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Translation Lookaside Buffers (TLBs) are critical to overall system performance. Much past research has addressed
uniprocessor TLBs, lowering access times and miss rates. However, as chip multiprocessors (CMPs) become ubiquitous,
TLB design and performance must be re-evaluated. Our paper begins by performing a thorough TLB performance evaluation
of sequential and parallel benchmarks running on a real-world, modern CMP system using hardware performance counters.
This analysis demonstrates the need for further improvement of TLB hit rates for both classes of application, and it also
points out that the data TLB has a significantly higher miss rate than the instruction TLB in both cases.

In response to the characterization data, we propose and evaluate both Inter-Core Cooperative (ICC) TLB prefetchers
and Shared Last-Level (SLL) TLBs as alternatives to the commercial norm of private, per-core L2 TLBs. ICC prefetchers
eliminate 19% to 90% of data TLB (D-TLB) misses across parallel workloads while requiring only modest changes in
hardware. SLL TLBs eliminate 7% to 79% of D-TLB misses for parallel workloads and 35% to 95% of D-TLB misses for
multiprogrammed sequential workloads. This corresponds to 27% and 21% increases in hit rates as compared to private,
per-core L2 TLBs, respectively, and is achieved this using even more modest hardware requirements.

Because of their benefits for parallel applications, their applicability to sequential workloads, and their readily-
implementable hardware, SLL TLBs and ICC TLB prefetchers hold great promise for CMPs.
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1. INTRODUCTION

Translation Lookaside Buffers (TLBs) are performance-critical structures used to cache address
translation information for virtual memory systems. Since every instruction requires at least one
translation (for the instruction fetch itself), it is essential that these structures be designed to oper-
ate quickly and efficiently in order to avoid placing them into the critical path. The primary way
of achieving this goal is to increase the TLB hit rate as much as possible, thereby avoiding costly
TLB miss penalties. While previous work has explored TLB placement [Chen et al. 1992; Qui and
Dubois 1998], size and associativity [Chen et al. 1992], and enhancements such as superpaging
[Qui and Dubois 1998] and prefetching [Kandiraju and Sivasubramaniam 2002b; Saulsbury et al.
2000], these proposals generally focus on traditional uniprocessors. However, as chip multiproces-
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Table I. System parameters used to collect statistics using hardware performance counters.

Property Real System
System 8-core (2x HT) x86 (Core i7) 64-bit
OS Ubuntu Desktop 10.04.2
Private L1 TLBs Separate I & D, 7-entry fully-assoc TLB, 64-entry 4-way TLB
L2 TLBs Unified I & D, 512-entry, 4-way TLB

sors (CMPs) are now the dominant paradigm, it is critical to explore TLB design and performance
for this particular setting.
Contemporary chip multiprocessors only maintain TLBs that are private to a particular core.

These TLBs are often organized in a multilevel hierarchy, with a smaller L1 TLB close to the core
and a larger L2 TLB farther away, although even in this case all levels remain per-core private.
Furthermore, although previous work has shown that there is often significant redundancy and pre-
dictability in TLB misses across cores [Bhattacharjee and Martonosi 2009], there has been little
work to exploit this knowledge.
We propose two new TLB enhancements. First, we explore Inter-Core Cooperative (ICC) TLB

prefetchers, which communicate information about strided access patterns among cores in order
to predict future references. Second, we demonstrate the benefits of replacing the set of private L2
TLBs with a single Shared Last-Level (SLL) TLB for both parallel and multiprogrammed sequential
workloads. Finally, we present a combined solution by adding a simple prefetcher to an SLL TLB
to measure the added benefits. Our specific contributions are as follows:

—We perform a comprehensive characterization of instruction and data TLB miss rates for parallel
workloads and multiprogrammed combinations of sequential workloads. On a modern multicore
system, we show that at the extreme end of each set, Canneal of PARSEC and mcf of SPEC
CPU2006 show overall miss rates of 19.7 and 51.9 data TLB (D-TLB) misses per thousand in-
structions, respectively, while instruction TLB (I-TLB) misses are universally orders of magnitude
smaller.

—We demonstrate that two forms of ICC prefetching, Leader-Follower prefetching and Distance-
based prefetching can individually eliminate up to 57% and 89% of total D-TLB misses, respec-
tively. As we will discuss, these prefetchers have a variety of hardware and/or software implemen-
tations, and are beneficial for a variety of parallel workloads.

—We propose SLL TLBs as a replacement for the current standard of per-core private TLBs, and we
show that this new design leads to an average reduction in D-TLB miss rate of 27% for parallel
workloads and 21% for sequential workloads. Using a performance model of cycles per instruction
(CPI), we translate these miss-rate improvements into performance savings of up to 0.25 and 0.4
cycles per instruction, respectively.

The rest of the paper is structured as follows. Section 2 motivates the work by presenting the
results of real-system workload characterization. Section 3 presents background and related work.
Sections 4 and 5 describe the implementations of ICC prefetchers and SLL TLBs, respectively. The
experimental methodology is described in Section 6. Section 7 presents the results of our exper-
iments with ICC TLB prefetchers. Sections 8 and 9 show results for SLL TLBs for parallel and
multiprogrammed sequential workloads, respectively. Finally, Section 10 concludes the paper.

2. MOTIVATION

In order to motivate the need for improvement in the performance of TLBs on modern systems, we
begin with a thorough characterization of TLB performance across a wide range of benchmarks on
a modern CMP. To achieve this, we use hardware performance counters to measure SPEC CPU2006
and PARSEC TLB miss rates without otherwise interfering with the normal operation of the CPU.

We measure the TLB statistics on the system described in Table I over the full run of the SPEC
benchmarks and over the region of interest (as defined in each workload) for PARSEC benchmarks1.
To reduce variability, we each experiment five times and present results as means with standard devi-

1Due to compilation issues on our platform, we do not present results for freqmine, perlbench, deall, and wrf
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Fig. 1. I-TLB misses per million instructions (MMI) for
PARSEC workloads, comparing native to simlarge, as mea-
sured using hardware performance counters.
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Fig. 2. I-TLB misses per million instructions (MMI) for
PARSEC workloads, using native inputs, comparing across
each core, as measured using hardware performance coun-
ters.
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Fig. 3. I-TLB misses per million instructions (MMI) for
SPEC CPU2006 INT workloads, comparing ref to train, as
measured using hardware performance counters.
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Fig. 4. I-TLB misses per million instructions (MMI) for
SPEC CPU2006 FP workloads, comparing ref to train, as
measured using hardware performance counters.

ation error bars2. Lastly, we disable address space layout randomization (ASLR), as it dramatically
increases the variability of the results when enabled.

2.1. Instruction TLB Performance

We start by characterizing the instruction TLB (I-TLB) performance. Figure 1 presents the number
of misses per million instructions (MMI) seen by the I-TLB for the PARSEC benchmark suite. For
each program, we plot results for the two largest input sets. Unlike the D-TLB data to follow, I-TLB
miss rates are generally quite small across all benchmarks, with even x264 (the upper extreme) only
missing in the I-TLB roughly once every 7700 instructions.

The PARSEC I-TLB results can be further analyzed on a core-by-core basis, as depicted in Figure
2. This shows the miss rate for each individual core for the native input. Most of the workloads see
fairly consistent rates among the cores, although in cases such as Blackscholes and Fluidanimate
there are visible differences. Again, this diversity is very workload-dependent, as some benchmarks
can inherently load-balance their threads better than others. Nevertheless, as PARSEC was designed
to represent a set of workloads for CMPs, the load distribution is generally very balanced.
Figures 3 and 4 display the miss rates for the SPEC CPU2006 workloads. The ref input set

contains the complete inputs used for real-system measurements, and train, which is a scaled-down
alternative. These benchmarks also show rather low I-TLB miss rates. In fact, the highest overall I-
TLB miss rate of all SPEC benchmarks, roughly 23 MMI for xalancbmk, is still almost a full order
of magnitude lower than the x264 workload of PARSEC. The SPEC FP workloads have I-TLB miss
rates which are lower still.

In general, for both benchmark suites, the I-TLB miss rates are already low enough that only
limited benefits would be derived from improving them. For this reason, the remainder of our work
will focus on the data TLB.

2.2. Data TLB Performance

Although I-TLB miss rates are generally low enough to be almost negligible, data TLB (D-TLB)
miss rates are orders of magnitude higher and therefore would benefit greatly from improved TLB

2We also ran tests at different operating system runlevels, but the changes in the results were small or even negligible, so we
omit the comparison here.
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Fig. 5. D-TLB misses per thousand instructions (MKI) for
PARSEC workloads, comparing native to simlarge, as mea-
sured using hardware performance counters.
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Fig. 6. D-TLB misses per thousand instructions (MKI) for
PARSEC workloads, using native inputs, comparing across
each core, as measured using hardware performance coun-
ters.

performance. Figure 5 plots D-TLB miss rates for PARSEC with input sets native and simlarge.
(Note that since D-TLB miss rates are significantly higher than I-TLB, we are now plotting misses
per 1000 instructions, or MKI.) Two differences from the I-TLB results are immediately apparent.
First, D-TLB miss rates are much higher than I-TLB miss rates. Second, the D-TLB miss rates for
the PARSEC workloads vary by multiple orders of magnitude from each other: around 0.15 MKI
for Blackscholes/native to 20 MKI for Canneal/native. This is useful for our research as it allows
us to use the suite to explore a wide range of D-TLB behaviors.
As before, the choice of input set significantly affects the D-TLB miss rate for many of the

benchmarks. In particular, Blackscholes has a much higher miss rate for simlarge than for native,
while Dedup and x264 decrease just as drastically. Furthermore, Bodytrack, Ferret, Dedup, and
x264 all follow the pipeline-parallel programming model, indicating that the input sets for this
model are harder to scale in size than for strictly data-parallel programs [Bienia and Li 2010].
The D-TLB miss rate results for the native input set are broken down core-by-core in Figure 6.

Even more so than for the I-TLB results, the miss rates among the different cores are generally
very consistent within a particular workload, even for the pipeline-parallel programs. For a pipeline
to be correctly balanced, a similar amount of data must pass from stage to stage, and this indeed
what is reflected in the core-by-core miss rates. One notably inconsistent benchmark, however,
is Blackscholes. In each trial, most (five to seven) of the cores show a roughly consistent miss
rate, while a small number show a higher rate. Furthermore, although the example shows the spike
occurring in core 0, this is not consistent; rather, different cores show the spike in different trials.
In order to visualize the relative cost of hits and misses at each level of the TLB, we introduce the

weighted misses per thousand instructions (WMKI) metric. This combines both kinds of miss into
a single value in which each additive component is weighted proportional to its cost in cycles. This
approach is needed due to the fact that the two categories cannot be compared directly, as their costs
are very different. Using performance counters, we measured the cost of a TLB miss and subsequent
page walk to vary between 20 and 40 cycles.3 Therefore, for this analysis, we assume an average
L2 hit penalty of 7 cycles and an average L2 miss penalty of 30 cycles. This leads to the definition

WMKI=
L2 Misses

1K Insts.
+

(

7

30
×

L2 Hits

1K Insts.

)

.

These numbers represent typical average values in the system we used for our measurement. Cer-
tainly, the cycle cost of individual events may vary, but we use average values in order to assign a
valid relative weight to each type of event.
Figure 7 shows the weighted misses per thousand instructions for the PARSEC workloads.

Clearly, even though the L2 TLB eliminates a significant number of misses, there is still a non-
negligible penalty for L2 D-TLB hits. In fact, this demonstrates that miss rates alone are not the
only metric of interest, since that would ignore these L2 hit penalties.4 Therefore, for example, our
performance analysis of proposed SLL TLBs (Sections 8.6 and 9.3), shows that we not only improve
the TLB hit rate, but also overcome the added penalty of accessing the SLL TLB.

3Because the i7 processor we used for our study did not have hardware counters for page walk cycles, we performed the
TLB miss cost analysis on a similar chip which did contain the necessary counters.
4The corresponding analysis for the I-TLB showed almost all of the cycle penalty being derived from L2 misses.
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Fig. 8. D-TLB misses per thousand instructions (MKI) for
SPEC CPU2006 INT workloads, comparing ref to train, as
measured using hardware performance counters.
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Fig. 9. D-TLB misses per thousand instructions (MKI) for
SPEC CPU2006 FP workloads, comparing ref to train, as
measured using hardware performance counters.
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(WMKI) for SPEC INT workloads, using ref inputs.
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(WMKI) for SPEC FP workloads, using ref inputs.

Figures 8 and 9 show the D-TLB miss rates for SPEC CPU2006 INT and FP benchmarks, re-
spectively. Similarly to PARSEC, the miss rates span orders of magnitude from gamess to mcf, and
in this case the upper D-TLB miss rate limit for the two suites is similar. Again, a large number of
the workloads show very different behavior between input sets. There is often a large increase in
miss rate from ref to train; in others there is a large decrease. We therefore use the ref for future
studies in order to maintain full fidelity. This observation also highlights the importance of PARSEC
providing a full and well-characterized collection of input set sizes [Bienia and Li 2010].
Figures 10 and 11 shows the weighted miss rates for SPEC INT and SPEC FP workloads, re-

spectively. Similarly to the PARSEC workloads, the L2 TLB accounts for a large number of hits
and introduces a non-negligible access penalty. In fact, FP workloads such as gromacs and gamess
have almost no overall TLB misses, but there is still an impact on performance due to the TLB.

2.3. Key Observations

From this section, we draw three conclusions about TLB behavior, which we use to guide the re-
mainder of our work. First, the miss rates for the data TLB are orders of magnitude higher than
those of the instruction TLB, as summarized in Figure 12. We therefore focus on the D-TLB for the
rest of this paper. Second, within the multithreaded workloads of PARSEC, the miss rates in both
TLBs are very similar across cores. Both of our proposed improvements, ICC prefetching and SLL
TLBs, allow the TLBs at each core to share information and resources in a globally beneficial way.
Finally, for the D-TLB in particular, even L2 hits incur a penalty and account for significant or even
majority portions of the TLB penalty accrued during the run of each benchmark. We therefore create
a performance model to show how our proposed improvements overcome this penalty as well.
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Fig. 12. D-TLB and I-TLB misses per million instructions (MMI) for all benchmarks using the largest input set and. There
is a clear distinction between the behavior of the D-TLB and the I-TLB, often by multiple orders of magnitude.

3. BACKGROUND AND RELATED WORK

Contemporary architectures typically maintain private, per-core TLBs placed in parallel with first-
level caches [Drongowski 2008; Intel 2012]. Numerous past studies measured TLBs as comprising
5% to 10% of system runtime [Clark and Emer 1985; Kandiraju and Sivasubramaniam 2002b; Nagle
et al. 1993; Rosenblum et al. 1995] with extreme cases at 40% [Huck and Hays 1993]. In response, a
number of enhancement techniques were proposed. Early work addressed hardware characteristics
such as TLB size and associativity [Chen et al. 1992] and superpaging [Talluri and Hill 1994] with
promising results.
While useful, this prior work specifically targets uniprocessors. As CMPs become ubiquitous, we

must re-evaluate the role and design of TLBs. However, researchers have only very recently started
to consider TLBs in the CMP context. UNITD [Romanescu et al. 2010] proposes a mechanism
by which TLBs participate in the cache coherence protocol alongside the caches. Synergistic TLBs
[Srikantaiah and Kandemir 2010] propose a mechanism by which TLBs on different cores can share
entries that might be useful. Their work, however, does not consider a fully-shared structure. The
qTLB framework [Tickoo et al. 2007] demonstrates that context switching and contention between
processes have an effect on TLB performance on CMPs, and one study has consequently proposed
tagging TLB entries with process-specific identifiers [Venkatasubramanian et al. 2009], for archi-
tectures which do not already do so. Lastly, the overhead of TLB coherence and shootdowns is also
important for many benchmarks [Villavieja et al. 2011].
TLB prefetching schemes have also been explored. For example, recency-based prefetching

[Saulsbury et al. 2000] exploits the observation that pages referenced around the same time in the
past will be referenced around the same time in the future. In this approach, two sets of pointers are
added to each page table entry to track virtual pages referenced in temporal proximity to the cur-
rent virtual page. While effective, this strategy leads to a larger page table. In response, Kandiraju
and Sivasubramaniam [Kandiraju and Sivasubramaniam 2002b] adapt cache prefetching techniques
such as Sequential, Arbitrary-Stride and Markov prefetching [Chen and Baer 1995], [Dahlgren et al.
1993], [Joseph and Grunwald 1997]. They propose a distance-based TLB prefetcher which tries to
detect repetitive strides as well as the patterns that Markov and Recency prefetching provide, us-
ing a modest amount of hardware. Specifically, the distance-based approach tracks the difference
or distance between successive TLB miss virtual pages and attempts to capture repetitive distance
pairs in the miss stream. On every TLB miss, the goal is to use the distance between the last miss
virtual page and current miss virtual page to predict the next expected distance and hence, the next
miss virtual page. A prefetch is then initiated for this virtual page.
Recognizing the increasingly critical role of TLBs to system performance, processor vendors

have extended the concept of multilevel hierarchies from caches to TLBs. Since the turn of the
decade, microarchitectures such as AMD’s K7, K8, and K10, Intel’s i7, and the HAL SPARC64-III
have embraced two-level TLB hierarchies [Drongowski 2008; Intel 2012; Sun 2003]. Private L2
TLBs first appeared in uniprocessors, but they have become even more prevalent with the adoption
of CMPs, with L2 TLBs approaching relatively large sizes with 512 and 1024 entries.
Though they are beneficial, all commercial L2 TLBs are implemented as independent structures

private to each core. This paper shows that this strategy is deficient in two ways. First, per-core,
private TLBs cannot leverage the inter-core TLB sharing behavior of parallel programs. Second,
even for multiprogrammed combinations of sequential applications, per-core TLBs allocate a fixed
set of resources to each individual core, regardless of the needs of applications running on them.
Therefore, one core may execute an application with only a small TLB footprint, and another core
may simultaneously experience TLB thrashing. This wastes resources since the unused TLB entries
of the first core would have been better used if made available to the thrashing core.
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Fig. 13. Number of inter-core shared (ICS) D-TLB misses, per number of sharers, and inter-core predictable stride (ICPS)
D-TLB misses. Summing these categories and normalizing to the total misses represents the potential for ICC prefetching to
help.

4. TWO INTER-CORE COOPERATIVE TLB PREFETCHERS

As we show, both ICC prefetchers and SLL TLBs drastically eliminate TLB misses by exploiting
sharing in parallel programs and allocating resources gracefully among sequential applications. We
describe ICC prefetchers first in this section, before covering SLL TLBs in the following section.

4.1. Motivation and Background Data

Effective prefetching must exploit well-characterized and predictable inter-core TLB miss patterns.
Previous characterizations [Bhattacharjee and Martonosi 2009] indicate that for parallel workloads,
significant commonality exists in TLB miss patterns across cores of a CMP. This leads to two types
of predictable TLB misses in the system.

Inter-Core Shared (ICS) TLBMisses: In an N-core CMP, a TLBmiss on a core is ICS if it is caused
by access to a translation entry with the same virtual page, physical page, context ID (process ID),
protection information, and page size as the translation accessed by a previous miss on any of the
other N-1 cores, within a 1 million instruction window. The number of cores that see this translation
is defined as the number of sharers. These misses occur often in parallel programs; for example,
previous work mentions that 94% of Streamcluster’s misses and 80% of Canneal’s misses are
seen by at least 2 cores on a 4-core CMP, assuming 64-entry TLBs [Bhattacharjee and Martonosi
2009]. In this approach, on every TLB miss, the currently-missing core (the leader) refills its TLB
with the appropriate entry and also pushes this translation to the other (the follower) CMP cores.
The prefetches are pushed into per-core Prefetch Buffers (PBs) placed in parallel with the TLBs.

Inter-Core Predictable Stride (ICPS) TLB Misses: In an N-core CMP, a TLB miss is ICPS with a
stride of S if its virtual page V+S differs by S from the virtual page V of the preceding matching
miss (context ID and page size must also match). We require this match to occur within a 1 million
instruction window, and the stride S must be repetitive and prominent to be categorized as ICPS.
Overall, some benchmarks can see many ICPS misses [Bhattacharjee and Martonosi 2009]. This
scheme stores repetitive inter-core strides in virtual pages in a central, shared Distance Table (DT).
On TLB misses, the DT predicts subsequent required translations which can be prefetched.
Figure 13 summarizes the prevalence of these types of predictable D-TLB misses across parallel

PARSEC benchmarks, assuming 64-entry D-TLBs. The stacked bars represent the number of ICS
D-TLBmisses (with separate contributions for different sharer counts) and ICPS D-TLBmisses as a
percentage of total D-TLB misses. Misses simultaneously in both categories are categorized as ICS
misses. As shown, a significant number of TLB misses across the benchmarks are predictable by
either ICS misses (e.g., Canneal, Facesim, and Streamcluster) or through ICPS misses caused
by a few prominent strides (e.g., over 85% of the D-TLB misses on Blackscholes are covered by
strides of ±4 pages).

Given these trends, we develop low-overhead techniques to study the behavior of TLB miss pat-
terns on individual cores, gauge whether they are predictable across cores under the ICS or ICPS
categories, and then prefetch appropriate TLB entries.

4.2. Prefetching Challenges

Despite the potential benefits of inter-core cooperative prefetching, key challenges remain. First, it
is difficult to create a single prefetching scheme that can adapt to diverse D-TLB miss patterns. For
example, while PARSEC benchmarks Canneal and Streamcluster see many shared ICS misses,
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Table II. Prominent stride patterns for evaluated benchmarks. Diverse stride patterns mean that distance predic-
tors are likely to outperform simple stride prefetching. The three benchmarks not suited to stride prefetching show
good potential for Leader-Follower prefetching.

Benchmark Strides Benchmark Strides Benchmark Strides
Blackscholes ±4 pages Ferret None Swaptions ±1, ±2 pages
Canneal None Fluidanimate ±1, ±2 pages VIPS ±1, ±2 pages
Facesim ±2, ±3 pages Streamcluster None x264 ±1, ±2 pages

Blackscholes is particularly reliant on strided ICPS misses. Moreover, the actual strides among the
benchmarks also vary significantly. To see this in greater detail, Table II summarizes the prominent
stride values employed by the different benchmarks.
In addition to diverse strides, their distribution among cores may vary. For example, in

Blackscholes core N+1 misses on virtual page V+4 if core N misses on virtual page V. In con-
trast, in VIPS core 0, 1, and 3 consistently miss with a stride of 1 or 2 pages from core 2. Our
implementation must dynamically adapt to these scenarios while also maintaining some level of
design simplicity.
A second challenge involves the timeliness of prefetching. On one hand, our scheme requires

sufficient time between detecting a TLB miss pattern on one core and using this pattern on another
core in order for our prefetchers to react and prefetch the desired entry before use. On the other hand,
we must avoid overly-early prefetching which may displace current TLB mappings before they stop
being useful. To study this, we have tracked the time between the occurrence of a predictable TLB
miss on one core and the subsequent predictable TLB miss on another core. For a 4-core CMP with
64-entry TLBs, this time is between 16K and 4M cycles for 70% of the predictable TLB misses.
While this indicates that sufficient time exists for our prefetchers to react to TLB miss patterns, we
must be careful that we do not prefetch too early.
Finally, prefetching by its nature causes an increase in memory traffic, and this in turn can ef-

fectively lower the available bandwidth for normal requests. However, TLB misses occur at a much
lower frequency than do normal cache misses, and so the amount of extra traffic introduced by ICC
prefetchers is minimal as compared to normal cache traffic. As a consequence, the performance
overhead of the additional memory traffic coming from the ICC prefetchers will be minimal.

4.3. Leader-Follower Prefetching

We now introduce two TLB prefetchers targeting inter-core shared and inter-core predictable stride
TLB misses. We begin with the Leader-Follower prefetcher, aimed at eliminating ICS TLB misses.
Leader-Follower prefetching exploits the fact that in ICS-heavy benchmarks, if a core (the leader)

TLB misses on a particular virtual page entry, other cores (the followers) will also typically TLB
miss on the same virtual page eventually. Since the leader would already have found the appropriate
translation, we can prevent the followers from missing on this entry by pushing it into the follow-
ers’ TLBs. Key challenges lie in identifying miss patterns and in avoiding pushing mappings onto
uninterested cores.

4.3.1. Algorithm. Figure 14 illustrates the algorithm necessary for Leader-Follower prefetching as-
suming an N-core CMP with per-core D-TLBs. Like many uniprocessor TLB prefetching studies,
we do not prefetch entries directly into the TLB, but instead insert them into a small, separate
Prefetch Buffer (PB) which is looked up concurrently with the TLB. This helps mitigate the chal-
lenge of prefetching into the TLB too early and displacing useful information.
Each PB entry maintains a Valid bit and a Prefetch Type bit (to indicate whether the entry arose

from Leader-Follower or Distance-based Cross-Core prefetching) in addition to the translation entry
(virtual page, physical page, context ID etc.). On a PB entry hit, the particular entry is removed
from the PB and inserted into the TLB. The PB uses a FIFO replacement policy; if an entry has to
be evicted to accommodate a new prefetch, the oldest PB entry is removed. If a newly prefetched
entry’s virtual page matches the virtual page of a current PB entry, the older entry is removed and
the new prefetch is added to the PB as the newest entry of the FIFO.
Figure 14 separates the Leader-Follower algorithm into two example cases. These cases are inde-

pendent and can happen in any order. We detail the cases below:
Case 1: Suppose we encounter a D-TLB miss but PB hit on core 0 (step 1a). In response (step

1b), we remove the entry from core 0’s PB and add it to its D-TLB.
Case 2: Suppose instead that core 1 sees a D-TLB and PB miss (step 2a). In response, the page

table is walked and the translation is located and refilled into the D-TLB. In step 2b, this translation
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is also prefetched or pushed into PBs of the other cores, with the aim of eliminating future ICS
misses on the other cores.

In step 2b, at PB insertion time, a check is made to see if the pushed entry already exists. If so, the
entry is brought to the head of the PB. However, we do not probe the follower TLBs, and as a result
it is possible that the entry may exist in both the D-TLB and the PB simultaneously. In practice,
however, we find that this redundancy occurs rarely.

4.3.2. Integrating Confidence Estimation. The baseline Leader-Follower prefetching scheme
prefetches a translation into all the follower cores every time a TLB and PB miss occurs on the
leader core. However, this approach may be over-aggressive and cause bad prefetches.

As with standard cache prefetching taxonomy [Srinivasan et al. 2004], we classify a prefetch as
bad if it is evicted from the PB without being used. This could happen either because the item was
prefetched incorrectly and would never have been referenced even in an infinite PB, or because the
finite size of the PB prompts the item to be evicted before its use.
For the Leader-Follower approach, bad prefetching arises due to blind prefetching from the

leader to the follower, even if the follower does not share the particular entry. For example, in
Streamcluster, 22% of the D-TLB misses are shared by 2 cores, 45% by 3 cores, and 28% by
all 4 cores. However, for each miss, the baseline approach aggressively pushes the translation into
all follower PBs. This can result into two types of bad prefetches, which we classify by extending
cache prefetch taxonomy [Srinivasan et al. 2004]. First, the bad prefetch may be useless in that it
will be unused. Second, the prefetch may be harmful in that it will not only be unused, but will also
render existing PB entries useless by evicting them too early.

We mitigate harmful and useless prefetches by incorporating confidence estimation. To do so, we
add a CPU Number field to each PB entry. The CPU Number tracks the leader core responsible
for the prefetch of each entry. In addition, as shown in Figure 15, each core maintains confidence
counters, one for every other core in the system. Therefore, in our example with an N-core CMP,
core 0 has saturating counters for cores 1 to N-1. The figure illustrates three cases of operation for
confidence-based Leader-Follower prefetching:

Case 1: Suppose that core 0 sees a PB hit (step 1a). As in the baseline case, step 1b removes
the PB entry and inserts it into the D-TLB. In addition, we check, with the Prefetch Type bit, if the
entry had been prefetched based on the Leader-Follower scheme. If so, we identify the initiating
core (from the CPU number). In our example, this is core 1. Therefore, in step 1c, a message is sent
to increment core 1’s confidence counter corresponding to core 0 since we are now more confident
that prefetches where core 1 is the leader and core 0 is the follower are indeed useful.
Case 2: Suppose instead (step 2a) that core 1 sees a D-TLB and PB miss. In response, the page

table is walked and the D-TLB refilled. Then, in step 2b, core 1’s confidence counters are checked
to decide which follower cores to push the translation to. We prefetch to a follower if its B-bit
confidence counter is greater or equal to 2B−1. In our example, core 1’s counter corresponding to
core 0 is above this value, and hence step 2c pushes the translation into core 0’s PB. At the same
time, since core 1 itself missed in its PB, we need to increase the rate of prefetching to it. Step 2d
therefore sends messages to all other cores so that core 1’s confidence counters in the other cores
are incremented.

Case 3: Consider the third case in which a PB entry is evicted from core N-1 without being used
(step 3a). Since this corresponds to a bad prefetch, we send a message to the core that initiated this
entry (step 3b), in this case core 1. There, core 1’s counter corresponding to core N-1 is decremented,
decreasing bad prefetching.

In step 1c, we send messages from follower to leader immediately after a PB hit so that the leader
can learn confidence levels as quickly as possible. As an alternative implementation, one could aim
to cut down on message traffic by merging such messages in with the normal eviction process of
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the original TLB entry. However, such a time delay would likely negate the benefits of confidence
tracking. Section 7.4 presents results showing that our implementation of confidence estimation
gives dramatic performance improvement for modest hardware.

4.3.3. Key Attributes. In summary, Leader-Follower prefetching has the following key properties.
First, the scheme is shootdown-aware. If a translation mapping or protection information is changed,
initiating a shootdown, TLBs are sent an invalidation signal for the relevant entry. In our scheme,
this message is relayed to the PB to invalidate any matching entries. Second, our scheme performs
single-push prefetches in that a TLB miss on one core results in that single requested translation
being inserted into follower PBs. Third, the Leader-Follower mechanism prefetches translations
into followers only after the leader walks the page table to find the appropriate translation entry.
Therefore, all the translation information is already present when inserted into the follower PBs.
Fourth, our scheme does not rely on any predesignation of which cores are leaders or followers.
Any core can be a leader or follower for any TLB entry at a time.

4.4. Distance-Based Cross-Core Prefetching

To capture ICPS misses, our solution draws from a uniprocessor distance-based prefetcher [Kandi-
raju and Sivasubramaniam 2002b], and extends it for cross-core behavior. As an initial example,
assume that two CMP cores have the following TLB miss virtual page streams with all of core 0’s
misses occurring before core 1:
Core 0 TLB Miss Virtual Pages: 3, 4, 6, 7
Core 1 TLB Miss Virtual Pages: 7, 8, 10, 11
Here, a stride of 4 pages repeats between the missing virtual pages on the two cores. But due

to timing interleaving and global communication, cross-core patterns are hard to detect and store
directly. Instead, our approach focuses on the differences, or distances, between successive miss-
ing virtual pages on the same core, and then makes distance patterns available to other cores. For
example, the first distance on core 0 is 1 page (page 4 - page 3). Overall, the distances are:

Core 0 Distances: 1, 2, 1
Core 1 Distances: 1, 2, 1
The key to our approach is that although the cores are missing on different virtual pages, they

both have the same distance pattern in their misses, and this can be exploited. We therefore design
a structure to record repetitive distance-pairs - in this case, the pairs (1, 2) and (2, 1). Then, on a
TLB miss from a core, the current distance (current missing virtual page minus last missing virtual
page) is used to scan the observed distance pairs. From this, we find the next predicted distance, and
hence the next virtual page miss. The matching translation entry is then prefetched. In our example,
core 0 experiences all its misses, recording the distance-pairs (1, 2) and (2, 1). Then, once core 1
misses on pages 7 and 8 (current distance 1), the distance-pair (1, 2) reveals that the next virtual
page is predicted to be 2 pages away. A subsequent prefetch therefore eliminates the miss on page
10. Similarly, the TLB miss on page 11 is also eliminated (using the (2, 1) pair).

4.4.1. Algorithm. Figure 16 shows how Distance-based Cross-Core prefetching works. We again
assume an N-core system with prefetches placed into per-core PBs. The approach is as follows:
Step 1: On a D-TLB access, the PB is scanned concurrently to check for the entry. If there is a

PB hit, we go to step 2, otherwise we skip directly to step 3.
Step 2: On a PB hit, the entry is removed from the PB and inserted into the D-TLB (in our

example, for core 0). We then move to step 3 and follow the same steps as the PB miss case.
Step 3: We now check if the context ID of the current TLB miss is equal to the context ID of the

last TLB miss (held in the Last Ctxt. Reg.). If so, the current distance is calculated by subtracting
the current TLB miss virtual page from the last TLB miss virtual page (held in the Last VP Reg.)
and we move to step 4. If there is no match, we skip directly to step 8.
Step 4: The core (in our example, core 0) sends the current distance, the last distance (from the

Last Dist. Reg.), the CPU number, and the current context to the Distance Table (DT), which caches
frequently used distance-pairs and is shared by all the cores. Our scheme places the DT next to the
shared L2 cache.
Step 5: The DT uses the current distance to extract predicted future distances from the stored

distance-pairs. It also updates itself using the last distance and current distance.
Step 6: A maximum of P predicted distances (the current distance may match with multiple

distance-pairs) are sent from the DT back to the requesting core (core 0 in our example), where they
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are entered into the Distance Buffer (DB). The DB is a FIFO structure with size P to hold all newly
predicted distances.

Step 7: The predicted distances in the DB are now used by the core (core 0 in our case) to calcu-
late the corresponding virtual pages and walk the page table. When these prefetched translations are
found, they are inserted or pulled into the PB (unlike the Leader-Follower case, this is a pull mech-
anism since the core with the TLB miss prefetches further items to itself rather than the others).

Step 8: The Last Ctxt., Last VP, and Last Dist. registers are updated with the current context,
current virtual page, and current distance.

A number of options exist for the page table walk in step 7; a hardware-managed TLB could use
its hardware state machine without involvement from the workload, which could execute in parallel.
In contrast, a software-managed TLB may execute the page table walk within the interrupt caused
by the initiating TLB miss. We will compare these approaches in Section 7.7.3.

4.4.2. Distance Table Details. Figure 17 further clarifies DT operations such as lookups (left dia-
gram) and updates (right diagram). Requests are initially enqueued into a Request Buffer, global to
all cores. Each request is comprised of the current distance, the context, the core number initiating
the request, and the last distance value. Moreover, each DT entry has a Valid bit, a Tag (to compare
the distance used to address into the DT), Ctxt bits for the context ID of the stored distance-pair,
the CPU number from which this distance-pair was recorded, and the Pred. Dist. or next predicted
distance. We now separately detail the steps involved in DT lookup and update.

DT Lookup: For the lookup operation, the low-order bits of the current distance index into the
appropriate set. Figure 17 shows a 2-way set associative DT, but the associativity could be higher.
Second, for all indexed entries, the valid bit is checked and if the tag matches the current distance
tag and the Ctxt bits match the current context, we have a DT hit. Multiple matches are possible
since the same current distance may imply multiple future distances. Third and finally, on a DT hit,
the Pred. Dist. field of the entry is extracted. Clearly, this DT line may have been allocated by a core
different from the requesting core, allowing us to leverage inter-core TLB miss commonality. The
maximum number of prefetches is equal to the DT associativity.
DT Update: In contrast to the lookup, DT update uses the low-order bits of the last distance

to index into the required set. Second, for each line, the valid bit is checked, the tag is compared
against the last distance tag portion, and the Ctxt bits are compared against the current context. Also,
since distances are calculated relative to TLB misses from the same core, we check that the CPU
bits of the lines match with the requesting CPU.

If a matching entry (Valid, Tag, Ctxt, and CPU) is found, we next check check if updating the
Pred. Dist. entry with the current distance will result in multiple lines in the set having the same
Tag, Pred. Dist. pair (this might happen when multiple cores see the same distance-pairs). If true,
we avoid storing redundant distance-pairs by not updating the line. If no duplicates exist, we update
the Pred. Dist. entry with the current distance.
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On the other hand, if no matching entry is found, a new line in the set is allocated with the tag,
context, and CPU bits set appropriately. For this purpose, the DT uses an LRU replacement policy.

4.4.3. Key Attributes. Like Leader-Follower prefetching, Distance-based Cross-Core prefetching
is shootdown-aware; PB entries can be invalidated when necessary. Since the DT only main-
tains distance-pairs and not translations, it is agnostic to TLB shootdowns. Second, this scheme
is multiple-pull. That is, prefetches for translations are pulled only into the core which experienced
the initial TLB miss. Furthermore, multiple prefetches (limited by the associativity of the DT) may
be initiated by a single miss. Third, the DT predicts future distances but the corresponding transla-
tions need to be found. This differs from the Leader-Follower scheme, in which the leader directly
pushes the required translation into the PBs of the other cores. The actual translation search may
be accomplished differently for hardware and software-managed TLBs and will be further studied
in future sections. Fourth, since the DT induces additional page table walks, we must account for
page faults. Our scheme assumes non-faulting prefetches in which the page walk is aborted without
interrupting the OS if the entry is not found.

5. SHARED LAST-LEVEL TLBS

We now detail our proposed shared last-level TLB. We introduce the concept of SLL TLBs and de-
scribe their operation and implementation. We then discuss augmenting SLL TLBs with prefetching
mechanisms as well.

5.1. Concept

Figure 18 presents a CMP with private, per-core L1 TLBs backed by an SLL L2 TLB. While this
example uses just one level of per-core private TLBs, further levels may be readily accommodated
(for example, each core could maintain two levels of per-core private TLB followed by an L3 SLL
TLB). As with last-level caches, the SLL TLB is accessed when there is a miss in any of the L1
TLBs. The SLL TLB strives for inclusion with the L1 TLB, so that entries that are accessed by one
core are available to others. Figure 18 shows the SLL TLB residing in a central location, accessible
by all the cores. While this centralized approach is a possible implementation, we discuss this and
other implementation issues in Section 5.2.
SLL TLBs enjoy two orthogonal benefits. First, they exploit inter-core sharing in parallel pro-

grams. Specifically, a core’s TLB miss brings an entry into the SLL TLB so that subsequent L2
misses on the same entry from other cores are eliminated. Second, even for unshared misses, SLL
TLBs provide more flexible caching space in which entries can be placed. Eliminations arising from
this benefit both parallel and sequential workloads.

5.2. Implementation Options

Having detailed basic SLL TLB operation, we now address some key implementation attributes:
TLB Entries: SLL TLB entries store information identical to the L1 TLB. Each entry stores a

valid bit, the translation entry, and replacement policy bits. Furthermore, we store the full context or
process ID with each entry. Space could be saved with fewer bits but our SLL TLB is small, making
such optimizations unnecessary. Entries also may or may be pinned in the TLB by the operating
system, as is done in the SF3800 described in Section 6.3.
Replacement Policies: To leverage inter-core sharing in parallel programs, the SLL TLB and

L1 TLBs need to be inclusive. However, as with multilevel caches, guaranteeing strict inclusion
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requires tight coordination between the L1 and the L2 SLL TLB controllers and replacement logic
[Hinton 2001]. Instead, we implement a multilevel TLB hierarchy that is mostly-inclusive. Here,
while entries are placed into both the L1 and SLL TLB on a miss, each TLB is allowed to make
independent replacement decisions, requiring far simpler hardware. Furthermore, processor vendors
have noted that while this approach does not guarantee strict inclusion, it achieves almost perfect
inclusion in practice. For example, in our applications, we find that above 97% of all L1 TLB entries
are present in the SLL TLB. Nevertheless, SLL TLBs could easily be ported to a fully-inclusive
hierarchy as well if desired.

Consistency: Our SLL TLBs are designed to be shootdown-aware. Whenever a translation entry
needs to be invalidated, both the SLL and the L1 TLBs must be checked for the presence of this
entry. Had our SLL TLB been strictly inclusive of the L1 TLBs, this would be unnecessary in the
case of an SLL miss. However, since our two TLB levels are mostly-inclusive, it is possible for an
entry to be absent from the SLL TLB but be present in the L1 TLBs. Therefore, a shootdown re-
quires checks in all of the system TLBs. Nonetheless, shootdowns are rare and the simpler hardware
afforded by the mostly-inclusive policy make it appropriate for our proposed approach.

Placement: Many SLL TLB placement options exist. Here, we assume a unified, centralized SLL
TLB equidistant from all cores. This is feasible for the current size of SLL TLBs we study (512
entries, as detailed in Section 6), which enjoy short hit times (2 cycles for 45nm technology from
CACTI experiments [Muralimanohar et al. 2009]). If future SLL TLBs are considerably larger and
require longer hit times, they could be distributed similarly to NUCA caches [Kim et al. 2003].
As with caches, a communication medium exists between cores and the SLL TLB (eg. on-chip

network or bus). Therefore, SLL roundtrip latency is comprised of the network traversal and SLL
TLB access time. Given short access latencies of 2 cycles, network traversal time dominates. We
assume network traversal times of 20 cycles based on CACTI [Muralimanohar et al. 2009] simu-
lations. While this does mean that 22 cycles are spent even on an SLL TLB hit, as we will show,
this still vastly improves performance by eliminating a page table walk that could take hundreds
of cycles [Jacob and Mudge 1998a; 1998b]. Techniques that reduce the communication latency to
reach the SLL TLB will only amplify the SLL TLB benefits.

Finally, since the SLL TLB is centrally shared among all of the cores, they will require longer
access times than the private L2 TLBs. Based on CACTI simulations at 45nm, scanning the private
L2 TLB takes the same amount of time as the SLL TLB (2 cycles); however, since private L2 TLBs
do not need to be centralized among cores, they have a shorter communication time. To ensure
that this additional time does not annul the gains from higher SLL hit rates, we assess SLL TLB
performance versus private L2 TLBs, which are faster to access by 6 cycles.
Access Policies: While L1 TLBs handle only one request at a time and are blocking, SLL TLBs

could potentially be designed to service multiple requests together. This, however, complicates both
the hardware and the OS page table handler; our design therefore assumes blocking SLL TLBs.
Nevertheless, non-blocking SLL TLBs would likely provide even more performance benefits.

5.3. Adding Simple Stride Prefetching to the Baseline Shared Last-Level TLB Operation

As detailed, SLL TLBs provide benefits for parallel programs by capturing inter-core sharing. They
also improve multiprogrammed sequential workloads by more efficiently allocating TLB resources
to match the varying needs of different sequential workloads. However, we also consider simple
stride prefetching extensions to the baseline scheme to further increase TLB hit rates. For example,
on a TLB miss, we can insert the requested translation into the SLL TLB and also prefetch entries
for virtual pages consecutive to the current one. Figure 19 describes SLL TLBs with prefetching
integrated for the following steps:

Step 1: First, we assume that a TLB miss has occurred in both the L1 and SLL L2 TLBs. After
having walked the page table to find the translation corresponding to the missed virtual page (page
0 in this example), the appropriate entry is placed into the L1 TLB.
Step 2: Having refilled the L1 TLB entry in the first step, we now fill the same entry into the SLL

TLB. At this point, prefetching is activated. To capture potential intra-core and inter-core strides,
we now prefetch entries for virtual pages located near the one just missed upon.
It is critical to ensure that these prefetches do not add overheads by requiring extra page table

walks. To avoid this, we propose a simple piggyback handling approach. When a TLB miss and
its corresponding page table walk occur, we eventually locate the desired translation. Now, this
translation either already resides in the cache or is brought into the cache from main memory.
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Table III. Summary of PARSEC benchmarks used to evaluate SLL TLBs. Note the diversity in parallelization models and
working set sizes.

Benchmark Model Wkg. Set Benchmark Model Wkg. Set
Streamcluster Data-parallel 16MB Ferret Pipeline-parallel 64MB
Canneal Unstructured 256MB VIPS Data-parallel 16MB
Facesim Data-parallel 256MB Swaptions Data-parallel 512KB
Fluidanimate Data-parallel 64MB Blackscholes Data-parallel 2MB
x264 Pipeline-parallel 16MB Dedup Pipeline-parallel 2MB
Bodytrack Data-parallel 512KB Raytrace Data-parallel N/A6

Because cache line sizes are larger than translation entries, a single line will maintain multiple
translation entries. With 64-byte cache lines and 16-byte TLB entries (see Section 6), entries for
three other translations will also reside on the same cache line. Therefore, we prefetch these entries
into the SLL TLB, with no additional page walk requirements. Moreover, we permit only non-
faulting prefetches.
Continuing our example from step 1, after virtual page 0 has been missed upon, we prefetch

translations for pages 1, 2, and 3, as these translations reside on the same cache line and therefore
arrive for free.
Step 3: Suppose now that core 1 requests the translation for virtual page 1 because it has an inter-

core stride of 1 page from core 0. Assuming that we miss in the L1 TLB, we scan for the entry in the
SLL L2 structure. Fortunately, based on the stride prefetching scheme used, we find that the entry
does exist in the SLL TLB. An expensive page table walk is eliminated and all that remains is for
the entry to be refilled into the L1 TLB as well.

6. METHODOLOGY AND BENCHMARK CHARACTERIZATION

6.1. Workloads and Input Sets

6.1.1. Parallel Workloads. For parallel applications we use PARSEC, a suite of next-generation
shared-memory programs for CMPs [Bienia et al. 2008]. Table III lists the workloads used in this
study. Of the 13 available workloads, we are able to compile nine for our simulator5 and 12 for our
real system. The workloads use diverse parallelization strategies (unstructured, data-parallel, and
pipeline-parallel) and are run with a thread pinned to each CMP core.
We also classify the benchmarks into groups based on their behavior. Figure 20 arranges the

workloads in terms of TLB miss sharing by plotting them with the percentage of ICS misses (at
least 2 sharers) on the x-axis and percentage of ICPS misses on the y-axis. Based on this, we form
the following categories:
ICPS-h: Stride-reliant workloads with high ICPS misses and low ICS sharing. Only

Blackscholes is in this category.
ICS/ICPS-m: Moderate but roughly similar contributions from ICS and ICPS misses.

Fluidanimate, Swaptions, and VIPS are in this category
ICS-m: Moderate ICS misses and few ICPS misses. Ferret and x264 comprise this category.
ICS-h/ICPS-m: Heavy ICS sharing with moderate ICPS. Only Facesim is in this category.
ICS-h: ICS-sharing exclusively, forming a high proportion of the total D-TLB misses. Canneal

and Streamcluster fall in this category.
Specifically, we expect that ICS-high categories particularly benefit from Leader-Follower

prefetching while ICPS-high benchmarks exploit Distance-based Cross-Core prefetching.

6.1.2. Sequential Workloads. We run sequential applications from the widely-used SPEC CPU2006
[SPEC 2006] benchmark suite to form our multiprogrammed workloads. For the simulation ex-
periments, we choose to evaluate the workloads designated as capturing the overall performance
range of the SPEC CPU2006 suite [Phansalkar et al. 2007]. While a fully-comprehensive analysis
of multiprogrammed workloads comprised of four applications would involve simulation of all

(29
4

)

combinations of benchmarks, this is practically infeasible. We therefore draw from the methods and
data in [Phansalkar et al. 2007] to form seven workloads of four SPEC CPU2006 applications each.

5These are also the PARSEC workloads that are studied in [Bhattacharjee and Martonosi 2009] and hence, serve as a point
of reference for our results.
6Because raytrace is a newer addition to PARSEC, its characterization data is not available in [Bienia et al. 2008].
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Table IV. The multiprogrammed workloads used in this paper. Five of the
workloads are constructed to be heterogeneous (Het-1 to Het-5) while two
are homogeneous (Hom-1 and Hom-2). The workloads are designed to
show varying degrees of TLB stress.

ID Stress SPEC Benchmarks
Het-1 Inter. mcf, xalancbmk, sjeng, libquantum
Het-2 Low xalancbmk, sjeng, libquantum, gcc
Het-3 Inter. cactusADM, milc, soplex, lbm
Het-4 Low soplex, lbm, wrf, povray
Het-5 High cactusADM, mcf, omnetpp, GemsFDTD
Hom-1 High 4 copies of mcf
Hom-2 Low 4 copies of xalancbmk

Table V. System parameters used to collect statis-
tics using hardware performance counters and us-
ing simulation.

Property Simulated Hardware
System 4-16 core SPARC
L1 cache Private, 32 KB, (4-way)
L2 cache Shared, 16 MB (4-way)
L3 cache None
LLC roundtrip 40 cc (uncontested)
Private L1 TLBs 16-entry fully-assoc

(locked/unlocked pgs.),
64-entry, 2-way
(unlocked pgs.)

L2 TLBs (see Table VII)
OS Sun Solaris 10
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Fig. 20. Based on inter-core sharing, we separate the work-
loads into ICPS-h, ICS/ICPS-m, ICS-m, ICS-h/ICPS-m,
and ICS-h categories.

As shown in Table IV, these combinations stress the TLBs to varying degrees. We separate them
into five heterogeneous workloads (Het-1 to Het-5) and two homogeneous workloads (Hom-1 and
Hom-2). The heterogeneous workloads provide insight into how well SLL TLBs adapt to programs
with different memory requirements. In contrast, the homogeneous ones model scenarios where no
single application overwhelms the others.

We construct the workloads as follows. First, we design two heterogeneous workloads with in-
termediate levels of TLB stress by combining one high-stress application with three lower-stressed
ones. In this case, mcf and cactusADM serve as our high-stress benchmarks and therefore are used
to create intermediate-stress workloads Het-1 and Het-3 along with three other lower-stress appli-
cations. Second, for comparison, we create a pair of low-stress workloads, Het-2 and Het-4. Finally,
our last heterogeneous workload is designed to be very high-stress. Therefore, in this case we com-
bine both mcf and cactusADM along with two other workloads in Het-5.
For the homogeneous workloads, we once again focus on a high-stress and low-stress case. The

high-stress workload is constructed using four copies of mcf while the low-stress workload uses
four copies of xalancbmk.

Lastly, we also note that many workloads will consist of multiprogrammed combinations of both
sequential and parallel applications. Such a combination leads to interesting questions about parti-
tioning, sharing, interference, etc., and we hope to study such mixes in the future.

6.2. Simulation Infrastructure

We use the Multifacet GEMS simulator [Martin et al. 2005] from Table V. Our simulator uses
Virtutech Simics [Virtutech 2007] as its functional model to simulate a 4-16 core CMP based on
Sun’s UltraSPARC III Cu with SunFire’s MMU architecture [Sun 2003]. This uses two L1 TLBs
that are looked up concurrently. The OS uses a 16-entry, fully-associative structure primarily to lock
pages. A second 64-entry TLB is used for unlocked translations. These sizes are similar to the L1
TLBs of contemporary processors such as Intel’s i7 (64-entry) and AMD’s K10 (48-entry).

6.3. ICC Prefetcher Evaluation

To evaluate the ICC prefetcher, we consider a variety of MMU configurations, shown in Table VI.
Since the simulated MMUs are software-managed, the OS receives an interrupt on every TLB miss.
Furthermore, each MMU has a distinct TLB architecture. The SF280R is representative of Sun’s
entry-level servers with typical TLB sizes, whereas the SF3800 contains one of the largest TLB
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Table VI. Simulated SunFire MMUs with
software-managed TLBs.

MMU Type D-TLBs
SF280R 64-entry (2-way)
Intermediate 512-entry (2-way)
SF3800 16-entry, fully-assoc.

(locked/unlocked pages)
2 × 512-entry, 2-way
(unlocked pages)

Table VII. TLB enhancements evaluated in this work. SLL TLB and private,
per-core L2 TLB sizes match those of the ICC prefetchers.

Strategy Description
Per-Core Private L2 TLBs 128-entry, 4-way, 16 cc roundtrip
(Conventional case) (interconnect: 14 cc, access: 2 cc)
Shared Last-Level L2 TLB 512-entry, 4-way, 22 cc roundtrip
(Our Strategy) (interconnect: 20 cc, access: 2 cc)
ICC Prefetching 16-entry PB per core, 512-entry DT,
(Our Strategy) 28 cc DT roundtrip

(interconnect: 20 cc, access: 8 cc)

organizations to date. In all cases, we keep the L1 TLB size constant so as not to increase the
latency of hits, which are by far the common case.
We develop and evaluate the two prefetching schemes in the following steps:
In Section 7, we evaluate the Leader-Follower and Distance-based Cross-Core prefetching

schemes on a 4-core CMP system with the SF280R MMUs (64-entry TLBs). We show the benefits
of each scheme individually and then combine them. In the Leader-Follower scheme, we assume
that it takes 40 cycles for the leader core to push a translation into the follower core (this is equal
to the L2 latency, which may be considerably longer than the actual time taken on interconnection
networks with 4-16 cores today). Furthermore, in Distance-based Cross-Core prefetching, we place
the DT next to the L2 cache, and hence assume that a DT access is equal to an L2 access latency.
Finally, we assume that, as with hardware-managed TLBs, a hardware state machine walks the page
table on predicted distances from the DT. In this section, the state machine is assumed to locate the
desired translation with an L1 access (subsequent sections address longer page table walks).

After this analysis, we then study the performance implications of these approaches for multiple
core counts and TLB sizes. Lastly, we investigate hardware/software prefetcher implementation
tradeoffs and assess the benefits and overheads of each approach.
Since TLB misses occur less frequently than cache misses, we use the largest available input data

set feasible for simulation, the simlarge set. Due to slow full-system timing simulation speeds, we
present results observed with 1 billion instructions.

6.4. SLL TLB Evaluation

To assess the benefits of SLL TLBs, we compare them against both per-core, private L2 TLBs and
ICC prefetchers with the same total hardware. Based on the ICC prefetchers detailed in Table VII,
an equally-sized SLL TLB requires 512 entries. This means that for a 4-core CMP, we compare
SLL TLBs to private L2 TLBs of 128 entries. Finally, TLB access times are assigned from CACTI
[Wilton and Jouppi 1994; Muralimanohar et al. 2009] assuming a 45nm node. These penalties in-
clude time to traverse the on-chip network as well as time to scan the TLB array. We find that
the TLB scan times for both approaches remain the same (2 cycles); however, since the private L2
TLBs are placed closer to the cores than the L2 SLL TLB, they have quicker network traversal (by
6 cycles).
We again use the full-system 4-core CMP simulator of Table V. For parallel workloads, we again

present results for 1 billion instructions of execution. For sequential workloads, we use an approach
similar to previous studies [Ebrahimi et al. 2010; Kandiraju and Sivasubramaniam 2002a; Sharif
and Lee 2009]: we advance simulation by four billion instructions and evaluate performance over
a window of ten billion instructions. Unlike the parallel workload experiments, we evaluate the
multiprogrammed workloads using functional simulation only. This approach allows us to capture
larger swaths of execution, and it allows us to use the full ref datasets to more fully exercise the
TLB than would be possible with smaller input sets. In addition, these multiprogrammed sequential
workloads are not as heavily influenced as the parallel ones by inter-thread timing interactions. Since
TLB effects occur over such long timescales, the key is for the window to be sufficiently large to
observe and contrast the behavior of the various workloads. Our functional simulation also includes
OS effects, which are naturally quite important to our study.

7. INTER-CORE COOPERATIVE PREFETCHER RESULTS

We now focus on the benefits of the prefetchers and explore the hardware parameters involved.
In Section 7.1, we quantify the benefits of Leader-Follower prefetching and then in Section 7.2,
do the same for Distance-based Cross-Core prefetching. Both these cases assume an aggressive
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Fig. 21. Percentage of D-TLB misses eliminated with Leader-Follower prefetching with infinite PBs. This
scheme performs well for high-ICS benchmarks such as Canneal, Facesim, and Streamcluster but poorly
for ICPS-reliant Blackscholes.
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Fig. 22. Percentage of D-TLB misses eliminated with Distance-based Cross-Core prefetching assuming infi-
nite PBs for various sizes of the DT. Note that a high number of misses are eliminated consistently across
benchmarks, primarily from between-core prefetches.

implementation with infinite PBs and no confidence estimation. In Section 7.3, we then combine
both approaches for feasible PB sizes. Subsequently, Section 7.4 shows how confidence estimation
reduces bad prefetches for better performance. Finally, Section 7.5 compares our approach against
increasing TLB sizes.

7.1. Leader-Follower Prefetching

Figure 21 shows the percentage of total D-TLB misses eliminated using Leader-Follower prefetch-
ing, assuming infinite PBs for now. From this, we observe the following:

First, ICS-h and ICS-h/ICPS-m benchmarks Canneal, Facesim, and Streamcluster enjoy par-
ticularly high benefits. For example, Streamcluster eliminates as much as 57% of its misses.
Second, even benchmarks from the ICS-m and ICS/ICPS-m categories see more than 14% of their

D-TLB misses eliminated. For example, VIPS eliminates 26% of its D-TLB misses. This means that
even moderate amounts of ICS sharing can be effectively exploited by Leader-Follower prefetching.
Unlike their ICS-heavy counterparts, ICPS-reliant benchmarks see fewer benefits. For example,

Blackscholes sees roughly 3% of its D-TLB misses eliminated. Nonetheless an average of 28%
miss reduction occurs across all applications.

7.2. Distance-Based Cross-Core Prefetching

Next, Figure 22 presents results for Distance-based Cross-Core prefetching. It shows D-TLB misses
eliminated for various DT sizes with infinite PBs. Assuming a 4-way set-associative DT (therefore,
the maximum number of prefetches is 4 and the DB is also set to this value), we vary the size of the
DT from 128 to 2K entries. Each bar is further separated into D-TLB misses eliminated from two
types of prefetches:

1. Between-Core prefetches in which a core prefetches based on a distance-pair in the DT that
was recorded from a different core. This is the category that exploits inter-core commonality.
2. Within-Core prefetches in which a core prefetches based on a distance-pair in the DT that was

recorded from itself.
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Fig. 23. Effect of combining the two prefetching schemes with finite PBs. Even with as few as 16 entries in
the PB, these techniques eliminate an average of 46% of the D-TLB misses.
Figure 22 indicates that miss eliminations rise with bigger DTs. Benchmarks with ICPS TLB

misses enjoy particular improvements from this approach. For example, Blackscholes (ICPS-h)
consistently eliminates more than 80% of its TLB misses.
Second, Figure 22 shows that streaming benchmarks employing regular distance-pairs derive

great benefits from Distance-based Cross-Core prefetching. For example, Facesim, which em-
ploys an iterative Newton-Raphson algorithm over a sparse matrix, sees over 70% of its D-TLB
misses eliminated even at the smallest DT. Similarly, Ferret’s working set is made up of an image
database that is scanned linearly by executing threads; hence, regular distance-pairs exist, eliminat-
ing above 60% of D-TLB misses.
Third, Distance-based Cross-Core prefetching aids even ICS benchmarks from ICS-m, ICS-

h/ICPS-m, and ICS-h categories. For example, Canneal enjoys roughly 60% D-TLB miss elimina-
tion at 2K entry DTs. ICS-heavy workloads typically benefit most from increased DT size because
they have less prominent strides and hence a higher number of unique distance-pairs.
Finally, the high contribution of between-core prefetches demonstrates that the DT actively ex-

ploits inter-core commonality. Even in cases where this is less prominent however, the DT can
capture within-core distance-pairs, and use them for better performance. For example, Swaptions
makes particular use of this with half of its D-TLB eliminations arising from within-core prefetches.
Clearly, the bulk of eliminated D-TLB misses across the workloads arises from behavior seen

across CMP cores. While uniprocessor distance schemes [Kandiraju and Sivasubramaniam 2002b]
may be able to capture some of these patterns, they would take longer to do so, eliminating fewer
misses. Moreover, since our scheme uses a single DT to house all distance-pairs across cores, we
eliminate the redundancy of a scheme with per-core DTs.
Based on Figure 22, we assume a DT of 512 entries from now on (with an average of 54% of

the D-TLB misses eliminated). Moreover, we have experimented with a range of associativities and
found that there is little benefit beyond a 4-way DT. Therefore, we assume an associativity, and
hence maximum number of simultaneous predictions and DB size, of 4.
Based on this, each DT entry uses a Valid bit, 25 Tag bits, 2 CPU bits (for a 4-core CMP), 13

context bits (from UltraSPARC specifications), and 32 bits for the next predicted distance, amount-
ing to a 4.56 KB DT for 4 cores, or 4.81 KB at 64 cores. Compared to the neighboring L2 cache,
the DT is orders of magnitude smaller, making for modest and scalable hardware.

7.3. Combining the ICC Approaches

Since the Leader-Follower and Distance-based Cross-Core schemes target distinct application char-
acteristics, we now evaluate the benefits of both approaches together in a combined ICC TLB
prefetcher. Both schemes may be implemented as before, with the PB now shared between both
strategies.
Figure 23 shows the benefits of the combined prefetcher for finite PBs of 8 to 64 entries and

infinite PBs. In all cases, a 4-way, 512-entry DT with 4-entry DBs is assumed. As expected, the
combined ICC prefetcher eliminates 26% to 92% of the D-TLB misses for infinite PBs. Moreover,
in every case, the combined approach outperforms either of the approaches individually.
Figure 23 also shows that ICC prefetchers offer notable benefits even for small PB sizes. For

example, even modest 16-entry PBs eliminate 13% (for Swaptions) to 89% (for Blackscholes)
of the D-TLB misses, with an average of 46%. Moreover, benchmarks like Canneal and Ferret,
which suffer from a high number of D-TLB misses [Bhattacharjee and Martonosi 2009], see more
than 44% of their misses eliminated, translating to significant performance savings.
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Fig. 25. Percentage of D-TLB misses eliminated with the
inclusion of confidence estimation. Not only does confi-
dence estimation reduce bad prefetches, it also improves
prefetcher performance by retaining useful information for
longer in the PB. On average, 6% additional D-TLB misses
are eliminated by incorporating confidence estimation.

Interestingly, Figure 23 shows that ICS-h benchmarks Canneal and Streamcluster suffer most
from decreasing PB sizes. Section 7.4 shows how confidence estimation can mitigate this effect.

Based on Figure 23, we assume a combined ICC prefetcher with a modest PB size of 16 entries
for the rest of our evaluations. This represents the smallest of the PB sizes deemed feasible by
Kandiraju and Sivasubramaniam [Kandiraju and Sivasubramaniam 2002b].

7.4. Integrating Confidence Estimation

Our results so far assume the absence of confidence estimation described in Section 4.3.2. How-
ever, as previously noted, there may be instances of over-aggressive prefetching, especially for the
Leader-Follower case in benchmarks like Streamcluster in which not all cores share the all the
TLB miss translations. Confidence estimation is crucial to the performance of these workloads.

Figure 24 profiles the percentage of total prefetches from our prefetcher without confidence
estimation (i.e. the version presented until now) that are bad, and compares this to the case
of using confidence with 2-bit counters. Each bar in the graph is divided into Leader-Follower
and Distance-based Cross-Core contributions. Without confidence, benchmarks like Canneal and
Streamcluster, which particularly suffer from lowered PB sizes, have the most bad prefetches.
Even in other cases without confidence, there are high bad prefetch counts (an average of 38%).
Moreover, it is clear that a large proportion of the bad prefetches are initiated by over-aggressive
Leader-Follower prefetching. For example, this scheme causes roughly 80% of Streamcluster’s
bad prefetches, with 60% on average across applications.

Figure 24 shows that using just 2-bit confidence counters cuts bad prefetches from an average of
38% to 21% across the workloads. In fact, we see that Streamcluster’s bad prefetches are halved
while Canneal also sees substantial benefits. Moreover, while bad prefetches from Leader-Follower
prefetching decrease, Distance-based Cross-Core prefetching also benefits because fewer prefetches
from this scheme are prematurely evicted due to bad Leader-Follower prefetches. This means that
not only are useless prefetches decreased, so too are harmful prefetches.
Figure 25 shows that the decrease in bad prefetches from confidence estimation translates into

notable performance improvements. For example, Canneal and Streamcluster eliminate 10%
and 20% more misses with confidence. This is because harmful prefetches are decreased and thus
useful information is not prematurely evicted from the PB. At the same time, benchmarks like
Facesim and Ferret see a slight drop of 2% to 3% in D-TLB miss elimination due to the reduced
prefetching; however, since the average benefit is a 6% increase in D-TLB miss elimination, we
incorporate confidence estimation into our ICC prefetcher.

7.5. Cooperative Prefetching Versus Larger TLBs

To fairly quantify the benefits of prefetching, we must compare our techniques against just enlarging
the TLB. Specifically, since we require 16-entry PBs to be checked concurrently with the D-TLBs,
we need to compare this approach to adding 16 TLB entries.

Figure 26 plots the benefits of ICC prefetching over blindly adding 16 entries for the 64-entry
TLBs (SF280R MMU), 512-entry TLBs (Intermediate MMUs), and 1024-entry TLBs (SF3800
MMUs). For these TLB sizes, we plot the difference between percent D-TLB misses eliminated
using ICC prefetching with the baseline size versus adding 16 TLB entries to the baseline case.
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Fig. 28. Burst Distance-based Cross-Core prefetching
eliminates almost as many D-TLB misses as the fully-
hardware case. Results assume that Leader-Follower
prefetching remains unaffected.

Figure 26 shows that ICC prefetching notably outperforms blindly increasing TLB sizes across
all sizes and benchmarks. At 64-entry and 512-entry baseline sizes, ICC prefetching outperforms
larger TLBs by over 20%. At 1024-entry baseline TLB sizes, benefits are slightly reduced to roughly
12% since TLB misses occur less often, lessening the impact of prefetching. Nevertheless, ICC
prefetching outperforms larger TLBs notably even for 1024-entry TLBs. Therefore, prefetching
strategies with modest hardware can yield significant gains beyond just enlarging TLBs.

7.6. Moving to Greater Core Counts

When analyzing the benefits of our prefetchers, it is important to gauge their performance in the
presence of increasing core counts. While we have so far assumed a 4-core CMP, we now quantify
the performance benefits on a 16-core CMP.
Figure 27 compares TLB miss elimination rates for the 4-core CMP against a 16-core CMP

for SF280R MMUs. We assume the fully-hardware implementation with 16-entry PBs, hardware
Leader-Follower prefetching, and hardware Distance-based Cross-Core prefetching with a 512-
entry, 4-way DT.
Figure 27 shows that ICC prefetching improves performance even at greater core counts.

However, the exact benefits vary with the benchmarks. Some benchmarks like Canneal and
Streamcluster see benefits rising by about 8% from the 4-core to the 16-core case. This may
be attributed to the fact that at higher core counts, inter-core shared TLB misses increase. Overall,
these results indicate that prefetching strategies will likely become even more pertinent as CMPs
scale to higher core counts.

7.7. Hardware/Software Implementation Tradeoffs

Having assessed the basics of our proposed prefetcher designs, we now discuss a number of hard-
ware/software implementation possibilities for them. Our goal here is to provide insight into im-
plementation issues that hardware and operating system designers will face when integrating ICC
prefetching. Our focus here is on a qualitative understanding of these implementations and their
impact on performance TLB miss elimination and associated performance. While the specific per-
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formance implications will vary based on a number of architectural features (eg. whether we use
hardware or software-managed TLBs, whether the page table walk process is an x86-based radix
page table walk or an inverted page table, which hardware caches can safely store page table entries),
our high-level qualitative analysis will hold across a range of architectures.

7.7.1. Fully-Hardware Implementation. The highest-performance ICC prefetcher implements the
prefetcher components (PBs, DT, DBs, and confidence estimation) entirely in hardware. While PB
access would require no additional penalty due to its small size and placement next to the per-core
TLBs, accessing the DT would incur a penalty similar to the L2 cache.

An additional key issue is page table walk times. While Leader-Follower prefetching pushes the
already-available translation into cores, Distance-based Cross-Core prefetching requires page table
walks for each DT prediction. A fully-hardware, high-performance prefetching strategy would be
possible assuming hardware-managed TLBs, where per-core hardware state machines walk the page
table. This means that DT-induced translation searches proceed without OS or program intervention.

7.7.2. Hardware Prefetchers with Software Page Table Walks. While fully-hardware ICC prefetching
could be readily accommodated for hardware-managed TLBs, we must also consider implementa-
tion possibilities for SW-managed TLBs. In this section, we consider the case where the prefetchers
remain fully-hardware units, but page table walks are carried out by dedicated OS interrupt handlers
rather than hardware state machines.

While Leader-Follower prefetching remains unaffected for SW-managed TLBs, there are two
cases to consider for Distance-based Cross-Core prefetching. In the first case, a core misses in
both the D-TLB and PB, causing an OS interrupt. When this happens, the interrupt handler assumes
responsibility for conducting page table walks for the suggested distances from the DT. In the second
case, a PB hit occurs, and there is no interrupt. At the same time, the DT suggests predicted distances
for which page table walks are needed.

A solution is to limit Distance-based Cross-Core prefetches to instances when both the D-TLB
and PB miss, because in these cases the OS will be interrupted anyway. In particular, we implement
Burst Distance-based Cross-Core prefetching. Our scheme performs DT prefetches only when both
the D-TLB and PB miss; however, instead of prefetching just the predicted distances relative to
the current distance, we use these predicted distances to re-index into the DT and predict future
distances as well. Suppose, for example, that a current distance curr yields the predicted distances
pred0 and pred1. In our scheme, pred0 then re-indexes the DT to find its own set of predicted
distances (eg. pred3 and pred4). Similarly, pred1 is then used to index the DT. In effect, our scheme
limits prefetches to PB misses but compensates by aggressively prefetching in bursts at this point.

Figure 28 showcases the effectiveness of Burst Distance-based Cross-Core Prefetching in elimi-
nating D-TLBmisses, assuming a maximum of 8 DT-induced prefetches for every PBmiss. For each
workload, we compare this scheme against the conventional Distance-based Cross-Core approach.
We also show our benefits versus the option of performing DT prefetches only on PB misses, but
prefetching based on just the distances predicted from the current distance. In all cases, a 4-core
CMP with SF280R MMUs also using Leader-Follower prefetching is assumed.
Restricting DT prefetches on a PBmiss to distances based on the current distance severely reduces

ICC prefetching gains. This is especially true for ICPS-heavy benchmarks like Blackscholes and
Facesimwhich particularly exercise the DT. On average, there is a 15% reduction in benefits against
the fully-hardware case where DT prefetches occur for both PB hits and misses.
Fortunately, Figure 28 also shows that Burst Distance-based Cross-Core prefetching addresses

this problem effectively for every workload. On average, we eliminate just 5% fewer D-TLB misses
than the fully-hardware approach making this a valuable technique for SW-managed TLBs.
In terms of performance implications, designers will need to account for the fact that since all DT-

based prefetching will be initiated within the interrupt handler, there will be some modest perfor-
mance overheads as compared to the fully-hardware case. Nevertheless, high TLB miss elimination
counts indicate that this scheme will provide significant benefits.

7.7.3. Hardware/Software Prefetch with Software Page Table Walks. We now discuss the benefits and
overheads of also moving prefetcher components into software.

We first decide which components to leave in hardware. Hardware PBs must be retained for
concurrent scans with D-TLBs. Furthermore, since Leader-Follower prefetching operates without
software intervention, it too can remain a purely hardware operation.
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Fig. 31. SLL TLB hit rate versus ICC
prefetcher hit rate. Benchmarks with
high inter-core sharing like Canneal,
Facesim, and Streamcluster benefit
the most from SLL TLBs.

In contrast, designers may wish to place the DT purely in software. Since we use Burst Distance-
based Cross-Core prefetching, we may access the DT from the interrupt handler and burst-prefetch
translations every time a D-TLB and PB miss occurs. Moreover, care must be taken to ensure that
the DT, now in software, is pinned in physical memory so that a DT access cannot itself result in a
TLB miss.
With the DT held in software, we must not only perform page table walks within the interrupt

but also DT lookups as well. This in turn would add modest performance overheads. For the DT
organization we consider (512-entry, 4-way), each DT entry requires 73 bits. A 64-byte cache line
can easily accommodate 4 DT entries where 4 equals the associativity. Therefore, after the first DT
reference, which brings a set into the L1 cache, every access in the set results in an L1 cache hit.
For burst-prefetching, in the worst case, we need to access 8 independent sets of the DT, amounting
to 8 L2 accesses. However, this would occur rarely since multiple predictions usually arise from
the same set. Therefore, while performance may fall short of the hardware prefetchers, substantial
performance improvements will be seen using this approach as well.

8. SHARED LAST-LEVEL TLBS: RESULTS FOR PARALLEL WORKLOADS

We now study SLL TLBs for parallel workloads. First, Section 8.1 compares SLL TLBs against
commercial per-core, private L2 TLBs. Second, Section 8.2 compares SLL TLBs with ICC prefetch-
ing. Section 8.3 analyzes sharing patterns of entries in SLL TLBs while Section 8.4 considers the
benefits of enhancing the baseline SLL TLB operation with stride prefetching. Section 8.5 then
studies the benefits of the SLL TLB with increasing core counts. Finally, Section 8.6 focuses on the
performance implications of our results.

8.1. Shared Last-Level TLBs versus Private L2 TLBs

Figure 29 shows the hit rates of a single 512-entry SLL TLB and per-core, private 128-entry L2
TLBs in a 4-core CMP. The benchmarks are ordered from highest to lowest inter-core sharing [Bhat-
tacharjee and Martonosi 2009]. The overriding observation is that SLL TLBs eliminate significantly
more misses than private L2 TLBs using the same total hardware for every single application. On
average the difference in hit rates is 27%.
Second, we observe that high-ICS applications like Canneal, Facesim, and Streamcluster

see especially high hit rate increases as compared to the private L2 case (by 23%, 57%, and 38%
respectively). This occurs because SLL TLBs deliberately target inter-core shared misses.

Figure 29 also shows that x264 sees the biggest improvement using SLL TLBs versus private
L2 TLBs. As we will show, this is because many entries in each private L2 are replicated for this
application; in contrast, the SLL TLB eliminates this redundancy, allowing for more TLB entries to
be cached for the same hardware.
Figure 30 explores this issue of replication in greater detail. To analyze this, on every L1 TLB

miss, we scan all the private L2 TLBs to look for the number of existing copies of the missing
translation entry. Then, as a percentage of the total L1 misses that exist in at least one L2 TLB, we
show separately the number of misses that have a single or multiple copies. Higher copy-counts are
indicative of applications which would gain even more from SLL TLBs that remove redundancy
and use the extra hardware to cache more unique translations.
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Fig. 32. Sharing characteristics of
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Figure 30 shows that heavy replication exists across the benchmarks. As expected, high-ICS
applications see heavy replication. For example, Canneal sees that 45% of its L1 evictions are
replicated across all 4 cores. As mentioned, x264 suffers from an extremely high copy-count, which
SLL TLBs eliminate. In fact, even lower-ICS benchmarks like Ferret and Swaptions see high
replication rates. Therefore, it is clear that maintaining separate and private L2 TLBs results in
wasted resources as compared to a unified SLL TLB.

8.2. Shared Last-Level TLBs versus Inter-Core Cooperative Prefetching

We now consider the benefits versus ICC prefetching (which includes both Leader-Follower and
Distance-based Cross-Core prefetching). Both strategies aim to catch requests that have missed in
the L1 TLB, albeit in different ways and with different latencies. In this section we present hit rates;
a performance analysis is presented in Sections 8.6 and 9.3.

Figure 31 shows the hit rate of a 512-entry SLL TLB compared to the ICC prefetcher. On average,
SLL TLBs enjoy a hit rate of 47%. These hit rates rival those of ICC prefetchers, though the exact
benefits vary across benchmarks.

On average, SLL TLBs see merely a 4% drop in hit rate compared to ICC prefetchers. Moreover,
Figure 31 shows that in many high-ICS workloads like Canneal, Facesim, and Streamcluster,
SLL TLBs actually outperform ICC prefechers. In fact, SLL TLBs eliminate an additional 24%,
6%, and 21% TLB misses for these workloads. However, applications like Blackscholes which
are highly ICPS see lower benefits than ICC prefetching. Nevertheless, SLL TLBs still manage to
eliminate a high 62% of the TLB misses for Blackscholes. Overall, SLL TLBs eliminate a highly
successful 7% to 79% of baseline TLB misses across all applications.

8.3. Shared Last-Level TLB Sharing Characteristics

Having quantified the benefits of SLL TLBs, it is also useful to understand their sharing patterns.
Figure 32 plots, for every L1 TLB miss and SLL TLB hit, the number of distinct cores that eventu-
ally use this particular SLL entry. We refer to these distinct cores are sharers. On our 4-core CMP,
there can be up to 4 sharers per entry.

High-ICS benchmarks enjoy high SLL TLB entry sharing. For example, 81% of
Streamcluster’s hits are to entries shared among all 4 cores. Less intuitive but more interesting
is the fact that even benchmarks with lower inter-core sharing such as x264, VIPS, and Swaptions
see high sharing counts for their SLL hit entries. This is because the SLL TLB effectively priori-
tizes high-ICS entries in its replacement algorithm; hence, these entries remain cached longer. On
average, roughly 70% of all hits are to entries shared among at least two cores.

We also consider sharing patterns of evicted translations. Figure 33 illustrates the number of
sharers for every evicted SLL TLB entry. The vast majority (on average, 75%) of the evictions are
unshared. This reaffirms our previous hypothesis that the SLL structure helps prioritize shared TLB
entries in parallel applications. Namely, entries accessed by multiple cores are frequently promoted
to the MRU position, while those accessed by a single core are more likely to become LRU and
therefore prime candidates for eviction. Since our parallel workloads have many ICS misses, SLL
TLBs cache translations that will be used frequently by multiple cores.
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8.4. Shared Last-Level TLBs with Simple Stride Prefetching

Having studied the hit rates of the baseline SLL TLB, we now consider low-complexity enhance-
ments. In particular, we augment SLL TLBs by adding simple stride prefetching for translations
residing on the same cache line as the currently missing entry. While this cannot capture the sophis-
tication of ICC prefetching techniques, it does offer some of its benefits while retaining implemen-
tation simplicity. As covered in Section 5.3, prefetched candidates are 1, 2, and 3 pages away from
the currently missing page.
Figure 34 compares the proposed SLL TLB alone, versus an SLL TLB that also includes stride

prefetching. First, we see that the benefits of this approach vary across applications. For example,
Blackscholes, which has repetitive 4-page strides [Bhattacharjee and Martonosi 2009], sees little
benefit since the only strides being exploited here are 1, 2, and 3 pages. However, Fluidanimate
and Swaptions enjoy greatly improved hit rates since they do require strides of 1 and 2 pages
[Bhattacharjee and Martonosi 2009]. Similarly, even Facesim sees an additional 10% hit rate since
it exploits 2 and 3 page strides.
Figure 34 also shows that applications lacking prominent strides (eg. Canneal and

Streamcluster) can actually see slightly lower hit rates. This is because the useless prefetches
can displace useful SLL TLB entries.

8.5. SLL TLBs at Higher Core Counts

Our results indicate that SLL TLBs are simple yet effective at 4 cores. It is also important, however,
to quantify their benefits at higher core counts. To this end, we now compare the benefits of SLL
TLBs against private, per-core L2 TLBs at 16 cores.
Figure 35 plots the increase in hit rate that SLL TLBs provide over 128-entry private, per-core L2

TLBs (higher bars are better) for 4-cores and 16-cores. Since each private L2 TLB is 128 entries,
equivalently-sized SLL TLBs are 512-entry for the 4-core case and 2048-entry for the 16-core case.

Figure 35 demonstrates that not only do SLL TLBs consistently outperform private L2 TLBs
(each bar is greater than zero), the benefits actually tend to increase at higher core counts. For
example, Streamcluster and VIPS for 16-core CMPs enjoy an additional 10% increase in hit rate
over the 4-core case. In fact, the benefits increase by 6% on average.
There are two primary reasons for these improvements. First, higher core counts tend to see even

higher inter-core sharing [Bhattacharjee and Martonosi 2009], which the SLL TLB exploits. Fur-
thermore, since greater core counts have more on-chip real estate devoted to the TLB, an aggregated
SLL TLB has even more entries in a 16-core case than in a 4-core case (2048 entries versus 512
entries). The net effect is that SLL TLBs will be even more useful in future CMP systems with
higher core counts.

8.6. Performance Analysis

Up to this point, we have focused purely on TLB hit rates; however, the ultimate goal of our work
is to achieve performance benefits. This section sketches a cost-benefit analysis to estimate the
performance gains from SLL TLBs against the alternatives. Since ICC prefetchers have already
been established as overly-complex for implementation, we compare SLL TLB performance against
the commercial norm of private L2 TLBs. As previously discussed, full-run cycle-level simulations
would take weeks per datapoint to complete and are simply never done for TLB studies. Instead we
use a CPI analysis inspired by [Saulsbury et al. 2000].
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Table VIII. Typical TLB miss handler times. After a TLB miss, the reorder buffer (ROB) is flushed, handler setup code
is executed, the TSB is accessed and if needed, the page table walk is conducted, followed by cleanup code.

Type Type 1 Type 2 Type 3 Type 4
Description Flush ROB Flush ROB Flush ROB Flush ROB

Setup insts. Setup insts. Setup insts. Setup insts.
TSB Hit in L1$ TSB Hit in L2$ TSB Hit in DRAM TSB Miss
Cleanup code Cleanup code Cleanup code 3-level page table walk

Cleanup code
Penalty 50 cycles 80 cycles 150 cycles Beyond 200 cycles
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Fig. 36. CPI saved by SLL TLBs against private L2 TLBs. Every application benefits from SLL TLBs with exact gains
increasing with miss penalties.

While SLL TLBs do provide substantially better hit rates than private L2 TLBs, they also require
longer network traversal times. Therefore, it is important to carefully weigh these benefits with ac-
cess costs. We use Cycles per Instruction (CPI) to assess the performance of SLL TLBs by focusing
on CPI saved on TLB miss handling time versus private L2 TLBs. This metric will hold regardless
of actual program CPI, which may change across architectures. To compute CPI saved, we need to
consider the various costs associated with a TLB miss, how we mitigate them, analytically model
these savings and finally produce a range of possible performance benefits. We begin by considering
the steps in a typical TLB miss handler. We focus on Solaris TLB handlers in this analysis; however
these same steps and strategies are applicable to other miss handling strategies too.

Table VIII details typical TLB miss handler steps, breaking them into four categories. For all
the handlers, the reorder buffer (ROB) is flushed upon the interrupt, and handler setup code is
executed. In Solaris, this is followed by a lookup in the Translation Storage Buffer (TSB), a software
data structure that stores the most recently accessed page table elements. The TSB, like any data
structure, may be cached. A TSB hit in the L1 cache minimizes the total handler penalty to roughly
50 cycles (Type 1), while an L1 miss results in lookups in the L2 cache (Type 2) or DRAM (Type
3), with progressively larger penalties. In the worst case, the requested translation will be absent in
the TSB and a full-scale three-level page table walk must be conducted, which takes hundreds of
cycles. The exact TLB miss handling times per application will vary depending on the mix of these
miss types. Therefore, rather than focusing on a single miss handler value, we now analyze SLL
TLB performance across a range of possible average handler times. We vary from the optimistic
case of 50 cycles to the more realistic of 100-150 cycles and beyond to 200 cycles.

Figure 36 plots the CPI saved by our approach versus the commercial norm of private L2 TLBs
when using the baseline SLL TLB and its prefetching-augmented counterpart. For each applica-
tion, CPI counts are provided for TLB miss penalties ranging from 50 to 200 cycles in increments
of 50. As shown, every parallel benchmark benefits with the SLL TLB, even under the unrealistic
assumption that all handlers are L1-TSB hits executed in 50 cycles. Assuming a more realistic aver-
age miss penalty of 150 cycles, the average benefits are roughly 0.05 CPI, and as high as 0.25 CPI
for Blackscholes. The exact benefits also vary for the scheme used; for example, Fluidanimate
particularly benefits with the prefetcher-augmented SLL TLB. Moreover, the gains become more
substantial as miss penalties increase.

Therefore, even with optimistically low TLB miss penalties, our SLL TLB outperforms private
L2 TLBs, despite using merely the same total hardware. As such, SLL TLBs are an effective and
elegant alternative to private L2 TLBs. To further show their utility, we now investigate SLL TLBs
for multiprogrammed sequential workloads.
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Fig. 37. Hit rates for the multiprogrammed workloads for both the SLL L2 TLB and the private L2 TLBs. SLL TLB hit
rates in total for each heterogeneous workload combination are substantially higher than private for L2 TLBs (on average,
by 21%). Furthermore, high-stress applications like mcf see vast improvements without noticeably degrading lower-stress
applications. Even homogeneous workload combinations see hit rate increases with SLL TLBs.

9. SHARED LAST-LEVEL TLBS: RESULTS FOR MULTIPROGRAMMED WORKLOADS

We now focus on SLL TLBs for workloads comprised of sequential applications, running one per
core in a multiprogrammed fashion. First, Section 9.1 quantifies L2 TLB hit rates for the five het-
erogeneous and two homogeneous workloads. Compared to private, per-core L2 TLBs, we show
both per-application and across-workload benefits. For the heterogeneous workloads, the focus is
on understanding how effectively a single shared last-level TLB adapts to simultaneously executing
applications with different memory requirements. In contrast, for the homogeneous workloads, we
study SLL TLB benefits when multiple programs of similar nature execute.
After studying application hit rates for programs with processes pinned to cores, Section 9.2

analyzes the effect of process migration among cores. Then, Section 9.3 details the performance
gains derived from SLL TLBs versus private L2 TLBs. As with parallel workloads, this section
performs a cost-benefit analysis and quantifies CPI saved using our approach.

9.1. Multiprogrammed Workloads with One Application Pinned per Core

Figure 37 quantifies SLL L2 and private L2 TLB hit rates for the five heterogeneous (Het-1 to Het-
5) and two homogeneous workloads (Hom-1 and Hom-2) previously described. For every workload
combination, we separately plot TLB hit rates for each sequential application, and also show total
TLB hit rates across all applications.
First, we study hit rates for the heterogeneous workloads. As shown, both SLL TLBs and per-

core, private L2 TLBs eliminate a large fraction of the L1 TLB misses (35% to 95% for the SLL
TLBs on average). Furthermore, we find that for every workload combination, total SLL TLB hit
rates are higher than the private L2 hit rates. On average, the SLL TLB eliminates 21% additional L1
misses over private L2 TLBs for heterogeneous workloads, a substantial improvement. These vast
increases occur because the SLL L2 TLB is able to allocate its resources flexibly among applications
differing in memory requirements; in contrast, the private, per-core L2 TLBs provide fixed hardware
for all applications, regardless of their actual needs.
Second, and more surprisingly, Figure 37 shows that SLL TLBs do not generally degrade hit

rates for lower-stress application when running with high-stress ones. One might initially expect
high-stress benchmarks to capture a larger portion of the SLL TLB, lowering other applications hit
rates significantly. However, for example in Het-1, while mcf hit rates for SLL TLBs increase by
50% over the private TLB, xalancbmk and libquantum still enjoy hit rate increases of 5% and 9%
respectively. This behavior is also seen across all the other workload combinations, particularly in
Het-5, where mcf on the SLL TLB enjoys a 52% hit rate increase while every other application in
the workload also sees a hit rate increase. This occurs because the low-stress applications experience
short bursts of TLB misses. Therefore, while the SLL TLB generally provides more mapping space
to high-stress applications like mcf, it also rapidly adapts to these bursty periods, providing the
lower-stress applications with the TLB space they require. The result is that SLL TLBs show notable
improvement over private L2 TLBs for the workload combinations in general, improving high-stress
applications without substantially degrading lower-stress ones (and usually improving them too).
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Third, Figure 37 also compares the SLL TLB hit rates versus private L2 TLB hit rates for the
homogeneous workloads, showing 2% to 4% improvements. As expected, the hit rates are consistent
for all four cores. Because each core now places an equal demand on the SLL TLB, dividing the
entries equally among them, we expect little benefit from this approach. However, even in this case,
we find that SLL TLBs marginally increase hit rates over the private L2 TLBs. This occurs because
the four benchmarks do not run in exact phase; therefore, the short-term needs of each program
vary enough to take advantage of the flexibility that SLL TLBs provide in allocating entries among
applications. Moreover, the OS may occupy proportionally less space in the SLL TLB than it does in
each of the private L2 TLBs, giving more overall room for the benchmarks to operate. These effects
result in the improvement of SLL TLBs against private TLBs for both homogeneous workloads.
Therefore, our results strongly suggest that the SLL TLB demonstrates far greater flexibility in

tailoring the total hardware that private L2 TLBs use to the demands of various simultaneously
executing sequential workloads. The result is that both total workload hit rates and per-application
hit rates enjoy increases.

9.2. Multiprogrammed Workloads with Process Migration

Our multiprogramming studies up to this point have pinned one application to each core of our eval-
uated 4-core CMP. Therefore, the benefits extracted for these multiprogrammed workloads have
been due to the SLL TLB’s ability to intelligently allocate its resources to multiple simultane-
ous applications with differing memory demands. However, contemporary systems typically run
operating systems which often employ process migration in which applications can often switch
cores through their execution time. Furthermore, process migration is likely to become even more
prevalent in future CMPs as a mechanism to cope with issues like dynamic thermal management
techniques [Choi et al. 2007; Donald and Martonosi 2006]. In fact, recent work suggests that future
CMPs are likely to provide support for fast process migration [Rangan et al. 2009]. It is therefore
important to consider the effects of process migrations on SLL TLBs.

To test migration in our workloads, we show SLL L2 TLB hit rates for two scenarios. First, we
considered the pinned case for every workload combination, where one application is pinned to each
core. This corresponds to the results already presented in Section 9.1. Second, we considered the free
case, where the applications are left unpinned and the Solaris scheduler is free to migrate processes.
We expect that process migration would actually introduce inter-core sharing for SLL TLBs to
exploit. Specifically, when a process migrates, it sees new L1 TLB misses and if the L2 TLBs are
private, suffers from additional page table walks. The SLL TLB, however, mitigates this problem
by giving the process on its new core L2 access to its previous translations, reducing TLB misses.
Figure 38 details the SLL TLB hits rates for our pinned and free experiments. The numbers shown
are the hit rates for the total L2 accesses across all the sequential applications constituting each
workload. It is clear from the hit rates that the free case introduces little additional inter-core sharing
for SLL TLBs to exploit over the pinned case. Therefore, hit rates increase only marginally for the
free case. The reason for this surprisingly small increase is that operating systems traditionally
attempt to minimize migrations to avoid cold caches, TLBs, and migration code overheads. In fact,
we find that in the free case, each sequential application migrates no more than twenty times over
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Fig. 40. CPI saved using SLL TLBs versus private L2 TLBs for individual applications and per-workload averages.
Higher TLB miss penalties result in greater performance gains.

a ten billion instruction window. Therefore, any benefits SLL TLBs extract from inter-core sharing
are amortized over a very long period, reducing the observed benefits
Nevertheless, as future CMPs may provide support for fast process migration [Choi et al. 2007;

Rangan et al. 2009], it is useful to consider the benefits that SLL TLBs would provide for these
platforms as migration frequencies increase. As a guideline to understand SLL TLB benefits at var-
ious migration speeds, we now present Creation to Hit (CTH) instruction counts for our workloads.
CTH counts are gathered by recording, for each SLL TLB hit, the number of instructions ago that
the corresponding translation entry was brought into the SLL TLB. The larger the CTH counts, the
higher the chances that SLL TLBs will retain these entries across migrations.
Figure 39 shows the cumulative distribution function plotting the probability of SLL TLB entries

of a particular CTH count being accessed in each of the workloads. The x-axis shows entry CTH
values (measured in instruction counts) varying on a log scale. The y-axis shows the probability that
SLL TLB entries of that CTH count (or less) result in a hit. From this data, it becomes clear that very
few TLB entries have CTH counts long enough to be exploited with high payoff for the migration
rates in the free case. In fact, Hom-2 sees that all its hits are to entries created at most a hundred
million instructions ago, far too short a lifetime for migrations that occur over billion-instruction
ranges. Nevertheless, Figure 39 does show the benefits that more rapid migrations on future CMPs
may glean from SLL TLBs. As such inter-core sharing will increase greatly and SLL TLBs should
be a significant help in these cases.

9.3. Performance Analysis

As previously described, SLL TLBs are, by construction, aimed at capturing inter-core shared
misses and hence, aiding parallel programs. To make SLL TLBs a viable option however, they must
also not substantially degrade sequential applications. The previous section showed that sequential
applications actually benefit from SLL TLBs in terms of hit rate relative to private L2 TLBs. How-
ever, since hit penalties for an SLL TLB are higher than for the private L2 TLB, it is important to
conduct a cost-benefit analysis of the sources of TLB overhead and how we mitigate them. There-
fore, we now extend the parallel program performance analysis based on the TLB handling times
described in Section 8.6 to multiprogrammed combinations of sequential workloads. Again, the fo-
cus is on understanding CPI saved using our approach for a realistic range of TLB miss penalties,
with a methodology inspired by [Saulsbury et al. 2000].
Figure 40 shows the CPI saved from SLL TLBs relative to private per-core L2 TLBs for individual

applications and per-workload averages. While the individual application CPIs may be computed
using their particular TLB miss rates, the per-workload averages are based on weighting the L1 TLB
miss rates for each constituent sequential program. The results are shown assuming miss penalties
ranging from 50 to 200 cycles, in increments of 50 cycles.
Figure 40 shows that across the heterogeneous workloads, higher hit rates typically correspond

to increased performance for the per-workload averages. In particular, Het-1 and Het-5 see notable
CPI savings. The SLL TLB also provides CPI savings to Het-2, albeit more muted, while Het-4
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sees little change. These trends can be better understood by the nature of the application mixes. The
SLL TLB typically provides the most benefit in workload mixes where a high-stress application
runs with lower-stress ones. In this case, the private L2 TLBs allocate unused resources to the low-
stress applications, while the high-stress application suffers. SLL TLBs, on the other hand, can
better distribute these resources among the sequential applications, aiding the high-stress workload
without hurting the lower-stress ones. This behavior is particularly prevalent for Het-1 and Het-
5, in which Mcf suffers in the private L2 TLB case. In the presence of the SLL TLB, however,
Mcf increases in performance without hurting the other applications in Het-1 and only marginally
degrades cactusADM in Het-5. This leads to a CPI savings approaching 0.2, even at the smallest
TLB penalty of 50 cycles. As expected, benefits become even more pronounced at more realistic
TLB miss penalties around 100 to 150 cycles.

Figure 40 also shows that cactusADM sees lowered performance in Het-3 and Het-5. This is
surprising since cactusADM is a high-stress TLB application; one may therefore have expected that
an SLL TLB would be highly beneficial. In reality, cactusADM has been shown to have extremely
poor TLB reuse and hence experience unchanging hit rates even as TLB reach is increased [Korn
and Chang 2007; Woo et al. 2010]. Therefore, our larger SLL TLB only marginally increases its
hit rate (see Figure 37) and is unable to overcome the additional access penalty relative to private
L2 TLBs. This means that cactusADM suffers a marginal performance degradation. Nevertheless,
cactusADM is a well-known outlier in this regard [Korn and Chang 2007; Woo et al. 2010]; the
large majority of applications show better TLB reuse characteristics, making them likely to improve
performance with SLL TLBs.

Finally, as expected, Hom-1 and Hom-2 change little with the SLL TLB. Since all individual
benchmarks in these workloads equally stress the SLL TLB, none sees a significant increase in TLB
entries available to it. Therefore, performance is marginally decrease due to the additional SLL
TLB access time, even though these homogeneous workloads are likely to represent the worst-case
for SLL TLBs. Overall SLL TLBs provide significant performance improvements for parallel and
some heterogeneous sequential workloads, while being largely performance-neutral on others. This
makes them an effective and low-complexity alternative to per-core L2 TLBs.

10. CONCLUSION

This paper shows the benefits of ICC prefetchers and SLL TLBs for both parallel and multipro-
grammed sequential workloads. We find that ICC prefetching, which combine the benefits of both
leader-follower prefetching and distance-based cross-core prefetching, eliminates an average of
46% of D-TLB misses across a wide range of parallel programs. Meanwhile, SLL TLBs exploit par-
allel program inter-core sharing to eliminate 7% to 79% of L1 TLBs misses, providing comparable
benefits to ICC prefetchers, but use simpler hardware that is possible to implement on commercial
systems today. They also outperform conventional per-core, private L2 TLBs by an average of 27%,
leading to runtime improvements of as high as 0.25 CPI. Finally, a combined approach of integrat-
ing stride prefetching into SLL TLBs provides further increases in hit rates (on average 5%). In
addition, SLL TLBs also, somewhat surprisingly, can improve performance for multiprogrammed
sequential workloads over private L2 TLBs. In fact, improvements over private L2 TLBs are 21%
on average, with higher hit rates also experienced per application in a workload mix. This can lead
to as high as 0.4 CPI improvements.

Ultimately, this work may be used by designers of future CMP systems to augment existing TLB
hardware and thereby improve overall performance. This study points to a range of potential designs
that include different combinations of SLL TLBs with prefetchers. Our results provide guidance to
both sequential and parallel software developers on the benefits they can expect from this approach,
using only readily-implementable and low-complexity hardware.
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