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TRANSISTENCY MODELS: MEMORY
ORDERING AT THE HARDWARE–OS

INTERFACE
.................................................................................................................................................................................................................

THIS ARTICLE INTRODUCES THE TRANSISTENCY MODEL, A SET OF MEMORY ORDERING

RULES AT THE INTERSECTION OF VIRTUAL-TO-PHYSICAL ADDRESS TRANSLATION AND

MEMORY CONSISTENCY MODELS. USING THEIR COATCHECK TOOL, THE AUTHORS SHOW

HOW TO RIGOROUSLY MODEL, ANALYZE, AND VERIFY THE CORRECTNESS OF A GIVEN

SYSTEM’S MICROARCHITECTURE AND SOFTWARE STACK WITH RESPECT TO ITS

TRANSISTENCY MODEL SPECIFICATION.

......Modern computer systems con-
sist of heterogeneous processing elements
(CPUs, GPUs, accelerators) running multi-
ple distinct layers of software (user code,
libraries, operating systems, hypervisors) on
top of many distributed caches and memo-
ries. Fortunately, most of this complexity is
hidden away underneath the virtual memory
(VM) abstraction presented to the user code.
However, one aspect of that complexity does
pierce through: a typical memory subsystem
will buffer, reorder, or coalesce memory
requests in often unintuitive ways for the
sake of performance. This results in essen-
tially all real-world hardware today exposing
a weak memory consistency model (MCM)
to concurrent code that communicates
through shared VM.

The responsibilities for maintaining the
VM abstraction and for enforcing the mem-
ory consistency model are shared between

the hardware and the operating system
(OS) and require careful coordination
between the two. Although MCMs at the
instruction set architecture (ISA) and pro-
gramming language levels are becoming
increasingly well understood,1–5 a key veri-
fication challenge is that events within sys-
tem layers can behave differently than the
“normal” accesses described by the ISA or
programming language MCM. For exam-
ple, on the x86-64 architecture, which
implements the relatively strong total store
ordering (TSO) memory model,5 page table
walks are automatically issued by hardware,
can happen at any time, and often are not
ordered even with respect to fences. Even
worse is that while an ISA by design tends to
remain stable across processor generations,
microarchitectural phenomena often change
dramatically from one generation to the next.
For example, CPUs today are experimenting
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with features such as concurrent page table
walkers and translation lookaside buffer
(TLB) coalescing that improve performance
at the cost of adding significant complexity.6

Consequently, VM and MCM specifications
and implementations tend to be bug-prone
and are only becoming more complex as sys-
tems become increasingly heterogeneous and
distributed.

Bogdan Romanescu and colleagues were
the first to distinguish between MCMs
meant for virtual addresses (VAMC) and
those for physical addresses (PAMC).7 They
considered hardware to be responsible for the
latter, and a combination of hardware and
OS for the former. However, as we show in
this article, not even VAMC and PAMC cap-
ture the full intersection of address transla-
tion and memory ordering. Even machines
that implemented the strictest model they
considered—virtual address sequential con-
sistency (SC-for-VAMC)—may be prone to
surprising ordering bugs related to the check-
ing of metadata at a different virtual and
physical address from the data being accessed.
We therefore coin the term memory transis-
tency model to refer to any set of memory
ordering rules that explicitly account for these
broader virtual-to-physical address transla-
tion issues.

To enable rigorous analysis of transistency
models and their implementations, we devel-
oped a tool called COATCheck for verifying
memory ordering enforcement in the context
of virtual-to-physical address translation.
(COAT stands for consistency ordering and
address translation.) COATCheck lets users
reason about the ordering implications of sys-
tem calls, interrupts, microcode, and so on at
the microarchitecture, architecture, and OS
levels. System models are built in COAT-
Check using a domain-specific language
(DSL) called lspec (pronounced “mu-spec”),
within which each component in a system
(for example, each pipeline stage, each cache,
and each TLB) can independently specify its
own contribution to memory ordering using
the languages of first-order logic and micro-
architecture-level happens-before (lhb)
graphs.8,9 This allows COATCheck verifica-
tion to be modular and flexible enough to
adapt to the fast-changing world of modern
heterogeneous systems.

Our contributions are as follows. First, we
developed a comprehensive methodology for
specifying and statically verifying memory
ordering enforcement at the hardware–OS
interface. Second, we built a fast and general-
purpose constraint solver that automates the
analysis of lspec microarchitecture specifica-
tions. Third, as a case study, we built a
sophisticated model of an Intel Sandy-
Bridge-like processor running a Linux-like
OS, and using that model we analyzed vari-
ous translation-related memory ordering sce-
narios of interest. Finally, we identified cases
in which transistency goes beyond the tradi-
tional scope of consistency: where even SC-
for-VAMC7 is insufficient. Overall, our work
offers a rigorous yet practical framework for
memory ordering verification, and it broad-
ens the very scope of memory ordering as a
field. The full toolset is open source.10

Enhanced Litmus Tests
Litmus tests are small stylized programs test-
ing some aspect of a memory model. Each
test proposes an outcome: the value returned
by each load plus the final value at each
memory location, or some relevant subset
thereof. The rules of a memory model deter-
mine whether an outcome is permitted or
forbidden. Consider Figure 1a: as written, x
and y appear to be distinct addresses. Under
that assumption, the proposed outcome is
observable even under a model as strict as
sequential consistency (SC),11 because the
event interleaving shown in Figure 1b produ-
ces that outcome. If instead x and y are
actually synonyms (both map to the same
physical address), as in Figure 1c, the test is
forbidden by SC, because then no interleav-
ing of the threads produces the proposed out-
come. While simple, this example highlights
how memory ordering verification is funda-
mentally incomplete unless it explicitly
accounts for address translation.

The basic unit of testing in COATCheck
is the enhanced litmus test (ELT). ELTs
extend traditional litmus tests by adding
address translation, memory (re)mappings,
interrupts, and other system-level operations
relevant to memory ordering. In addition,
just as a traditional litmus test outcome speci-
fies the values returned by loads, ELTs also
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consider the physical addresses used by each
VM access to be part of the outcome.
Finally, ELTs include “ghost instructions”
that model lower-than-ISA operations
(such as microcode and page table walks)
executed by hardware, even if these instruc-
tions are not fetched, decoded, or issued as
part of the normal ISA-level instruction
stream. These features give ELTs sufficient
expressive power to test all aspects of mem-
ory ordering enforcement as it relates to
address translation.

The COATCheck toolflow provides auto-
mated methods to create ELTs from user-
provided litmus tests plus other system-level
annotation guidance. We describe this con-
version process below.

OS Synopses
OS activities such as TLB shootdowns and
memory (re)mappings are captured within
ELTs as sequences of loads, stores, system
calls, and/or interrupts. An OS synopsis
specifies a mapping from each system call
into a sequence of micro-ops that capture the
effects of that system call on ordering and
address translation. When the system call
contains an interprocessor interrupt (IPI),
the OS synopsis also instantiates predefined
interrupt handler threads on interrupt-
receiving cores.

For example, an OS synopsis might
expand the mprotect call of Figure 2a into
the shaded instructions of Figure 2b. The call
itself expands into four instructions: one
updates the page table entry, one invalidates
the local TLB, one sends an IPI, and one
waits for the IPI to be acknowledged. The
OS synopsis also produces the interrupt han-

dler (Thread 1b), which performs its own
local TLB invalidation before responding to
the initiating thread.

Microarchitecture Synopses
As with the OS synopses, microarchitecture
synopses map each instruction onto a micro-
code sequence that includes ghost instruc-
tions such as page table walks. Not every
instruction actually triggers a page table walk,
so these ghost instructions are instantiated
only as needed during the analysis.

For example, Figure 2b is transformed
into the ELT of Figure 2c by the addition of
the gray-shaded ghost instructions. In this
example, Thread 0’s store to [x] requires a
page table walk, because the TLB entry for
that virtual address would have been invali-
dated by the preceding invlpg instruction.
Furthermore, because the page was originally
clean, ghost instructions also model how
hardware marks the page dirty at that point.
Finally, the microarchitecture synopsis adds
to Thread 1b a microcode preamble contain-
ing ghost instructions to receive the interrupt,
save state, and disable nested interrupts. In
this example, hardware is responsible for sav-
ing state, but software is responsible for
restoring it. This again highlights the degree
of collective responsibility between hardware
and OS for ensuring ordering correctness.

lspec: A DSL for Specifying Memory
Orderings
lspec is a domain-specific language for speci-
fying memory ordering enforcement in the
form of lhb graphs8,9 (see Figure 3). Nodes
in a lhb graph represent events corresponding

Initially: [x] = 0, [y] = 0

Thread 0 Thread 1

Initially: [x] = 0, [y] = 0

Thread 0 Thread 1

St [x]  1

Ld [y]  r1

St PA1  1

Ld PA1  r1

St PA1  2

Ld PA1  r2

St [y]  2

Ld [x]  r2

Proposed outcome: r1 = 2, r2 = 1 Outcome r1 = 2, r2 = 1 forbidden

(a) (b)

Initially: [x] = 0, [y] = 0

Thread 0 Thread 1

(c)

St PA1  1

Ld PA2  r1

St PA2  2

Ld PA1  r2

Outcome: r1 = 2, r2 = 1 permitted

Figure 1. A litmus test showing how virtual memory interacts with memory ordering. (a)

Litmus test code. (b) A possible execution showing how the proposed outcome is observable

if x and y point to different physical addresses. (c) The outcome is forbidden if x and y point

to the same physical address (only one possible interleaving among many is shown).
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to a particular instruction (column) and
some particular microarchitectural event
(row). Edges represent happens-before order-
ings guaranteed by some property of the
microarchitecture: an instruction flowing
through a pipeline, a structure maintaining
first-in, first-out (FIFO) ordering, the pas-
sage of a message, and so on. Although pre-
vious work derived lhb graphs using hard-
coded notions of pipelines8 and caches,9

lspec models provide a completely general-
purpose language for drawing lhb graphs
tailored to any arbitrary system design. We
provide a detailed example of the lspec syn-
tax in the next section.

Hardware memory models today tend to
be either axiomatic, where an outcome is
permitted if and only if it simultaneously sat-
isfies all of the axioms of the model, or opera-
tional, where an outcome is permitted only
if it matches the outcome of some series of
execution steps on an abstract “golden hard-
ware model.” lspec models are axiomatic: a
lhb graph represents a legal test execution if
and only if it is acyclic and satisfies all of the
constraints in the model. Each hardware or
software component designer provides an
independent set of lhb graph axioms which
that component guarantees to maintain. The
conjunction of these axioms forms the overall
lspec model. This modularity means that
components can be added, changed, or
removed as necessary without affecting any
of the other components.

Although they are inherently axiomatic,
lspec models capture the best of the opera-
tional approach as well. A total ordering of
the nodes in an acyclic lhb graph is also anal-
ogous to the sequence of execution steps in
an operational model. This analogy lets lhb
graphs retain much of the intuitiveness of
operational models while simultaneously
retaining the scalability of axiomatic models.
As such, lhb graphs are useful not only for
transistency models but also more generally
for software and hardware memory models.

The COATCheck constraint solver is
inspired by SAT and SMT solvers. It searches
to find any lhb graph that satisfies all of the
constraints of a given lspec model applied to
some ELT. If one can be found, the proposed
ELT outcome is observable. If not, the pro-
posed outcome is forbidden. This result is

then checked against the architecture-level
specification1 to ensure correctness.

System Model Case Study
In this section, we present an in-depth case
study of how hardware and software design-
ers can use COATCheck and lspec to model
a high-performance out-of-order processor
and OS. Our case study has three parts. The
first is a lspec model called SandyBridge that
describes an out-of-order processor based on
public documentation of and patents relating
to Intel’s Sandy Bridge microarchitecture.

Core 0/Thread 0 Core 1/Thread 1a

Core 0/Thread 0 Core 1/Thread 1a Core 1/Thread 1b

Core 1/Thread 1b

St [y] ← 1

Ld [x] → 0

Ld PML4E (x)

Ld PDPTE (x)

Ld PDE (x)

Ld PTE (x)

St [z/PTE (x)] ← R/W

invlpg [x]

Send IPI

Wait for Acks

Ld PML4E (x)

Ld PDPTE (x)

Ld PDE (x)

LdAtomic PTE (x) → clean

StAtomic PTE (x) ← dirty

St [x] ← 1

Ld [y] → 0

invlpg [x]

Send Ack

iret

St [z/PTE (x)] ← R/W

invlpg [x]

Send IPI

Wait for Acks

St [x] ← 1

Ld [y] → 0

St [y] ← 1

Ld [x] → 0

Depicted outcome permitted

Depicted outcome permitted

IPI Receive

Save state

disable ints

invlpg [x]

Send ACK

iret

Initially: [x] = 0, [y] = 0

Initially: [x] = 0, [y] = 0

Initially: [x] = 0, [y] = 0

Core 0/Thread 0 Core 1/Thread 1a

mprotect [x], r/w

St [x] ← 1

Ld [y] → 0

St [y] ← 1

Ld [x] → 0

Depicted outcome permitted

(a)

(b)

(c)

Figure 2. Traditional litmus tests are expanded into enhanced litmus tests

(ELTs). (a) A traditional litmus test with an mprotect system call added.

(b) The userþkernel version of the litmus test. On core 1, threads 1a and 1b

will be interleaved dynamically. “R/W” indicates that the page table entry

(PTE) R/W bit will be set. (c) The ELT. Page table accesses for [y],

accessed bit updates, and so forth are not depicted but will be included in

the analysis.
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The second is the microarchitecture synopsis,
which specifies how ghost instructions such
as page table walks behave on SandyBridge.
The third is an OS synopsis inspired by
Linux’s implementations of system calls and
interrupt handlers. We offer in-depth model
highlights in this article; see our full paper for
additional detail.12

Memory Dependency Prediction and
Disambiguation
SandyBridge uses a sophisticated, high-
performance virtually and physically addressed
store buffer (SB). This decision was inten-
tional: a virtual-only SB would be unable to
detect virtual address synonyms, whereas a
physical-only SB would place the TLB onto
the critical path for SB forwarding. The Sandy-
Bridge SB instead splits the forwarding process
into two parts: a prediction stage tries to pre-
emptively anticipate physical address matches,
and a disambiguation stage later ensures that
all predictions were correct. This pairing keeps
the TLB off the critical path without giving up
the ability to detect synonyms.

The mechanism works as follows. All
stores write their virtual address and data into
the SB in parallel with accessing the TLB.

Once the TLB provides it, the physical
address is written into the SB as well. Each
load, in parallel with accessing the TLB,
writes the lower 12 bits (the “index bits”) of
its virtual address into a CAM-based load
buffer storing uncommitted loads. The load
then compares its index bits against those of
all older stores in the SB. If an index match is
found, the load then compares its virtual tag,
and potentially its physical tag, against the
stores. If there is a tag match, the youngest
matching store forwards its data to the load.
If no match is found, the load proceeds to
the cache. If there is an empty slot because
the load executed out of order before an ear-
lier store, then the load predicts that there is
no dependency. This prediction is later
checked during disambiguation: before each
store commits, it checks the load buffer to see
if any younger loads matching the same phys-
ical address have speculatively executed
before it. If so, it squashes and replays those
mispredicted loads.

The following lspec snippet shows a por-
tion of the SandyBridge lspec model captur-
ing a case in which a load has an index
match, a virtual tag miss, and a physical tag
match with a previous store.

DefineMacro “StoreBufferForwardPTag”:

exists microop “w”, (

SameCore w i /\IsAnyWrite w /\ProgramOrder w i /\

SameIndex w i /\~(SameVirtualTag w i) /\

SamePhysicalTag w i /\SameData w i/\

EdgesExist [

((w, SB-VTag/Index/Data), (i, LB-SB-IndexCompare),

“SBEntryIndexPresent”);

((w, SB-PTag), (i, LB-SB-PTagCompare), “SBEntryPTagPresent”);

((i, SB-LB-DataForward), (w, (0, MemoryHierarchy)),

“BeforeSBEntryLeaves”);

((i, LB-SB-IndexCompare), (i, LB-SB-VTagCompare), “path”);

((i, LB-SB-VTagCompare), (i, LB-SB-PTagCompare), “path”);

((i, LB-PTag), (i, LB-SB-PTagCompare), “path”);

((i, LB-SB-PTagCompare), (i, SB-LB-DataForward), “path”);

((i, SB-LB-DataForward), (i, WriteBack), “path”)

] /\

ExpandMacro STBNoOtherMatchesBetweenSrcAndRead

).
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The first set of predicates narrows the axiom
down to apply to the scenario we described ear-
lier. The edges listed in the EdgesExist
predicate then describe the associated memory
ordering constraints. The first three ensure
that write w is still in the SB when load i
searches for it, and the rest describe the path
that i itself takes through the microarchitec-
ture. Finally, the axiom also checks (using a
macro defined elsewhere) that the store is in
fact the youngest matching store in the SB.

Other Model Details
A second component of our SandyBridge
model reflects the functionality of system calls
and interrupts as they relate to memory map-
ping and remapping functions. Although x86
TLB lookups and page table walks are per-
formed by the hardware, x86 TLB coher-
ence is OS-managed. To support this, x86
provides the privileged invlpg instruc-
tion, which invalidates the local TLB entry
at a given address, along with support for
interprocessor interrupts (IPIs). As a serial-
izing instruction, invlpg forces all pre-
vious instructions to commit and drains the
SB before fetching the following instruc-
tion. invlpg also ensures that the next
access to the virtual page invalidated will be
a TLB miss, thus forcing the latest version
of the corresponding page table entry to be
brought into the TLB.

To capture IPIs and invlpg instructions,
our Linux OS synopsis expands the system
call mprotect into code snippets that
update the page table, invalidate the now-
stale TLB entry on the current core, and send
TLB shootdowns to other cores via IPIs and
interrupt handlers that execute invlpg
operations on the remote cores. The Sandy-
Bridge microarchitecture synopsis captures
interrupts by adding ghost instructions that
represent the reception of the interrupt and
the hardware disabling of nested interrupts
before each interrupt handler. All possible
interleavings of the interrupt handlers and
the threads’ code are considered. Figures 2b
and 2c depict the effects of both of these
synopses.

To model TLB occupancy, the Sandy-
Bridge lspec model adds two nodes to the
lhb graph to represent TLB entry creation
and invalidation, respectively. These are then

constrained following the value-in-cache-line
(ViCL) mechanism.9 All loads and stores
(including ghost instructions) are constrained
by the model to access the TLB within the
lifetime of some matching TLB entry.

Page table walks are also instantiated by
the microarchitecture synopsis as a set of
ghost instruction loads of the page table
entry. Because these are generated by dedi-
cated hardware, the SandyBridge lspec
model does not draw nodes such as Fetch
and Dispatch for these instructions, because
they do not pass through the pipeline. Fur-
thermore, because the page table walk loads
are not TSO-ordered, they do not search the
load buffer. They are, however, ordered with
respect to invlpg.

Our SandyBridge model also captures the
accessed and dirty bits present in the page
table and TLB. When an accessed or dirty bit
needs to be updated, the pipeline waits until
the triggering instruction reaches the head of
the reorder buffer. At that point, the pro-
cessor injects microcode (modeled via ghost
LOCKed read-modify-write [RMW]
instructions) implementing the update. The
ghost instructions in a status bit update do
traverse the Dispatch, Issue, and Commit
stages, unlike the ghost page table walks,
because the status bit updates do propagate
through most of the pipeline and affect archi-
tectural state. The model also uses lhb edges
to ensure that the update is ordered against
all other instructions.

fr

fr

Fetch

Decode

Execute

Memory

Writeback

LeaveStoreBuffer

MemoryHierarchy

St[x]←1 Ld[y]→0 St[y]←1 Ld[x]→0

Core 0/Thread 0 Core 0/Thread 1a

Figure 3. A lhb graph for the litmus test in Figure 1 (minus the

mprotect), executing on a simple five-stage out-of-order pipeline.

Because the graph is acyclic, the execution is observable.
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Analysis and Verification Examples
In this section, we present three test cases for
our SandyBridge model.

Store Buffer Forwarding
Test n5 (see Figure 4) checks the SB’s ability
to detect synonyms. If a synonym is misde-
tected, one of the loads (i1.0 or i3.0)
might be allowed to bypass the store (i0.0
or i2.0) before it, leading to an illegal out-
come. Also pictured are the TLB access ghost
instructions associated with each ISA-level
instruction. Figure 4a shows one of the lhb
graphs COATCheck uses to rule out such a

situation on SandyBridge. Figure 4b shows
the code itself. If load (i3.0) executes out
of order, it finds that the SB contains no
previous entries with the same index; this is
captured by a lhb edge between (i3.0,
LB-SB-IndexCompare) and (i2.0,
SB-VTag/Index/Data). However, when
the store (i2.0) does eventually execute, it
will squash (i3.0) unless the load buffer has
no index matches—that is, if (i3.0) has not
yet entered the load buffer. The lhb edge
from (i2.0, LBSearch) back to (i3.0,
LB-Index) completes the cycle, which rules
out the execution.

Page Remappings
Figure 5 reproduces and extends the key
example studied by Bogdan Romanescu and
colleagues:7 thread 0 changes the mapping
for x (i0.0), triggers a TLB shootdown
(i2.0), and sends a message to thread 1
(i4.0). Thread 1 receives the message
(i7.0) and is hypothesized to write to x
(i8.0) using the old, stale mapping (a situa-
tion COATCheck should be expected to rule
out). Thread 1 (i9.0) sends a message back
to thread 0 (i5.0), which checks (i6.0)
that the value at x (according to the new map-
ping) was not overwritten by the thread 1
store (i8.0), which used the old mapping.
The lhb graph generated for this scenario
(Figure 5a) is also cyclic, showing how COAT-
Check does in fact rule out the execution of
Figure 5b. The graph also simultaneously
demonstrates many COATCheck features,
such as IPIs, handlers, microcode, and fences,
and it shows COATCheck’s ability to scale up
to large and highly nontrivial problems.

Transistency versus Consistency
Our third example focuses on status bits and
synonyms. Status bits are tracked per virtual-
to-physical mapping rather than per physical
page, and so the OS is responsible for track-
ing the status of synonyms. In this example,
suppose the OS intends to swap out to disk a
clean page that is a synonym of some dirty
page. If it fails to check the status bits for that
synonym, it might think that the page is
clean and hence that it can be safely swapped
out without being first written back.

Notably, in this example, the bug may be
observable even when there is no reordering

i0.0 i2.1i2.0i0.1 i3.0 i3.1i1.0 i1.1

Fetch

Dispatch

Issue

AGU

AccessTLB

TLBEntryCreate

TLBEntryInvalidate

SB-VTag/Index/Data

LB-Index

LB-SB-IndexCompare

LB-SB-VTagCompare

SB-PTag

LB-PTag

LB-SB-PTagCompare

SB-LB-DataForward

AccessCache

CacheLineInvalidated

WriteBack

LBSearch

Commit

LeaveStoreBuffer

MemoryHierarchy

Initially: [x] = 0, [y] = 0
VA x → PA a (R/W, accessed, dirty)

VA y → PA a (R/W, accessed, dirty)

Core 0/Thread 0 Core 1/Thread 1

(i0.0) St [x/a] ← 1 (i2.0) St [y/a] ← 2

(i0.1) Ld PTE [x] (i2.1) Ld PTE (y)

(i1.0) Ld [y/a] → r1 (i3.0) Ld [x/a] → r2

(i3.1) Ld PTE [x](i1.1) Ld PTE (y)

Outcome r1 = 2, r2 = 1 forbidden

(a)

(b)

Figure 4. Analyzing litmus test n5 with COATCheck. (a) The lhb graph, with

the cycle shown with thicker edges. (b) The ELT code.
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of any kind taking place, even under virtual-
and/or physical-address sequential consis-
tency.7 Because the checks of the two syno-
nym page mappings are to different virtual
and physical addresses, the necessary ordering
cannot even be described by VAMC. This
example highlights a key way in which tran-
sistency models are inherently broader in
scope than consistency models.

We tested COATCheck on 118 litmus
tests, many of which come from Intel and
AMD manuals and from prior work,1 and
others that are handwritten to stress the

SandyBridge model (including the case stud-
ies discussed earlier). On an Intel Xeon E5-
2667-v3 CPU, all 118 tests completed in
fewer than 100 seconds, and many were even
faster. Although these lhb graphs are often
an order of magnitude larger than those
studied by prior tools analyzing lhb
graphs,8,9 the runtimes are similar. This dem-
onstrates the benefits of combining the lspec
DSL with an efficient dedicated solver. It also
points to the feasibility of providing transis-
tency verification fast enough to support
interactive design and debugging.

i11.0 i12.0i9.0 i10.0 i15.0i3.0i1.0i0.1 i6.1i5.0i0.0 i14.0i4.0i2.0 i6.0 i8.0i7.0i2.1 i8.1 i13.0

Fetch

Dispatch

Issue

AGU

AccessTLB

TLBEntryCreate

TLBEntryInvlidate

SB-VTag/Index/Data

LB-Index

LB-SB-IndexCompare

LB-SB-VTagCompare

SB-PTag

LB-PTag

LB-SB-PTagCompare

SB-LB-DataForward

AccessCache

CacheLineInvalidated

WriteBack

LBSearch

Commit

LeaveStoreBuffer

MemoryHierarchy

(a)

(b)

Initially: [x] = 0, VA x → PA a (R/W, accessed, dirty)
(other initial mapping not shown)

Thread 0

Core 0

Thread 1a

Core 1

(i0.0) St [z/PTE (x)] ←
(VA x → PA b)

(i10.0) Ld [w/APIC] → mrf
(i11.0) Ld EFLAGS → (IF)
(i12.0) St EFLAGS ← (!IF)
(i13.0) invlpg [x]
(i14.0) St [v/d] ← ack
(i15.0) iret

(i7.0) Ld [y/c] → 2
(i8.0) St [x/a] ← 3
(i8.1) Ld PTE [x] → TLB
(i9.0) St [y/c] ← 4

Depicted outcome forbidden

(i0.1) Ld PTE [x]
(i1.0) invlpg [x]
(i2.0) St [w/APIC] ← mrf
(i2.1) Ld PTE(w) → TLB
(i3.0) Ld [v/d] → ack
(i4.0) St [y/c] ← 2
(i5.0) Ld [y/c] → 4
(i6.0) Ld [x/b] → 1
(i6.1) Ld PTE [x] → TLB

Thread 1b

Figure 5. Litmus test ipi8.7 (a) Because the graph is cyclic (thick edges), the outcome is forbidden. In this case, the cycle

was found before the PTEs for y were even enumerated. (b) The ELT code.
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W ith COATCheck, we were able to
successfully identify, model, and ver-

ify a number of interesting scenarios at the
intersection of memory consistency models
and address translation. However, many
important challenges remain; COATCheck
only scratches the surface of the complete set
of phenomena that can arise at the OS and
microarchitecture layers. For example, a nat-
ural next step might be to extend COAT-
Check to model virtual machines and
hypervisors of arbitrary depth. Generally, we
hope and expect that future work in the area
will build on top of COATCheck to create
more complete and more rigorous transistency
models that can capture an ever-growing set
of system-level behaviors and bugs.

We also envision COATCheck becoming
more integrated with top-to-bottom memory
ordering verification tools. We hope that one
day verification tools will cohesively span the
full computing stack, from programming
languages all the way down to register trans-
fer level, thereby giving programmers and
architects much more confidence in the cor-
rectness of their code and systems. These
goals will only become more challenging as
systems grow more heterogeneous and more
complex over time. However, COATCheck
provides a rigorous and scalable roadmap for
understanding how such systems can be
understood rigorously, and as such we hope
that future work finds COATCheck and its
lspec modeling language to be useful build-
ing blocks for continued research into the
area. MICR O
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