
Quantifying and Improving I/O Predictability in Virtualized Systems

Cheng Li, Íñigo Goiri, Abhishek Bhattacharjee, Ricardo Bianchini, Thu D. Nguyen
Department of Computer Science, Rutgers University, Piscataway, NJ

{chenglii, goiri, abhib, ricardob, tdnguyen}@cs.rutgers.edu

Abstract—Virtualization enables the consolidation of virtual
machines (VMs) to increase the utilization of physical servers
in Infrastructure-as-a-Service (IaaS) cloud providers. However,
our experience shows that storage I/O performance varies wildly
in the face of consolidation. Since many users may desire
consistent performance, we argue that IaaS providers should offer
a class of predictable-performance service in addition to existing
(predictability-oblivious) services. Thus, we propose VirtualFence,
a storage system that provides predictable VM performance. Vir-
tualFence uses three main techniques: (1) non-work-conserving
time-division I/O scheduling, (2) a small solid-state (SSD) cache
in front of a much larger hard disk drive (HDD), and (3) space-
partitioning of both the SSD cache and the HDD. Our evaluation
shows that VirtualFence improves predictability significantly,
while allowing cloud providers to reach any desired compromise
between predictability and performance.

I. INTRODUCTION

With the advent of cloud computing, virtualization has
become the primary strategy to consolidate diverse workloads
(encapsulated in virtual machines or VMs) to ensure high
utilization of physical machines (PMs). Many IaaS cloud
providers, such as Amazon EC2 and Rackspace, use virtu-
alization and consolidation in offering their services. How-
ever, as we demonstrate in this paper, VM performance may
vary significantly in the face of consolidation. In fact, VM
performance is essentially unpredictable, since the number of
co-located VMs and their workloads may change each time
the VM runs, or even during a single run. For example,
researchers have shown a single run of a fixed-load VM
on Amazon EC2 to exhibit wild performance swings due to
consolidation [1]. Since many users may desire consistent
performance, we argue that IaaS providers should offer a new
class of predictable-performance service in addition to (and
using different resources from) their existing (predictability-
oblivious) services.

Along these lines, our research seeks to create virtualized
systems that exhibit performance predictability. This property
implies that the average throughput and response time expe-
rienced by each VM should be unaffected by any other VM
executing on the same PM or the overall utilization of the PM.

Importantly, note that our notion of performance pre-
dictability differs from performance isolation [2], [3], [4],
[5], [6], [7], [8]. The goal of isolation is to ensure that each
co-located VM achieves at least a minimum desired level
of performance. This is one of the goals of predictability.
However, in performance isolation it is typically acceptable to
dedicate more resources than this minimum, if those resources
are available. In contrast, dedicating any available resources
beyond a fixed amount will likely ruin predictability. One may
see isolation as a less strict form of predictability.

In this paper, we address the specific case of storage
I/O performance predictability (or simply I/O predictability).

Compared to processing, memory, or networking, storage I/O
predictability is the most challenging to achieve primarily due
to the mechanical limitations of hard disk drives (HDDs).
In particular, high disk seek and rotational times make pre-
dictability difficult to achieve when requests from multiple
VMs to the same HDD are interleaved. Interestingly, the prob-
lem becomes even worse when a solid-state drive (SSD) is used
as the storage medium; SSD erasures initiated by a VM can
interfere with operations from other VMs. To exacerbate the
unpredictability problem further, the current work-conserving
resource management policies of virtual machine monitors
(VMMs) link a VM’s I/O resources to the number of co-located
VMs, causing unpredictability as this number changes.

Based on these observations, we propose VirtualFence, a
performance-predictable storage system. VirtualFence seeks to
produce consistent performance within the range defined by
the best and worst performance levels that each VM may
experience in a predictability-oblivious service (i.e., in the
absence of VirtualFence). Under VirtualFence, each VM runs
as if it were alone on a fixed and tightly controlled partition
of the resources. To achieve this goal, VirtualFence couples a
small persistent SSD cache with a much larger HDD. It also
implements a non-work-conserving I/O scheduling algorithm,
partitioning time into a fixed number of relatively coarse-
grained slots. Each I/O slot can only be given to one active
VM, but a single active VM may receive multiple slots (the
number of slots depends on how much the VM’s owner
is willing to pay the cloud provider). I/O accesses from a
VM are only serviced during the VM’s assigned slot(s). A
static allocation of time slots while a VM is active ensures
consistent resource allocation for predictable performance. The
SSD cache and I/O time partitioning together minimize the
impact of HDD head movement due to consolidation, whereas
I/O time partitioning minimizes the impact of SSD block
erasures. Finally, VirtualFence partitions both the SSD cache
and the HDD, which is a non-work-conserving space allocation
scheme that again ensures a consistent resource allocation.

Our evaluation quantifies I/O predictability using a new
metric we call “performance deviation” (or simply “devia-
tion”). Deviation quantifies the percentage I/O performance
degradation suffered by a VM that is consolidated with other
VMs compared to the I/O performance it achieves in isolation.
Our evaluation demonstrates that VirtualFence improves I/O
predictability (or, equivalently, that it reduces deviation) sig-
nificantly, as long as we utilize all of its component techniques
at the same time. In fact, we show that simply using an SSD as
a cache of HDD data is not enough. More fundamentally, our
evaluation illustrates the tradeoff between predictability and
performance: the more we improve predictability, the worse
average response time becomes. The challenge is finding the
smallest response time that will produce enough predictability.

II. MOTIVATION

Performance unpredictability in the face of consolidation.
In a longer technical report [9], we present an extensive study
of the impact of workload characteristics, the VMM architec-
ture, the approach to virtualizing storage, and storage device
characteristics on I/O predictability. The results demonstrate
that deviation is endemic across all system configurations for
both throughput and response time.

Many users desire predictability. Although most cloud users
may not require predictable VM performance, many actually
do. For example, streaming and gaming applications typically
seek to achieve a consistent rate (e.g., displayed frame rate)
rather than the highest performance, if that performance might
introduce unpredictability (jitter). There are also many cases
where repeatable behavior is important, such as performance
tuning, debugging, and diagnosis. In fact, it is impossible to
evaluate the impact of changes to an application in the cloud,
if its performance may constantly be affected by consolidation.
Finally, many applications implement workflows/pipelines,
where the performance that can be achieved in each stage
depends on the expected performance of a previous stage.
Properly designing such applications for the cloud is impossi-
ble if the performance of each stage can vary widely due to
consolidation.

Predictability would benefit cloud providers and users.
As predictability is important to many users, we argue that
IaaS cloud providers should offer a new class of predictable-
performance service that uses its own (tightly managed) hard-
ware resources. Current IaaS providers already offer a range
of other classes of service, such as the Cluster Compute and
Cluster GPU service classes of Amazon EC2.

The tight management of resources would: (1) enable
the provider to charge for exactly the pre-defined levels of
performance and predictability that its users require; (2) enable
the provider to conserve energy when resources are not used
to guarantee the performance paid for by its users. (3) create
an obvious relationship between the resources that customers
pay for and the performance that can be achieved with those
resources, i.e. users never complain that the performance of
their VMs suddenly got worse (when the provider stopped ded-
icating more than the minimum set of contracted resources).
Gulati et al. mention some of these same benefits to limiting
maximum allocations [3].

Cloud users can also benefit from predictability because:
(1) they can rely on it to implement applications for which pre-
dictability is more important than receiving as many resources
as are available; (2) predictability can lower their cloud costs
when the provider can save money by conserving energy or
provisioning their data centers more tightly; and (3) they can
predict their cloud costs into the future with the certainty that
their VMs’ performance will never be affected by changes in
provider-side resource allocation.

Client-side throttling does not work. One might think that
delays can always be added on the client side to achieve pre-
dictable behavior. However, this intuition is incorrect. As the
client does not know how bad consolidated VM performance
may get in the future, it cannot target a performance level that
is guaranteed to be consistent.

III. BACKGROUND AND RELATED WORK

Disk drives and I/O interference. Many recent studies have
established that I/O interference prevents VMs from achieving
predictable performance [2], [3], [4], [5], [6], [8]. Previous
efforts to address this problem have focused primarily on re-
source scheduling techniques, seeking to provide proportional
allocation of I/O resources with strong isolation [10], [11].
Argon [11] shares common techniques with VirtualFence, such
as space partitioning of caches (memory caches in the case of
Argon) and time partitioning of I/O access time. However, our
focus on predictability instead of isolation leads to fundamental
differences, including non-work-conserving allocation policies
and static configuration parameters.

Other works seek to provide proportional allocation
while supporting latency-sensitive applications [12], [13].
mClock [3] provides weighted fair-share to cloud storage, but
it does not consider the properties of storage devices and
how they impact predictability. VirtualFence does and, hence,
combines SSDs and HDDs.

Besides the differences described above, our work identifies
predictability, a stricter form of isolation, as desirable, and is
the first to study hybrid SSD/HDD systems in this context.

Hybrid SSDs and HDDs. Most research on SSDs has focused
on either using them as HDD replacements [14], [15], or using
SSDs as a caching layer [16], [17].

In comparison to these efforts, VirtualFence combines the
advantages of SSDs (high performance) and HDDs (low cost)
to promote a different goal, namely I/O predictability. In
addition, VirtualFence minimizes the performance interference
produced by SSD block erasures.

IV. MEASURING UNPREDICTABILITY

Since our notion of predictability means achieving the
same VM performance in the presence of other VMs as in
isolation, we measure performance deviation as the percentage
performance degradation when a VM runs in the presence of
other VMs compared to when it runs alone on the physical
host. Specifically, let PI be the (initial) performance of a VM
when running alone, and PD be the (degraded) performance of
the VM when co-located with other VMs. Then, the amount of
deviation is |PI−PD

PI
| × 100%. When multiple VMs executing

the same workload are used in an experiment, we report the
average deviation across the VMs.

As we show below, performance deviation is often different
for throughput and response time. Thus, throughout the paper,
we study deviation for both metrics.

V. VIRTUALFENCE

VirtualFence uses three techniques to reduce deviation
between VMs whose virtual disks are stored on the same
physical disk: (1) a non-work-conserving time-division I/O
scheduling algorithm with coarse-grained time quanta, (2) a
small persistent SSD cache in front of a much larger HDD,
and (3) space partitioning of both the HDD and the SSD cache.

The non-work-conserving time-division I/O scheduling
serves two purposes. First, it ensures that the resources allo-
cated to a VM are (mostly) constant regardless of the number

Dom0

Physical
Driver

user
kernel

Blktap

DomU

Blkfnt

Storage

VirtualFence

Scheduler
Virtual
Device
Driver

Fig. 1. VirtualFence architecture.

of co-located VMs. Second, it avoids the interleaving of
requests from different VMs (inter-VM interference); for an
HDD, this reduces seek overheads between operations from
the same VM, whereas for an SSD, it reduces the interference
of erasures from one VM on accesses from other VMs.

Despite the non-work-conserving policy, a system with
only HDDs would still suffer some performance deviation
when multiple VMs are co-located; as the system switches
from serving one VM to another, the HDD’s head will have to
move across partitions, leading to higher seek time for the first
HDD operation, and so performance deviation. We limit the
impact of this deviation by putting the SSD cache in front of
the HDD. With a reasonable hit ratio in the SSD cache, we may
eliminate some of these expensive HDD accesses. Moreover,
the SSD cache significantly increases the performance of the
virtual disk, so that the expensive first HDD operation is
amortized across many more operations.

Finally, the space partitioning of the HDD limits the seek
overheads between operations from the same VM, while the
space partitioning of the SSD cache ensures constant cache
space allocation for each VM.

A. Prototype

We have implemented a prototype VirtualFence in the
Xen VMM 4.0.1, using the blktap user-level toolkit [18]. As
Figure 1 illustrates, the prototype includes a device driver and
a scheduler. The driver instances—a separate instance of the
device driver is used to service each virtual disk—and the
scheduler each runs as a user-level process in Dom0.

The SSD cache holds two types of persistent data: (1)
blocks cached from the HDD, and (2) metadata describing the
state of each cache block (e.g., valid bit, HDD block number).
The driver implements the data structures needed to support
an LRU replacement policy in volatile memory, including an
LRU list of blocks, a write list that points to dirty blocks that
need to be written to the HDD and then evicted, and a free
list. At start up, the driver scans the SSD for all metadata, and
builds all the in-memory data structures. No “last usage times”
are kept across system restarts.

The LRU maintenance is simple. A background thread
attempts to maintain the size of the free list above a threshold
size by evicting the oldest entries in the LRU list as needed.
Dirty blocks to be evicted are moved to the write list while the
writes to the HDD are outstanding. If the free list ever reaches
a low watermark threshold, processing of incoming requests is
halted until the free list grows above the low watermark. The

driver uses asynchronous I/O to read and write data from/to
both the SSD and HDD.

B. Space Partitioning

VirtualFence uses a separate partition of an SSD as a cache
for each virtual disk co-located on the same HDD. We have
also implemented a variation that uses a single SSD partition
as a shared cache across multiple virtual disks to quantify the
impact of space partitioning on deviation.

C. Time Partitioning

Our I/O scheduler assumes that a physical SSD/HDD pair
is used to service at most n simultaneous active virtual disks,
and so divides access to the physical disks into n equal-sized
time slots. When a VM starts running on a host, its virtual
disk is allocated one or more I/O slots (depending on how
much of the host’s I/O resources is assigned to that VM). The
scheduler then round-robins between the slots, leaving a slot
idle when it is unassigned or the assigned virtual disk does not
have any I/O activities; utilizing these slots would break the
non-work-conserving property of the scheduler. On the other
hand, this property of the scheduler also impacts performance,
as we discuss extensively in Section VII-B.

The driver translates each user I/O request into requests
to the SSD and HDD, and adds each type of requests to the
appropriate device I/O queue. Each virtual disk has a distinct
set of queues that are serviced during the slots assigned to
the VM. The scheduler informs a driver instance when its
assigned slot is scheduled, at which time it is allowed to
forward requests to the SSD and/or the HDD until the slot time
expires. A driver can end its slot early (see below), in which
case the scheduler will lengthen the slot time appropriately the
next time that slot is scheduled. If a driver overruns the slot
time, the scheduler will deduct the overrun from the next slot.

To implement accurate time partitioning without losing
performance, we need to send as many accesses as possible
in a slot without running over the time allocated to the slot.
In addition, it is more efficient to batch requests because of
effects such as disk scheduling and fixed access overheads.
Thus, our approach is to estimate the service times of batches
of accesses, and to send the largest batch of accesses that is
estimated to complete within the remaining time in the slot.

Our driver dispatches requests to the SSD and HDD in
the same manner as follows. If there are no pending requests,
then wait until a request arrives or the current slot terminates.
If there are pending accesses, and at least the first access
is estimated to complete within the remaining time in the
slot, find the largest batch that is estimated to fit within the
remaining time. After the completion of a batch of requests,
if time remains in the slot, then repeat.

The driver ends a slot early if the first pending HDD request
is estimated to take longer than the remaining time in the slot.
This is because HDD resources are more constrained than the
SSD, and thus, when the remaining slot time cannot be used for
accessing the HDD, it is better to “credit” the time to the next
slot of the same VM instead of wasting it. On the other hand,
if a batch of HDD requests overruns the slot, while waiting
for the batch to complete, the driver slowly issues any pending

SSD requests. This avoids wasting this time, while not causing
even more slot delay by having to wait for the completion of
a large batch of SSD requests.

Predicting HDD request service times accurately can be
quite complicated. For our purposes, however, it is sufficient to
use a simple piece-wise linear function that predicts the access
time of a request based on the distance between the block
being requested and the block requested by the immediately
preceding request. When predicting the service time of a batch,
we order the requests using the block addresses under the
assumption that the disk scheduling algorithm includes some
form of scanning. We parameterize the prediction function for
our specific HDD by benchmarking the service time of a large
number of random batches of accesses, each batch with a
random mix of reads and writes. We use a similar approach
for predicting SSD service times. We discuss our service time
prediction approaches (and their accuracies) further in [9].

VI. EXPERIMENTAL METHODOLOGY

A. Workloads

We use workloads from Filebench [19], a popular frame-
work for measuring and comparing file system performance.
Specifically, we use Fileserver, Mailserver, and Webserver.
Fileserver emulates a server hosting directories owned by
multiple users; Mailserver focuses on mail operations and has
an I/O mix of a read per sync write; and Webserver emulates
a server that services a read-only workload.

We configure workloads of four VMs running concurrently,
each of which executes the same Filebench application. One of
the VMs is configured to produce a low-intensity I/O load that
is approximately 8% of the storage system’s saturation load.
Each remaining VM is configured to produce approximately
24% of the storage system’s saturation load. Overall, the
four VMs reach 80% of saturation, representing an aggressive
consolidation scenario. We then compare the low-intensity
VM’s performance to when it runs alone, and the performance
of each of the three higher-intensity VM to when it runs
alone. Note that we scale the load to maintain a constant
utilization level (80%) across storage systems (HDD, SSD,
and VirtualFence). We call this setup a 4-VM heterogeneous
workload and use it as the primary workload for our study.
In Section VII, we also study homogeneous workloads and
systems with low-intensity VMs only.

B. Experimental Platform

We use a server equipped with a 2.4GHz 4-core Xeon CPU
(each core supports two hardware threads), 8GB of RAM, a
60GB SSD, and a 160GB 7200RPM HDD. According to its
datasheet, the HDD has an average seek time of 11ms and
full stroke time of 22ms. The SSD is spec’ed with random
read performance >20,000op/s and random write performance
>5,000op/s. We measured erasures, including garbage col-
lection, to take approximately 3.5ms-4ms in a write-only
benchmark. The guest OS in the VMs is always a Debian
installation with Linux kernel version 2.6.32.

We choose the Noop disk scheduler in the guest OS to
isolate the impact of the VMM’s I/O scheduling. We choose
CFQ for the host OS because it minimizes deviation when not
using VirtualFence.

Variant HDD SSD Cache NWC
HDD+NWC x x
SSD+NWC x x
Hybrid/Shared x x Share
Hybrid/Shared+NWC x x Share x
Hybrid/Partitioned x x Partition
VirtualFence x x Partition x

TABLE I. VARIANTS OF VIRTUALFENCE COMPRISING
DIFFERENT COMBINATIONS OF PREDICTABILITY-ENHANCING

TECHNIQUES. THE CACHE COLUMN SHOWS WHETHER THE SSD
CACHE IS SHARED OR PARTITIONED. THE NWC COLUMN SHOWS

WHETHER NON-WORK-CONSERVING TIME PARTITIONING IS USED.

In all experiments, we allocate 512MB of memory to each
VM and pin it to a core to minimize the impact of VMM CPU
scheduling. We run at most 4 VMs simultaneously so that each
VM can be allocated an entire core.

VII. EVALUATION

We now explore VirtualFence’s effectiveness in providing
performance predictability. The SSD cache block size is set
to 4KB to match the default 4KB block size of the HDD.
We also adjust the SSD cache size to explore the impact of
different hit rates. We use the notation VirtualFence(X%,Y ms)
to denote a VirtualFence system with a time-sharing slot size
of Y ms, and the SSD cache empirically sized to achieve a
hit rate of X%. We explicitly set the SSD cache hit rate to
systematically isolate its impact; in practice, administrators
would set the SSD partition size (and the number of time slots)
for each VirtualFence virtual disk based on the QoS/resources
promised to the disk’s owner and the number of virtual disks
to be consolidated on the physical server.

To isolate the contributions of the different features of
VirtualFence toward increasing predictability, we also measure
deviation for many incomplete variants of VirtualFence. Table I
lists these variants. The first two variants, HDD+NWC and
SSD+NWC, are designed to isolate the benefits of non-work-
conserving time partitioning. The Hybrid/Shared variant uses
an SSD cache in front of the HDD, but the entire cache space
is shared between multiple virtual disks. Hybrid/Shared+NWC
extends this variant with non-work-conserving time parti-
tioning. Hybrid/Partitioned is VirtualFence without non-work-
conserving time partitioning, isolating the benefits of space-
partitioned SSD caches.

A. Performance Deviation

VirtualFence. We begin by showing VirtualFence’s effective-
ness at reducing performance deviation. Figure 2(a) shows the
measured deviation when running the 4-VM heterogeneous
workloads on VirtualFence(50%,20ms). Figure 2(b) shows the
measured deviation when running the 4-VM heterogeneous
Fileserver workload, which experiences the highest deviation,
on VirtualFence with hit rates ranging from 50% to 100%
and a time-sharing slot size of 20ms. Both figures show the
deviations of the low I/O VM and the average deviations of
the high I/O VMs in the heterogeneous workloads.

Figure 2(a) shows that VirtualFence is successful at reduc-
ing deviation in both throughput and response time, compared
to a system without VirtualFence. In fact, VirtualFence pro-
duces lower deviations regardless of storage device or approach

Webserver Filesever Mailserver
0

5

10

15

20

25

30
Throughput Deviation for Low I/O VM
Average Throughput Deviation for High I/O VMs
Response Time Deviation for Low I/O VM
Average Response Time Deviation for High I/O VMs

P
er

fo
rm

a
nc

e
D

e
vi

a
tio

n
(%

)

(a)
50% 75% 100%

0

5

10

15

20

25

30
Throughput Deviation for Low I/O VM
Average Throughput Deviation for High I/O VMs
Response Time Deviation for Low I/O VM
Average Response Time Deviation for High I/O VMs

P
er

fo
rm

an
ce

D
ev

ia
tio

n
(%

)

(b)

Fig. 2. Deviation when running (a) the 4-VM heterogeneous workloads on VirtualFence(50%,20ms), and (b) the 4-VM heterogeneous Fileserver
workload on VirtualFence(X%,20ms), with X ∈ {50%, 75%, 100%}. The range markers show the minimum and maximum values from three
experiments whereas the bar shows the average.

Throughput Response Time
0

25

300

400

500

P
er

fo
rm

an
ce

 D
ev

ia
tio

n
(%

)

 HDD
 SSD
 HDD+NWC
 SSD+NWC
 Hybrid/Shared cache
 Hybrid/Shared cache+NWC
 Hybrid/Partition cache
 VirtualFence

 (Hybrid/Partition cache+NWC)

Fig. 3. Deviation when running on VirtualFence(50%,20ms) com-
pared to various incomplete variants of it. Each bar shows results
for the low-intensity VM in the 4-VM heterogeneous MailServer
workload. The cache size for Shared-cache versions is equal to the
sum of the caches in the Partitioned-cache cases.

to virtualizing storage. For the low-intensity VM, all deviations
are ≤15%, compared to throughput deviations of ≥31% and
response time deviations of ≥443% without VirtualFence [9].
Furthermore, deviations are always lower than 19% when the
SSD cache affords a 50% hit rate. Figure 2(b) shows that
deviation decreases as the SSD hit rate increases.

The raw performance of VirtualFence is also good. For
example, Fileserver file accesses (97KB on average) by the
low-intensity I/O VM take an average of 19ms, when the VM
runs in isolation on the HDD configuration. When the same
VM runs co-located with 3 high-intensity VMs, the average file
access time increases to 98ms. We increase the I/O intensity
of each VM by a factor of 3.3x in VirtualFence(50%,20ms) to
achieve the same utilization as in the HDD case. Despite the
much higher I/O intensity, the low-intensity VM experiences
an average file access time of 59ms when running alone,
and just 64ms when co-located with 3 high-intensity VMs,
under VirtualFence(50%,20ms). A user who desires better raw
performance may purchase multiple slots for its VMs.

Isolating the contributions of different features. Figure 3
plots performance deviation when the Mailserver workload
is run on the variants (including the full VirtualFence im-
plementation) listed in Table I. Performance deviations for
HDD and SSD are also shown as baselines. These results are
representative of all three Filebench workloads.

First, this figure shows that VirtualFence achieves perfor-
mance predictability close to that of SSD+NWC. Specifically,

SSD+NWC achieves 3% and 10% throughput and response
time deviation, respectively, whereas VirtualFence achieves 6%
and 12%. SSD+NWC represents the best case scenario since
it includes space partitioning (each VM is given a separate
SSD partition), non-work-conserving scheduling, and storage
completely on the SSD. The fact that these two systems
achieve almost the same predictability shows that our caching
approach is effective, allowing VirtualFence to extend the
predictability benefits of (expensive) SSDs to much larger (and
cheaper per byte) HDDs with small SSD caches.

Second, results for HDD+NWC suggest that non-work-
conserving time partitioning can also be effective in reduc-
ing deviation when not using an SSD cache. However, the
movement of the disk head between partitions when changing
between time slots assigned to different VMs is sufficiently
large that HDD+NWC with a 20ms slot size still incurs a
13% throughput deviation and a 33% response time deviation.
As we show in Section VII-B2, increasing the slot size to
attack this source of deviation also increases the response
time observed by a VM running alone on a host. As already
mentioned, this source of deviation also exists in VirtualFence
but is mitigated by the SSD cache.

Third, at this hit rate, non-work-conserving time partition-
ing achieves higher predictability than using an SSD cache:
HDD+NWC has lower deviations than both Hybrid/Shared and
Hybrid/Partitioned. Interestingly, HDD+NWC is also better
than Hybrid/Shared+NWC, implying that the interference at
the shared cache negates some of the benefits of NWC. Of
course, as the hit rate increases, the relative advantage of using
NWC vs. an SSD cache will likely change.

Fourth, as expected, a shared SSD cache produces worse
predictability than a partitioned cache. A shared cache can
produce higher absolute performance; e.g., it may benefit an
I/O-intensive VM running by itself. However, it would hurt
predictability when the VM is co-located with other VMs and
so must share the cache.

Finally, all three techniques used in VirtualFence contribute
to increasing predictability; VirtualFence achieves higher pre-
dictability than the other configurations, except for the much
more expensive SSD+NWC.

B. Performance vs. Predictability

In this section, we explore the impact of two key parame-
ters: the number of VM slots, and the length of each slot.

 2 3 4
0

10

20

30

40

50

0

10

20

30

40

50
Response Time Deviation

Response Time

R
es

p
on

se
T

im
e

(m
s)

P
erform

an
ce

D
eviation

(%
)Number of Slots

Fig. 4. Number of slots and response time trade-off.

1) Impact of Number of Slots: Figure 4 illustrates the im-
pact of the number of slots on response time deviation and raw
response time of VirtualFence(50%,20ms) for the Webserver
workload (the other workloads show similar trends). For each
number of slots n, we assume n VMs, and configure each
VM to generate only ∼5% of the VirtualFence(50%,20ms)
saturation load. Such a low aggregate load is challenging for
VirtualFence, raw performance-wise, because it may produce
significant average waiting times.

As the figure shows, VirtualFence produces lower response
times as we decrease the number of slots (and keep the slot
length fixed). Fewer slots also mean lower waiting times, as
each VM is allotted a higher fraction of time. Interestingly,
response time deviation decreases slowly as we increase the
number of slots. With a large number of slots, deviation would
approach 0%, because the waiting time would overwhelm the
single disk head movement in the first request of each slot.

Clearly, there is a tension between wanting a small number
of slots to reduce average response times and wanting to
increase the number of slots to improve predictability. For-
tunately, VirtualFence produces reasonably good predictability
even with only a few slots. Thus, the number of slots should
be the smallest that will enable enough consolidation.

2) Impact of Slot Length: The key source of remaining
deviation in VirtualFence is the need to move the disk head
from one partition to another when changing slots assigned to
different VMs. Thus, the slot length directly impacts Virtual-
Fence’s predictability: a longer slot better amortizes the inter-
partition head movement cost among more requests. However,
lengthening the slots also increases response time.

Assuming 4 slots, Figure 5 plots the response time devi-
ation and average response time, as a function of slot length
for VirtualFence(50%,10-40ms) for the Webserver workload
(the other workloads show similar trends). We use the 4-VM
heterogeneous workload, and focus on the low-intensity I/O
VM in Figure 5. This setup is challenging, predictability-wise,
because it is almost certain that every first access in the low-
intensity VM’s slot will cause a disk head movement.

The figure clearly shows the tradeoff between lowering
deviation by lengthening the slots against increased response
time. Lengthening the slots from 10ms to 20ms significantly
reduces performance deviation. Further lengthening the slots
to 40ms reduces deviation much more slowly at the expense
of a further, essentially linear, increase in response time. Thus,
a slot length of 20ms is the right tradeoff for our particular
SSD and HDD devices. We have chosen this length as our a
default for all previous experiments based on these results.

10 15 20 25 30 35 40
0

20
40
60
80

100
120
140

0
10
20
30
40
50
60
70

Response Time Deviation

Response Time

Slot Size (ms)

R
es

p
on

se
T

im
e

(m
s)

P
erform

an
ce

D
eviation

(%
)

Fig. 5. Slot length and response time trade-off.

Again, there is a tension between wanting shorter slots
for lower average response times and longer slots for better
predictability. The slot length should be the shortest that will
produce enough predictability.

VIII. CONCLUSIONS

We conclude that it is possible to build performance-
predictable storage systems with simple software and hardware
components, especially for those users that find predictability
just as important as (or even more so than) raw performance.

Acknowledgments: This research was partially funded by
NSF grant CNS-0916878.

REFERENCES

[1] D. Novaković et al., “DeepDive: Transparently Identifying and Man-
aging Performance Interference in Virtualized Environments,” USENIX
ATC, 2013.

[2] P. Barham et al., “Xen and the Art of Virtualization,” SOSP, 2003.
[3] A. Gulati et al., “mClock: Handling Throughput Variability for Hyper-

visor IO Scheduling,” OSDI, 2010.
[4] D. Gupta et al., “Enforcing Performance Isolation Across Virtual

Machines in Xen,” Middleware, 2006.
[5] H. Kim et al., “Task-Aware Virtual Machine Scheduling for I/O

Performance,” VEE, 2009.
[6] Y. Koh et al., “An Analysis of Performance Interference Effects in

Virtual Environments,” ISPASS, 2007.
[7] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-Clouds: Managing

Performance Interference Effects for QoS-Aware Clouds,” EuroSys,
2010.

[8] J. Wang, P. Varman, and C. Xie, “Avoiding Performance Fluctuation in
Cloud Storage,” HiPC, 2010.

[9] C. Li et al., “Quantifying and Improving I/O Predictability in Virtual-
ized Systems,” Rutgers, Tech. Rep. DCS-TR-697, 2012.

[10] W. Jin, J. Chase, and J. Kauer, “Interposed Proportional Sharing for
Storage Service Utility,” SIGMETRICS, 2004.

[11] M. Wachs et al., “Argon: Performance insulation for shared storage
servers,” FAST, 2007.

[12] A. Povzner et al., “Efficient Guaranteed Disk Request Scheduling with
Fahrrad,” EUROSYS, 2008.

[13] J. Zhang et al., “Storage Performance Virtualization Via Throughput
and Latency Control,” ACM TOS, 2006.

[14] A. Birrell et al., “A Design for High-Performance Flash Disks,” SIGOPS
OPER SYST REV., 2007.

[15] W. Josephson et al., “DFS: A File System for Virtualized Flash
Storage,” FAST, 2010.

[16] T. Kgil, D. Roberts, and T. Mudge, “Improving NAND Flash Based
Disk Caches,” ISCA, 2008.

[17] S. Lee et al., “A Case for Flash Memory SSD in Enterprise Database
Applications,” SIGMOD, 2008.

[18] D. Meyer, “Virtual Disk Backend Driver for Xen,” http://wiki.xensource.
com/xenwiki/blktap2.

[19] Filebench, “Filebench,” http://sourceforge.net/projects/filebench.

