
...

ADDRESS TRANSLATION FOR
THROUGHPUT-ORIENTED ACCELERATORS

...

WITH PROCESSOR VENDORS EMBRACING HARDWARE HETEROGENEITY, PROVIDING LOW-

OVERHEAD HARDWARE AND SOFTWARE ABSTRACTIONS TO SUPPORT EASY-TO-USE

PROGRAMMING MODELS IS A CRITICAL PROBLEM. IN THIS CONTEXT, THIS WORK SETS THE

FOUNDATION FOR DESIGNING MEMORY MANAGEMENT UNITS (MMUS) FOR GPUS IN

CPU/GPU SYSTEMS, THE KEY MECHANISM NECESSARY TO SUPPORT THE INCREASINGLY

IMPORTANT UNIFIED ADDRESS SPACE PARADIGM IN HETEROGENEOUS SYSTEMS.

......To ensure widespread adoption
of hardware accelerators, their programming
models must be efficient and easy to use. A
key determinant of programming model
efficacy is how main memory is addressed.
As such, processor vendors are shifting away
from the traditional approach of separating
CPU and accelerator virtual and physical
address spaces (or variants in which physical
memory is shared but physically parti-
tioned) to systems with unified virtual and
physical addresses. Among other advan-
tages, unified address spaces make data
structures and pointers globally visible
among computing units, which obviates the
need for expensive memory copies between
CPUs and accelerators. They also unburden
CPUs from pinning data pages for accelera-
tors in main memory, which improves
memory efficiency. As a result, vendors like
Intel, AMD, ARM, Qualcomm, and Sam-
sung are embracing integrated CPUs and
GPUs with fully unified address space sup-
port, consistent with Heterogeneous Sys-
tems Architecture1 (HSA) specifications.
AMD’s upcoming Carrizo processor, for
example, commits fully to HSA, with its het-

erogeneous uniform memory access (hUMA)
technology.2

Unified address spaces require effective hard-
ware memory management units (MMUs) for
virtual-to-physical address translation in acceler-
ators. This article highlights and extends our
recent studies on address translation hardware
for accelerators and its role in the unified
address space paradigm.3,4 We focus on gen-
eral-purpose programming on GPUs because
of their ubiquity and relative research matur-
ity.5–7 To realize the same programmability ben-
efits as CPUs, we target designing translation
look-aside buffers (TLBs) and page table
walkers (PTWs) accessed before (or in parallel
with) the GPU’s hardware caches. Our high-
level insight is that the GPU’s warp-based exe-
cution model and its scheduler have a critical
impact on MMU performance. In particular,
we find that implementing a strawman CPU-
like TLB and PTW degrades GPU perform-
ance severely. Furthermore, we find that previ-
ously proposed warp-scheduling enhancements
such as cache-conscious wavefront scheduling
and dynamic warp formation lose most of
their effectiveness with naively designed CPU-
like MMUs. Fortunately, however, modest

Bharath Pichai

Rutgers University

Lisa Hsu

Qualcomm Research

Abhishek Bhattacharjee

Rutgers University

...

102 Published by the IEEE Computer Society 0272-1732/15/$31.00�c 2015 IEEE

optimizations recover most of this lost perform-
ance. Overall, we reduce GPU TLB overheads
to levels deemed acceptable in the CPU world
(5 to 15 percent),8–10 which shows that a little
TLB awareness goes a long way in GPU design.

The ideas we present in this article are
complemented by an excellent, informative
treatment of GPU MMUs published in par-
allel with our prior work.11 Although the
authors propose architectural alternatives to
our design, many of their insights correlate
with ours. We therefore point interested read-
ers to their paper.

Our approach
Current heterogeneous systems use rigid

programming models that require separate
page tables, data replication, and manual data
movement between the CPU and GPU. This
is especially problematic for pointer-based
data structures (such as linked lists and trees).
Recent academic and industry efforts try to
address this using smarter memory manage-
ment schemes.12 However, full support for
unified address spaces is likely to provide the
most general means of solving these prob-
lems. A critical step toward unified address
spaces is to implement address translation in
GPUs. As a first step, Intel and AMD equip
GPUs with I/O MMUs13–15 that manage
their own page tables, TLBs, and PTWs.
These I/O MMUs have large TLBs and are
placed in the memory controller, which
makes GPU caches virtually addressed.

Our goal is to provide GPUs with the
same programmability benefits enjoyed by
CPUs. This implies that GPU address trans-
lation must support physically addressed
caches. Figure 1 shows our approach, with
per-shader-core TLBs and PTWs. As with
CPUs, we assume that L1 caches are virtually
indexed and physically tagged, which allows
TLB access to overlap with L1 cache access.
Cache-parallel TLB access eliminates the cur-
rent need for CPUs to initialize, copy, pin
data pages (in main memory), duplicate page
tables for GPU I/O MMUs, and set up I/O
MMU TLB entries,16 which have recently
been shown to be expensive operations.17 It
lets GPUs support page faults (using tradi-
tional or nontraditional techniques that
do not support precise exceptions18,19) and
access memory-mapped files, features desired

in hUMA specifications2 (although their fea-
sibility requires a range of hardware/software
studies beyond this article’s scope). Further-
more, physically addressed caches support
multiple contexts efficiently, without address-
synonym issues (although there are other
workarounds to synonyms like cache flushing
on context switches, these have a relatively
high performance cost). Finally, cache coher-
ence between CPU and GPU caches has long
been deemed desirable.1,7 In general, cache
coherence is greatly simplified if GPU caches
are physically addressed, in tandem with
CPU caches.

Understanding the impact of warp
scheduling on MMU design

For all its programmability benefits,
address translation at the L1 level is challeng-
ing because it constrains TLB access times,
and hence, size. Figure 2 shows that naive
MMU designs can severely degrade GPU
performance. The plots show speedups (val-
ues higher and lower than 1 are improve-
ments and degradations) of general-purpose
GPU benchmarks using naive 128-entry,
three-port TLBs with one PTW per shader

Interconnection network

…

Off-chip DRAM channel

Shader core Shader core Shader core

Memory partition

Shared cache

Memory controller

TLB

L1$

PTW TLB

L1$

PTW TLB

L1$

PTW

Figure 1. Our approach embeds a memory management unit (MMU) with a

translation look-aside buffer (TLB) and page table walker (PTW) per shader

core so that all caches become physically addressed. Adding MMUs is a

necessary first-step to support unified address spaces.

...

MAY/JUNE 2015 103

core (with TLB). Not only do naive TLBs
degrade performance, they also lose 30 to 50
percent performance versus conventional
cache-conscious wavefront scheduling and
thread block compaction (TBC),5,6 which
far exceeds the 5 to 15 percent overheads
deemed acceptable for CPUs. There are sev-
eral reasons for this.

First, default GPU round robin warp
scheduling interleaves the memory accesses
of individual threads such that their effective
temporal locality is stretched beyond the abil-
ity of the caches and TLBs to contain them.
The graph in Figure 3a quantifies this by
plotting the number of memory references in
each workload as a percentage of the total
instructions, and miss rates of 128-entry
TLBs. Although there are fewer memory
references compared to CPUs, TLB miss
rates are high (ranging from 22 to 70
percent).

Second, shader cores run warps with mul-
tiple threads in lockstep in warps/wave-
fronts.5 Therefore, a TLB miss on one warp
thread effectively stalls all warp threads,
which magnifies the miss penalty. Further-
more, multiple warp threads often TLB miss
in tandem, stressing conventional PTWs that
serialize TLB miss handling. The graph in
Figure 3b shows this effect by plotting page
divergence (the number of distinct transla-
tions requested by a warp). We show both
the average page divergence and the maxi-

mum page divergence of any warp through
execution. The average page divergence for
some benchmarks (bfs and mummergpu) is
more than four and eight, which means that
multiple translations are needed for a warp to
progress, and places incredible bandwidth
pressure on MMUs. This, combined with
the fact that TLB misses are long-latency
events (we’ve measured TLB misses to be
roughly twice as long as L1 cache misses),
degrades performance.

Third, Figure 2 shows that sophisticated
warp-scheduling techniques beyond the tradi-
tional round robin approach lose much of their
effectiveness with naively designed MMUs.
Consider, for example, cache-conscious wave-
front scheduling (CCWS),6 which introduces
cache awareness in the traditional warp schedu-
ler to boost cache hit rates. Figure 2 compares
the speedup of CCWS with and without TLBs
versus a baseline setup with no TLBs. One
might initially expect that warp schedulers that
boost cache hit rates also improve TLB per-
formance substantially. Although CCWS with
TLBs does improve performance over a base-
line round robin warp scheduler with TLBs, it
still underperforms a baseline GPU without
TLBs. The performance gap is even higher (30
to 50 percent) compared to CCWS without
TLBs.

Finally, Figure 2 shows that warp schedu-
lers that dynamically form warps of threads
of similar control flow also lose their

1.8
With TLB

CCWS

CCWS (with TLB)

TBC

TBC (with TLB)

1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0

b
fs

m
um

m
er

g
p

u

S
p

ee
d

up

km
ea

ns

m
em

ca
ch

ed

st
re

am
cl

us
te

r

p
at

hf
in

d
er

Figure 2. Compared to a baseline architecture without TLBs, speedup of naive three-ported

TLBs per shader core, with and without cache-conscious wavefront scheduling (CCWS), with

and without thread block compaction (TBC). Naive TLBs degrade performance in every case.

..

TOP PICKS

..

104 IEEE MICRO

effectiveness with cache-parallel TLB access.
Specifically, we compare TBC with and with-
out TLBs. We find that performance differ-
ences in excess of 20 to 25 percent are
common between the two cases. We will
show that this occurs because TBC dynami-
cally compacts threads that access data in
wildly disparate locations, which increases
page divergence and hence, both TLB miss
rates and latencies.

Methodology
We conducted detailed experiments using

Rodinia workloads20 and memcached21 (sim-
ulated with Wikipedia traces) from past studies
on control-flow divergence and cache schedul-
ing.5,6 We used GPGPU-Sim22 to study the
impact of MMUs on these workloads.

We assumed 30 single-instruction, multi-
ple-thread cores; 32-thread warps; and a pipe-
line width of eight. We had 1,024 threads, 16
Kbytes of shared memory, and 32-Kbyte L1
data caches (with 128 byte lines and least-
recently used (LRU) per core. We also used
eight memory channels with 128 Kbytes of
unified L2 cache space per channel. Most of
our results focused on 4-Kbyte pages because
of the additional challenge imposed by small
page size; however, we will also present initial
results for large 2-Mbyte pages. Note that
large pages, while effective, aren’t free and can

have their own overheads in certain situa-
tions.8,23 As a result, many applications are
restricted to 4-Kbyte page sizes; it is important
for our GPUs with address translation to be
compatible with them.

Address translation for GPUs
In this section, we detail key architectural

decisions that influence effective GPU MMU
design. Our studies indicate the challenges
and opportunities presented by warp-based
execution scheduling on TLBs and PTWs.

Mirroring CPU address translation in GPUs
We begin with the natural question of

how CPU-style TLBs perform in GPUs.
Understanding their benefits and limitations
with regard to the warp scheduler provides
insights on how to better tailor MMUs for
GPUs. Figure 4 shows a strawman design.
Each shader core maintains a TLB and a
PTW and has 48 warps (the minimum
scheduling unit) per shader core. A warp’s
threads execute the same instruction in lock-
step. Instructions are fetched from an instruc-
tion cache and operands are read from a
banked register file. Loads and stores access
the memory unit.

The memory unit’s address generation
unit calculates virtual addresses, which are
coalesced into unique cache line references.

100 32

28

24

20

P
ag

e
d

iv
er

g
en

ce

16

12

8

4

0

Memory refs. TLB misses
80

60

P
er

ce
nt

ag
e

40

20

b
fs

m
um

m
er

g
p

u

km
ea

ns

m
em

ca
ch

ed

st
re

am
cl

us
te

r

p
at

hf
in

d
er b
fs

m
um

m
er

g
p

u

km
ea

ns

m
em

ca
ch

ed

st
re

am
cl

us
te

r

p
at

hf
in

d
er

0

Average Max

(a) (b)

Figure 3. GPU memory reference characterization data. (a) The percentage of total instructions that are memory references

and TLB miss rates. (b) The average number of distinct translations requested per warp (page divergence) and the maximum

number of translations requested by any warp through the execution. Despite relatively infrequent memory references, TLB

misses are extremely common.

...

MAY/JUNE 2015 105

We enhance this logic by also coalescing mul-
tiple intrawarp requests to the same virtual
page (and hence page table entry (PTE). This
is crucial for reducing TLB access traffic and
port counts. Two sets of accesses are now
available: unique cache accesses and unique
PTE accesses. These are presented in parallel
to the TLB and the virtually indexed, physi-
cally tagged data cache.

Number and placement of TLBs. We assume
that a single TLB per shader core is shared
among single-instruction, multiple-data (SIMD)
lanes, to save power and area. This is similar to

the CPU approach of maintaining per-core
TLBs. Alternate approaches exist; for example, it
is possible to implement one TLB per SIMD
lane. These approaches, however, typically con-
sume more power and area.

TLB sizes and port counts. Commercial
CPUs currently implement 64- to 512-entry
TLBs per core.9,24 These sizes are typically
picked to be substantially smaller and lower
latency than CPU L1 caches. Using a similar
methodology with CACTI,25 we found that
128-entry TLBs are the largest possible struc-
tures that do not increase the access time of
32-Kbyte GPU L1 data caches.

Blocking versus nonblocking TLBs. One way
to reduce the impact of TLB misses is to over-
lap them with useful work. To this end, some
CPU TLBs support hits under misses.26

However, most commercial CPUs typically
use blocking TLBs because of their high hit
rates.27,28 We assume blocking TLBs in our
baseline GPU design; therefore, TLB misses
prompt the scheduler to swap another warp
into the SIMD pipeline. Swapped-in warps
executing nonmemory instructions proceed
unhindered (until the original warp’s PTWs
finish and it completes the writeback stage).
Swapped-in warps with memory references,
however, stall in this design because they
require nonblocking support.

Figure 4 shows that TLBs have their own
miss status holding registers (MSHRs). We
assume, as with both GPU caches, one TLB
MSHR per warp thread (32 in total). MSHR
allocation triggers page table walks, which
inject memory requests to the shared caches
and main memory.

PTW mechanisms, counts, and placement.
Our GPU, like most CPUs today, assumes
hardware PTWs because they achieve higher
performance than software-managed TLBs
and do not need to run OS code (which
GPUs cannot currently execute). CPUs usu-
ally place page table walks close to each TLB
so that page table walks can be initiated
quickly on misses. We use the same logic to
place hardware PTWs next to TLBs. Finally,
CPUs maintain one PTW per TLB. Although
it’s possible to consider multiple PTWs per
GPU TLB, our baseline design mirrors CPUs

W
arp

 47

W
arp

 2

W
arp

 1

W
arp

 0

W
arp

s

Fetch and I-cache

Decode

Register read

ALU

Add. gen.

P
ip

eline

M
em

ory unit

Coalescing

TLB D-cache

$ MSHRsTLB
MSHRs

Memory port

Memory
hierarchy

Writeback

HitMiss

P
TW

Figure 4. Shader core pipeline with address

translation. We assume that L1 data caches

are virtually indexed, physically tagged

(allowing TLB lookup in parallel with cache

access). All caches (L1 and shared caches,

which are not shown) are physically

addressed.

..

TOP PICKS

..

106 IEEE MICRO

and similarly has one PTW per shader core.
We investigate the suitability of this decision
in subsequent sections.

System-level issues (shootdowns and page faults).
A CPU usually shoots down TLBs on remote
cores when its own TLB updates an entry,
using software interprocessor interrupts
(IPIs). We assume the same approach for
GPUs (that is, if the CPU that initiated the
GPU modifies its TLB entries, GPU TLBs
are flushed). Similarly, we assume that a page
fault interrupts a CPU to run the handler. In
practice, our performance was not affected by
these decisions (because shootdowns and
page faults almost never occur on our work-
loads). If these become a problem, as detailed
in hUMA, future GPUs might be able to run
dedicated OS code for shootdowns and page
faults without interrupting CPUs. We leave
this for future work.

Unfortunately, we already saw in Figure 2
that this basic design suffers from performance
degradations. In response, the next section
proposes a set of low-overhead optimizations
to recover this lost performance.

Augmenting address translation for GPUs
We now detail how MMU designs must

be redesigned to suit warp-based execution.

TLB size and port counts. An ideal (but
impractical) TLB is large and low latency.
Furthermore, it is heavily multiported, with
one port per warp thread (32 in total).
Although having more ports facilitate quick
lookups and miss detection, they also signifi-
cantly increase area and power. Figure 5 sheds
light on size, access time, and port-count
tradeoffs for naive baseline GPU address
translation. We vary TLB sizes from 64 to
512 entries (the range of CPU TLB sizes)
and port count from three (like L1 CPU
TLBs) to an ideal number of 32. We present
speedups against the no-TLB case (speedups
are under one because adding TLBs degrades
performance).We use CACTI to assess access
time increases with size.

Figure 5 shows that larger sizes and more
ports greatly improve GPU TLB perform-
ance. In general, 128-entry TLBs perform
best; beyond this, increased access times
reduce performance. Figure 5 also shows that
while port counts do impact performance
(particularly for mummergpu and bfs),
modestly increasing from three ports (in our
naive baseline) to four ports recovers much of
this lost performance. This matches results
from the page divergence plots of Figure 3,
which showed that warps usually request far
fewer than their maximum of 32 translations.

1.0

0.9

0.8

0.7

0.6

bfs mummer. kmeans memc.

TLB size

stream. path.

64 12
8

25
6

51
2 64 12
8

25
6

51
2 64 12
8

25
6

51
2 64 12
8

25
6

51
2 64 12
8

25
6

51
2 64 12
8

25
6

51
2

S
p

ee
d

up

3 ports

4 ports

8 ports

32 ports

Figure 5. Performance for TLB size and port counts, assuming fixed access times.

Excessively large and multiported TLBs increase access time despite improving miss rates

and available bandwidth.

...

MAY/JUNE 2015 107

This is because coalescing logic before TLBs
reduces requests to the same PTE into a sin-
gle lookup.

Blocking versus nonblocking TLBs. We inves-
tigated two mechanisms to overlap TLB
misses with useful work.

� Hits under misses. In this approach, the
swapped-in warp executes even if it has
memory references, as long as they are
all TLB hits. As soon as the swapped-
in thread TLB misses, it too must be
swapped out. This approach leverages
already existing TLB MSHRs; we leave
more aggressive miss-under-miss sup-
port for future work.

� Overlapping TLB misses with cache
accesses. It is also possible to overlap
TLB misses with work from the warp
that originally missed. Because warps
have multiple threads, even when
some miss, others may hit in the
TLB. Since hits immediately yield
physical addresses, it’s possible to
look up the L1 cache with these
addresses without waiting for the
warp’s TLB misses to be resolved.
This boosts cache hit rates because
this warp’s data is more likely to be in

the cache before a swapped-in warp
evicts its data. Furthermore, if these
early cache accesses do miss, subse-
quent cache miss penalties can be
overlapped with the TLB miss penal-
ties of the warp.

In this approach, threads that hit in the
TLB immediately look up the cache even if
the same warp has a TLB miss on a different
thread. Data found in the cache is buffered in
the standard warp context state in register
files (from past work6) before the warp is
swapped out. This approach requires only
simple combinational logic in the PTW and
MSHRs to allow TLB hits to proceed for
cache lookup.

Figure 6 quantifies the benefits of non-
blocking TLBs, normalized to a baseline
without TLBs. We first permit hits under
misses, then allow TLB hits to proceed to the
cache without waiting for all misses from the
same warp to be resolved. We compare these
to an ideal and impractical 512-entry TLB
with 32 ports without increased access
latencies.

Although hits under misses improve per-
formance, it is even more effective to imme-
diately look up the cache for threads that
TLB hit. For example, streamcluster
gains an additional 8 percent performance
from overlapped cache access.

PTW scheduling. Our page divergence results
show that GPUs execute warps that can suffer
TLB misses on multiple threads, often to dis-
tinct PTEs. Consider the example in Figure
7, which shows three concurrent x86 page
walks, each of which traverses a four-level
radix tree page table. We assume that the
three threads miss on virtual pages (0xb9,
0x0c, 0xac, 0x03), (0xb9, 0x0c, 0xac,
0x04), and (0xb9, 0x0c, 0xad, 0x05).
We present addresses in groups of 9-bit indi-
ces as these correspond directly to the page
table lookups. Naive baseline GPU PTWs
perform the three page table walks serially
(shown with dark bubbles). This means that
each page table walk requires four memory
references: 1–4 for (0xb9, 0x0c, 0xac,
0x03), 5–8 for (0xb9, 0x0c, 0xac,
0x04), and 9–12 for (0xb9, 0x0c, 0xad,
0x05). Each of the references hits in the

1.0

0.9

0.8

0.7S
p

ee
d

up

0.6

0.5

b
fs

m
um

m
er

g
p

u

km
ea

ns

m
em

ca
ch

ed

st
re

am
cl

us
te

r

p
at

hf
in

d
er

Blocking Hits under misses

Ideal 512-entry, 32-port TLB...& overlapped cache access

Figure 6. On a 128-entry, four-port TLB, adding nonblocking support

improves performance closer to an ideal (no increasing access latency) 32-

port, 512-entry TLB. Of the nonblocking strategies, more intelligently

scheduling the memory references of page table walks provides the highest

benefits.

..

TOP PICKS

..

108 IEEE MICRO

shared cache (several tens of cycles) or main
memory. However, we augment this basic
PTW by noting that scheduling the memory
references of the distinct walks in an inter-
leaved fashion can eliminate redundant
memory accesses and boost cache hit rates.

Specifically, note that higher-order virtual
address bits tend to remain unchanged across
memory accesses as they cover large memory
regions (for example, consider bits 47–39
and 38–30, which cover 1-Gbyte spaces).
Therefore, we can replace the corresponding
redundant memory reads with single reads.
In addition, note that 128-byte cache lines
hold 16 consecutive 8-byte PTEs, which
means that there is potential for cache line
reuse across different page table walks. For
example, in Figure 7, the PT entries for vir-
tual pages (0xb9, 0x0c, 0xac, 0x03) and
(0xb9, 0x0c, 0xac, 0x04) are on the same
cache line. We exploit this observation by
interleaving memory references from differ-
ent page table walks (shown in lighter bub-
bles). In Figure 7, references 3 and 4 (from
three different page table walks) are handled
successively, as are references 5 and 6 (from
page walks for virtual pages (0xb9, 0x0c,
0xac, 0x03) and (0xb9, 0x0c, 0xac,
0x04), which boosts hit rates. Figure 8 shows
that PTW scheduling significantly boosts
GPU performance. For example, bfs and
mummergpu gain from PTW scheduling

because they have a higher page divergence
(so there are more memory references from
different TLB misses to schedule). We find
that PTW scheduling achieves its perform-
ance by completely eliminating 10 to 20 per-
cent of the PTW memory references and
boosting PTW cache hit rates by 5 to 8 per-
cent across the workloads. Consequently, the
number of idle cycles (due in large part to
TLB misses) reduces from 5 to 15 percent to
4 to 6 percent, which boosts performance.

Overall, Figure 8 shows that thoughtful
nonblocking and PTW scheduling extensions
to naive baseline GPUs boost performance to
the extent that it is within 1 percent of an
ideal, impractical, large, and heavily ported
512-entry, 32-port TLB with no access latency
penalties. In fact, all the techniques reduce
GPU address translation overheads to less
than 10 percent for all benchmarks, which is
well within the 5 to 15 percent range consid-
ered acceptable on CPUs.

Integration with advanced warp schedulers
Having detailed basic GPU MMU design,

we now briefly investigate the relationship
between TLBs and advanced warp-scheduling
schemes such as CCWS and TBC.

Cache-conscious wavefront scheduling
CCWS is one of several recent warp-sched-

uling techniques that boosts cache hit rates.6

0b8 00b

00c

00d

0b9

0ba PPN NUI PPN 3af
PPN 125

PPN NUI PPN 378

003

004

005

005

PPN 041

PPN 038

PPN 037

PPN 502

PPN 120

PPN 022
4

8 6

5

006

12 7
004

PD

3
2

6
10

5
9

1
7

11

PDPPML4

Serial page walks

Cache-aware, coalesced page walks

PPN 379
PPN 380

71

121

0ac

0ad

0ae
4

3

PPN 042

PPN 136
1

Figure 7. Three threads from a warp TLB miss on addresses (0xb9, 0x0c, 0xac, 0x03),

(0xb9, 0x0c, 0xac, 0x04), and (0xb9, 0x0c, 0xad, 0x05). A conventional PTW

carries out three serial page walks (shown with dark bubbles), making references to 1–4, 5–8,

and 9–12—a total of 12 loads. Our cache-aware coalesced page walker (shown with light

bubbles) reduces this to seven loads and increases cache hit rate.

...

MAY/JUNE 2015 109

Its key intuition is that round robin warp
scheduling is oblivious to intrawarp data
locality and thrashes L1 caches by switching
between too many warps too aggressively. By
carefully limiting which warps overlap with
one another, CCWS promotes cache reuse
and boosts performance.

We might expect, at first blush, that
boosting cache-hit rate would naturally miti-
gate TLB miss overheads. Figure 9 quantifies
the speedup (against a baseline without
TLBs) of

� naive blocking 128-entry, four-port
TLBs with one PTW (no nonblock-
ing or PTW scheduling);

� augmented TLBs that overlap misses
with cache access and allow hits under
misses (nonblocking), with PTW
scheduling;

� CCWS without TLBs;
� CCWS with naive TLBs; and
� CCWS with augmented TLBs.

Baseline CCWS (without TLBs) improves
performance for all benchmarks by at least 20
percent. However, adding CCWS to naive
TLBs and augmented TLBs outperforms
vanilla naive and augmented versions by only
5 to 10 percent. Also, the gap between CCWS
with and without TLBs remains large (even
augmented TLBs and PTWs have a 50 to 120
percent difference).

Fortunately, our recent work identifies the
reason for this and shows that extremely sim-
ple and low-overhead hardware can resolve
these problems.3,4 Intuitively, we find that
CCWS loses performance when integrating
TLBs because it treats all cache misses equiva-
lently. In reality, some cache misses are accom-
panied by TLB misses and others with TLB
hits. In practice, we show that adding this
information cuts TLB overheads to less than
10 percent while requiring almost negligible
hardware changes, and, in some cases, even
less hardware. We use two techniques for this.

In the first approach, we note that CCWS
uses logic to track which cache misses occur
because of more frequent warp switches by
incrementing dedicated counters when this
happens. Separate counters are maintained
per warp, and when their sum is higher than
a threshold, the CCWS scheduler backs off
from switching between multiple warps too
aggressively. We leverage this approach by
merely requiring that cache misses with prior
TLB misses further increment these counters.
Just this simple fix almost entirely eliminates
TLB overheads.

In our second approach, we go a step fur-
ther by noting that CCWS uses additional

1.0

0.9

0.8

0.7

S
p

ee
d

up

0.6

0.5

b
fs

m
um

m
er

g
p

u

km
ea

ns

m
em

ca
ch

ed

st
re

am
cl

us
te

r

p
at

hf
in

d
er

Blocking Nonblocking

Ideal 512-entry, 32-port TLBPTW scheduling

Figure 8. On a 128-entry, four-port TLB, adding nonblocking and PTW

scheduling logic achieves close to the performance of an ideal (no

increasing access latency) 32-port, 512-entry TLB. Note that these schemes

achieve performance benefits with low-overhead hardware enhancements.

1.0

1.2

1.4

1.6
3.85

Naive TLB Augmented TLB
CCWS (naive TLB)CCWS (no TLB)

CCWS (augmented TLB)

0.8

0.6

0.4

S
p

ee
d

up

0.2

0

b
fs

m
um

m
er

g
p

u

km
ea

ns

m
em

ca
ch

ed

st
re

am
cl

us
te

r

p
at

hf
in

d
er

Figure 9. Compared to a baseline architecture without TLBs, speedup of

naive, four-ported TLBs per shader core, augmented TLBs and PTWs

(nonblocking TLBs with PTW scheduling and cache access overlap), CCWS

without TLBs, CCWS with naive TLBs and PTWs, and CCWS with

augmented TLBs and PTWs.

..

TOP PICKS

..

110 IEEE MICRO

logic at the cache-line granularity to detect
those cache misses which would have been
hits with better warp scheduling. We observe
that since TLB and cache misses are highly
correlated, we can replace this logic with
page-level information instead of cache line-
level information. This TLB-aware CCWS
scheme comes within 10 percent of the per-
formance of baseline CCWS but uses only
half the hardware resources.

Thread block compaction
We also studied the relationship between

control flow warp schedulers and intelligent
MMUs. Specifically, we studied TBC,5 although
our insights broadly apply to other approaches.
In CUDA and OpenCL, threads are issued to
SIMD cores in units of thread blocks. Warps
within a thread block can communicate through
shared memory. TBC essentially also proposes
control-flow locality within a thread block and is
implemented using block-wide reconvergence
stacks for divergence handling.5 At a divergent
branch, all warps of a thread block synchronize.
TBC hardware scans the thread block’s threads
(which can be across multiple warps) to identify
which ones follow the same control flow path.
Threads are compacted into new dynamic warps
according to branch outcomes and executed
until the next branch or reconvergence point
(where they are synchronized again for compac-
tion). Overall, this approach increases SIMD
utilization.

Unfortunately, blindly adding address
translation has problems. Dynamically assim-
ilating threads from different warps into new
warps increases both TLB miss rates and
warp page divergence (which amplifies the
latency of one thread’s TLB miss on all warp
threads). Consider, for example, the control
flow graph in Figure 10. Each thread block
contains three warps of four threads. Each
thread is given a number, along with the vir-
tual page it is accessing if it is a memory oper-
ation. For example, 1(6) refers to thread 1
accessing virtual page 6, 1(x) means that
thread 1 is executing a nonmemory instruc-
tion, and x(x) means that the thread is
masked off through branching.

All threads execute blocks A and D, but
only threads 2, 3, 5, and 12 execute block C
because of a branch divergence at the end of
A (the rest execute block B). Blocks B and C

comprise a memory operation. Figure 10
shows the order in which warps execute
blocks B and C using conventional stack
reconvergence. Because there is no dynamic
warp formation, it takes six distinct warp
fetches to execute both branch paths. Instead,
Figure 10 shows that forming TBC reduces
warp fetches to just three, fully utilizing
SIMD pipelines.

Address translation poses unique problems
on TBC. For example, the first dynamic warp
now requires virtual pages 1 and 6. If we con-
sider a one-entry TLB that’s initially empty,
the first warp takes two TLB misses, the sec-
ond takes three, and the third takes two.
Instead, Figure 10 shows a TLB-aware scheme
that potentially performs better by forming a
first dynamic warp with threads requiring
only virtual page 6 and a second warp request-
ing virtual page 1. Now, the first two warps
suffer two TLB misses as opposed to five (for
baseline, TLB-agnostic TBC) without sacri-
ficing SIMD utilization. The overall effect is a
performance loss of 20 to 25 percent.

Fortunately, our recent work shows that
these problems easily can be overcome with
modest hardware.3,4 At a high level, TLB-
aware TBC tracks the history of past dynamic
warps to identify which threads tend to access
similar regions in memory. It then uses this
information to assess which threads to dynam-
ically assimilate into warps. Our detailed
experiments reveal that this approach alone
(which requires an additional area budget of
less than 1 percent of the shader core) drives
TLB miss overheads to less than 10 percent of
runtime for every single workload.

Discussion
Our initial GPU MMU design presents sev-

eral possibilities for further improvement. We
list a brief subset of these possibilities below.

Shared last-level TLBs
Recent work has shown the benefits of

last-level TLBs shared among multiple CPU
cores.9 Similarly, we have gone beyond our
initial work3 to study the benefits of archi-
tecting L2 TLBs shared among shader cores.
In practice, we found that L1 TLB misses
occur so often that huge bandwidth require-
ments are placed on shared L2 TLBs.

...

MAY/JUNE 2015 111

Consequently, it is difficult for the shared
TLB to support enough ports while retaining
high capacity. In practice, we have therefore
found this approach to have limited utility.

MMU caches
MMU caches are used by x86 cores to

store frequently used PTEs from upper levels
of the page table tree.29 These structures accel-
erate page table walks; we’ve found that, in
general, shared MMU caches provide addi-
tional performance boosts of 2 to 3 percent
across our workloads. In general, these are a
better alternative to shared last-level TLBs
because their capacity is implicitly higher as
they cache upper page table levels; hence, they
can more easily support the greater bandwidth
demands of many shader cores.

T his work examines address translation in
CPUs and GPUs. This unification sim-

plifies programming models and the burden
on programmers to manage memory; how-
ever, its implications on architecture remain to
be studied. Adding address translation at the
L1-level of the GPU does degrade perform-
ance; GPU address translation should not be

naively borrowed from CPUs because the
overheads are untenable. Overall, mindful
implementation of TLB-awareness in GPUs is
not complicated, which enables manageable
performance degradation in exchange for the
desire for enhanced programmability. We
expect there is a body of low-hanging fruit for
enhancing address translation in heterogene-
ous systems.

MICRO

..
References
1. G. Kyriazis, Heterogeneous System Architec-

ture: A Technical Review, white paper, 2012.

2. P. Rogers, “AMD Heterogeneous Uniform

Memory Access,” AMD, 2013.

3. B. Pichai, L. Hsu, and A. Bhattacharjee,

“Architectural Support for Address Transla-

tion on GPUs,” ASPLOS, 2014.

4. B. Pichai, L. Hsu, and A. Bhattacharjee, Archi-

tectural Support for Address Translation on

GPUs, tech. report DCS-TR-703, Dept. of

Computer Science, Rutgers Univ., 2014.

5. W. Fung and T. Aamodt, “Thread Block

Compaction for Efficient SIMT Control

Flow,” HPCA, 2011.

Block A

1(x) 2(x)
3(x) 4(x)

5(x) 6(x)
7(x) 8(x)

9(x) 10(x)
11(x) 12(x)

Block B
1(6) x (x)
x (x)4(6)

x (x) 6(1)
7(1) 8(7)

9(1) 10(6)
11(6) x (x)

Block C
x(x) 2(6)
3(6) x(x)

5(7) x(x)
x(x) x(x)

x(x) x(x)
x(x) 12(7)

Block D
1(x) 2(x)
3(x) 4(x)

5(x) 6(x)
7(x) 8(x)

9(x) 10(x)
11(x) 12(x)

Reconvergence stack

TLB-aware thread

Block compaction

B

1(6)
x(x)
x(x)
4(6)

B

x(x)
6(1)
7(1)
8(7)

B

9(1)
10(6)
11(6)
x(x)

C

x(x)
2(6)
3(6)
x(x)

C

5(7)
x(x)
x(x)
x(x)

C

x(x)
x(x)
x(x)

12(7)

Thread block compaction

B

1(6)
6(1)
7(1)
4(6)

B

9(1)
10(6)
11(6)
8(7)

C

5(7)
2(6)
3(6)
12(7)

B

1(6)
10(6)
11(6)
4(6)

B

9(1)
6(1)
7(1)
8(7)

C

5(7)
2(6)
3(6)
12(7)

Figure 10. Comparison of warp execution when using reconvergence stacks, TBC, and TLB-

aware TBC. Note the difference in schedules for TLB-aware behavior.

..

TOP PICKS

..

112 IEEE MICRO

6. T. Rogers, M. O’Connor, and T. Aamodt,

“Cache Conscious Wavefront Scheduling,”

MICRO, 2012.

7. I. Singh et al., “Cache Coherence for GPU

Architecture,” HPCA, 2013.

8. A. Basu et al., “Efficient Virtual Memory for

Big Memory Servers,” ISCA, 2013.

9. A. Bhattacharjee, D. Lustig, and M. Marto-

nosi, “Shared Last-Level TLBs for Chip Mul-

tiprocessors,” HPCA, 2010.

10. A. Bhattacharjee and M. Martonosi, “Inter-

Core Cooperative TLB Prefetchers for Chip

Multiprocessors,” ASPLOS, 2010.

11. J. Power, M. Hill, and D. Wood, “Supporting

x86-64 Address Translation for 100s of GPU

Lanes,” HPCA, 2014.

12. N. Wilt, “The CUDA Handbook,” 2012.

13. AMD, “AMD I/O Virtualization Technology

(IOMMU) Specification,” 2006.

14. N. Amit, M.B. Yehuda, and B.-A. Yassour,

“IOMMU: Strategies for Mitigating the

IOTLB Bottleneck,” WIOSCA, 2010.

15. Intel, “Intel Virtualization Technology for

Directed I/O Architecture Specification,” 2006.

16. P. Boudier and G. Sellers, “Memory System on

Fusion APUs,” Fusion Developer Summit, 2012.

17. M. Malka et al., “rIOMMU: Efficient

IOMMU for I/O Devices that Employ Ring

Buffers,” ASPLOS, 2015.

18. H. Kim, “Supporting Virtual Memory in

GPGPU without Supporting Precise Excep-

tions,” Workshop on Memory Systems Per-

formance and Correctness in conjunction

with PLDI, 2012.

19. J. Menon, M. de Kruijf, and K. Sankaralin-

gam, “iGPU: Exception Support and Specu-

lative Execution on GPUs,” ISCA, 2012.

20. S. Che et al., “Rodinia: A Benchmark Suite for

Heterogeneous Computing,” IISWC, 2009.

21. T. Hetherington et al., “Characterizing and

Evaluating a Key-Value Store Application

on Heterogeneous CPU-GPU Systems,”

ISPASS, 2012.

22. A. Bakhoda et al., “Analyzing CUDA Work-

loads Using a Detailed GPU Simulator,”

ISPASS, 2009.

23. J. Navarro et al., “Practical, Transparent

Operating System Support for Super-

pages,” OSDI, 2002.

24. TLBs, Paging-Structure Caches and their

Invalidation, tech. report, Intel, 2008.

25. N. Muralimanohar, R. Balasubramonian, and

N. Jouppi, “CACTI 6.0: A Tool to Model

Large Caches,” MICRO, 2007.

26. A. Jaleel and B. Jacob, “In-Line Interrupt

Handling for Software-Managed TLBs,”

ICCD, 2001.

27. T. Barr, A. Cox, and S. Rixner, “SpecTLB: A

Mechanism for Speculative Address Trans-

lation,” ISCA, 2011.

28. B. Pham et al., “CoLT: Coalesced Large

Reach TLBs,” MICRO, 2012.

29. A. Bhattacharjee, “Large-Reach Memory

Management Unit Caches,” MICRO, 2013.

Bharath Pichai is a software development
engineer at Amazon, where he works on the
Amazon Web Services infrastructure. His
research interests include compilers, pro-
gramming languages, architecture, and data-
bases. Pichai has an MS in computer science
from Rutgers University, where he com-
pleted the research for this article. Contact
him at bsp57@cs.rutgers.edu.

Lisa Hsu is a staff engineer in the R&D
wing of Qualcomm. Her research interests
include architecture, memory system design,
and performance modeling. Hsu has a PhD
in computer science from the University of
Michigan, Ann Arbor. Contact her at hsul
@qti.qualcomm.com.

Abhishek Bhattacharjee is an assistant pro-
fessor in the Department of Computer Sci-
ence at Rutgers University. His research
interests include the intersection of architec-
ture and operating systems, memory systems
architecture, and virtualization. Bhattachar-
jee has a PhD in electrical engineering from
Princeton University. Contact him at abhib
@cs.rutgers.edu.

...

MAY/JUNE 2015 113

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

