLB hits. TA-CCWS does exactly this, prompting
more frequent TLB misses to cause the LLS counter sum
to go over the threshold faster. This in turn ensures that
the final pool of warps identified as scheduling candidates
enjoys intra-warp cache and intra-warp TLB reuse.

Figure 14 shows TA-CCWS hardware, with minimal
changes to CCWS. We consider only TLB weights that are
multiples of 2 so that shifters perform counter updates.

TLB conscious warp scheduling (TCWS): TCWS goes be-
yond TA-CCWS by observing that TLB and cache behav-
ior are highly correlated. For example, TLB misses are fre-
quently accompanied by cache misses because a TLB miss
indicates that cache lines from its physical page were refer-
enced long ago. Therefore, it is possible to subsume cache
access behavior by analyzing the intra-warp locality lost on
TLB behavior. TCWS exploits this correlation by replac-
ing cache line based victim tag arrays with smaller, lower-
overhead, yet more performance-efficient TLB-based VTAs.

Figure 15 illustrates TWCS with TLB-based VTAs con-
taining virtual address tags. VTAs are now looked up on
TLB misses rather than cache misses. VTA hits are commu-
nicated to lost locality scoring logic, where per-warp coun-
ters are updated (similar to baseline CCWS). When the sum
of the counters exceeds the prefedined cutoff, warps with the
highest LLS counters are prioritized.

This initial approach uses baseline CCWS but with TLB
VTAs. There is, however, one problem with this approach.

����������	
���	�
	���

���������������	
������

�

�������	����	�������

������
����

���

������
����

���

������
����

���

������	���������

������	�����

������	����������

����	 �! " #

������������
 �	
��

���������������	
������

�

�������	����	�������

������
����

������
����

������
����

������	���������

������	�����

������	����������

 �!

���

" # �!

���

" # �!

���

" #

���������������	
������

�

�������	����	�������

������
����

������
����

������
����

������	���������

������	�����

������	����������

 �!

���

" # �!

���

" # �!

���

" #

�
���
���
���
���
���
��	

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

��
�
�
�
�
�

������ ! ""��

""���#������ !$ �!"

�!"�#������ !$

�

���

���

���

���

���

��	

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

��
�
�
�
�
�

������ !

""��

""���#������ !$

�!"

�!"�#������ !$

#���$

#���	%

#���	�

#���	&

'
#���	()	

"�������

*
�
��
�
	+
	�
�,
�
�
�
�

�
�
�
�
�
�

�
�
-
�$
��
�	
�
�
�
�

�
�
�

#
��
��
.
�
�
�

�
�,
�
�
�
�

�
!

�
�
�
�
��
	

/
��
��
��
�
�

/��

��$$

������	����

�
�
�
��
$
$
	

0
�
�
1	
�
�
��

�
�,
�
�
�
�

�
!

�
	�
�
/
�
$

�
!
	

�
�
/
�
$

�
�
�
�
��
	"
�
��

,
�
�
��
$
�
��
-

" #

���������	��
����

% %

�
	 &&'����

�
� &&'��(�

�
� &&'�')

% %

% %

��
 &&'�')

��� &&'����

��� &&'����

% %

% %

��� &&'��*	

��� &&'��*�

��� &&'��	�

% %

% %

��� &&'����

��(&&'����

��� &&'����

% %

% %

��(&&'���*

��� &&'���	

��� &&'��(�

% %

���� ��� ��

��

� &

2

(

3 4

)

5

6 �%
��

�&

�����������������������	��
����

% %

�
	 &&'����

�
� &&'��(�

�
� &&'�')

% %

% %

��
 &&'�')

��� &&'����

��� &&'����

% %

% %

��� &&'��*	

��� &&'��*�

��� &&'��	�

% %

% %

��� &&'����

��(&&'����

��� &&'����

% %

% %

��(&&'���*

��� &&'���	

��� &&'��(�

% %

���� ��� ��

��

� &

2

3

4

(

)

��/�	%	
7.68	%�8	��8	%29

��/�	�
7.68	%�8	��8	%(9

��/�	&
7.68	%�8	��8	%39

��/�	2

����	%

,
�
�
�
1

,
�
�
�
1

,
�
�
�
1

��/�	%	
7.68	%�8	��8	%29

��/�	�
7.68	%�8	��8	%(9

��/�	&
7.68	%�8	��8	%39

��/�	2

����	�

,
�
�
�
1

,
�
�
�
1

,
�
�
�
1

��/�	%	
7.68	%�8	��8	%29

��/�	�
7.68	%�8	��8	%(9

��/�	&
7.68	%�8	��8	%39

��/�	2

����	&

,
�
�
�
1

,
�
�
�
1

,
�
�
�
1

��/�	%	
7.68	%�8	��8	%29

��/�	�
7.68	%�8	��8	%(9

��/�	&
7.68	%�8	��8	%39

��/�	2

����	2

,
�
�
�
1

,
�
�
�
1

,
�
�
�
1

��/�	%	
7.68	%�8	��8	%29

��/�	�
7.68	%�8	��8	%(9

��/�	&
7.68	%�8	��8	%39

��/�	2

����	(

,
�
�
�
1

,
�
�
�
1

,
�
�
�
1

��/�	%	
7.68	%�8	��8	%29

��/�	�
7.68	%�8	��8	%(9

��/�	&
7.68	%�8	��8	%39

��/�	2

����	3

,
�
�
�
1

,
�
�
�
1

,
�
�
�
1

���

��*

��	

���

�

�
(

�
�
	

�
�
�

�
�
�

�
(

�
�
	

�
�
�

�
�
�

�
(

�
�
	

�
�
�

�
�
�

�
(

�
�
	

�
�
�

�
�
�

�
(

�
�
	

�
�
�

�
�
�

�
(

�
�
	

�
�
�

�
�
�

�� ���� ����� ��� ������ �����

��
�
�
�
�
�

� !���+�

���,���

(��,���

	��,���

����,���

�
�

��
��
��
��
��
��

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

&
�
��
�
�
��
�
�

-�������.�,�/�-����

0��������� ��"�����1���-���

���

���

��*

��	

���

�

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

��
�
�
�
�
�

!�,�����
1���������������
%2,3���������������������
%2�&�������������
0��������4����/5���4�,���� !

���

���

��*

��	

���

�

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

��
�
�
�
�
�

��&�� ��&���
(�&��� 	�&���
��&���6�7����������

�
(
	

��
��
��
�(
�	
��

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

&
�
�
�
�8
�3
�
��
�
�
�� 93����� .�:

�

��

(�

��

	�

���

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

&
�
��
�
�
��
�
�

.�,�/�-���� � !�.�����

�

��

���

���

���

���

���

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

"
/�

��
�

� !�.���� �����/ "���������������/

�

��

(�

��

	�

���

� ���,�� (��,�* 	��,��� ����,���

&
�
��
�
�
��
�
�

&����8�3�������

��

������

�����

�������

������������

����������

�
�
(
�
	

��
��
�(
��

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

0�
��
�"
/�

��
��
�
��
�
�&
�
��
�
�
��
�
�
�

,
��
�,

��
��"

/�
��
�

!�,�����

1���������������

%2�,3���������������

������

%2�&�������������
�

��

(�

��

	�

���

� ���,�� (��,�* 	��,��� ����,���

&
�
��
�
�
��
�
�

&����8�3�������

��

������

�����

�������

������������

����������

���

��*

��	

���

�

!
�,
��

��
�

1
��
��
�
�
�
�
��

��
��

�5
�,
3�

��
�
�
�;

%
�2

�&
�
�

��
��

�
�
�
���

�

!
�,
��

��
�

1
��
��
�
�
�
�
��

��
��

�5
�,
3�

��
�
�
�;

%
�2

�&
�
�

��
��

�
�
�
���

�

!
�,
��

��
�

1
��
��
�
�
�
�
��

��
��

�5
�,
3�

��
�
�
�;

%
�2

�&
�
�

��
��

�
�
�
���

�

!
�,
��

��
�

1
��
��
�
�
�
�
��

��
��

�5
�,
3�

��
�
�
�;

%
�2

�&
�
�

��
��

�
�
�
���

�

!
�,
��

��
�

1
��
��
�
�
�
�
��

��
��

�5
�,
3�

��
�
�
�;

%
�2

�&
�
�

��
��

�
�
�
���

�

!
�,
��

��
�

1
��
��
�
�
�
�
��

��
��

�5
�,
3�

��
�
�
�;

%
�2

�&
�
�

��
��

�
�
�
���

�

�� �� ����� ��� ����� �����

��
�
�
�
�

���&�� ��&��� (�&��� 	�&���

#���	�$$:�	��.����

�������������

������	����

�������
������

!�$�����	
"�������	��-��

���	��-��

���	
,:����	 �$�

���	
������

#���	�$$:�
��-��

��	����	,����

 �-;#���	����������;����

 �-;#���	����������;����

��$�	��������	��������	7���9

,����	<�����	 �-	�����

#%
 �-
 �-

#�
 �-
 �-

#&
 �-
 �-

#2
 �-
 �-

����:�	
�����$$

��$$

/��=

�����:��
����$���

#���	�$$:�	��.����

������	����

!�$�����	
"�������	��-��

���	��-��

���	
,:����	 �$�

���	
������

#���	�$$:�
��-��

��	����	,����

 �-;#���	����������;����

 �-;#���	����������;����

��$�	��������	��������	7���9

,����	<�����	 �-	�����

#%
 �-
 �-

#�
 �-
 �-

#&
 �-
 �-

#2
 �-
 �-

����:�	
�����$$

��$$

/��	���	
 �!	��$$=

�����:��
����$���

 �!

�����	����	�����
������������

#���	�$$:�	��.���� ������	����

!�$�����	
"�������	��-��

���	��-��

���	
,:����	 �$�

���	
������

#���	�$$:�
��-��

��	����	,����

 �-;����

 �-;����

 �!����

 �!	<�����	 �-	�����

#%
 �-
 �-

#�
 �-
 �-

#&
 �-
 �-

#2
 �-
 �-

����:�	
�����$$

��$$
 �!	< �
/��=

�����:��
����$���

 �!

 �-;#��;""

 �-;#��;""

�
���
��(
���
��	
�

���
��(
���

��

�

�

�
�
�
�
�

�

��

��
��

�

�

�
�
��

�

��
�
�
�
�
�

'�<3��� ! 9��������� !
""���#�,�� !$ ""���#��<3��� !$
""���#���������� !$

2153

�
���
��(
���
��	
�

���
��(
���

�� �� ����� ��� ������ �����

��
�
�
�
�
�

""���#�,�� !$ ""���#9��������� !$
�94""���#�=�$ �94""���#(=�$
�94""���#	=�$

2153

Figure 16. TLB-aware CCWS performance for varying weights

of TLB misses versus cache misses. TA-CCWS (x:y) indicates that

the TLB miss is weighted x times as much as y by LLS logic.

As described, we now update LLS scores only on TLB
misses so warp scheduling decisions are relatively infrequent
compared to conventional CCWS, which updates scores on
cache misses. This makes CCWS less rapidly-adaptive, pos-
sibly degrading performance. Therefore, we force more fre-
quent scheduling decisions by also updating LLS counters
on TLB hits. We update by observing that each TLB set has
an LRU stack (logically) of PTEs. This study assumes 128-
entry, 4-way associative GPU TLBs. To update LLS logic
sufficiently often, we track the LRU depth of TLB hits. Then,
we update the LLS scoring logic, weighting a deeper hit
more heavily since it indicates that the PTEs are closer to
eviction (and TLBs/caches are likelier to suffer thrashing).
A key parameter is how to vary weights with LRU depth.

Note that TCWS actually requires less hardware than
CCWS. Since TCWS VTAs maintain tags for 4KB pages,
fewer of them are necessary compared to cache line VTAs.
TLB-based VTAs in TCWS require half the area overhead
of cache line-based CCWS.

7.3 Performance of CCWS with TLB Information

TLB-aware cache conscious scheduling results: Figure 16
shows that updating LLS scoring logic with not just cache
misses but also TLB miss information improves perfor-
mance substantially. The graph separates the speedups of
baseline CCWS (no TLB) and CCWS with augmented
TLBs with non-blocking and PTW scheduling logic. It then
shows TA-CCWS, with ratios of how much a TLB miss
is weighted versus a cache miss. Clearly, weighting TLB
misses more heavily improves performance. When they
are weighted 4 times as much as cache misses, TA-CCWS
achieves within 5-10% of CCWS without TLBs for four
benchmarks (mummergpu, memcached, streamcluster

and pathfinder). While bfs and kmeans still suffer degra-
dations, we will show that TLB conscious cache scheduling
boosts performance even for these benchmarks significantly.

TLB conscious cache scheduling results: Figure 17 varies the
number of entries per warp (EPW) in the TLBVTA, showing
how it affects performance (note that this graph isolates
the impact of EPWs alone without LRU depth weighting).
Typically, 8 EPWs per warp VTA does best, consistently
outperforming TA-CCWS.

�
���
���
���
���

�
���
���
���

�
	

�
�
�

�
�

�

�
�
�

�
�
�

��

�
��

�
�

�

�
�
��

�

�
�
�
�
�
�
�

������������ ������!�"����� ��������#$�

��������#$� ��������#$� ��������#$�

���������#$�
����� ���

Figure 17. TLB conscious warp scheduling achieves within 5-

15% of baseline CCWS without TLBs. We show TCWS as the

number of entries per warp (EPW) in the VTA is varied.

�
���
���
���
���

�
���
���
���

�
	

�
�
�

�
�

�

�
�
�

�
�
�

��

�
��

�
�

�

�
�
��

�

�
�
�
�
�
�
�

������������ ������!�"����� �#$����%��%�&%��

�#$����%��%��%�� �#$����%�&%��%�'

����

��� ���

���

Figure 18. TLB conscious warp scheduling with LRU depth

weights to added to lost locality scoring.

Figure 18 then shows how updating LLS scores based on
the depth of the hit in the TLB set’s LRU stack improves
performance. We consider many LRU stack weights but only
show three of them due to space constraints. The first scheme
weights hits on the first entry of the set (MRU) with a score
of 1, the second a score of 2, the third a score of 3, and
the fourth a score of 4 (LRU(1, 2, 3, 4)). Similarly, we
also show LRU(1, 2, 4, 8) and LRU(1, 3, 6, 9). TLB
misses that result in TLB VTA hits are scored as before.

LRU(1, 2, 4, 8) typically performs best, consistently
getting within 1-15% of the baseline CCWS performance
without TLBs. In fact, not only does TCWS require only half

the hardware of TA-CCWS or even CCWS, it outperforms

TA-CCWS consistently.
At a high-level, our graphs provide two insights. First,

warp scheduling schemes that improve cache hit rates are
intimately affected by TLB hit rates too. Second, overheads
from this can be effectively countered with simple, thought-
ful TLB and PTW awareness. Our approach, like CPU ad-
dress translation, consistently reduces overheads to 5-15%
of runtime.

8. Thread Block Compaction

Our final contribution is to show how address translation
affects mechanims to reduce branch divergence overheads.
Traditionally, SIMD architectures have supported divergent
branch execution by masking vector lanes and stack recon-
vergence [12, 19], significantly reducing SIMD through-

Block A

1(x) 2(x)
3(x) 4(x)

5(x) 6(x)
7(x) 8(x)

9(x) 10(x)
11(x) 12(x)

Block B

1(6) x(x)
x(x) 4(6)

x(x) 6(1)
7(1) 8(7)

9(1) 10(6)
11(6) x(x)

Block C

x(x) 2(6)
3(6) x(x)

5(7) x(x)
x(x) x(x)

x(x) x(x)
x(x) 12(7)

Block D
1(x) 2(x)
3(x) 4(x)

5(x) 6(x)
7(x) 8(x)

9(x) 10(x)
11(x) 12(x)

Reconvergence Stack

TLB-aware Thread

Block Compaction

B

1(6)
x(x)
x(x)
4(6)

B

x(x)
6(1)
7(1)
8(7)

B

9(1)
10(6)
11(6)
x(x)

C

x(x)
2(6)
3(6)
x(x)

C

5(7)
x(x)
x(x)
x(x)

C

x(x)
x(x)
x(x)

12(7)

Thread Block Compaction
B

1(6)
6(1)
7(1)
4(6)

B

9(1)
10(6)
11(6)
8(7)

C

5(7)
2(6)
3(6)
12(7)

B

1(6)
10(6)
11(6)
4(6)

B

9(1)
6(1)
7(1)
8(7)

C

5(7)
2(6)
3(6)
12(7)

Figure 19. Comparison of warp execution when using recon-

vergence stacks, thread block compaction, and TLB-aware thread

block compaction. While TLB-TBC may execute more warps, its

higher TLB hit rate provides higher overall performance.

put. Proposed solutions have included stream programming
language extensions [31], allowing vector lanes to execute
scalar codes for short durations [36], or more recently, dy-
namic warp formation techniques [19] which assimilate
threads with similar control flow paths to form new warps.
While address translation affects all of these approaches, we
focus on the best known dynamic warp formation scheme,
Thread Block Compaction (TBC) [18].

8.1 Baseline Thread Block Compaction

Basic operation: We now briefly outline the operation of
baseline thread block compaction. We refer readers to the
original paper for complete details [18]. In CUDA and
OpenCL, threads are issued to SIMD cores in units of
thread blocks. Warps within a thread block can communicate
through shared memory. TBC essentially also proposes con-
trol flow locality within a thread block and is implemented
using block-wide reconvergence stacks for divergence han-
dling [18]. At a divergent branch, all warps of a thread block
synchronize. TBC hardware scans the thread block’s threads
(which can be across multiple warps) to identify which ones
follow the same control flow path. Threads are compacted
into new dynamic warps according to branch outcomes and
executed until the next branch or reconvergence point (where
they are synchronized again for compaction). Overall, this
approach increases SIMD utilization.

Unfortunately, blindly adding address translation has
problems. Dynamically assimilating threads from different
warps into new warps increases both TLB miss rates and
warp page divergence (which amplifies the latency of one
thread’s TLB miss on all warp threads). Consider, for ex-
ample, the control flow graph of Figure 19. In this example,
each thread block contains three warps of 4 threads. Each
thread is given a number, along with the virtual page it is ac-
cessing if it is a memory operation. For example, 1(6) refers
to thread 1 accessing virtual page 6, 1(x) means that thread 1

�
���
���
���
���

�
���
���

�
	

�
�
�

�
�

�

�
�
�

�
�
�

��

�
��

�
�

�

�
�
��

�

�
�
�
�
�
�
�

��������� �� �����

��!�"�#����$ ��!�"���������$

��!�"�� �����$

Figure 20. Performance of TBC without TLBs versus TBC when

using naive 128-entry, 4-port blocking TLBs, and when augmenting

TLBs with nonblocking and PTW scheduling facilities.

is execution a non-memory instruction, and x(x) means that
the thread is masked off through branching.

All threads execute blocks A and D but only threads 2, 3,
5, and 12 execute block C due to a branch divergence at the
end of A (the rest execute block B). Blocks B and C consist
of a memory operation. Figure 19 shows the order in which
warps execute blocks B and C, using conventional stack
reconvergence. Since there is no dynamic warp formation, it
takes six distinct warp fetches to execute both branch paths.
Instead, Figure 19 shows that forming TBC reduces warp
fetches to just three, fully utilizing SIMD pipelines.

Address translation poses some unique problems on
TBC. For example, the first dynamic warp now requires
virtual pages 1 and 6. If we consider a 1-entry TLB which
is initially empty, the first warp takes 2 TLB misses, the
second 3, and the third 2. Instead, Figure 19 shows a TLB-
aware scheme that potentially performs better by forming a
first dynamic warp with threads requiring only virtual page
6 and a second warp requesting virtual page 1. Now, the first
two warps suffer 2 TLB misses as opposed to 5 (for baseline,
TLB-agnostic TBC), without sacrificing SIMD utilization.

Performance of basic approach: Figure 20 quantifies the
performance of baseline TBC with TLBs. Against a base-
line without TLBs, we plot the speedup of TBC without
TLBs, TBC with naive 128-entry, 4-port TLBs (blocking, no
PTW scheduling), TBC with augmented TLBs (nonblock-
ing, overlap misses with cache access, PTW scheduling). We
also show naive TLBs and augmented TLBs without TBC.
There is a significant performance gap between TBC with
and without TLBs. Even with augmented TLBs, an average
of 20% performance is lost compared to ideal TBC (with-
out TLBs). In fact, augmented TLBs without TBC actually

outperform augmented TLBs with TBC. We have found that
this occurs primarily because TBC increases per-warp page
divergence (by an average of 2-4 for our workloads). This
further increases TLB miss rates by 5-10%. In response, we
study TLB-aware TBC, assuming block-wide reconvergence
stacks and age-based scheduling [18].

8.2 Address Translation Awareness

Hardware details: Figure 21 shows TBC-aware address
translation with minimal additional hardware. The diagram
shows the basic SIMD pipeline, with red dotted arrows

����������	
������������

�
	
��
�
��
��
��
�
�
�
	

�
	
�
�
�
	

�
	
�
�

�	
�
�
	
�
�

�
�
�

�
�
�	
�
�
�

�
��
�
�
�
	

!
�
"

�
	
�
�
#
�

$
�	
�
�
�
#

$��

��

%
�
�
	
�
�
�
�
��
�

�
�
&
�"
'
((
	

"����
����

!�	���
���&����

�
!
�

��)

��*

��+

,

�
�
"

%	-	��

!
�
��
.

/ ��
�0��)!��

/ ��
�0��*!��

/ ��
�0��+!��

,

!
�
�

(
��
�

�

'	

�	���	
!�	��

���&����

�
�
�
�
�#
�

1
�
�
�
�
	

�
�
��
/
	
�

�
�

!�
���

��������	�2�&

%�'�	��) ,
%�'�	��* ,

, ,

!��
����
2�&�
�'((

�� ��� ��

�� ��� ��

�� ��� ��

"-�� �2��	�
�	���/	�	�� %���

!��(��� !�	���
���&����

!�"

!�� ��3
��&�
��
��#

�&���	�����������

Figure 21. Hardware implementation of TLB-aware TBC. We

add only the combinational logic in the common page matrix (CPM)

and a warp history field per TLB entry. The red dotted arrows zoom

into different hardware modules.

zooming on specific modules. We add only the shaded hard-
ware to baseline TBC from [18].

In baseline TBC, on a divergent branch, a branch unit
generates active masks based on branch outcomes. A block-
wide active mask is sent to the thread compactor and is
stored in multiple buffers. Each cycle, a priority encoder
selects at most one thread from its corresponding inputs and
sends its ID to the warp buffer. Bits corresponding to the
selected threads are reset, allowing encoders to select from
remaining threads in subsequent cycles. At the end of this
step, threads have been formed into dynamic warps based
on branch outcomes. When these dynamic warps becomes
ready (indicated by the r bit per warp buffer entry) they
are sent to the fetch unit, which stores program counters
and initiates warp fetch. We refer readers to the TBC paper
[18] for details on how the priority encoder and compactor
assimilate dynamic warps.

Our contribution is to modify this basic design and en-
courage dynamic warp formation among warps that have
historically accessed similar TLB PTEs and are hence likely
to do so in the future, minimizing page divergence and
miss rates. We use a table called the Common Page Matrix
(CPM). Each CPM row holds a tag and multiple saturating
counters. The CPMmaintains a row for every warp (48 rows
for our SIMD cores), each of which has a counter for every
other warp (47). Each counter essentially indicates how of-
ten the warp ID associated with the row and the column have
accessed the same PTEs in the past. We use this structure in
tandem with the priority encoder. Threads are compacted
into the warp buffer only if the thread’s original warp had

accessed PTEs that threads already compacted in the new

dynamic warp also accessed. This information is easily ex-
tracted in the CPM when compacting threads; we choose
a CPM row with the thread’s original warp number. Then,
we look up the counters using the original warp numbers of
the threads that have already been compacted into the target
dynamic warp. We compact the candidate thread into the
dynamic warp only if the counters are at maximum value.

Figure 21 shows that CPM counters are updated on TLB
hits. Each TLB entry records warp numbers that previously

�

���

���

���

���

�

���

���

�
	

�
�
�
�
�

�
�
�
�

�
�
�
��

�
��
�
�
�

�
�
��
�

�
�
�
�
�
�
�

������������

����� �!������

���"�#������������$��

���"�#������������$��

���"�#���������%��$��

Figure 22. Performance of TLB-aware TBC, as the number of

bits per CPM counter is varied. With 3-bits per counter, TLB-aware

TBC achieves performance within 3-12% of TBC without TLBs.

accessed it. Every time a warp hits on the entry, it selects
a CPM row and updates the counters corresponding to the
warps in the history list. To ensure that CPM continues to
adapt to program behavior, the table is periodically flushed
(a flush every 500 cycles suffices).

Hardware overheads: TLB-aware TBC adds little hardware
to baseline TBC. We track PTE access similarity between
warps rather than between threads to reduce hardware costs
and because original warps (not dynamic ones) usually have
modest page divergence. Warp access patterns provides most
of the benefits of per-thread information, but with far less
overhead. The CPM has 48x47 entries; we find that 3-bit
counters perform well, for a total CPM of 0.8KB. In addi-
tion, we use a history length of 2 per TLB; this requires 12
bits (since warp identifier is 6 bits). Fortunately, we observe
that PTEs do not actually use full 64-bit address spaces yet,
leaving 18 bits unused. We use 12 of these 18 bits to main-
tain history. All CPM updates and flushes occur off the crit-
ical path of dynamic warp formation.

8.3 Performance of TLB-Aware TBC

Figure 22 shows the performance of TLB-aware TBC against
baseline TLB-agnostic TBC without TLBs, and with aug-
mented TLBs. We assume 1, 2, and 3 bits per CPM counter;
more bits provide greater confidence in detecting whether
warps access the same PTEs. Even 1 bit counters drasti-
cally improves performance over TLB-agnostic TBC with
augmented TLBs (15-20% on average). 3 bits boost per-
formance within 5-12% of baseline TBC without TLBs, well
within the typical 5-15% range deemed acceptable on CPUs.
Like CCWS, these results mean that even though address
translation tests conventional dynamic warp formation, sim-
ple tweaks recovers most lost performance.

9. Discussion and Future Work

Broad applicability. Our work is applicable to throughput-
oriented architectures beyond GPUs like Intel’s Many In-
tegrated Core architecture [53], and accelerators like Rigel
[33] and vector-thread architectures [36].

Large pages. Past work [3, 7, 44, 56] has shown that large
pages (2MB/1GB) can potentially improve TLB perfor-
mance. However, in some cases, their overheads can become
an issue; for example, they require specialized OS code, can

increase paging traffic, and may require pinning in physical
memory (e.g., in Windows). We leave a detailed analysis
of the pros and cons of large pages to future work. We do,
however, present initial insights on 2MB pages. Specifically,
one may, at first blush, expect large pages to dramatically
reduce page divergence since it is much likelier that 32 warp
threads request the same 2MB chunk rather than the same
4KB chunk. Though this is usually true, we have found that
some benchmarks, mummer and bfs), still suffer high page
divergences of 6 and 3. Warp threads in these benchmarks
have such far-flung accesses that they essentially span 12MB
and 6MB of the address space. We therefore believe that a
careful design space study of superpages is a natural next
step in the envolution of this work.

Concurrent research onGPUMMUs.Concurrent with our
work, Power, Hill, and Wood also study memory manage-
ment unit design for GPUs [49]. Like our work, theirs shows
that naively, CPU-style TLB and page table walkers can de-
grade GPGPU performance substantially. While we focus on
the role of the warp scheduler in prudent TLB and page ta-
ble walker design, Power, Hill, and Wood study the interplay
between scratchpad memories, coalescing, TLBs, and even-
tually study schemes that provide a TLB per compute unit
but then share a highly threaded page table walker and page
walk cache among compute units. Our results are comple-
mentary, showing that a little TLB-awareness in GPU design
can recover most of the original lost performance.

10. Conclusion

This work examines address translation in CPU/GPUs be-
cause of industry trends toward fully-coherent unified vir-
tual address spaces in heterogeneous platforms. This unifica-
tion simplifies programming models and the burden on pro-
grammers to manage memory; however, their implications
on architecture remains to be studied. We find that adding
address translation at the L1-level of the GPUs does de-
grade performance; the design of GPU address translation
should not be naively borrowed from CPUs (even though
CPU address translation is a relatively mature technology)
because the resulting overheads are untenable. We conclude
that the wide adoption of heterogeneous systems, which rely
on a manageable programming model, hinges upon thought-
ful GPU-aware address translation. Overall, mindful imple-
mentation of TLB-awareness in the GPU execution pipeline
is not complicated, thus enabling manageable performance
degradation in exchange for the industry-driven desire for
enhanced programmability. Therefore, we expect there is a
body of low-hanging fruit yet to be plucked for enhancing
address translation in heterogeneous systems.

11. Acknowledgments

We thank the anonymous reviewers for their feedback on this
work. This material is based upon work supported by the
National Science Foundation under Grant No. 1337147 and
1253700.

References

[1] AMD, “AMD I/O Virtualization Technology (IOMMU) Spec-

ification,” 2006.

[2] N. Amit, M. B. Yehuda, and B.-A. Yassour, “IOMMU: Strate-

gies for Mitigating the IOTLB Bottleneck,” WIOSCA, 2010.

[3] Andrea Arcangeli, “Transparent Hugepage Support,” KVM

Forum, 2010.

[4] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt,

“Analyzing CUDAWorkloads Using a Detailed GPU Simula-

tor,” ISPASS, 2009.

[5] T. Barr, A. Cox, and S. Rixner, “Translation Caching: Skip,

Don’t Walk (the Page Table),” ISCA, 2010.

[6] ——, “SpecTLB: A Mechanism for Speculative Address

Translation,” ISCA, 2011.

[7] A. Basu, J. Gandhi, J. Chang, M. Swift, and M. Hill, “Efficient

Virtual Memory for Big Memory Servers,” ISCA, 2013.

[8] A. Basu, M. Hill, and M. Swift, “Reducing Memory Ref-

erence Energy with Opportunistic Virtual Caching,” ISCA,

2012.

[9] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared Last-

Level TLBs for Chip Multiprocessors,” HPCA, 2010.

[10] A. Bhattacharjee and M. Martonosi, “Inter-Core Cooperative

TLB Prefetchers for Chip Multiprocessors,” ASPLOS, 2010.

[11] P. Boudier and G. Sellers, “Memory System on Fusion APUs,”

Fusion Developer Summit, 2012.

[12] W. Bouknight, S. Denenberg, D. McIntyre, J. Randall,

A. Sameh, and D. Slotnick, “The Illiac IV System,” Proceed-

ings of the IEEE, vol. 60, no. 4, pp. 369–388, April 1972.

[13] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,

M. Houston, and P. Hanrahan, “Brook for GPUs: Stream

Computing on Graphics Hardware,” SIGGRAPH, 2004.

[14] M. Cekleov and M. Dubois, “Virtual-Addressed Caches,”

IEEE Micro, 1997.

[15] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S. ha Lee,

and K. Skadron, “Rodinia: A Benchmark Suite for Heteroge-

neous Computing,” IISWC, 2009.

[16] D. Clark and J. Emer, “Performance of the VAX-11/780

Translation Buffers: Simulation and Measurement,” ACM

Transactions on Computer Systems, vol. 3, no. 1, 1985.

[17] W. Dally, P. Hanrahan, M. Erez, T. Knight, F. Labonte, J.-

H. Ahn, N. Jayasena, U. Kapasi, A. Das, J. Gummaraju,

and I. Buck, “Merrimac: Supercomputing with Streams,” SC,

2003.

[18] W. Fung and T. Aamodt, “Thread Block Compaction for Effi-

cient SIMT Control Flow,” HPCA, 2011.

[19] W. Fung, I. Sham, G. Yuan, and T. Aamodt, “Dynamic Warp

Formation and Scheduling for Efficient GPU Control Flow,”

MICRO, 2007.

[20] I. Gelado, J. Cabezas, N. Navarro, J. Stone, S. Patel, and

W. mei Hwu, “An Asymmetric Distributed Shared Memory

Model for Heterogeneous Parallel Systems,” ASPLOS, 2010.

[21] B. Hechtman and D. Sorin, “Evaluating Cache Coherent

Shared Virtual Memory for Heterogeneous Multicore Chips,”

ISPASS, 2013.

[22] T. Hetherington, T. Rogers, L. Hsu, M. O’Connor, and

T. Aamodt, “Characterizing and Evaluating a Key-Value Store

Application on Heterogeneous CPU-GPU Systems,” ISPASS,

2012.

[23] Intel, “Intel Virtualization Technology for Directed I/O Archi-

tecture Specification,” 2006.

[24] Intel Corporation, “TLBs, Paging-Structure Caches and their

Invalidation,” Intel Technical Report, 2008.

[25] T. Jablin, J. Jablin, P. Prabhu, F. Liu, and D. August, “Dy-

namically Managed Data for CPU-GPU Architectures,” CGO,

2012.

[26] T. Jablin, P. Prabhu, J. Jablin, N. Johnson, S. Beard, and

D. August, “Automatic CPU-GPU Communication Manage-

ment and Optimization,” PLDI, 2011.

[27] B. Jacob and T. Mudge, “A Look at Several Memory Man-

agement Units: TLB-Refill, and Page Table Organizations,”

ASPLOS, 1998.

[28] A. Jaleel and B. Jacob, “In-Line Interrupt Handling for

Software-Managed TLBs,” ICCD, 2001.

[29] A. Jog, O. Kayiran, N. CN, A. Mishra, M. Kandemir,

O. Mutlu, R. Iyer, and C. Das, “OWL: Cooperative Thread

Array Aware Scheduling Techniques for Improving GPGPU

Performance,” ASPLOS, 2013.

[30] G. Kandiraju and A. Sivasubramaniam, “Going the Distance

for TLB Prefetching: An Application-Driven Study,” ISCA,

2002.

[31] U. Kapasi, W. Dally, S. Rixner, P. Mattson, J. Owens, and

B. Khailany, “Efficient Conditional Operations for Data-

Parallel Architectures,” MICRO, 2000.

[32] S. Kaxiras and A. Ros, “A New Perspective for Efficient

Virtual-Cache Coherence,” ISCA, 2013.

[33] J. Kelm, D. Johnson, M. Johnson, N. Crago, W. Tuohy, A. Ma-

hesri, S. Lumetta, M. Frank, and S. Patel, “Rigel: An Archi-

tecture and Scalable Programming Interface for a 1000-core

Accelerator,” ISCA, 2008.

[34] H. Kim, “Supporting Virtual Memory in GPGPU Without

Supporting Precise Exceptions,” Workshop on Memory Sys-

tems Performance and Correctness in conjunction with PLDI,

2012.

[35] J. Kim, S. L. Min, S. Jeon, B. Ahn, D.-K. Jeong, and C. S.

Kim, “U-Cache: A Cost-Effective Solution to the Synonym

Problem,” HPCA, 1995.

[36] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Phar-

ris, J. Casper, and K. Asanovic, “The Vector-Thread Architec-

ture,” ISCA, 2004.

[37] G. Kyriazis, “Heterogeneous System Architecture: A Techni-

cal Review,” Whitepaper, 2012.

[38] K. Lim, D.Meisner, A. Saidi, P. Ranganathan, and T.Wenisch,

“Thin Servers with Smart Pipes: Designing SoC Accelerators

for Memcached,” ISCA, 2013.

[39] J. Meng, D. Tarjan, and K. Skadron, “Dynamic Warp Subdi-

vison for Integrated Branch and Memory Divergence,” ISCA,

2010.

[40] J. Menon, M. de Kruijf, and K. Sankaralingam, “iGPU: Ex-

ception Support and Speculative Execution on GPUs,” ISCA,

2012.

[41] G. Morris, B. Gaster, and L. Howes, “Kite: Braided Paral-

lelism for Heterogeneous Systems,” 2012.

[42] N. Muralimanohar, R. Balasubramonian, and N. Jouppi,

“CACTI 6.0: A Tool to Model Large Caches,” MICRO, 2007.

[43] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhudinov,

O. Mutlu, and Y. Patt, “Improving GPU Performance via

Large Warps and Two-Level Warp Scheduling,” MICRO,

2011.

[44] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, Trans-

parent Operating System Support for Superpages,” OSDI,

2002.

[45] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and

J. Phillips, “GPU Computing,” IEEE, vol. 96, no. 5, 2008.

[46] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,

A. Lefohn, and T. Purcell, “A Survey of General-Purpose

Computation on Graphcis Hardware,” EUROGRAPHICS,

vol. 26, no. 1, 2007.

[47] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago,

D. Lustig, V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel, R. All-

mon, R. Rayess, S. Maresh, and J. Emer, “Triggered Instruc-

tions: A Control Paradigm for Spatially-Programmed Archi-

tectures,” ISCA, 2013.

[48] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee,

“CoLT: Coalesced Large Reach TLBs,”MICRO, 2012.

[49] J. Power, M. Hill, and D. Wood, “Supporting x86-64 Address

Translation for 100s of GPU Lanes,” HPCA, 2014.

[50] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan,

C. Kozyrakis, and M. Horowitz, “Convolution Engine: Bal-

ancing Efficiency and Flexibility in Specialized Computing,”

ISCA, 2013.

[51] P. Rogers, “AMD Heterogeneous Uniform Memory Access,”

AMD, 2013.

[52] T. Rogers, M. O’Connor, and T. Aamodt, “Cache Conscious

Wavefront Scheduling,” MICRO, 2012.

[53] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,

P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Es-

pasa, E. Grochowski, T. Juan, and P. Hanrahan, “Larrabee:

A Many-Core x86 Architecture for Visual Computing,” SIG-

GRAPH, 2008.

[54] I. Singh, A. Shriraman, W. Fung, M. O’Connor, and

T. Aamodt, “Cache Coherence for GPU Architecture,”HPCA,

2013.

[55] S. Steele, “ARM GPUs Now and in the Future,” 2011.

[56] M. Talluri and M. Hill, “Surpassing the TLB Performance of

Superpages with Less Operating System Support,” ASPLOS,

1994.

[57] N. Wilt, “The CUDA Handbook,” 2012.

[58] L. Wu, R. Barker, M. Kim, and K. Ross, “Navigating Big Data

with High-Throughput, Energy-Efficient Data Partitioning,”

ISCA, 2013.

