TLB Improvements for Chip Multiprocessors: Inter-Core Coop erative
Prefetchers and Shared Last-Level TLBs

DANIEL LUSTIG, Princeton University
ABHISHEK BHATTACHARJEE, Rutgers University
and MARGARET MARTONOSI, Princeton University

Translation Lookaside Buffers (TLBs) are critical to ovesystem performance. Much past research has addressed
uniprocessor TLBs, lowering access times and miss rates. \Woyas chip multiprocessors (CMPs) become ubiquitous,
TLB design and performance must be re-evaluated. Our paperdiegperforming a thorough TLB performance evaluation
of sequential and parallel benchmarks running on a realdyvorbdern CMP system using hardware performance counters.
This analysis demonstrates the need for further improvememt.Bfhit rates for both classes of application, and it also
points out that the data TLB has a signi cantly higher misg ithan the instruction TLB in both cases.

In response to the characterization data, we propose amaaéydoth Inter-Core Cooperative (ICC) TLB prefetchers
and Shared Last-Level (SLL) TLBs as alternatives to the coraiaenorm of private, per-core L2 TLBs. ICC prefetchers
eliminate 19% to 90% of data TLB (D-TLB) misses across paralletkloads while requiring only modest changes in
hardware. SLL TLBs eliminate 7% to 79% of D-TLB misses for piatalorkloads and 35% to 95% of D-TLB misses for
multiprogrammed sequential workloads. This corresponds % &id 21% increases in hit rates as compared to private,
per-core L2 TLBs, respectively, and is achieved this usirenenore modest hardware requirements.

Because of their benets for parallel applications, thepplcability to sequential workloads, and their readily-
implementable hardware, SLL TLBs and ICC TLB prefetchers lgo&ht promise for CMPs.

Categories and Subject Descriptors: B.3afdware]: Memory Structures-Besign StylesC.1.2 [Computer Systems
Organization]: Processor ArchitecturesMultiple Data Stream Architectures (Multiprocessors)

General Terms: Design, Experimentation, Measurement, Peaftce

Additional Key Words and Phrases: Translation LookasidéeBuShared Last-Level TLB, TLB Prefetching, Simulation,
Performance Evaluation

ACM Reference Format:
ACM Trans. Architec. Code Optim. V, N, Article A (January 2Q131 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.114%000.0000000

1. INTRODUCTION

Translation Lookaside Buffer€TLBs) are performance-critical structures used to caaldress
translation information for virtual memory systems. Simsry instruction requires at least one
translation (for the instruction fetch itself), it is estiahthat these structures be designed to oper-
ate quickly and ef ciently in order to avoid placing them énthe critical path. The primary way
of achieving this goal is to increase the TLB hit rate as muxp@ssible, thereby avoiding costly
TLB miss penalties. While previous work has explored TLB plaent [Chen et al. 1992; Qui and
Dubois 1998], size and associativity [Chen et al. 1992], andancements such as superpaging
[Qui and Dubois 1998] and prefetching [Kandiraju and Simamaniam 2002b; Saulsbury et al.
2000], these proposals generally focus on traditionalnaaigssors. However, as chip multiproces-

Authors' addresses: D. Lustig, email: dlustig@princetdn;e\. Bhattacharjee, email: abhib@cs.rutgers.edu; M. dersi,
email: mrm@princeton.edu.

Extension of Conference Papers: (1) Abhishek Bhattaohabjaniel Lustig, and Margaret Martonosi, “Shared Lastdlev
TLBs for Chip Multiprocessors”17th International Symposium on High Performance CompAtehitecture Feb. 2011.

(2) Abhishek Bhattacharjee and Margaret Martonosi, “h@ere Cooperative TLB Prefetchers for Chip Multiproces$or
15th International Conference on Architectural SupportPFoogramming Languages and Operating Systeler. 2010.

This material is based upon work supported by the Nationareei Foundation under Grant No. CNS-0627650 and CNS-
07205661. The authors also acknowledge the support of thasGale Systems Research Center, one of six centers funded
under the Focus Center Research Program (FCRP), a SemitonBesearch Corporation entity. Finally, we acknowledge
the support of a research gift from Intel Corp.

Permission to make digital or hard copies of part or all of thigkafor personal or classroom use is granted without fee
provided that copies are not made or distributed for pro t omenercial advantage and that copies show this notice on the
rst page or initial screen of a display along with the fultation. Copyrights for components of this work owned by osher
than ACM must be honored. Abstracting with credit is permitféal copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work timeo works requires prior speci ¢ permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, hPenn Plaza, Suite 701, New York, NY 10121-0701
USA, fax+ 1 (212) 869-0481, or permissions@acm.org.

€ 2013 ACM 1544-3566/2013/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1a@G0000.0000000

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

A:2 D. Lustig et al.

Table I. System parameters used to collect statistics using hardware performance counters.

Property Real System
System 8-core (2x HT) x86 (Core 17) 64-bit
OS Ubuntu Desktop 10.04.2

Private L1 TLBs | Separate | & D, 7-entry fully-assoc TLB, 64-entry 4-way TLB
L2 TLBs Uniedl&D, 512-entry, 4-way TLB

sors (CMPs) are now the dominant paradigm, it is criticaiplere TLB design and performance
for this particular setting.

Contemporary chip multiprocessors only maintain TLBs tha private to a particular core.
These TLBs are often organized in a multilevel hierarchyhwai smaller L1 TLB close to the core
and a larger L2 TLB farther away, although even in this catéeatls remain per-core private.
Furthermore, although previous work has shown that thevéés signi cant redundancy and pre-
dictability in TLB misses across cores [Bhattacharjee arattbhosi 2009], there has been little
work to exploit this knowledge.

We propose two new TLB enhancements. First, we exgiater-Core Cooperative (ICC) TLB
prefetchers which communicate information about strided access patamong cores in order
to predict future references. Second, we demonstrate thetBeof replacing the set of private L2
TLBs with a singleShared Last-LevéSLL) TLB for both parallel and multiprogrammed sequential
workloads. Finally, we present a combined solution by agldirsimple prefetcher to an SLL TLB
to measure the added bene ts. Our speci ¢ contributionsaaréollows:

— We perform a comprehensive characterization of instoacéind data TLB miss rates for parallel
workloads and multiprogrammed combinations of sequentigkloads. On a modern multicore
system, we show that at the extreme end of eachCesneal of PARSEC andncf of SPEC
CPU2006 show overall miss rates of 19.7 and 51.9 data TLB B} Tmisses per thousand in-
structions, respectively, while instruction TLB (I-TLB)isses are universally orders of magnitude
smaller.

— We demonstrate that two forms of ICC prefetchihgader-Followerprefetching andistance-
basedprefetching can individually eliminate up to 57% and 89%ai&t D-TLB misses, respec-
tively. As we will discuss, these prefetchers have a vadétyardware and/or software implemen-
tations, and are bene cial for a variety of parallel workdisa

— We proposesLL TLBsas a replacement for the current standard of per-core priaBs, and we
show that this new design leads to an average reduction ihB+hiss rate of 27% for parallel
workloads and 21% for sequential workloads. Using a peréorte model of cycles per instruction
(CPI), we translate these miss-rate improvements intompaence savings of up to 0.25 and 0.4
cycles per instruction, respectively.

The rest of the paper is structured as follows. Section 2vatets the work by presenting the
results of real-system workload characterization. Sacdipresents background and related work.
Sections 4 and 5 describe the implementations of ICC piefetcand SLL TLBs, respectively. The
experimental methodology is described in Section 6. Sectipresents the results of our exper-
iments with ICC TLB prefetchers. Sections 8 and 9 show redoit SLL TLBs for parallel and
multiprogrammed sequential workloads, respectivelyafynSection 10 concludes the paper.

2. MOTIVATION
In order to motivate the need for improvement in the perfarogeof TLBs on modern systems, we
begin with a thorough characterization of TLB performanceas a wide range of benchmarks on
a modern CMP. To achieve this, we use hardware performanceas to measure SPEC CPU2006
and PARSEC TLB miss rates without otherwise interferingwiite normal operation of the CPU.
We measure the TLB statistics on the system described ire Tadder the full run of the SPEC
benchmarks and over the region of interest (as de ned in eackload) for PARSEC benchmarks
To reduce variability, we each experiment ve times and présesults as means with standard devi-

1Due to compilation issues on our platform, we do not presenitefor freqmine , perlbench , deall , andwrf

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A3

= == % | = % 03 e o W%
3 #% B #% 4% 4%
3 m m Llii
&
N gl g B &
1 %

&
% \ .e\e A

Fig. 1. |-TLB misses per million instructions (MMI) for Fig. 2. |-TLB misses per million instructions (MMI) for
PARSEC workloads, comparingativeto simlarge as mea- PARSEC workloads, usingativeinputs, comparing across

sured using hardware performance counters. each core, as measured using hardware performance coun-
ters
[0 Ref =3 Train]
= l.o—————— 8 —T T —T—
g
=0.75 6
i1
T
£ 05 4
4 <
= 0.25 2 @
[2a] @
2
= 00 0
<@) é o R ¢
& 1,\Q 6\ ¥ o 5 <° Y .
N o« R e\ac' & T 2" s Py \% » e
Ny p S o

Fig. 3. |-TLB misses per million instructions (MMI) for Fig. 4. |-TLB misses per million instructions (MMI) for
SPEC CPU2006 INT workloads, comparirgj to train, as SPEC CPU2006 FP workloads, comparieg to train, as
measured using hardware performance counters. measured using hardware performance counters.

ation error bars Lastly, we disable address space layout randomizatioh R)Sas it dramatically
increases the variability of the results when enabled.

2.1. Instruction TLB Performance

We start by characterizing the instruction TLB (I-TLB) pemhance. Figure 1 presents the number
of misses per million instructions (MMI) seen by the I-TLBthe PARSEC benchmark suite. For
each program, we plot results for the two largest input éétke the D-TLB data to follow, I-TLB
miss rates are generally quite small across all benchmaittsevenx264 (the upper extreme) only
missing in the I-TLB roughly once every 7700 instructions.

The PARSEC I-TLB results can be further analyzed on a coredrg basis, as depicted in Figure
2. This shows the miss rate for each individual core forthgveinput. Most of the workloads see
fairly consistent rates among the cores, although in casdsasBlackscholes andFluidanimate
there are visible differences. Again, this diversity isywaorkload-dependent, as some benchmarks
can inherently load-balance their threads better thanathievertheless, as PARSEC was designed
to represent a set of workloads for CMPs, the load distrilouis generally very balanced.

Figures 3 and 4 display the miss rates for the SPEC CPU200Klaeals. Theref input set
contains the complete inputs used for real-system measutspandrain, which is a scaled-down
alternative. These benchmarks also show rather low I-TL&smates. In fact, the highest overall I-
TLB miss rate of all SPEC benchmarks, roughly 23 MMI falancbhmk , is still almost a full order
of magnitude lower than the64 workload of PARSEC. The SPEC FP workloads have I-TLB miss
rates which are lower still.

In general, for both benchmark suites, the I-TLB miss ratesadready low enough that only
limited bene ts would be derived from improving them. Forsheason, the remainder of our work
will focus on the data TLB.

2.2. Data TLB Performance

Although I-TLB miss rates are generally low enough to be aimeegligible, data TLB (D-TLB)
miss rates are orders of magnitude higher and thereforeddamrie t greatly from improved TLB

2We also ran tests at different operating system runlevatshie changes in the results were small or even negligibleeso
omit the comparison here.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,detA, Publication date: January 2013.

A4 D. Lustig et al.

— = s | — s&
— s
N . * * 3 . oo o N
SR AL ¢ o NGNS RNCRY A #
A EREIRS %;4; PR &y R\
¥ % A \ D &

Fig. 5. D-TLB misses per thousand instructions (MKI) foFig. 6. D-TLB misses per thousand instructions (MKI) for

PARSEC workloads, comparingativeto simlarge as mea- PARSEC workloads, usingativeinputs, comparing across

sured using hardware performance counters. each core, as measured using hardware performance coun-
ters.

performance. Figure 5 plots D-TLB miss rates for PARSEC wifiut setsnative and simlarge
(Note that since D-TLB miss rates are signi cantly higheatH-TLB, we are now plotting misses
per 1000 instructions, or MKI.) Two differences from the LH results are immediately apparent.
First, D-TLB miss rates are much higher than I-TLB miss ragecond, the D-TLB miss rates for
the PARSEC workloads vary by multiple orders of magnituderfreach other: around 0.15 MKI
for Blackscholes /nativeto 20 MKI for Canneal /native This is useful for our research as it allows
us to use the suite to explore a wide range of D-TLB behaviors.

As before, the choice of input set signi cantly affects theTDB miss rate for many of the
benchmarks. In particulaBlackscholes has a much higher miss rate f&imlargethan fornative
while Dedup andx264 decrease just as drastically. Furtherm®@wgytrack , Ferret , Dedup, and
x264 all follow the pipeline-parallel programming model, indiing that the input sets for this
model are harder to scale in size than for strictly dataifgduarograms [Bienia and Li 2010].

The D-TLB miss rate results for theativeinput set are broken down core-by-core in Figure 6.
Even more so than for the I-TLB results, the miss rates ambagdifferent cores are generally
very consistent within a particular workload, even for tiyggtine-parallel programs. For a pipeline
to be correctly balanced, a similar amount of data must pass §tage to stage, and this indeed
what is re ected in the core-by-core miss rates. One notamipnsistent benchmark, however,
is Blackscholes . In each trial, most (ve to seven) of the cores show a rougidysistent miss
rate, while a small number show a higher rate. Furthermdttegiagh the example shows the spike
occurring in core 0, this is not consistent; rather, differeores show the spike in different trials.

In order to visualize the relative cost of hits and missesiahdevel of the TLB, we introduce the
weighted misses per thousand instructignidMKI) metric. This combines both kinds of miss into
a single value in which each additive component is weightegqrtional to its cost in cycles. This
approach is needed due to the fact that the two categoriesthe compared directly, as their costs
are very different. Using performance counters, we meddheecost of a TLB miss and subsequent

page walk to vary between 20 and 40 cycleEherefore, for this analysis, we assume an average
L2 hit penalty of 7 cycles and an average L2 miss penalty ofy&les. This leads to the de nition

. 1 .
L2 MISSGS+ 1 < L2 Hits
1K Insts. 30 1KInsts. °

These numbers represent typical average values in thexsygteused for our measurement. Cer-
tainly, the cycle cost of individual events may vary, but vee average values in order to assign a
valid relative weight to each type of event.

Figure 7 shows the weighted misses per thousand instrscfienthe PARSEC workloads.
Clearly, even though the L2 TLB eliminates a signi cant nuenlof misses, there is still a non-
negligible penalty for L2 D-TLB hits. In fact, this demoretes that miss rates alone are not the
only metric of interest, since that would ignore these L2peihalties' Therefore, for example, our
performance analysis of proposed SLL TLBs (Sections 8.®a3id shows that we not only improve
the TLB hit rate, but also overcome the added penalty of atogshe SLL TLB.

WMKI =

3Because the i7 processor we used for our study did not hadvaee counters for page walk cycles, we performed the
TLB miss cost analysis on a similar chip which did contain theassary counters.

“The corresponding analysis for the I-TLB showed almost alhefcycle penalty being derived from L2 misses.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A5

[E==2 12 DTLB Misses EEE L2 D-TLB Hits

R
’Lb <\°?’

o
W

I
N

D-TLB WMKI
4

<

0.0
SE P N
W \ 2\
Capss o & ¢

X
S "
S0 e
SR
LSS

Fig. 7. D-TLB weighted misses per thousand instructions (WMKI) fAIRSEC workloads, usingativeinputs, with L1
Miss/L2 Hit rates weighted at 20%.

[Ref [Train [Ref [E@ Train

= 0.2 60 = 0.008 20
4 4
= =
.15} =o.
@ 0.15 40 o 0.006 15
& &
0 0.1} 2 0.004 10
s 20 s
= 0.05 2 0.002 5
— —
= =
o 0.0 0.0 0 0 o o0 0.0 0
X D& Q o IR .
& N <« @ 2 © S KO sk &2 S NKekae«O N
w‘i@@“ s\%“‘“ S 0 o S @ & K A \030““‘ ¥ @\(‘”\ NGNS

& S
o & o d\ &

Fig. 8. D-TLB misses per thousand instructions (MKI) foFig. 9. D-TLB misses per thousand instruct|ons (MKI) for
SPEC CPU2006 INT workloads, compariref to train, as SPEC CPU2006 FP workloads, comparieg to train, as

measured using hardware performance counters. measured using hardware performance counters.
[= $$$ [%3 [= $$$ [%s |
LDH _
S o . .
. s & O g N e BN @ s s
“?’qu i e|0 &) n S N @_X\z m‘&fg

Fig. 10. D-TLB weighted misses per thousand instructiorég. 11. D-TLB weighted misses per thousand instructions
(WMKI) for SPEC INT workloads, usingef inputs. (WMKI) for SPEC FP workloads, usingfinputs.

Figures 8 and 9 show the D-TLB miss rates for SPEC CPU2B06and FP benchmarks, re-
spectively. Similarly to PARSEC, the miss rates span ordensagnitude frongamess to mcf, and
in this case the upper D-TLB miss rate limit for the two suitesimilar. Again, a large number of
the workloads show very different behavior between inptd.SEhere is often a large increase in
miss rate fronref to train; in others there is a large decrease. We therefore useettier future
studies in order to maintain full delity. This observatiaitso highlights the importance of PARSEC
providing a full and well-characterized collection of ir@et sizes [Bienia and Li 2010].

Figures 10 and 11 shows the weighted miss rates for SPEC INTS&&EC FP workloads, re-
spectively. Similarly to the PARSEC workloads, the L2 TLBcagnts for a large number of hits
and introduces a non-negligible access penalty. In factyéiRloads such agromacs andgamess
have almost no overall TLB misses, but there is still an impagerformance due to the TLB.

2.3. Key Observations

From this section, we draw three conclusions about TLB biehawhich we use to guide the re-
mainder of our work. First, the miss rates for the data TLB @ders of magnitude higher than
those of the instruction TLB, as summarized in Figure 12. kéeefore focus on the D-TLB for the
rest of this paper. Second, within the multithreaded wadkof PARSEC, the miss rates in both
TLBs are very similar across cores. Both of our proposed avgments, ICC prefetching and SLL
TLBs, allow the TLBs at each core to share information andueses in a globally bene cial way.
Finally, for the D-TLB in particular, even L2 hits incur a paty and account for signi cant or even
majority portions of the TLB penalty accrued during the réieach benchmark. We therefore create
a performance model to show how our proposed improvemeetEome this penalty as well.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,detA, Publication date: January 2013.

A:6 D. Lustig et al.

(000 #" o |
AKOCERO OO0 04> 60D B0 o

OO & GO ® WO 00 O
O QOO0 GO G DO WE o

n A
Fig. 12. D-TLB and I-TLB misses per million instructions (MMI) for dllenchmarks using the largest input set and. There
is a clear distinction between the behavior of the D-TLB amlit TLB, often by multiple orders of magnitude.

3. BACKGROUND AND RELATED WORK

Contemporary architectures typically maintain privates-pore TLBs placed in parallel with rst-
level caches [Drongowski 2008; Intel 2012]. Numerous pasties measured TLBs as comprising
5% to 10% of system runtime [Clark and Emer 1985; Kandiraji@ivasubramaniam 2002b; Nagle
etal. 1993; Rosenblum et al. 1995] with extreme cases at ##¢l{ and Hays 1993]. In response, a
number of enhancement techniques were proposed. Earlyaduoilessed hardware characteristics
such as TLB size and associativity [Chen et al. 1992] andrpagng [Talluri and Hill 1994] with
promising results.

While useful, this prior work speci cally targets uniprosess. As CMPs become ubiquitous, we
must re-evaluate the role and design of TLBs. However, rekees have only very recently started
to consider TLBs in the CMP context. UNITD [Romanescu et 8ll@ proposes a mechanism
by which TLBs participate in the cache coherence protoanigdide the caches. Synergistic TLBs
[Srikantaiah and Kandemir 2010] propose a mechanism byhwids on different cores can share
entries that might be useful. Their work, however, does wos@er a fully-shared structure. The
gTLB framework [Tickoo et al. 2007] demonstrates that cenhssvitching and contention between
processes have an effect on TLB performance on CMPs, andwihelsas consequently proposed
tagging TLB entries with process-speci c identi ers [Veatasubramanian et al. 2009], for archi-
tectures which do not already do so. Lastly, the overhead.Bf doherence and shootdowns is also
important for many benchmarks [Villavieja et al. 2011].

TLB prefetching schemes have also been explored. For examgtency-based prefetching
[Saulsbury et al. 2000] exploits the observation that pagésenced around the same time in the
past will be referenced around the same time in the futurthisrapproach, two sets of pointers are
added to each page table entry to track virtual pages refedeim temporal proximity to the cur-
rent virtual page. While effective, this strategy leads targér page table. In response, Kandiraju
and Sivasubramaniam [Kandiraju and Sivasubramaniam 2@@ipt cache prefetching techniques
such as Sequential, Arbitrary-Stride and Markov prefetgfiChen and Baer 1995], [Dahlgren et al.
1993], [Joseph and Grunwald 1997]. They propose a distaased TLB prefetcher which tries to
detect repetitive strides as well as the patterns that Maakal Recency prefetching provide, us-
ing a modest amount of hardware. Speci cally, the distabased approach tracks the difference
or distance between successive TLB miss virtual pages aeichjats to capture repetitive distance
pairs in the miss stream. On every TLB miss, the goal is to lisalistance between the last miss
virtual page and current miss virtual page to predict the eggected distance and hence, the next
miss virtual page. A prefetch is then initiated for this vat page.

Recognizing the increasingly critical role of TLBs to syst@erformance, processor vendors
have extended the concept of multilevel hierarchies froohea to TLBs. Since the turn of the
decade, microarchitectures such as AMD's K7, K8, and K1@&I':i7, and the HAL SPARC64-I1|
have embraced two-level TLB hierarchies [Drongowski 2008! 2012; Sun 2003]. Private L2
TLBs rst appeared in uniprocessors, but they have becorea ewore prevalent with the adoption
of CMPs, with L2 TLBs approaching relatively large sizeshnbtl2 and 1024 entries.

Though they are bene cial, all commercial L2 TLBs are impkanted as independent structures
private to each core. This paper shows that this strategg et in two ways. First, per-core,
private TLBs cannot leverage the inter-core TLB sharingavér of parallel programs. Second,
even for multiprogrammed combinations of sequential @gfilbns, per-core TLBs allocate a xed
set of resources to each individual core, regardless of ¢éeelsof applications running on them.
Therefore, one core may execute an application with only alshhB footprint, and another core
may simultaneously experience TLB thrashing. This wasisgurces since the unused TLB entries
of the rst core would have been better used if made avail&btée thrashing core.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A7

ZAaSsO

Fig. 13. Number of inter-core shared (ICS) D-TLB misses, per numbehafess, and inter-core predictable stride (ICPS)
D-TLB misses. Summing these categories and normalizing to thertisses represents the potential for ICC prefetching to
help.

4. TWO INTER-CORE COOPERATIVE TLB PREFETCHERS

As we show, both ICC prefetchers and SLL TLBs drasticallyngiate TLB misses by exploiting
sharing in parallel programs and allocating resourcesefulg among sequential applications. We
describe ICC prefetchers rstin this section, before covgSLL TLBs in the following section.

4.1. Motivation and Background Data

Effective prefetching must exploit well-characterizedl gmedictable inter-core TLB miss patterns.
Previous characterizations [Bhattacharjee and Martd2@39] indicate that for parallel workloads,
signi cant commonality exists in TLB miss patterns acrossss of a CMP. This leads to two types
of predictableTLB misses in the system.

Inter-Core Shared (ICS) TLB Misses: In an N-core CMP, a TLB miss on a core is ICS if itis caused
by access to a translation entry with the same virtual paugsipal page, context ID (process ID),
protection information, and page size as the translaticessed by a previous miss on any of the
other N-1 cores, within a 1 million instruction window. Thember of cores that see this translation
is de ned as thenumber of sharersThese misses occur often in parallel programs; for example
previous work mentions that 94% 6freamcluster's misses and 80% dfanneal's misses are
seen by at least 2 cores on a 4-core CMP, assuming 64-entrg [RiBattacharjee and Martonosi
2009]. In this approach, on every TLB miss, the currentlgsitig core (théeade)) re lls its TLB
with the appropriate entry and also pushes this translatidhe other (thdollower) CMP cores.
The prefetches are pushed into per-core Prefetch Buff@s)(Blaced in parallel with the TLBs.

Inter-Core Predictable Stride (ICPS) TLB Misses: In an N-core CMP, a TLB miss is ICPS with a
stride of S if its virtual page V+S differs by S from the virtyzage V of the preceding matching
miss (context ID and page size must also match). We requsertatch to occur within a 1 million
instruction window, and the stride S must be repetitive armihinent to be categorized as ICPS.
Overall, some benchmarks can see many ICPS misses [Bhafeeland Martonosi 2009]. This
scheme stores repetitive inter-core strides in virtuakgdg a central, shared Distance Table (DT).
On TLB misses, the DT predicts subsequent required traostatvhich can be prefetched.

Figure 13 summarizes the prevalence of these types of pabtkcD-TLB misses across parallel
PARSEC benchmarks, assuming 64-entry D-TLBs. The stac&eslrepresent the number of ICS
D-TLB misses (with separate contributions for differerdusdr counts) and ICPS D-TLB misses as a
percentage of total D-TLB misses. Misses simultaneoushpih categories are categorized as ICS
misses. As shown, a signi cant number of TLB misses across#nchmarks are predictable by
either ICS misses (e.gCanneal , Facesim , andStreamcluster) or through ICPS misses caused
by a few prominent strides (e.g., over 85% of the D-TLB misseBlackscholes are covered by
strides of+4 pages).

Given these trends, we develop low-overhead techniquasdy the behavior of TLB miss pat-
terns on individual cores, gauge whether they are prede@iross cores under the ICS or ICPS
categories, and then prefetch appropriate TLB entries.

4.2. Prefetching Challenges

Despite the potential bene ts of inter-core cooperativefgtching, key challenges remain. First, it
is dif cult to create a single prefetching scheme that caapido diverse D-TLB miss patterns. For
example, while PARSEC benchmar®snneal andStreamcluster see many shared ICS misses,

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,detA, Publication date: January 2013.

A:8 D. Lustig et al.

Table 1l. Prominent stride patterns for evaluated benchmarks. Diverse stride patterns mean that distance predic-
tors are likely to outperform simple stride prefetching. The three benchmarks not suited to stride prefetching show
good potential for Leader-Follower prefetching.

Benchmark Strides Benchmark Strides Benchmark | Strides

Blackscholes +4 pages Ferret None Swaptions +1,+2 pages
Canneal None Fluidanimate +1,+2 pages|| VIPS +1,+2 pages
Facesim +2,x3 pages|| Streamcluster None X264 +1, %2 pages

Blackscholes is particularly reliant on strided ICPS misses. Moreoves,dctual strides among the
benchmarks also vary signi cantly. To see this in greataaitieTable || summarizes the prominent
stride values employed by the different benchmarks.

In addition to diverse strides, their distribution amongreso may vary. For example, in
Blackscholes core N+1 misses on virtual page V+4 if core N misses on virpaae V. In con-
trast, inVIPS core 0O, 1, and 3 consistently miss with a stride of 1 or 2 paga® fcore 2. Our
implementation must dynamically adapt to these scenarligevalso maintaining some level of
design simplicity.

A second challenge involves the timeliness of prefetchdg.one hand, our scheme requires
suf cient time between detecting a TLB miss pattern on one@nd using this pattern on another
core in order for our prefetchers to react and prefetch tegetkentry before use. On the other hand,
we must avoid overly-early prefetching which may displageent TLB mappings before they stop
being useful. To study this, we have tracked the time betweewccurrence of a predictable TLB
miss on one core and the subsequent predictable TLB missathearcore. For a 4-core CMP with
64-entry TLBs, this time is between 16K and 4M cycles for 70Pthe predictable TLB misses.
While this indicates that suf cient time exists for our prefieers to react to TLB miss patterns, we
must be careful that we do not prefetch too early.

Finally, prefetching by its nature causes an increase in ongrnaf c, and this in turn can ef-
fectively lower the available bandwidth for normal reqeestowever, TLB misses occur at a much
lower frequency than do normal cache misses, and so the dambextra traf ¢ introduced by ICC
prefetchers is minimal as compared to normal cache trafs.aAconsequence, the performance
overhead of the additional memory traf c coming from the I@&fetchers will be minimal.

4.3. Leader-Follower Prefetching

We now introduce two TLB prefetchers targeting inter-cdrared and inter-core predictable stride
TLB misses. We begin with the Leader-Follower prefetchieneal at eliminating ICS TLB misses.

Leader-Follower prefetching exploits the fact that in 18&vy benchmarks, if a core (tleadei)
TLB misses on a particular virtual page entry, other corkesfllowers will also typically TLB
miss on the same virtual page eventually. Since the leadeldvedready have found the appropriate
translation, we can prevent the followers from missing as émtry by pushing it into the follow-
ers' TLBs. Key challenges lie in identifying miss pattermslan avoiding pushing mappings onto
uninterested cores.

4.3.1. Algorithm. Figure 14 illustrates the algorithm necessary for Lead#iower prefetching as-
suming an N-core CMP with per-core D-TLBs. Like many unigssor TLB prefetching studies,
we do not prefetch entries directly into the TLB, but instéasert them into a small, separate
Prefetch Buffel(PB) which is looked up concurrently with the TLB. This helpgigate the chal-
lenge of prefetching into the TLB too early and displacingfusinformation.

Each PB entry maintains\éalid bit and aPrefetch Typeit (to indicate whether the entry arose
from Leader-Follower or Distance-based Cross-Core prkfieg) in addition to théranslation entry
(virtual page, physical page, context ID etc.). On a PB ehitythe particular entry is removed
from the PB and inserted into the TLB. The PB uses a FIFO reptant policy; if an entry has to
be evicted to accommodate a new prefetch, the oldest PB isnteynoved. If a newly prefetched
entry's virtual page matches the virtual page of a curreneRy, the older entry is removed and
the new prefetch is added to the PB as the newest entry of B@.Fl

Figure 14 separates the Leader-Follower algorithm intoéxample cases. These cases are inde-
pendent and can happen in any order. We detail the cases:below

Case 1:Suppose we encounter a D-TLB miss but PB hit on core 0 (stepriagsponse (step
1b), we remove the entry from core 0's PB and add it to its D-TLB

Case 2:Suppose instead that core 1 sees a D-TLB and PB miss (stejm 2a$ponse, the page
table is walked and the translation is located and re lled ithe D-TLB. In step 2b, this translation

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A:9

(O O
g EIE\%QL —

Fig. 14. The baseline Leader-Follower algorithm O
prefetches a TLB miss translation seen on one core (| § 15. Algorithm for incorporating con dence estima-

!e?der) intoh thed‘f'lftgr cores (the followers) to eliminajgy, \ith saturating con dence counters in Leader-Followe
inter-core share misses. prefetching scheme.

is also prefetched gpushedinto PBs of the other cores, with the aim of eliminating fetu€S
misses on the other cores.

In step 2b, at PB insertion time, a check is made to see if tehguientry already exists. If so, the
entry is brought to the head of the PB. However, we do not ptiobéollower TLBs, and as a result
it is possible that the entry may exist in both the D-TLB and BB simultaneously. In practice,
however, we nd that this redundancy occurs rarely.

4.3.2. Integrating Confidence Estimation. The baseline Leader-Follower prefetching scheme
prefetches a translation intdl the follower cores every time a TLB and PB miss occurs on the
leader core. However, this approach may be over-aggreasi/eauséad prefetches.

As with standard cache prefetching taxonomy [Srinivasaal.e2004], we classify a prefetch as
bad if it is evicted from the PB without being used. This coléppen either because the item was
prefetched incorrectly and would never have been refeckagen in an in nite PB, or because the
nite size of the PB prompts the item to be evicted before gs.u

For the Leader-Follower approach, bad prefetching arisestd blind prefetching from the
leader to the follower, even if the follower does not share plarticular entry. For example, in
Streamcluster , 22% of the D-TLB misses are shared by 2 cores, 45% by 3 conels28% by
all 4 cores. However, for each miss, the baseline approagtessjvely pushes the translation into
all follower PBs. This can result into two types of bad prelffets, which we classify by extending
cache prefetch taxonomy [Srinivasan et al. 2004]. Firgt,lthd prefetch may beselessn that it
will be unused. Second, the prefetch mayhlaemfulin that it will not only be unused, but will also
render existing PB entries useless by evicting them tog.earl

We mitigate harmful and useless prefetches by incorpayatim dence estimation. To do so, we
add aCPU Numbereld to each PB entry. The CPU Number tracks the leader cospamsible
for the prefetch of each entry. In addition, as shown in Feglfs, each core maintains con dence
counters, one for every other core in the system. Thereforar example with an N-core CMP,
core 0 has saturating counters for cores 1 to N-1. The guwstilates three cases of operation for
con dence-based Leader-Follower prefetching:

Case 1:Suppose that core 0 sees a PB hit (step 1a). As in the baselee step 1b removes
the PB entry and inserts it into the D-TLB. In addition, we ckewith the Prefetch Type bit, if the
entry had been prefetched based on the Leader-Followemschéso, we identify the initiating
core (from the CPU number). In our example, this is core 1rdfoee, in step 1c, a message is sent
to increment core 1's con dence counter corresponding t@ €osince we are now more con dent
that prefetches where core 1 is the leader and core 0 is tlogvéai are indeed useful.

Case 2:Suppose instead (step 2a) that core 1 sees a D-TLB and PBImissponse, the page
table is walked and the D-TLB re lled. Then, in step 2b, coledon dence counters are checked
to decide which follower cores to push the translation to. piiefetch to a follower if its B-bit

con dence counter is greater or equal t82. In our example, core 1's counter corresponding to
core 0 is above this value, and hence step 2c pushes theatiranshto core 0's PB. At the same
time, since core 1 itself missed in its PB, we need to incréaseate of prefetching to it. Step 2d
therefore sends messages to all other cores so that corerildenice counters in the other cores
are incremented.

Case 3:Consider the third case in which a PB entry is evicted frone ¢d+1 without being used
(step 3a). Since this corresponds to a bad prefetch, we semdsage to the core that initiated this
entry (step 3b), in this case core 1. There, core 1's counteesponding to core N-1 is decremented,
decreasing bad prefetching.

In step 1c, we send messages from follower to leader imnedgliatter a PB hit so that the leader
can learn con dence levels as quickly as possible. As amratee implementation, one could aim
to cut down on message traf ¢ by merging such messages intiitlnormal eviction process of

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,detA, Publication date: January 2013.

A:10 D. Lustig et al.

the original TLB entry. However, such a time delay would likaegate the bene ts of con dence
tracking. Section 7.4 presents results showing that outémentation of con dence estimation
gives dramatic performance improvement for modest harelwar

4.3.3. Key Attributes. In summary, Leader-Follower prefetching has the followkay properties.
First, the scheme shootdown-awardf a translation mapping or protection information is cad,
initiating a shootdown, TLBs are sent an invalidation sigoathe relevant entry. In our scheme,
this message is relayed to the PB to invalidate any matchitrges. Second, our scheme performs
single-pushprefetches in that a TLB miss on one core results in that singdjuested translation
being inserted into follower PBs. Third, the Leader-Fokownechanism prefetches translations
into followers only after the leader walks the page table nd the appropriate translation entry.
Therefore, all the translation information is already preswhen inserted into the follower PBs.
Fourth, our scheme does not rely on any predesignation afhutores are leaders or followers.
Any core can be a leader or follower for any TLB entry at a time.

4.4. Distance-Based Cross-Core Prefetching

To capture ICPS misses, our solution draws from a uniprecaeistance-based prefetcher [Kandi-
raju and Sivasubramaniam 2002b], and extends it for croes{sehavior. As an initial example,
assume that two CMP cores have the following TLB miss virpae streams with all of core 0's
misses occurring before core 1:

Core 0 TLB Miss Virtual Pages8, 4, 6, 7

Core 1 TLB Miss Virtual Pages 7,8,10,11

Here, a stride of 4 pages repeats between the missing vpagas on the two cores. But due
to timing interleaving and global communication, crossecpatterns are hard to detect and store
directly. Instead, our approach focuses on the differenmedistancesbetween successive miss-
ing virtual pages on theamecore, and then makes distance patterns availabi¢hter cores. For
example, the rst distance on core 0 is 1 page (page 4 - pagev@rall, the distances are:

Core 0 Distancesl, 2, 1

Core 1 Distances 1,2,1

The key to our approach is that although the cores are missindjfferent virtual pages, they
both have the same distance pattern in their misses, andathibe exploited. We therefore design
a structure to record repetitivdistance-pairs in this case, the pairél, 2) and(2, 1). Then, on a
TLB miss from a core, theurrent distancécurrent missing virtual page minus last missing virtual
page) is used to scan the observed distance pairs. Frowvthiad the nextpredicted distanceand
hence the next virtual page miss. The matching translatitny & then prefetched. In our example,
core 0 experiences all its misses, recording the distaage<{{d, 2) and(2, 1). Then, once core 1
misses on pages 7 and 8 (current distance 1), the distamcélpd) reveals that the next virtual
page is predicted to be 2 pages away. A subsequent prefetiefdle eliminates the miss on page
10. Similarly, the TLB miss on page 11 is also eliminatedrfgghe(2, 1) pair).

4.4.1. Algorithm. Figure 16 shows how Distance-based Cross-Core prefetetinigs. We again
assume an N-core system with prefetches placed into perRi®s. The approach is as follows:

Step 1:0n a D-TLB access, the PB is scanned concurrently to checthéentry. If there is a
PB hit, we go to step 2, otherwise we skip directly to step 3.

Step 2:0n a PB hit, the entry is removed from the PB and inserted inéoDR-TLB (in our
example, for core 0). We then move to step 3 and follow the sstepes as the PB miss case.

Step 3:We now check if the context ID of the current TLB miss is equeihte context ID of the
last TLB miss (held in thé.ast Ctxt. Reg. If so, the current distance is calculated by subtracting
the current TLB miss virtual page from the last TLB miss \éftpage (held in théast VP Reg.
and we move to step 4. If there is no match, we skip directlyep 8.

Step 4:The core (in our example, core 0) sends the current distéinedast distance (from the
Last Dist. Reg, the CPU number, and the current context toliietance Tabl€DT), which caches
frequently used distance-pairs and is shared by all thesc@er scheme places the DT next to the
shared L2 cache.

Step 5:The DT uses the current distance to extract predicted fudigtances from the stored
distance-pairs. It also updates itself using the last dégt@and current distance.

Step 6:A maximum of P predicted distances (the current distance may match withipigu
distance-pairs) are sent from the DT back to the requestirgy(core 0 in our example), where they

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A1l

Sz

i g%EIEIE
1 y S I I I
Fig. 16. Distance-based Cross-Core prefetching uses |a { A L \
central, shared Distance Table to store distance pairs an é
initiates prefetches based on these patterns whenever a TLB O O O O

miss occurs on one of the cores (for both PB hits and
misses). Note that the prefetches on a core may be initiat

by a distance-pair initially seen on a different core. eFeulg. 17. The Distance Table uses the current distance as

the address in the lookup operation and also requires a con-
text match for a lookup hit. The last distance is used as the
address for updating with context and CPU number matches
also required.

are entered into thBistance Buffe{DB). The DB is a FIFO structure with siZzeto hold all newly
predicted distances.

Step 7:The predicted distances in the DB are now used by the core (torour case) to calcu-
late the corresponding virtual pages and walk the page.téliten these prefetched translations are
found, they are inserted pulledinto the PB (unlike the Leader-Follower case, this is a puths
anism since the core with the TLB miss prefetches furthenstéoitself rather than the others).

Step 8:The Last Ctxt, Last VR, andLast Dist.registers are updated with the current context,
current virtual page, and current distance.

A number of options exist for the page table walk in step 7;rallvare-managed TLB could use
its hardware state machine without involvement from thelhaard, which could execute in parallel.
In contrast, a software-managed TLB may execute the padg stk within the interrupt caused
by the initiating TLB miss. We will compare these approacineSection 7.7.3.

4.4.2. Distance Table Details. Figure 17 further clari es DT operations such as lookupdt (tka-
gram) and updates (right diagram). Requests are initiajueued into &equest Buffeiglobal to
all cores. Each request is comprised of the current distaheecontext, the core number initiating
the request, and the last distance value. Moreover, eacby leas avalid bit, aTag (to compare
the distance used to address into the DOkt bits for the context ID of the stored distance-pair,
the CPU number from which this distance-pair was recorded, andPtied. Dist.or next predicted
distance. We now separately detail the steps involved inddkup and update.

DT Lookup: For the lookup operation, the low-order bits of ttarent distancendex into the
appropriate set. Figure 17 shows a 2-way set associativé@ The associativity could be higher.
Second, for all indexed entries, the valid bit is checked itite tag matches the current distance
tag and theCtxt bits match the current context, we have a DT hit. Multiple chat are possible
since the same current distance may imply multiple futuséadices. Third and nally, on a DT hit,
thePred. Dist. eld of the entry is extracted. Clearly, this DT line may hdween allocated by a core
different from the requesting core, allowing us to leverager-core TLB miss commonality. The
maximum number of prefetches is equal to the DT associgtivit

DT Update: In contrast to the lookup, DT update uses the low-order Hith@last distance
to index into the required set. Second, for each line, thigl\at is checked, the tag is compared
against the last distance tag portion, andQlte bits are compared against the current context. Also,
since distances are calculated relative to TLB misses flwrsame core, we check that the CPU
bits of the lines match with the requesting CPU.

If a matching entry Valid, Tag Ctxt, andCPU) is found, we next check check if updating the
Pred. Dist.entry with the current distance will result in multiple Imé the set having the same
Tag, Pred. Distpair (this might happen when multiple cores see the samardistpairs). If true,
we avoid storing redundant distance-pairs by not updatiadine. If no duplicates exist, we update
thePred. Dist.entry with the current distance.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,detA, Publication date: January 2013.

A:12 D. Lustig et al.

g | e
=

)

O

@)

Fig. 18. The basic structure of a shared last-level TLB in-
volves a CMP with private, per-core L1 TLBs and a largerqeciyr ‘hoth the requested translation and other trangatio

shared L2 TLB. Cases 1 and 2 detail instances of SLL TL@ stride of 1, 2, and 3 pages away are inserted into the SLL
misses and hits respectively. TLB.

Fig. 19. Enhancing the basic SLL TLB algorithm with
simple stride prefetching. When an L1 and SLL TLB miss

On the other hand, if no matching entry is found, a new linehimget is allocated with the tag,
context, and CPU bits set appropriately. For this purpdseXT uses an LRU replacement policy.

4.4.3. Key Attributes. Like Leader-Follower prefetching, Distance-based Ci©ese prefetching
is shootdown-awarePB entries can be invalidated when necessary. Since the iyl main-
tains distance-pairs and not translations, it is agnosti€ltB shootdowns. Second, this scheme
is multiple-pull That is, prefetches for translations are pulled only ih®dore which experienced
the initial TLB miss. Furthermore, multiple prefetchesr(lied by the associativity of the DT) may
be initiated by a single miss. Third, the DT predicts futuiggahces but the corresponding transla-
tions need to be found. This differs from the Leader-Folloaeheme, in which the leader directly
pushes the required translation into the PBs of the othexscdrhe actual translation search may
be accomplished differently for hardware and software-agad TLBs and will be further studied
in future sections. Fourth, since the DT induces additigragje table walks, we must account for
page faults. Our scheme assumes-faultingprefetches in which the page walk is aborted without
interrupting the OS if the entry is not found.

5. SHARED LAST-LEVEL TLBS

We now detail our proposed shared last-level TLB. We intoadilhe concept of SLL TLBs and de-
scribe their operation and implementation. We then disaugsnenting SLL TLBs with prefetching
mechanisms as well.

5.1. Concept

Figure 18 presents a CMP with private, per-core L1 TLBs bddkean SLL L2 TLB. While this
example uses just one level of per-core private TLBs, furesls may be readily accommodated
(for example, each core could maintain two levels of peeqwivate TLB followed by an L3 SLL
TLB). As with last-level caches, the SLL TLB is accessed wtiere is a miss in any of the L1
TLBs. The SLL TLB strives for inclusion with the L1 TLB, so thentries that are accessed by one
core are available to others. Figure 18 shows the SLL TLRInegiin a central location, accessible
by all the cores. While this centralized approach is a possibplementation, we discuss this and
other implementation issues in Section 5.2.

SLL TLBs enjoy two orthogonal bene ts. First, they explaittér-core sharing in parallel pro-
grams. Speci cally, a core's TLB miss brings an entry int@ t8LL TLB so that subsequent L2
misses on the same entry from other cores are eliminatedn8eeven for unshared misses, SLL
TLBs provide more exible caching space in which entries barplaced. Eliminations arising from
this bene t both parallel and sequential workloads.

5.2. Implementation Options

Having detailed basic SLL TLB operation, we now address skayeémplementation attributes:
TLB Entries SLL TLB entries store information identical to the L1 TLBaé&h entry stores a
valid bit, the translation entry, and replacement polidg frurthermore, we store the full context or
process ID with each entry. Space could be saved with fewsbbt our SLL TLB is small, making
such optimizations unnecessary. Entries also may or mayriveg in the TLB by the operating

system, as is done in the SF3800 described in Section 6.3.
Replacement PoliciesTo leverage inter-core sharing in parallel programs, the $LB and
L1 TLBs need to be inclusive. However, as with multilevel lvag, guaranteeing strict inclusion

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A:13

requires tight coordination between the L1 and the L2 SLL TddBtrollers and replacement logic
[Hinton 2001]. Instead, we implement a multilevel TLB hiesfay that ismostly-inclusiveHere,
while entries are placed into both the L1 and SLL TLB on a mésssh TLB is allowed to make
independent replacement decisions, requiring far sinfiaestware. Furthermore, processor vendors
have noted that while this approach does not guarante¢ isiclasion, it achieves almost perfect
inclusion in practice. For example, in our applications, meethat above 97% of all L1 TLB entries
are present in the SLL TLB. Nevertheless, SLL TLBs could lgas¢ ported to a fully-inclusive
hierarchy as well if desired.

ConsistencyOur SLL TLBs are designed to shootdown-awaréWhenever a translation entry
needs to be invalidated, both the SLL and the L1 TLBs must leelad for the presence of this
entry. Had our SLL TLB been strictly inclusive of the L1 TLBbjs would be unnecessary in the
case of an SLL miss. However, since our two TLB levels are Ipdstlusive, it is possible for an
entry to be absent from the SLL TLB but be present in the L1 TLB®erefore, a shootdown re-
quires checks in all of the system TLBs. Nonetheless, slowatd are rare and the simpler hardware
afforded by the mostly-inclusive policy make it appropei&r our proposed approach.

PlacementMany SLL TLB placement options exist. Here, we assume aedhicentralized SLL
TLB equidistant from all cores. This is feasible for the etrsize of SLL TLBs we study (512
entries, as detailed in Section 6), which enjoy short hiesni2 cycles for 45nm technology from
CACTI experiments [Muralimanohar et al. 2009]). If futureLSTLBs are considerably larger and
require longer hit times, they could be distributed sintyfiéao NUCA caches [Kim et al. 2003].

As with caches, a communication medium exists between @rdshe SLL TLB (eg. on-chip
network or bus). Therefore, SLL roundtrip latency is corspd of the network traversal and SLL
TLB access time. Given short access latencies of 2 cycléwonle traversal time dominates. We
assume network traversal times of 20 cycles based on CACTUrgNMmanohar et al. 2009] simu-
lations. While this does mean that 22 cycles are spent evem &Lk TLB hit, as we will show,
this still vastly improves performance by eliminating a pagble walk that could take hundreds
of cycles [Jacob and Mudge 1998a; 1998b]. Techniques thacesthe communication latency to
reach the SLL TLB will only amplify the SLL TLB bene ts.

Finally, since the SLL TLB is centrally shared among all of tores, they will require longer
access times than the private L2 TLBs. Based on CACTI sinauatat 45nm, scanning the private
L2 TLB takes the same amount of time as the SLL TLB (2 cyclesyyéver, since private L2 TLBs
do not need to be centralized among cores, they have a sloorf@nunication time. To ensure
that this additional time does not annul the gains from higblel hit rates, we assess SLL TLB
performance versus private L2 TLBs, which are faster to sxbg 6 cycles.

Access PoliciesWhile L1 TLBs handle only one request at a time and are blagk8iL TLBs
could potentially be designed to service multiple requiesgsther. This, however, complicates both
the hardware and the OS page table handler; our design dheraésumes blocking SLL TLBs.
Nevertheless, non-blocking SLL TLBs would likely providese more performance bene ts.

5.3. Adding Simple Stride Prefetching to the Baseline Shared Las t-Level TLB Operation

As detailed, SLL TLBs provide bene ts for parallel prograimscapturing inter-core sharing. They
also improve multiprogrammed sequential workloads by nebently allocating TLB resources
to match the varying needs of different sequential worksoddowever, we also consider simple
stride prefetching extensions to the baseline scheme tioefiuincrease TLB hit rates. For example,
on a TLB miss, we can insert the requested translation irg&ti. TLB and also prefetch entries
for virtual pages consecutive to the current one. Figure d€cidbes SLL TLBs with prefetching
integrated for the following steps:

Step 1 First, we assume that a TLB miss has occurred in both the d1Sah L2 TLBs. After
having walked the page table to nd the translation corresjing to the missed virtual page (page
0 in this example), the appropriate entry is placed into thd LB.

Step 2Having re lled the L1 TLB entry in the rst step, we now Il tle same entry into the SLL
TLB. At this point, prefetching is activated. To capture grial intra-core and inter-core strides,
we now prefetch entries for virtual pages located near thegjwst missed upon.

It is critical to ensure that these prefetches do not addheaets by requiring extra page table
walks. To avoid this, we propose a simple piggyback handiipgroach. When a TLB miss and
its corresponding page table walk occur, we eventuallyteotiae desired translation. Now, this
translation either already resides in the cache or is brioingb the cache from main memory.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,detA, Publication date: January 2013.

A:l4 D. Lustig et al.

Table 1ll. Summary of PARSEC benchmarks used to evaluate SLL TLBs. Note the diversity in parallelization models and
working set sizes.

Benchmark Model Wkg. Set || Benchmark Model WKkg. Set
Streamcluster Data-parallel 16MB Ferret Pipeline-parallel| 64MB
Canneal Unstructured 256MB VIPS Data-parallel 16MB
Facesim Data-parallel 256MB Swaptions Data-parallel 512KB
Fluidanimate Data-parallel 64MB Blackscholes Data-parallel 2MB
X264 Pipeline-parallel| 1T6MB Dedup Pipeline-parallel| 2ZMB
Bodytrack Data-parallel 512KB Raytrace Data-parallel N/A®

Because cache line sizes are larger than translation gné&isingle line will maintain multiple
translation entries. With 64-byte cache lines and 16-bytB €ntries (see Section 6), entries for
three other translations will also reside on the same cacbeTherefore, we prefetch these entries
into the SLL TLB, with no additional page walk requiremertéoreover, we permit onlynon-
faulting prefetches.

Continuing our example from step 1, after virtual page O hesnbmissed upon, we prefetch
translations for pages 1, 2, and 3, as these translatioiteres the same cache line and therefore
arrive for free.

Step 3 Suppose now that core 1 requests the translation for Vipage 1 because it has an inter-
core stride of 1 page from core 0. Assuming that we miss in th&lLB, we scan for the entry in the
SLL L2 structure. Fortunately, based on the stride prefattecheme used, we nd that the entry
does exist in the SLL TLB. An expensive page table walk is glated and all that remains is for
the entry to be re lled into the L1 TLB as well.

6. METHODOLOGY AND BENCHMARK CHARACTERIZATION
6.1. Workloads and Input Sets

6.1.1. Parallel Workloads. For parallel applications we use PARSEC, a suite of nexegaion
shared-memory programs for CMPs [Bienia et al. 2008]. Tébléests the workloads used in this

study. Of the 13 available workloads, we are able to compile for our simulatot and 12 for our
real system. The workloads use diverse parallelizaticatezjres (unstructured, data-parallel, and
pipeline-parallel) and are run with a thread pinned to ealelirCore.

We also classify the benchmarks into groups based on thaavii@. Figure 20 arranges the
workloads in terms of TLB miss sharing by plotting them witte tpercentage of ICS misses (at
least 2 sharers) on the x-axis and percentage of ICPS misgdbg g-axis. Based on this, we form
the following categories:

ICPS-h: Stride-reliant workloads with high ICPS misses and low ICRaring. Only
Blackscholes s in this category.

ICS/ICPS-m: Moderate but roughly similar contributions from ICS and BECHmisses.
Fluidanimate , Swaptions , andVIPS are in this category

ICS-m:Moderate ICS misses and few ICPS misseset andx264 comprise this category.

ICS-h/ICPS-mHeavy ICS sharing with moderate ICPS. ORbcesim is in this category.

ICS-h:1CS-sharing exclusively, forming a high proportion of ti¢at D-TLB missesCanneal
andStreamcluster fall in this category.

Speci cally, we expect that ICS-high categories particlylabene t from Leader-Follower
prefetching while ICPS-high benchmarks exploit Distabesed Cross-Core prefetching.

6.1.2. Sequential Workloads. \We run sequential applications from the widely-used SPEOZIP6
[SPEC 2006] benchmark suite to form our multiprogrammedk¥eads. For the simulation ex-
periments, we choose to evaluate the workloads designatedmuring the overall performance
range of the SPEC CPU2006 suite [Phansalkar et al. 2007].evdHillly-comprehensive a is

of multiprogrammed workloads comprised of four applicasiovould involve simulation of all?,

combinations of benchmarks, this is practically infeasibVe therefore draw from the methods and
data in [Phansalkar et al. 2007] to form seven workloads wf 8PEC CPU2006 applications each.

SThese are also the PARSEC workloads that are studied initietrjee and Martonosi 2009] and hence, serve as a point
of reference for our results.

6Becauseaytrace is a newer addition to PARSEC, its characterization dataiswailable in [Bienia et al. 2008].

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A:15

Table IV. The multiprogrammed workloads used in this paper. Five of the
workloads are constructed to be heterogeneous (Het-1 to Het-5) while two
are homogeneous (Hom-1 and Hom-2). The workloads are designed to
show varying degrees of TLB stress.

ID Stress | SPEC Benchmarks

Het-1 Inter. mcf, xalancbmk, sjeng, libquantum
Het-2 Low xalanchmk, sjeng, libquantum, gcc
Het-3 Inter. | cactusADM, milc, soplex, Tbm

Het-4 | Low soplex, Ibm, wrf, povray

Het-5 High cactusADM, mcf, omnetpp, GemsFDTD
Hom-1 | High 4 copies oimcf

Hom-2 | Low 4 copies ofxalanchmk

Table V. System parameters used to collect statis-

tics using hardware performance counters and us- a ’
ing simulation. ® ® \
Property Simulated Hardware * !
System 4-16 core SPARC e
L1 cache Private, 32 KB, (4-way) _ o
L2 cache Shared, 16 MB (4-way) e ~
L3 cache None L -
LLC roundtrip 40 cc (uncontested) - o o
Private L1 TLBs 16-entry fully-assoc
(locked/unlocked pgs.),
64-entry, 2-way
(unlocked pgs.) Fig.20. Based oninter-core sharing, we separate the work-
L2 TLBs (see Table VII) loads into ICPS-h, ICS/ICPS-m, ICS-m, ICS-h/ICPS-m,
0S Sun Solaris 10 and ICS-h categories.

As shown in Table IV, these combinations stress the TLBs tging degrees. We separate them
into ve heterogeneous workloads (Het-1 to Het-5) and twanbgeneous workloads (Hom-1 and
Hom-2). The heterogeneous workloads provide insight iote vell SLL TLBs adapt to programs
with different memory requirements. In contrast, the hoerapus ones model scenarios where no
single application overwhelms the others.

We construct the workloads as follows. First, we design tetetogeneous workloads with in-
termediate levels of TLB stress by combining one high-stegsplication with three lower-stressed
ones. In this casencf andcactusADM serve as our high-stress benchmarks and therefore are used
to create intermediate-stress workloads Het-1 and Het#3galith three other lower-stress appli-
cations. Second, for comparison, we create a pair of loasstworkloads, Het-2 and Het-4. Finally,
our last heterogeneous workload is designed to be very ¢tiglss. Therefore, in this case we com-
bine bothmcf andcactusADM along with two other workloads in Het-5.

For the homogeneous workloads, we once again focus on ashigés and low-stress case. The
high-stress workload is constructed using four copiemaf while the low-stress workload uses
four copies ofkalanchmk .

Lastly, we also note that many workloads will consist of nputigrammed combinations of both
sequential and parallel applications. Such a combinatadd to interesting questions about parti-
tioning, sharing, interference, etc., and we hope to studi snixes in the future.

6.2. Simulation Infrastructure

We use the Multifacet GEMS simulator [Martin et al. 2005]rfrorable V. Our simulator uses
Virtutech Simics [Virtutech 2007] as its functional modeldimulate a 4-16 core CMP based on
Sun's UltraSPARC Il Cu with SunFire's MMU architecture [82003]. This uses two L1 TLBs
that are looked up concurrently. The OS uses a 16-entry-&dociative structure primarily to lock
pages. A second 64-entry TLB is used for unlocked transiati®hese sizes are similar to the L1
TLBs of contemporary processors such as Intel's i7 (64yg@ind AMD's K10 (48-entry).

6.3. ICC Prefetcher Evaluation

To evaluate the ICC prefetcher, we consider a variety of MM gurations, shown in Table VI.
Since the simulated MMUs are software-managed, the OSvecan interrupt on every TLB miss.
Furthermore, each MMU has a distinct TLB architecture. TRR&DR is representative of Sun's
entry-level servers with typical TLB sizes, whereas the &Bcontains one of the largest TLB

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,detA, Publication date: January 2013.

A:16 D. Lustig et al.

Table VI. Simulated SunFire MMUs with Table VII. TLB enhancements evaluated in this work. SLL TLB and private,

software-managed TLBs. per-core L2 TLB sizes match those of the ICC prefetchers.

MMU Type D-TLBs Strategy Description

SF280R 64-entry (2-way) Per-Core Private L2 TLBs | 128-entry, 4-way, 16 cc roundtrip

ntermediate | 512-entry (Z-way) (Conventional case) (interconnect: 14 cc, access: 2 cc)

SF3800 16-entry, fully-assoc. Shared Last-Level L2 TLB | 512-entry, 4-way, 22 cc roundtrip
(locked/unlocked pages (Our Strategy) (interconnect: 20 cc, access: 2 cc)
2 % 512-entry, 2-way ICC Prefetching 16-entry PB per core, 512-entry DT,
(unlocked pages) (Our Strategy) 28 cc DT roundtrip

(interconnect: 20 cc, access: 8 cc)

organizations to date. In all cases, we keep the L1 TLB sizestemt so as not to increase the
latency of hits, which are by far the common case.

We develop and evaluate the two prefetching schemes in iog/fog steps:

In Section 7, we evaluate the Leader-Follower and Distdrased Cross-Core prefetching
schemes on a 4-core CMP system with the SF280R MMUs (64-&h®g). We show the bene ts
of each scheme individually and then combine them. In thelee&ollower scheme, we assume
that it takes 40 cycles for the leader core to push a trapslatito the follower core (this is equal
to the L2 latency, which may be considerably longer than tiiead time taken on interconnection
networks with 4-16 cores today). Furthermore, in Distabased Cross-Core prefetching, we place
the DT next to the L2 cache, and hence assume that a DT acaegsabkto an L2 access latency.
Finally, we assume that, as with hardware-managed TLBsdwlaae state machine walks the page
table on predicted distances from the DT. In this sectiomstate machine is assumed to locate the
desired translation with an L1 access (subsequent sectuiress longer page table walks).

After this analysis, we then study the performance impilicet of these approaches for multiple
core counts and TLB sizes. Lastly, we investigate hardwafsyare prefetcher implementation
tradeoffs and assess the bene ts and overheads of eacheappro

Since TLB misses occur less frequently than cache missegsavthe largest available input data
set feasible for simulation, th&@mlargeset. Due to slow full-system timing simulation speeds, we
present results observed with 1 billion instructions.

6.4. SLL TLB Evaluation

To assess the bene ts of SLL TLBs, we compare them againstixetcore, private L2 TLBs and
ICC prefetchers with the same total hardware. Based on tGepl@fetchers detailed in Table VII,
an equally-sized SLL TLB requires 512 entries. This meaas fibr a 4-core CMP, we compare
SLL TLBs to private L2 TLBs of 128 entries. Finally, TLB accetimes are assigned from CACTI
[Wilton and Jouppi 1994; Muralimanohar et al. 2009] assigr@m5nm node. These penalties in-
clude time to traverse the on-chip network as well as timecemghe TLB array. We nd that
the TLB scan times for both approaches remain the same (29ytiowever, since the private L2
TLBsI an)a placed closer to the cores than the L2 SLL TLB, thexettpicker network traversal (by
6 cycles).

We again use the full-system 4-core CMP simulator of TablEdf.parallel workloads, we again
present results for 1 billion instructions of executionr Bequential workloads, we use an approach
similar to previous studies [Ebrahimi et al. 2010; Kandiranpd Sivasubramaniam 2002a; Sharif
and Lee 2009]: we advance simulation by four billion instimes and evaluate performance over
a window of ten billion instructions. Unlike the parallel vikkoad experiments, we evaluate the
multiprogrammed workloads using functional simulatiolyoithis approach allows us to capture
larger swaths of execution, and it allows us to use ther@ildatasets to more fully exercise the
TLB than would be possible with smaller input sets. In addifithese multiprogrammed sequential
workloads are not as heavily in uenced as the parallel oyastier-thread timing interactions. Since
TLB effects occur over such long timescales, the key is ferwlindow to be suf ciently large to
observe and contrast the behavior of the various workldadsfunctional simulation also includes
OS effects, which are naturally quite important to our study

7. INTER-CORE COOPERATIVE PREFETCHER RESULTS

We now focus on the bene ts of the prefetchers and explorehtrelware parameters involved.
In Section 7.1, we quantify the bene ts of Leader-Followeefgtching and then in Section 7.2,
do the same for Distance-based Cross-Core prefetchindy these cases assume an aggressive

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A:l7

Fig. 21. Percentage of D-TLB misses eliminated with Leader-Follower prefetchitty in nite PBs. This
scheme performs well for high-ICS benchmarks sucBameal , Facesim , andStreamcluster but poorly
for ICPS-relianBlackscholes

%

[ifl T
TILLTTL HMM ”” !MM ”” u!” H!!HH I
| ! i

! %& ‘ 1" % 1% !Lu&'!% ‘ 1 %& " ‘

Fig. 22. Percentage of D-TLB misses eliminated with Distance-based Crossp@afetching assuming in -
nite PBs for various sizes of the DT. Note that a high number of missesliangated consistently across
benchmarks, primarily frorbetween-cor@refetches.

implementation with in nite PBs and no con dence estimatidn Section 7.3, we then combine
both approaches for feasible PB sizes. Subsequentlyofetd shows how con dence estimation
reduces bad prefetches for better performance. Finalttj@e7.5 compares our approach against
increasing TLB sizes.

7.1. Leader-Follower Prefetching

Figure 21 shows the percentage of total D-TLB misses elitathasing Leader-Follower prefetch-
ing, assuming in nite PBs for now. From this, we observe thkofving:

First, ICS-h and ICS-h/ICPS-m benchmaf@ianeal , Facesim , andStreamcluster enjoy par-
ticularly high bene ts. For examplé&treamcluster eliminates as much as 57% of its misses.

Second, even benchmarks from the ICS-m and ICS/ICPS-marégegee more than 14% of their
D-TLB misses eliminated. For exampléPS eliminates 26% of its D-TLB misses. This means that
even moderate amounts of ICS sharing can be effectively#gplby Leader-Follower prefetching.

Unlike their ICS-heavy counterparts, ICPS-reliant benatis see fewer bene ts. For example,
Blackscholes sees roughly 3% of its D-TLB misses eliminated. Nonethetasaverage of 28%
miss reduction occurs across all applications.

7.2. Distance-Based Cross-Core Prefetching

Next, Figure 22 presents results for Distance-based GZossprefetching. It shows D-TLB misses
eliminated for various DT sizes with in nite PBs. Assumindg-avay set-associative DT (therefore,
the maximum number of prefetches is 4 and the DB is also shtswalue), we vary the size of the
DT from 128 to 2K entries. Each bar is further separated inr{bLIB misses eliminated from two
types of prefetches:

1. Between-Corgrefetches in which a core prefetches based on a distancayhe DT that
was recorded from a different core. This is the categoryekploits inter-core commonality.

2. Within-Coreprefetches in which a core prefetches based on a distanicerpize DT that was
recorded from itself.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,dfetA, Publication date: January 2013.

D. Lustig et al.

Fig. 23. Effect of combining the two prefetching schemes with nite PBs. Even wittieav as 16 entries in
the PB, these techniques eliminate an average of 46% of the D-TLB misses.

Figure 22 indicates that miss eliminations rise with bigBdis. Benchmarks with ICPS TLB
misses enjoy particular improvements from this approaoh.example Blackscholes (ICPS-h)
consistently eliminates more than 80% of its TLB misses.

Second, Figure 22 shows that streaming benchmarks emploggular distance-pairs derive
great bene ts from Distance-based Cross-Core prefetchtiog exampleFacesim , which em-
ploys an iterative Newton-Raphson algorithm over a spara&ix)y sees over 70% of its D-TLB
misses eliminated even at the smallest DT. Simildidyet's working set is made up of an image
database that is scanned linearly by executing threadsgheggular distance-pairs exist, eliminat-
ing above 60% of D-TLB misses.

Third, Distance-based Cross-Core prefetching aids evéh bénchmarks from ICS-m, ICS-
h/ICPS-m, and ICS-h categories. For exam@lmneal enjoys roughly 60% D-TLB miss elimina-
tion at 2K entry DTs. ICS-heavy workloads typically bene bst from increased DT size because
they have less prominent strides and hence a higher numbi@icqpfe distance-pairs.

Finally, the high contribution of between-core prefetcdemonstrates that the DT actively ex-
ploits inter-core commonality. Even in cases where thiess Iprominent however, the DT can
capture within-core distance-pairs, and use them for bptigormance. For exampl8waptions
makes particular use of this with half of its D-TLB eliminatis arising from within-core prefetches.

Clearly, the bulk of eliminated D-TLB misses across the vaalls arises from behavior seen
across CMP cores. While uniprocessor distance schemesifidandnd Sivasubramaniam 2002b]
may be able to capture some of these patterns, they woulddager to do so, eliminating fewer
misses. Moreover, since our scheme uses a single DT to hdudistance-pairs across cores, we
eliminate the redundancy of a scheme with per-core DTSs.

Based on Figure 22, we assume a DT of 512 entries from now dh @ém average of 54% of
the D-TLB misses eliminated). Moreover, we have experimeémtith a range of associativities and
found that there is little bene t beyond a 4-way DT. Therefowe assume an associativity, and
hence maximum number of simultaneous predictions and D& efz.

Based on this, each DT entry uses a Valid bit, 25 Tag bits, 2 6dJ(for a 4-core CMP), 13
context bits (from UltraSPARC speci cations), and 32 bits the next predicted distance, amount-
ing to a 4.56 KB DT for 4 cores, or 4.81 KB at 64 cores. Compaceth¢ neighboring L2 cache,
the DT is orders of magnitude smaller, making for modest aathble hardware.

A:18
N a())
% 1) %)+ %), 05530]
] B % 1) %) &%), 7 .]
iiil TLRLTLATITL TR
-. i aﬂﬂﬂﬁ --I SO0 HAAAA llll EEI

R R

[(! ¢ [

ANSNN
AN\

Pe' ! ¢ [

7.3. Combining the ICC Approaches

Since the Leader-Follower and Distance-based Cross-Chastes target distinct application char-
acteristics, we now evaluate the bene ts of both approatbgsther in a combined ICC TLB
prefetcher. Both schemes may be implemented as before thétPB now shared between both
strategies.

Figure 23 shows the bene ts of the combined prefetcher fate iPBs of 8 to 64 entries and
in nite PBs. In all cases, a 4-way, 512-entry DT with 4-en®Bs is assumed. As expected, the
combined ICC prefetcher eliminates 26% to 92% of the D-TLBsas for in nite PBs. Moreover,
in every case, the combined approach outperforms eithéecdpproaches individually.

Figure 23 also shows that ICC prefetchers offer notable beegen for small PB sizes. For
example, even modest 16-entry PBs eliminate 13% Sfaaptions) to 89% (forBlackscholes)
of the D-TLB misses, with an average of 46%. Moreover, berafslike Canneal andFerret ,
which suffer from a high number of D-TLB misses [Bhattacharand Martonosi 2009], see more
than 44% of their misses eliminated, translating to sigantperformance savings.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A:19

s) ¢

z) ¢
. & & + &,
" ¢ b m* & & +'& A
N ; g z 9 z @
N N N N . %% % g
ii % N) § § i N § I i i
Y i i | - I | EE 0 ni 0 g2m A0
! " T HSh ! " " #S%
I « o e (I # @ (& & oy @ n
[&"

Fig. 24. Percentage of total prefetches that are bad becausgy. 25. Percentage of D-TLB misses eliminated with the
they are never used or are prematurely evicted from the PRclusion of con dence estimation. Not only does con -
due to its nite size. Without con dence there are many baddence estimation reduce bad prefetches, it also improves
prefetches, particularly from the Leader-Follower schemeprefetcher performance by retaining useful information for
However, 2-bit con dence counters x this, leadingto &2 longer in the PB. On average, 6% additional D-TLB misses
decrease in bad prefetches. are eliminated by incorporating con dence estimation.

Interestingly, Figure 23 shows that ICS-h benchm&#&meal andStreamcluster suffer most
from decreasing PB sizes. Section 7.4 shows how con deritma&tson can mitigate this effect.

Based on Figure 23, we assume a combined ICC prefetcher withdest PB size of 16 entries
for the rest of our evaluations. This represents the snmatliethe PB sizes deemed feasible by
Kandiraju and Sivasubramaniam [Kandiraju and Sivasubréena2002b].

7.4. Integrating Con dence Estimation

Our results so far assume the absence of con dence estimdgiscribed in Section 4.3.2. How-
ever, as previously noted, there may be instances of ogeasgjve prefetching, especially for the
Leader-Follower case in benchmarks Ii&eeamcluster in which not all cores share the all the
TLB miss translations. Con dence estimation is cruciallie performance of these workloads.

Figure 24 pro les the percentage of total prefetches from prefetcher without con dence
estimation (i.e. the version presented until now) that amd, land compares this to the case
of using con dence with 2-bit counters. Each bar in the grapldivided into Leader-Follower
and Distance-based Cross-Core contributions. Withoutdemee, benchmarks lik€anneal and
Streamcluster , which particularly suffer from lowered PB sizes, have thestrbad prefetches.
Even in other cases without con dence, there are high bafbfte counts (an average of 38%).
Moreover, it is clear that a large proportion of the bad padfes are initiated by over-aggressive
Leader-Follower prefetching. For example, this schemaseauoughly 80% oftreamcluster's
bad prefetches, with 60% on average across applications.

Figure 24 shows that using just 2-bit con dence counters baid prefetches from an average of
38% to 21% across the workloads. In fact, we see3lraamcluster's bad prefetches are halved
while Canneal also sees substantial bene ts. Moreover, while bad preéstérom Leader-Follower
prefetching decrease, Distance-based Cross-Core prigfgtlso bene ts because fewer prefetches
from this scheme are prematurely evicted due to bad Leadleowrer prefetches. This means that
not only are useless prefetches decreased, so too are harefiiches.

Figure 25 shows that the decrease in bad prefetches frondeoce estimation translates into
notable performance improvements. For exam@hnneal and Streamcluster eliminate 10%
and 20% more misses with con dence. This is because harméfiéizhes are decreased and thus
useful information is not prematurely evicted from the PR.the same time, benchmarks like
Facesim andFerret see a slight drop of 2% to 3% in D-TLB miss elimination due te thduced
prefetching; however, since the average benet is a 6% aswdn D-TLB miss elimination, we
incorporate con dence estimation into our ICC prefetcher.

7.5. Cooperative Prefetching Versus Larger TLBs

To fairly quantify the bene ts of prefetching, we must compaur techniques against just enlarging
the TLB. Speci cally, since we require 16-entry PBs to bedter concurrently with the D-TLBSs,
we need to compare this approach to adding 16 TLB entries.

Figure 26 plots the bene ts of ICC prefetching over blindiyding 16 entries for the 64-entry
TLBs (SF280R MMU), 512-entry TLBs (Intermediate MMUs), atf24-entry TLBs (SF3800
MMUSs). For these TLB sizes, we plot the difference betweertg D-TLB misses eliminated
using ICC prefetching with the baseline size versus addéhgLB entries to the baseline case.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,detA, Publication date: January 2013.

A:20 D. Lustig et al.

m o&# ()
w# 0
72+ ' 0

.mlﬂ.%l%l lzl% l%lm Iz

#$ % # # #3$% #3$
#

Fig. 26. Percentage additional misses eliminated using ICC prefetahith 16-entry PBs versus just enlarging TLBs by
16 entries. ICC prefetching consistently outperforms gedrTLBs.

m+ L (# L #

[N

F's -

”
;tn

F)H,-) -

NN

$%¢

"

©“

[NE A 1 ey e # " "y () (

Fig. 27. TLB miss elimination rates using ICC prefetchingig. 28. Burst Distance-based Cross-Core prefetching
for 4-core and 16-core CMPs with SF280R MMUs. Notgiminates almost as many D-TLB misses as the fully-
that higher core counts increase bene ts for benchmatksrdware case. Results assume that Leader-Follower
like Canneal andStreamcluster ~ which see more sharingprefetching remains unaffected.

with more cores.

Figure 26 shows that ICC prefetching notably outperfornisdly increasing TLB sizes across
all sizes and benchmarks. At 64-entry and 512-entry basslizes, ICC prefetching outperforms
larger TLBs by over 20%. At 1024-entry baseline TLB sizes\és are slightly reduced to roughly
12% since TLB misses occur less often, lessening the imfagptedetching. Nevertheless, ICC
prefetching outperforms larger TLBs notably even for 1@24ry TLBs. Therefore, prefetching
strategies with modest hardware can yield signi cant gaiegond just enlarging TLBs.

7.6. Moving to Greater Core Counts

When analyzing the bene ts of our prefetchers, it is impatrtangauge their performance in the
presence of increasing core counts. While we have so far &ssam-core CMP, we now quantify
the performance bene ts on a 16-core CMP.

Figure 27 compares TLB miss elimination rates for the 4-doMP against a 16-core CMP
for SF280R MMUs. We assume the fully-hardware implemeoratiith 16-entry PBs, hardware
Leader-Follower prefetching, and hardware Distanceghd3®ss-Core prefetching with a 512-
entry, 4-way DT.

Figure 27 shows that ICC prefetching improves performangn eat greater core counts.
However, the exact benets vary with the benchmarks. Somechmarks likeCanneal and
Streamcluster ~ see bene ts rising by about 8% from the 4-core to the 16-cagecThis may
be attributed to the fact that at higher core counts, inbee-shared TLB misses increase. Overall,
these results indicate that prefetching strategies vikidllyi become even more pertinent as CMPs
scale to higher core counts.

7.7. Hardware/Software Implementation Tradeoffs

Having assessed the basics of our proposed prefetchendesig now discuss a number of hard-
ware/software implementation possibilities for them. @uoal here is to provide insight into im-
plementation issues that hardware and operating systeignées will face when integrating ICC
prefetching. Our focus here is on a qualitative understandif these implementations and their
impact on performance TLB miss elimination and associatrtbpmance. While the speci ¢ per-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A:21

formance implications will vary based on a number of arctiteal features (eg. whether we use

hardware or software-managed TLBs, whether the page taddle process is an x86-based radix

page table walk or an inverted page table, which hardwatessatan safely store page table entries),
our high-level qualitative analysis will hold across a ramg architectures.

7.7.1. Fully-Hardware Implementation. The highest-performance ICC prefetcher implements the
prefetcher components (PBs, DT, DBs, and con dence estimaéntirely in hardware. While PB
access would require no additional penalty due to its snmdland placement next to the per-core
TLBs, accessing the DT would incur a penalty similar to theca2he.

An additional key issue is page table walk times. While Lede@lower prefetching pushes the
already-available translation into cores, Distance-th&®ss-Core prefetching requires page table
walks for each DT prediction. A fully-hardware, high-perftance prefetching strategy would be
possible assuming hardware-managed TLBs, where per-aalevhre state machines walk the page
table. This means that DT-induced translation searchegprbwithout OS or program intervention.

7.7.2. Hardware Prefetchers with Software Page Table Walks. While fully-hardware ICC prefetching
could be readily accommodated for hardware-managed TLBsnust also consider implementa-
tion possibilities for SW-managed TLBs. In this section,aeasider the case where the prefetchers
remain fully-hardware units, but page table walks are edroiut by dedicated OS interrupt handlers
rather than hardware state machines.

While Leader-Follower prefetching remains unaffected fov-®anaged TLBs, there are two
cases to consider for Distance-based Cross-Core prefgtchii the rst case, a core misses in
both the D-TLB and PB, causing an OS interrupt. When this hagée interrupt handler assumes
responsibility for conducting page table walks for the segjgd distances from the DT. In the second
case, a PB hit occurs, and there is no interrupt. At the sanee the DT suggests predicted distances
for which page table walks are needed.

A solution is to limit Distance-based Cross-Core prefescteeinstances when both the D-TLB
and PB miss, because in these cases the OS will be interrapy@day. In particular, we implement
Burst Distance-based Cross-Cqgreefetching. Our scheme performs DT prefetches only whém bo
the D-TLB and PB miss; however, instead of prefetching jhst predicted distances relative to
the current distance, we use these predicted distancesitidex into the DT and predict future
distances as well. Suppose, for example, that a curremtndisturr yields the predicted distances
predy and pred;. In our schemepredy then re-indexes the DT to nd its own set of predicted
distances (egpreds andpreds). Similarly, pred; is then used to index the DT. In effect, our scheme
limits prefetches to PB misses but compensates by aggedspirefetching in bursts at this point.

Figure 28 showcases the effectiveness of Burst Distanseeb@ross-Core Prefetching in elimi-
nating D-TLB misses, assuming a maximum of 8 DT-inducedgtoéies for every PB miss. For each
workload, we compare this scheme against the conventioistaize-based Cross-Core approach.
We also show our bene ts versus the option of performing Dafgiches only on PB misses, but
prefetching based on just the distances predicted fromuhermt distance. In all cases, a 4-core
CMP with SF280R MMUs also using Leader-Follower prefetghimassumed.

Restricting DT prefetches on a PB miss to distances basétantrent distance severely reduces
ICC prefetching gains. This is especially true for ICPSyydaenchmarks likélackscholes and
Facesim which particularly exercise the DT. On average, there is% Aéduction in bene ts against
the fully-hardware case where DT prefetches occur for b&fiBs and misses.

Fortunately, Figure 28 also shows that Burst Distance<&sess-Core prefetching addresses
this problem effectively for every workload. On average,eliminate just 5% fewer D-TLB misses
than the fully-hardware approach making this a valuableriepie for SW-managed TLBs.

In terms of performance implications, designers will needdcount for the fact that since all DT-
based prefetching will be initiated within the interruptidéer, there will be some modest perfor-
mance overheads as compared to the fully-hardware casertNeless, high TLB miss elimination
counts indicate that this scheme will provide signi canhbés.

7.7.3. Hardware/Software Prefetch with Software Page Table Walks. We now discuss the bene ts and
overheads of also moving prefetcher components into sodtwa

We rst decide which components to leave in hardware. HaréwRBs must be retained for
concurrent scans with D-TLBs. Furthermore, since LeaddioWer prefetching operates without
software intervention, it too can remain a purely hardwareration.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,detA, Publication date: January 2013.

A:22 D. Lustig et al.

\W*%
%
N

B S EZ

|_\

NN

O e > O & & ; X O O o . L. e N> & H & o .
& & F F TS ST RS & G F F T TS
é\é & S b@,\\\ « 4@Q ‘E}\ & ‘55‘ é‘é & & 8”0\ « & &
. R O
&% & e T s > T

Fig. 29. SLL TLB versus private, per-Fig. 30. Copy counts for private L2Fig. 31. SLL TLB hit rate versus ICC
core L2 TLB hit rates. While private LZTLBs. For every evicted L1 line, weprefetcher hit rate. Benchmarks with
TLBs do provide bene ts, they are correcord how many L2 TLBs hold this enhigh inter-core sharing likeCanneal ,
sistently outperformed by SLL TLBgry. Heavy replication of entries exist$;acesim , and Streamcluster bene t
(by 27% on average). which SLL TLBs mitigate. the most from SLL TLBs.

In contrast, designers may wish to place the DT purely inngari¢. Since we use Burst Distance-
based Cross-Core prefetching, we may access the DT fromtietipt handler and burst-prefetch
translations every time a D-TLB and PB miss occurs. Moreaseare must be taken to ensure that
the DT, now in software, is pinned in physical memory so thBffeaccess cannot itself result in a
TLB miss.

With the DT held in software, we must not only perform pagddadalks within the interrupt
but also DT lookups as well. This in turn would add modest @entince overheads. For the DT
organization we consider (512-entry, 4-way), each DT ergguires 73 bits. A 64-byte cache line
can easily accommodate 4 DT entries where 4 equals the atigibgi Therefore, after the rst DT
reference, which brings a set into the L1 cache, every adodgbg set results in an L1 cache hit.
For burst-prefetching, in the worst case, we need to accesependent sets of the DT, amounting
to 8 L2 accesses. However, this would occur rarely sinceiphelpredictions usually arise from
the same set. Therefore, while performance may fall shatie@hardware prefetchers, substantial
performance improvements will be seen using this approaceted.

8. SHARED LAST-LEVEL TLBS: RESULTS FOR PARALLEL WORKLOADS

We now study SLL TLBs for parallel workloads. First, Secti®rl compares SLL TLBs against
commercial per-core, private L2 TLBs. Second, Section 8r2mares SLL TLBs with ICC prefetch-

ing. Section 8.3 analyzes sharing patterns of entries in BLBs while Section 8.4 considers the
bene ts of enhancing the baseline SLL TLB operation withidgtrprefetching. Section 8.5 then
studies the bene ts of the SLL TLB with increasing core caurinally, Section 8.6 focuses on the
performance implications of our results.

8.1. Shared Last-Level TLBs versus Private L2 TLBs

Figure 29 shows the hit rates of a single 512-entry SLL TLB padcore, private 128-entry L2
TLBsin a 4-core CMP. The benchmarks are ordered from highéswvest inter-core sharing [Bhat-
tacharjee and Martonosi 2009]. The overriding observasidtinat SLL TLBs eliminate signi cantly
more misses than private L2 TLBs using the same total haelfearevery single application. On
average the difference in hit rates is 27%.

Second, we observe that high-ICS applications [Uemneal , Facesim , and Streamcluster
see especially high hit rate increases as compared to Wegelti2 case (by 23%, 57%, and 38%
respectively). This occurs because SLL TLBs deliberatmigdt inter-core shared misses.

Figure 29 also shows thaR64 sees the biggest improvement using SLL TLBs versus private
L2 TLBs. As we will show, this is because many entries in eadvafe L2 are replicated for this
application; in contrast, the SLL TLB eliminates this redancy, allowing for more TLB entries to
be cached for the same hardware.

Figure 30 explores this issue of replication in greateritiefa analyze this, on every L1 TLB
miss, we scan all the private L2 TLBs to look for the number xi#ng copies of the missing
translation entry. Then, as a percentage of the total L1eni#sat exist in at least one L2 TLB, we
show separately the number of misses that have a single tipfaudopies. Higher copy-counts are
indicative of applications which would gain even more frolrtLSTLBs that remove redundancy
and use the extra hardware to cache more unique translations

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A:23

N N

A\

BN ® 7Z

& 9‘;&((@'b ‘)\é\(&@ .(.Lbb & \\<{° 0(\ & W
& & <@ /ﬁ &
s & &
«° S &

Fig. 32. Sharing characteristics oFig. 33. Sharing patterns of SLL TLBFig. 34. Including simple stride

each SLL L2 TLB hit entry. Note thaentries evicted. As shown, most evictgrefetching improves SLL TLB hit

high-ICS applications likeCanneal , entries are unshared; inter-core sharireges by an average of 5% across the

Facesim , andStreamcluster ~ see highincreases priority in replacement algevaluated workloads. This is because it

SLL inter-core sharing. rithm, decreasing eviction likelihood. captures repetitive inter-core distance
pairs.

Figure 30 shows that heavy replication exists across thehmearks. As expected, high-ICS
applications see heavy replication. For exam@lajneal sees that 45% of its L1 evictions are
replicated across all 4 cores. As mention&b4 suffers from an extremely high copy-count, which
SLL TLBs eliminate. In fact, even lower-ICS benchmarks Ikaret andSwaptions see high
replication rates. Therefore, it is clear that maintaingggparate and private L2 TLBs results in
wasted resources as compared to a uni ed SLL TLB.

8.2. Shared Last-Level TLBs versus Inter-Core Cooperative Pr efetching

We now consider the bene ts versus ICC prefetching (whiatiudes both Leader-Follower and
Distance-based Cross-Core prefetching). Both strategiego catch requests that have missed in
the L1 TLB, albeit in different ways and with different lat@es. In this section we present hit rates;
a performance analysis is presented in Sections 8.6 and 9.3.

Figure 31 shows the hit rate of a 512-entry SLL TLB comparetiéed CC prefetcher. On average,
SLL TLBs enjoy a hit rate of 47%. These hit rates rival thoséGE prefetchers, though the exact
bene ts vary across benchmarks.

On average, SLL TLBs see merely a 4% drop in hit rate comparéd@ prefetchers. Moreover,
Figure 31 shows that in many high-ICS workloads I&anneal , Facesim , andStreamcluster
SLL TLBs actually outperform ICC prefechers. In fact, SLL B& eliminate an additional 24%,
6%, and 21% TLB misses for these workloads. However, appics: like Blackscholes which
are highly ICPS see lower bene ts than ICC prefetching. Mihedess, SLL TLBs still manage to
eliminate a high 62% of the TLB misses flackscholes . Overall, SLL TLBs eliminate a highly
successful 7% to 79% of baseline TLB misses across all aijalits.

8.3. Shared Last-Level TLB Sharing Characteristics

Having quanti ed the bene ts of SLL TLBs, it is also useful tmderstand their sharing patterns.
Figure 32 plots, for every L1 TLB miss and SLL TLB hit, the nuenlof distinct cores that eventu-
ally use this particular SLL entry. We refer to these disticares are sharers. On our 4-core CMP,
there can be up to 4 sharers per entry.

High-ICS benchmarks enjoy high SLL TLB entry sharing. Foramyple, 81% of
Streamcluster's hits are to entries shared among all 4 cores. Less intuititertore interesting
is the fact that even benchmarks with lower inter-core sigasuch ax264 , VIPS, andSwaptions
see high sharing counts for their SLL hit entries. This isduse the SLL TLB effectively priori-
tizes high-ICS entries in its replacement algorithm; hetitese entries remain cached longer. On
average, roughly 70% of all hits are to entries shared amblegst two cores.

We also consider sharing patterns of evicted translatibiggire 33 illustrates the number of
sharers for every evicted SLL TLB entry. The vast majority éwverage, 75%) of the evictions are
unshared. This reaf rms our previous hypothesis that the Stucture helps prioritize shared TLB
entries in parallel applications. Namely, entries acadgsemultiple cores are frequently promoted
to the MRU position, while those accessed by a single corerane likely to become LRU and
therefore prime candidates for eviction. Since our paraltgkloads have many ICS misses, SLL
TLBs cache translations that will be used frequently by ipldtcores.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,detA, Publication date: January 2013.

A:24 D. Lustig et al.

Fig. 35. Increase in hit rate that SLL TLBs provide versus priva&;@ore L2 TLBs for 4-core and 16-core CMPs. Since
private L2 TLBs are 128-entry, the SLL TLB is 512-entry andi&@&ntry for 4-core and 16-core CMPs respectively. Note
theincreasedhit rates at higher core counts.

8.4. Shared Last-Level TLBs with Simple Stride Prefetching

Having studied the hit rates of the baseline SLL TLB, we nowsider low-complexity enhance-
ments. In particular, we augment SLL TLBs by adding simptastprefetching for translations
residing on the same cache line as the currently missing.&fitrile this cannot capture the sophis-
tication of ICC prefetching techniques, it does offer sorhgsobene ts while retaining implemen-
tation simplicity. As covered in Section 5.3, prefetcheddidates are 1, 2, and 3 pages away from
the currently missing page.

Figure 34 compares the proposed SLL TLB alone, versus an 318 tfiat also includes stride
prefetching. First, we see that the bene ts of this approaaty across applications. For example,
Blackscholes , which has repetitive 4-page strides [Bhattacharjee anddvasi 2009], sees little
bene t since the only strides being exploited here are 1 0@, Z&pages. HoweveFjuidanimate
and Swaptions enjoy greatly improved hit rates since they do require sfidf 1 and 2 pages
[Bhattacharjee and Martonosi 2009]. Similarly, eigesim sees an additional 10% hit rate since
it exploits 2 and 3 page strides.

Figure 34 also shows that applications lacking prominemtdest (eg. Canneal and
Streamcluster) can actually see slightly lower hit rates. This is becalmeuseless prefetches
can displace useful SLL TLB entries.

8.5. SLL TLBs at Higher Core Counts

Our results indicate that SLL TLBs are simple yet effectivd aores. It is also important, however,
to quantify their bene ts at higher core counts. To this ewd,now compare the bene ts of SLL
TLBs against private, per-core L2 TLBs at 16 cores.

Figure 35 plots the increase in hit rate that SLL TLBs prowsder 128-entry private, per-core L2
TLBs (higher bars are better) for 4-cores and 16-cores.eS#ach private L2 TLB is 128 entries,
equivalently-sized SLL TLBs are 512-entry for the 4-coreecand 2048-entry for the 16-core case.

Figure 35 demonstrates that not only do SLL TLBs consisfentitperform private L2 TLBs
(each bar is greater than zero), the bene ts actually tenchdreaseat higher core counts. For
exampleStreamcluster ~ andVIPS for 16-core CMPs enjoy an additional 10% increase in hit rate
over the 4-core case. In fact, the bene ts increase by 6% erege.

There are two primary reasons for these improvements, Rigdter core counts tend to see even
higher inter-core sharing [Bhattacharjee and Martono8P20which the SLL TLB exploits. Fur-
thermore, since greater core counts have more on-chipstdéalevoted to the TLB, an aggregated
SLL TLB has even more entries in a 16-core case than in a 4gawe (2048 entries versus 512
entries). The net effect is that SLL TLBs will be even morefuke future CMP systems with
higher core counts.

8.6. Performance Analysis

Up to this point, we have focused purely on TLB hit rates; hasvethe ultimate goal of our work
is to achieve performance bene ts. This section sketchess&lmene t analysis to estimate the
performance gains from SLL TLBs against the alternativésce&SICC prefetchers have already
been established as overly-complex for implementatiorcampare SLL TLB performance against
the commercial norm of private L2 TLBs. As previously dissed, full-run cycle-level simulations
would take weeks per datapoint to complete and are simplgrrolane for TLB studies. Instead we
use a CPI analysis inspired by [Saulsbury et al. 2000].

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,cdtA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A:25

Table VIII. Typical TLB miss handler times. After a TLB miss, the reorder buffer (ROB) is ushed, handler setup code
is executed, the TSB is accessed and if needed, the page table walk is conducted, followed by cleanup code.

Type Type 1 Type 2 Type 3 Type 4
Description | Flush ROB Flush ROB Flush ROB Flush ROB
Setup insts. Setup insts. Setup insts. Setup insts.
TSB Hitin L1$ | TSB Hitin L2$ | TSB Hitin DRAM | TSB Miss
Cleanup code | Cleanup code | Cleanup code 3-level page table walk
Cleanup code
Penalty 50 cycles 80 cycles 150 cycles Beyond 200 cycles

Fig. 36. CPI saved by SLL TLBs against private L2 TLBs. Every apglmabene ts from SLL TLBs with exact gains
increasing with miss penalties.

While SLL TLBs do provide substantially better hit rates tipsivate L2 TLBs, they also require
longer network traversal times. Therefore, it is importantarefully weigh these bene ts with ac-
cess costs. We use Cycles per Instruction (CPI) to assepstfoemance of SLL TLBs by focusing
on CPI saved on TLB miss handling time versus private L2 TLBs8s metric will hold regardless
of actual program CPI, which may change across architextiicecompute CPI saved, we need to
consider the various costs associated with a TLB miss, hownitigate them, analytically model
these savings and nally produce a range of possible peidora bene ts. We begin by considering
the steps in a typical TLB miss handler. We focus on SolariB andlers in this analysis; however
these same steps and strategies are applicable to othenaniging strategies too.

Table VIII details typical TLB miss handler steps, breakihgm into four categories. For all
the handlers, the reorder buffer (ROB) is ushed upon thermipt, and handler setup code is
executed. In Solaris, this is followed by a lookup in the Hlation Storage Buffer (TSB), a software
data structure that stores the most recently accessed glalgeelements. The TSB, like any data
structure, may be cached. A TSB hit in the L1 cache minimikegdtal handler penalty to roughly
50 cycles (Type 1), while an L1 miss results in lookups in tRechche (Type 2) or DRAM (Type
3), with progressively larger penalties. In the worst céise requested translation will be absent in
the TSB and a full-scale three-level page table walk mustdmelacted, which takes hundreds of
cycles. The exact TLB miss handling times per applicatiohwary depending on the mix of these
miss types. Therefore, rather than focusing on a single hassller value, we now analyze SLL
TLB performance across a range of possible average harnailes.tWe vary from the optimistic
case of 50 cycles to the more realistic of 100-150 cycles ayadid to 200 cycles.

Figure 36 plots the CPI saved by our approach versus the coeraheorm of private L2 TLBs
when using the baseline SLL TLB and its prefetching-augexmiounterpart. For each applica-
tion, CPI counts are provided for TLB miss penalties randmogn 50 to 200 cycles in increments
of 50. As showngveryparallel benchmark bene ts with the SLL TLB, even under timeaalistic
assumption that all handlers are L1-TSB hits executed iryBl@s. Assuming a more realistic aver-
age miss penalty of 150 cycles, the average bene ts are hpghs CPI, and as high as 0.25 CPI
for Blackscholes . The exact bene ts also vary for the scheme used; for exarfjlidanimate
particularly bene ts with the prefetcher-augmented SLLBILMoreover, the gains become more
substantial as miss penalties increase.

Therefore, even with optimistically low TLB miss penaltiesir SLL TLB outperforms private
L2 TLBs, despite using merely the same total hardware. AR,sBtL TLBs are an effective and
elegant alternative to private L2 TLBs. To further show thaility, we now investigate SLL TLBs
for multiprogrammed sequential workloads.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,detA, Publication date: January 2013.

A:26 D. Lustig et al.

mues & z(!

2o
2o
.

[

T ——————
e——

T ——
S
T —
TETE——————
——
T
———

8 #$ # ‘#$‘ #$ # 3 # s

Fig. 37. Hit rates for the multiprogrammed workloads for both the SLLTLB and the private L2 TLBs. SLL TLB hit
rates in total for each heterogeneous workload combinatiesabstantially higher than private for L2 TLBs (on average
by 21%). Furthermore, high-stress applications lil& see vast improvements without noticeably degrading lowesst
applications. Even homogeneous workload combinations $eat&iincreases with SLL TLBs.

9. SHARED LAST-LEVEL TLBS: RESULTS FOR MULTIPROGRAMMED WORKLOADS

We now focus on SLL TLBs for workloads comprised of sequéetgplications, running one per
core in a multiprogrammed fashion. First, Section 9.1 quamt.2 TLB hit rates for the ve het-
erogeneous and two homogeneous workloads. Compared aigyrper-core L2 TLBs, we show
both per-application and across-workload bene ts. Fortteerogeneous workloads, the focus is
on understanding how effectively a single shared lasttElkB adapts to simultaneously executing
applications with different memory requirements. In castr for the homogeneous workloads, we
study SLL TLB bene ts when multiple programs of similar neglexecute.

After studying application hit rates for programs with peeses pinned to cores, Section 9.2
analyzes the effect of process migration among cores. Thection 9.3 details the performance
gains derived from SLL TLBs versus private L2 TLBs. As withraléel workloads, this section
performs a cost-bene t analysis and quanti es CPI savedgisur approach.

9.1. Multiprogrammed Workloads with One Application Pinned per Core

Figure 37 quanti es SLL L2 and private L2 TLB hit rates for thve heterogeneous (Het-1 to Het-
5) and two homogeneous workloads (Hom-1 and Hom-2) preljalescribed. For every workload
combination, we separately plot TLB hit rates for each satjakapplication, and also show total
TLB hit rates across all applications.

First, we study hit rates for the heterogeneous workloadssi#own, both SLL TLBs and per-
core, private L2 TLBs eliminate a large fraction of the L1 Thidsses (35% to 95% for the SLL
TLBs on average). Furthermore, we nd that for every workla@mmbination, total SLL TLB hit
rates are higher than the private L2 hit rates. On averag<h TLB eliminates 21% additional L1
misses over private L2 TLBs for heterogeneous workloadspatantial improvement. These vast
increases occur because the SLL L2 TLB is able to allocatesturces exibly among applications
differing in memory requirements; in contrast, the privgier-core L2 TLBs provide xed hardware
for all applications, regardless of their actual needs.

Second, and more surprisingly, Figure 37 shows that SLL Td8sot generally degrade hit
rates for lower-stress application when running with higtess ones. One might initially expect
high-stress benchmarks to capture a larger portion of theTIB, lowering other applications hit
rates signi cantly. However, for example in Het-1, whitef hit rates for SLL TLBs increase by
50% over the private TLBxalanchmk andlibquantum still enjoy hit rate increases of 5% and 9%
respectively. This behavior is also seen across all ther @tbekload combinations, particularly in
Het-5, wheramcf on the SLL TLB enjoys a 52% hit rate increase wtekeeryother application in
the workload also sees a hit rate increase. This occurs betlae low-stress applications experience
short bursts of TLB misses. Therefore, while the SLL TLB gelig provides more mapping space
to high-stress applications likacf, it also rapidly adapts to these bursty periods, providimg t
lower-stress applications with the TLB space they requine result is that SLL TLBs show notable
improvement over private L2 TLBs for the workload combionas in general, improving high-stress
applications without substantially degrading lower-ssrenes (and usually improving them too).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A:27

Fig. 38. L2 D-TLB Hit Rate for the multiprogramme
workloads. This shows that very little change is s
between the case of processes being pinned to sp
cores and the case in which the OS is left to managept
migrations.

ig. 39. SLL TLB Creation to Hit(CTH) counts, recorded as

he number of instructions executed since the creation ojeve
E1’§'ﬁf1entry. These results show that TLB entries generallyehav
short CTH counts relative to the overall execution &f th
ram.

Third, Figure 37 also compares the SLL TLB hit rates versiafe L2 TLB hit rates for the
homogeneous workloads, showing 2% to 4% improvements. paatad, the hit rates are consistent
for all four cores. Because each core now places an equalrdtorathe SLL TLB, dividing the
entries equally among them, we expect little bene t fronstapproach. However, even in this case,
we nd that SLL TLBs marginally increase hit rates over thevate L2 TLBs. This occurs because
the four benchmarks do not run in exact phase; thereforeshibe-term needs of each program
vary enough to take advantage of the exibility that SLL TLB®vide in allocating entries among
applications. Moreover, the OS may occupy proportionagglspace in the SLL TLB than it does in
each of the private L2 TLBs, giving more overall room for tlebhmarks to operate. These effects
result in the improvement of SLL TLBs against private TLBs ioth homogeneous workloads.

Therefore, our results strongly suggest that the SLL TLB destrates far greater exibility in
tailoring the total hardware that private L2 TLBs use to tlendnds of various simultaneously
executing sequential workloads. The result is that bothl tebrkload hit rates and per-application
hit rates enjoy increases.

9.2. Multiprogrammed Workloads with Process Migration

Our multiprogramming studies up to this point have pinnee application to each core of our eval-
uated 4-core CMP. Therefore, the bene ts extracted forghasiltiprogrammed workloads have
been due to the SLL TLB's ability to intelligently allocatésiresources to multiple simultane-
ous applications with differing memory demands. Howeventemporary systems typically run
operating systems which often employ process migrationhichvapplications can often switch
cores through their execution time. Furthermore, procdgsation is likely to become even more
prevalent in future CMPs as a mechanism to cope with isskedifnamic thermal management
techniques [Choi et al. 2007; Donald and Martonosi 2006fatt, recent work suggests that future
CMPs are likely to provide support for fast process migrafieangan et al. 2009]. It is therefore
important to consider the effects of process migrationsldn 8 Bs.

To test migration in our workloads, we show SLL L2 TLB hit ratler two scenarios. First, we
considered thpinnedcase for every workload combination, where one applicai@nned to each
core. This corresponds to the results already presenteztiiog 9.1. Second, we considered filee
case, where the applications are left unpinned and theiSstareduler is free to migrate processes.
We expect that process migration would actually introduttericore sharing for SLL TLBs to
exploit. Speci cally, when a process migrates, it sees ndwlLB misses and if the L2 TLBs are
private, suffers from additional page table walks. The SIIBThowever, mitigates this problem
by giving the process on its new core L2 access to its previamslations, reducing TLB misses.
Figure 38 details the SLL TLB hits rates for our pinned an& fe&periments. The numbers shown
are the hit rates for the total L2 accesses across all theeséiguapplications constituting each
workload. It is clear from the hit rates that the free casethices little additional inter-core sharing
for SLL TLBs to exploit over the pinned case. Therefore, htes increase only marginally for the
free case. The reason for this surprisingly small increasthat operating systems traditionally
attempt to minimize migrations to avoid cold caches, TLB&l migration code overheads. In fact,
we nd that in the free case, each sequential applicatiorrabés no more than twenty times over

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,detA, Publication date: January 2013.

A:28 D. Lustig et al.

0/1

% .,.

Fig. 40. CPI saved using SLL TLBs versus private L2 TLBs for indivadl@pplications and per-workload averages.
Higher TLB miss penalties result in greater performance gains

a ten billion instruction window. Therefore, any bene tsISLLBs extract from inter-core sharing
are amortized over a very long period, reducing the obsereeé ts

Nevertheless, as future CMPs may provide support for fastges migration [Choi et al. 2007;
Rangan et al. 2009], it is useful to consider the bene ts ®ilalt TLBs would provide for these
platforms as migration frequencies increase. As a guidébrunderstand SLL TLB bene ts at var-
ious migration speeds, we now pres@neation to Hit (CTH)instruction counts for our workloads.
CTH counts are gathered by recording, for each SLL TLB h#,rhmber of instructions ago that
the corresponding translation entry was brought into thie BILB. The larger the CTH counts, the
higher the chances that SLL TLBs will retain these entriessgmigrations.

Figure 39 shows the cumulative distribution function piagtthe probability of SLL TLB entries
of a particular CTH count being accessed in each of the waddoThe x-axis shows entry CTH
values (measured in instruction counts) varying on a lotes@e y-axis shows the probability that
SLL TLB entries of that CTH count (or less) result in a hit. Frthis data, it becomes clear that very
few TLB entries have CTH counts long enough to be exploitetth Wigh payoff for the migration
rates in the free case. In fact, Hom-2 sees that all its hég@entries created at most a hundred
million instructions ago, far too short a lifetime for migiens that occur over billion-instruction
ranges. Nevertheless, Figure 39 does show the bene ts thig rapid migrations on future CMPs
may glean from SLL TLBs. As such inter-core sharing will iease greatly and SLL TLBs should
be a signi cant help in these cases.

9.3. Performance Analysis

As previously described, SLL TLBs are, by construction, edimat capturing inter-core shared
misses and hence, aiding parallel programs. To make SLL H\Bable option however, they must
also not substantially degrade sequential applicatiohs.pFevious section showed that sequential
applications actually bene t from SLL TLBs in terms of hittearelative to private L2 TLBs. How-
ever, since hit penalties for an SLL TLB are higher than fer piivate L2 TLB, it is important to
conduct a cost-bene t analysis of the sources of TLB ovedhead how we mitigate them. There-
fore, we now extend the parallel program performance arsabhesed on the TLB handling times
described in Section 8.6 to multiprogrammed combinatidrsequential workloads. Again, the fo-
cus is on understanding CPI saved using our approach foliati@eange of TLB miss penalties,
with a methodology inspired by [Saulsbury et al. 2000].

Figure 40 shows the CPI saved from SLL TLBs relative to peyagr-core L2 TLBs for individual
applications and per-workload averages. While the ind&idpplication CPIs may be computed
using their particular TLB miss rates, the per-workloadrages are based on weighting the L1 TLB
miss rates for each constituent sequential program. Thitsese shown assuming miss penalties
ranging from 50 to 200 cycles, in increments of 50 cycles.

Figure 40 shows that across the heterogeneous workloagterhiit rates typically correspond
to increased performance for the per-workload averaggsattncular, Het-1 and Het-5 see notable
CPI savings. The SLL TLB also provides CPI savings to Hetl2eiamore muted, while Het-4

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

TLB Improvements for CMPs: ICC Prefetchers and SLL TLBs A:29

sees little change. These trends can be better understdbd hgture of the application mixes. The
SLL TLB typically provides the most bene t in workload mixaghere a high-stress application
runs with lower-stress ones. In this case, the private L2 §albcate unused resources to the low-
stress applications, while the high-stress applicatidfesss SLL TLBs, on the other hand, can
better distribute these resources among the sequentiid@pms, aiding the high-stress workload
without hurting the lower-stress ones. This behavior igipalarly prevalent for Het-1 and Het-
5, in which Mcf suffers in the private L2 TLB case. In the presence of the SLB,Thowever,
Mcf increases in performance without hurting the other apftioa in Het-1 and only marginally
degrade<gactusADM in Het-5. This leads to a CPI savings approaching 0.2, evéheasmallest
TLB penalty of 50 cycles. As expected, bene ts become everenpoonounced at more realistic
TLB miss penalties around 100 to 150 cycles.

Figure 40 also shows thahctusADM sees lowered performance in Het-3 and Het-5. This is
surprising sinceactusADM is a high-stress TLB application; one may therefore haveebqul that
an SLL TLB would be highly bene cial. In realitycactusADM has been shown to have extremely
poor TLB reuse and hence experience unchanging hit ratesas/&LB reach is increased [Korn
and Chang 2007; Woo et al. 2010]. Therefore, our larger SLB Binly marginally increases its
hit rate (see Figure 37) and is unable to overcome the additimccess penalty relative to private
L2 TLBs. This means thatactusADM suffers a marginal performance degradation. Nevertheless
cactusADM is a well-known outlier in this regard [Korn and Chang 20079dAét al. 2010]; the
large majority of applications show better TLB reuse chimastics, making them likely to improve
performance with SLL TLBs.

Finally, as expected, Hom-1 and Hom-2 change little with $h¢ TLB. Since all individual
benchmarks in these workloads equally stress the SLL TLBe@es a signi cant increase in TLB
entries available to it. Therefore, performance is matgyirdecrease due to the additional SLL
TLB access time, even though these homogeneous workloadig&ely to represent the worst-case
for SLL TLBs. Overall SLL TLBs provide signi cant performae improvements for parallel and
some heterogeneous sequential workloads, while beingliapgrformance-neutral on others. This
makes them an effective and low-complexity alternativedngore L2 TLBs.

10. CONCLUSION

This paper shows the bene ts of ICC prefetchers and SLL TLd@shioth parallel and multipro-
grammed sequential workloads. We nd that ICC prefetchimgich combine the bene ts of both
leader-follower prefetching and distance-based cross-peefetching, eliminates an average of
46% of D-TLB misses across a wide range of parallel progradmesinwhile, SLL TLBs exploit par-
allel program inter-core sharing to eliminate 7% to 79% ofTILBs misses, providing comparable
bene ts to ICC prefetchers, but use simpler hardware thpossible to implement on commercial
systems today. They also outperform conventional per;@oieate L2 TLBs by an average of 27%,
leading to runtime improvements of as high as 0.25 CPI. Kinalcombined approach of integrat-
ing stride prefetching into SLL TLBs provides further inases in hit rates (on average 5%). In
addition, SLL TLBs also, somewhat surprisingly, can imgrg@erformance for multiprogrammed
sequential workloads over private L2 TLBs. In fact, impnments over private L2 TLBs are 21%
on average, with higher hit rates also experienced peragijgh in a workload mix. This can lead
to as high as 0.4 CPIl improvements.

Ultimately, this work may be used by designers of future CiM$tems to augment existing TLB
hardware and thereby improve overall performance. Thdygboints to a range of potential designs
that include different combinations of SLL TLBs with prefbers. Our results provide guidance to
both sequential and parallel software developers on the tsethey can expect from this approach,
using only readily-implementable and low-complexity haade.

REFERENCES

BHATTACHARJEE, A. AND MARTONOSI, M. 2009. Characterizing the TLB Behavior of Emerging PaialVorkloads on
Chip MultiprocessorsPACT.

BIENIA, C.ET AL. 2008. The PARSEC Benchmark Suite: Characterization antdittural ImplicationsPACT.

BIENIA, C.AND LI, K. 2010. Fidelity and Scaling of the PARSEC Benchmark Inpi&8/C

CHEN, J. B., BORG, A., AND JouPP|, N. 1992. A Simulation Based Study of TLB Performan&CA

CHEN, T. AND BAER, J. 1995. Effective Hardware-based Data Prefetching fghHRerformance ProcessofSEE Trans-
actions on Computers

CHol, J.ET AL. 2007. Thermal aware task scheduling at the system softeaeé ISLPED

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,detA, Publication date: January 2013.

A:30 D. Lustig et al.

CLARK, D. AND EMER, J. 1985. Performance of the VAX-11/780 Translation Buff8isnulation and Measureme#CM
Trans. on Comp. Sys. 3,

DAHLGREN, F., DuBOIS, M., AND STENSTROM, P. 1993. Fixed and Adaptive Sequential Prefetching in &h&temory
Multiprocessorslinternational Conference on Parallel Processing

DONALD, JI'SACNR MARTONOSI, M. 2006. Techniques for Multicore Thermal Management: Cleatson and New Explo-
ration.

DRrRoNGOWSKI, P. 2008. Basic Performance Measurements for AMD Athlon 64PADpteron and AMD Phenom Proces-
sors. http://developer.amd.com/Assets/Basic_Performaheasurements.pdf.

EBRAHIMI, E. ET AL. 2010. Fairness via Source Throttling: a Con gurable anghHPerformance Fairness Substrate for
Multi-Core Memory Systemd4SCA

HINTON, G. 2001. The Microarchitecture of the Pentiunimtel Technology Journal
HUCIKS,CI:-|AAND HAYs, H. 1993. Architectural Support for Translation Table Mgement in Large Address Space Machines.

INTEL. 2012. Intel 64 and IA-32 Architectures Software Develaper Manual.
http://download.intel.com/products/processor/man@ak®2. pdf.

Jacos, B. AND MUDGE, T. 1998a. A Look at Several Memory Management Units: TLB-Rexhd Page Table Organiza-
tions.ASPLOS

Jacos, B. AND MUDGE, T. 1998b. Virtual Memory in Contemporary MicroprocessdEEE Micro.

JOSEAPHhD. AND GRUNWALD, D. 1997. Prefetching Using Markov Predictotsternational Symposium on Computer

rchitecture

KANDIRAJU, G. AND SIVASUBRAMANIAM , A. 2002a. Characterizing the d-TLB Behavior of SPEC CPWRB@nch-

marks.Sigmetrics

KANgIRéJlIJégAAND SIVASUBRAMANIAM , A. 2002b. Going the Distance for TLB Prefetching: An Applion-Driven
tudy.

Kim, C., BURGER, D., AND KECKLER, S. 2003. NUCA: A Non-Uniform Cache Architecture for Wire{&g Dominated
On-Chip CachedEEE Micro Top Picks

KORN, W. AND CHANG, M. 2007. SPEC CPU2006 Sensitivity to Memory Page Si2&3M SIGARCH Comp. Arch.

News 35].
MAR"I\]IN, M. ET AL. 2005. Multifacet's General Execution-Driven Multipraser Simulator (GEMS) Toolset.omp. Arch.
ews

MURALIMANOHAR , N., BALASUBRAMONIAN, R., AND JouPP|, N. 2009. CACTI 6.0: A Tool to Model Large Caches.
HP Labs Technical Report HPL-2009-85

NAGLE, D. ET AL. 1993. Design Tradeoffs for Software Managed TLEXCA

PHANSALKAR, A. ET AL. 2007. Subsetting the SPEC CPU2006 Benchmark SA@#& SIGARCH Comp. Arch. News 35,
Qui, X. AND DuBoIs, M. 1998. Options for Dynamic Address Translations in COMISCA

RANIGSACI:\JAK., WEI, G.,AND BROOKS, D. 2009. Thread Motion: Fine-Grained Power Management foltiCore Systems.

ROMANESCU, B., LEBECK, A., SORIN, D., AND BRACY, A. 2010. UNi ed Instruction/Translation/Data (UNITD) Ger-
ence: One Protocol to Rule Them AHPCA

ROSE:NBLUMS,_M. ET AL. 1995. The Impact of Architectural Trends on Operating Sydeerformancelrans. on Mod. and
omp. Sim.

SAULSBURY, A., DAHLGREN, F.,AND STENSTROM, P. 2000. Recency-Based TLB Preloadil®8CA

SHARIF, A. AND LEE, H.-H. 2009. Data Prefetching Mechanism by Exploiting Glleénd Local Access Patternkgurnal
of Instruction-Level Parallelism Data Prefetching Champship

SPEC. 2006. The Standard Performance Evaluation Corpor&REC CPU2006 Results. http://www.spec.org/cpu2006.

SRIKANTAIAH , S.AND KANDEMIR, M. 2010. Synergistic TLBs for High Performance Address $tation in Chip Multi-
processorsMICRO 43

SRINIVASAN, V., DAVIDSON, E.,AND TYSON, G. 2004. A Prefetch Taxonomf=EE Transaction on Computers 53,
SUN. 2003. An Overview of UltraSPARC III Cu. http://www.sunraéprocessors/UltraSPARC-111/USIIICuoverview.pdf.

TALLXgIID,LI\(g.SAND HiLL, M. 1994. Surpassing the TLB Performance of Superpages weisis Dperating System Support.

TickoO, O.ET AL. 2007. qTLB: Looking Inside the Look-aside BufféfiPC.
VENI;XBA%[]J-BRAMANIAN , G.ET AL. 2009. TMT - a TLB Tag Management Framework for Virtualizedtfelans. SBAC-

VILLS\AIELJI_A , C.ET AL. 2011. DiDi: Mitigating the Performance Impact of TLB Shoatdts Using a Shared TLB Directory.

VIRTUTECH. 2007. Simics for Multicore Software.

WILTISN, S.Sg}% Jouppr, N. 1994. An Enhanced Access and Cycle Time Model for On-Chiph@sWest. Res. Lab. Res.
eport

Woo, D. H. ET AL. 2010. An Optimized 3D-Stacked Memory Architecture by Exjahgj Excessive, High-Density TSV
Bandwidth. HPCA

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,c%tA, Publication date: January 2013.

