
Paging and the Address-Translation Problem
Michael A. Bender

Stony Brook University

NY, USA

bender@cs.stonybrook.edu

Abhishek Bhattacharjee

Yale University

CT, USA

abhishek.bhattacharjee@yale.edu

Alex Conway

VMWare Research

CA, USA

aconway@vmware.com

Martín Farach-Colton

Rutgers University

NJ, USA

martin@farach-colton.com

Rob Johnson

VMWare Research

CA, USA

robj@vmware.com

Sudarsun Kannan

Rutgers University

NJ, USA

sudarsun.kannan@rutgers.edu

William Kuszmaul

MIT

MA, USA

kuszmaul@mit.edu

Nirjhar Mukherjee

UNC Chapel Hill

NC, USA

nirjhar@unc.edu

Don Porter

UNC Chapel Hill

NC, USA

porter@cs.unc.edu

Guido Tagliavini

Rutgers University

NJ, USA

guido.tag@rutgers.edu

Janet Vorobyeva

Stony Brook University

NY, USA

janet.vorobyeva@stonybrook.edu

Evan West

Stony Brook University

NY, USA

etwest@cs.stonybrook.edu

ABSTRACT
The classical paging problem, introduced by Sleator and Tarjan in

1985, formalizes the problem of caching pages in RAM in order to

minimize IOs. Their online formulation ignores the cost of address

translation: programs refer to data via virtual addresses, and these

must be translated into physical locations in RAM. Although the

cost of an individual address translation is much smaller than that

of an IO, every memory access involves an address translation,

whereas IOs can be infrequent. In practice, one can spend money to

avoid paging by over-provisioning RAM; in contrast, address trans-

lation is effectively unavoidable. Thus address-translation costs can

sometimes dominate paging costs, and systems must simultane-

ously optimize both.

To mitigate the cost of address translation, all modern CPUs have

translation lookaside buffers (TLBs), which are hardware caches of

common address translations. What makes TLBs interesting is that

a single TLB entry can potentially encode the address translation

for many addresses. This is typically achieved via the use of huge

pages, which translate runs of contiguous virtual addresses to runs

of contiguous physical addresses. Huge pages reduce TLB misses

at the cost of increasing the IOs needed to maintain contiguity in

RAM. This tradeoff between TLB misses and IOs suggests that the

classical paging problem does not tell the full story.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA ’21, July 6–8, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8070-6/21/07. . . $15.00

https://doi.org/10.1145/3409964.3461814

This paper introduces the Address-Translation Problem, which

formalizes the problem of maintaining a TLB, a page table, and

RAM in order to minimize the total cost of both TLB misses and

IOs. We present an algorithm that achieves the benefits of huge

pages for TLB misses without the downsides of huge pages for IOs.

CCS CONCEPTS
• Software and its engineering→ Virtual memory; • Theory
of computation → Caching and paging algorithms; Bloom
filters and hashing.

KEYWORDS
virtual memory; address translation; TLB; paging; hashing; iceberg

ACM Reference Format:
Michael A. Bender, Abhishek Bhattacharjee, Alex Conway, Martín Farach-

Colton, Rob Johnson, Sudarsun Kannan,William Kuszmaul, Nirjhar Mukher-

jee, Don Porter, Guido Tagliavini, Janet Vorobyeva, and Evan West. 2021.

Paging and the Address-Translation Problem. In Proceedings of the 33rd

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’21),

July 6–8, 2021, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3409964.3461814

1 INTRODUCTION
In the classical paging problem, a sequence of page requests

𝑝1, 𝑝2, . . . must be serviced using a memory of size 𝑃 pages [16,

18, 22, 47]. The cost of servicing a page request is 0 if the page

is currently cached in memory. Otherwise there is a page fault
and an IO must be performed, which means that the page must be

fetched from disk to RAM (perhaps evicting another page) at a cost

of 1.

Paging is critical to virtual memory systems, where programs

reference pages by virtual page addresses. When a page is cached

in memory, it also has a physical page address in the range

https://doi.org/10.1145/3409964.3461814
https://doi.org/10.1145/3409964.3461814

{1, 2, . . . , 𝑃}, specifying the location where it is actually stored.

Every virtual address referenced by a program must be translated

to a physical address by a process called address translation (AT).
If a virtual page does not have a physical address, the page’s data

must be fetched from external storage, a physical page must be

allocated (and potentially freed first), the physical page filled with

the contents from storage, and assigned to that virtual address.

Address translations are stored in an in-RAM dictionary called the

page table.
AT incurs such a significant cost on real computers that modern

CPUs come with specialized hardware accelerators called trans-
lation lookaside buffers (TLBs) that cache part of the page table.
TLB hits, that is, successful lookups in the TLB, are fast, typically

a single or small number of cycles [45]. In contrast, it can take

hundreds or even thousands of CPU cycles to perform an address

translation in the page table, when there is a TLB miss [8, 29].
Although the cost of AT is ignored in the paging problem, the cost

can be high—and can even dominate paging costs—because every

memory reference must undergo address translation, whereas page

fetches may be rare. Moreover, one can avoid paging by purchasing

more RAM, and this is generally considered money well spent. In

contrast, TLBs have hit hard physical and power limits, making AT

costs effectively unavoidable.

In this paper, we address the algorithmic problem of how to

organize both the TLB and the physical-address assignment in order

to simultaneously optimize the total cost of address translation and

paging. We show that, by combining ideas from low-associativity

paging, recent advances in hashing, and compression, one can

achieve strong, provable guarantees on the costs incurred by both

the TLB and the page fetches.

Trends in the cost of address translation. AT overheads are be-

coming more significant because of several hardware trends. First,

TLBs are too small to cache the working sets of modern parallel

programs. Second, the access patterns of emerging workloads, such

as machine learning and graph analytics, are irregular and difficult

to prefetch. The increasing prevalence of parallel programming has

led to recent TLBs allowing multiple threads (and even applications)

to have entries in the TLB simultaneously [28], meaning that the

effective size of the TLB is smaller for each thread. Additionally, in

cloud environments, which increase parallelism by using virtual

machines, each memory reference undergoes two translations—

once in the guest and once in the host—which actually squares the

cost of a TLB miss in the worst case [7]. Whereas the aforemen-

tioned trends result in increased pressure on the TLB and higher

TLB-miss costs, trends towards faster storage devices lower the cost

of paging, which further increases the relative overhead of address

translation.

Larger TLBs would have higher hit rates, but the size of TLBs

is limited because it is expensive—in terms of time, transistors,

and power [9]—to perform (parallel) hardware key-value lookups

in tables with many entries. TLBs are so small that some work-

loads spend as much as 83% of their execution time on address

translations [8] (see also [26, 27, 30, 48]).

The ubiquity of TLBs. TLBs, and hence TLB performance bottle-

necks, are also becoming more ubiquitous because of hardware and

software trends. Traditionally, peripherals such as GPUs and net-

work cards accessed RAM via physical addresses, and hence had no

TLBs. Newer devices are beginning to support virtual memory in or-

der to support safe, concurrent access by mutually distrusting users,

as may occur when two virtual machines are sharing a hardware

peripheral. For instance, recent GPUs by both Nvidia and AMD

include page tables and TLBs so that multiple, unrelated kernels can

run concurrently on different compute elements in the GPU. Newer

network cards support remote direct memory access (RDMA), in
which the network card performs memory reads and writes based

on incoming packets without going through the CPU [33, 51]. This

is widely used to support concurrent access to memory in a cluster,

and these cards have page tables and TLBs (albeit, with different

names) in order to ensure the card performs only authorized mem-

ory accesses. And, of course, multi-core and multi-CPU systems

can have per-core and per-CPU TLBs. The results in this paper

apply to all these TLBs in a modern computer.

Huge pages and what makes TLBs interesting. What makes

TLBs interesting is that, rather than caching data, they cache point-

ers to data. Notably, this means that a single pointer can potentially

point to a very large amount of data.

Indeed, the main thrust of increasing the effectiveness of TLBs

in systems design has been to use huge pages, which are runs of

pages that are contiguous in the virtual address space [26]. Critically,

existing huge-page methods require the run of pages also be placed

contiguously in RAM (i.e., physical memory), so that a single TLB

entry can translate any address in any page that is included in the

huge page.
1
In this case, the TLB is used as a key-value store in

which the keys are virtual addresses of huge pages (rather than of

standard-size pages) and the values are physical addresses of huge

pages (rather than of standard-size pages).

We call the set of page translations that a TLB entry encodes its

coverage. If the coverage of a TLB entry forms a contiguous run

of virtual addresses defined by the high-order bits of the virtual

addresses so encoded, we say that that entry encodes a virtual
huge page. If, additionally, the corresponding physical pages are
stored contiguously in physical memory, then we say those pages

form a physical huge page.

Virtual and physical huge pages, the good and the bad. Vir-

tual huge pages are an effective technique for reducing TLB

misses [30, 35], not merely because they increase the coverage

of each individual TLB entry, but also because they translate a

contiguous run of virtual addresses. Programs that exhibit spacial

locality in their memory-access patterns benefit from the large

coverage of each huge page.

On the other hand, physical huge pages increase IO costs for

three reasons:

1
In our discussion, we elide many details of huge pages and TLBs, such as that most

systems that implement huge pages use different TLBs for each size [15, 54] and only

between one and three sizes are allowed, depending on the implementation. The

algorithmic problems are the same, whether we are considering TLBs in the wild or

the semi-domesticated TLBs described here.

(1) Page-fault amplification. In order to represent a collection of

pages as a physical huge page, whenever any page within

a huge page is fetched from disk, all the constituent pages

must also be fetched. This turns what would be an IO for a

single block into IOs for many blocks.

(2) Reduced RAM utilization. A physical huge page stores all

the pages in its range, even if some are not accessed. This

wastes RAM on pages that are not frequently referenced,

thus leading to more page faults on pages that are more

frequently referenced.

(3) Fragmentation. To mitigate these drawbacks, systems gen-

erally use a mix of regular and huge pages. Pages in a huge

page are stored contiguously in RAM. To make room for

them, any (non-huge) pages in the way must be evicted to

disk, which can lead to IOs later when those evicted pages

are re-accessed.
2

In summary, huge pages come with a tradeoff: virtual huge pages

enable a reduction in TLB misses, but physical huge pages cause an

increase in IOs. There is a vast architecture and operating systems

literature on optimizing the benefits and costs of huge pages [21,

30, 32, 35–37, 42]; for experiments that illustrate this tradeoff, see

Section 6.

The full cost of address translation. In order to fully quantify

the cost of address translation, one must consider TLB misses and

IOs together. We call the software/hardware algorithm that man-

ages the TLB, the page table, and the layout of pages in RAM a

memory-management algorithm.

To measure the cost of a memory-management algorithm we

introduce the address-translation cost model: each IO costs 1,

each TLB miss costs 𝜀 ∈ (0, 1), and each TLB hit costs 0.

Huge-page decoupling: all the virtual with none of the phys-
ical. In this paper, we are interested in designing memory-

management algorithms that enjoy the TLB advantages of virtual

huge pages without the IO costs of physical huge pages. A natural

approach, which we call huge-page decoupling, is to break up the
value part of every TLB entry into an array of physical addresses:

the 𝑖th entry of the array encodes both whether the 𝑖th page in the

huge page is in RAM, and if so, where the 𝑖th page resides in RAM.

Huge-page decoupling would mitigate or eliminate the disadvan-

tages of physical huge pages: it would increase RAM utilization by

only storing pages that the paging algorithm deems useful; it would

reduce page-fault amplification by reducing the footprint of each

huge page; and it would eliminate fragmentation by obviating the

requirement that the constituent physical pages of a virtual huge

page be contiguous.

A priori, huge-page decoupling is not viable because the TLB

value does not have enough bits to store such an array. Indeed,

current TLBs are designed to store one physical address of log 𝑃

bits. In general, we shall use𝑤 to denote the number of bits used

for each TLB value, and we shall treat𝑤 as being set by hardware.

2
Rather than evicting pages to disk, one could also try to defragment those pages

in RAM [30, 32]. The challenge in practice is that the performance overheads of

defragmentation, even in memory, can easily exceed the performance benefits of huge

pages.

Better encodings through low associativity. We show that

huge-page decoupling schemes actually are possible by compress-

ing the array of physical addresses as follows. Call a paging algo-

rithm 𝐿-associative if each page has 𝐿 possible locations where it

can be stored. If 𝐿 is small, and we use only𝑂 (log𝐿) bits per physi-
cal page address, we can store multiple physical page addresses per

TLB value.

Intuitively, low associativity may result in all 𝐿 locations for a

page being occupied by pages that the paging algorithm would

prefer to keep. If this happens, then the paging algorithm must

evict one of the pages, resulting in extra (and otherwise unecessary)

IOs. Hence, this low-associativity approach also appears at first

sight to be a dead end: we replace the IOs needed for physical huge

pages with the IOs needed for low associativity.

This paper. We show how to transform any paging algorithm into

a low-associativity paging algorithm without increasing the IOs,

while using minimal resource augmentation. Using this transforma-

tion, we can implement huge-page decoupling in order to realize

the benefits of virtual huge pages without the need for physical

huge pages.

Our main theorem is that we can simultaneously match the TLB

miss rate of any memory-management algorithm (even one that

only cares about minimizing TLB misses) while matching the IOs

of any other memory-management algorithm (even one that only

cares about minimizing IOs).

Section 2 discusses the results in more depth. The results lay

down the theoretical groundwork for huge-page decoupling. In con-

current work, we are prototyping our techniques in cycle-accurate

simulators and actual TLBs.

2 RESULTS AND TECHNICAL OVERVIEW
This section gives a detailed overview of the results and main

technical ideas in the paper.

Section 3: Huge-page decoupling. Section 3 formalizes huge-
page decoupling. Recall that a huge-page decoupling scheme en-

codes in the TLB value for a huge page, all of the information of

which of its constituent physical pages are present in RAM, and

where those pages are located. The guarantee of a huge-page decou-

pling scheme is that the TLB can use virtual huge pages of some

large huge-page size ℎmax pages, and RAM can be allocated at

the granularity of normal-sized pages. That is, the choice of which

normal-size pages are in memory can be made independently of

the choice of which virtual huge pages are in the TLB.

Our approach to implementing huge-page decoupling is to

treat RAM as a low-associative cache; we will avoid increasing

IO cost by making use of a small amount of resource augmen-

tation. That is, we equip a huge-page decoupling scheme with a

resource-augmentation parameter 𝛿 , and the huge-page decou-

pling scheme may assume that there are never more than (1 − 𝛿)𝑃
pages stored in RAM at a time.

The first goal of a huge-page decoupling scheme is to achieve a

value ofℎmax that is as close as possible to the number𝑤 of bits that

are used for each TLB value. Naturally ℎmax cannot be arbitrarily

large. There is a natural upper bound of

ℎmax ≤ 𝑤, (1)

since each TLB value must use ℎmax bits to encode what subset of

the pages in a huge page are present in memory.

The second goal of a huge-page decoupling scheme is to mini-

mize the resource-augmentation parameter 𝛿 . If 𝛿 is small and the

huge-page size ℎmax is large, then huge-page decoupling allows us

to have large virtual huge pages at essentially no cost.

In this paper, we are able to come remarkably close to meeting

the upper bound (1) on ℎmax, achieving{
ℎmax = Θ(𝑤/log log log 𝑃)
𝛿 = 𝑜 (1).

(2)

Recall that 𝑃 is the number of pages that fit in physical memory;

another interpretation of (2) is that, for each of the ℎmax physi-

cal pages that a TLB entry points to, we can encode the physical

location of that page using only Θ(log log log 𝑃) bits.

Section 4: Low-associativity paging and compact TLB encod-
ings. In Section 4, we address the main challenge in designing a

huge-page decoupling scheme, which is how to encode all of the

information that we wish to store in each TLB value using only𝑤

bits. Our huge-page decoupling scheme must be able to use just

𝑤/ℎmax bits to encode the location of each page in a huge page.

A central technical idea in our TLB encodings is to re-purpose

a classic technique in caching: low associativity. The idea of low

associativity is to break the cache into small bins, hash each cache

entry to a random bin, and then manage each bin individually via

a paging algorithm, such as LRU. The bin size is referred to as

the associativity (or set-associativity) of the cache. Typically,

the purpose of low-associativity caching is to simplify the task of

implementing a cache (especially in hardware caches).

In this paper, we use low-associativity caching in a starkly differ-

ent way. By limiting the number of options for where each page can

be placed in physical memory, the physical page addresses in the

TLB can also be encoded using very few bits. At the same time, the

associativity must be large enough that, whenever a page is brought

into memory, there is a legal position where it can be placed (i.e., a

free position in the right bin). As a warmup result, we show that by

setting the associativity to be Θ̃(log 𝑃), and using resource augmen-

tation 𝛿 = 𝑜 (1), we can construct a simple huge-page decoupling

scheme with virtual huge pages of size ℎmax = Θ(𝑤/log log 𝑃).
A key insight of this paper is that we can use recent advances in

the design and analysis of balls-and-bins games to achieve an even

smaller associativity. By employing the Iceberg[𝑑] balls-in-bins
strategy, we show how to construct a huge-page decoupling scheme

with ℎmax = Θ(𝑤/log log log 𝑃) and 𝛿 = 𝑜 (1).

Section 5: Optimizing the cost of address translation. Finally,
we consider the task of optimizing the total TLB and IO cost of a

memory-management algorithm on a sequence of page requests.

For any memory-management algorithm Z and sequence of page

requests 𝜎 = (𝑝1, 𝑝2, . . . , 𝑝𝑛), let 𝐶 (Z, 𝜎) denote the total cost of
Z in the address-translation cost model, let 𝐶TLB (Z, 𝜎) denote the
total cost incurred due to TLB misses, and let 𝐶IO (Z, 𝜎) denote the

total cost incurred due to IOs. In order to minimize 𝐶 (Z, 𝜎) we
must simultaneously optimize 𝐶TLB (Z, 𝜎) and 𝐶IO (Z, 𝜎).

We prove that the problem of optimizing 𝐶TLB (Z, 𝜎) can be sep-

arated from the problem of optimizing 𝐶IO (Z, 𝜎), in the following

sense. Let X and Y be arbitrary memory-management algorithms,

each of which is allowed to use any mixture of huge-page sizes

between 1 and ℎmax. The only constraint on X and Y is that they

operate on a physical memory of size (1 − 𝛿)𝑃 (rather than the full

physical memory of size 𝑃). Using huge-page decoupling, we con-

struct a new memory-management algorithmZ with the following

guarantee. With high probability in 𝑃 , the total cost ofZ satisfies

𝐶 (Z, 𝜎) ≤ 𝐶TLB (X, 𝜎) +𝐶IO (Y, 𝜎) + 𝑛

poly(𝑃) . (3)

Importantly, even if X minimizes TLB misses (by using huge pages)

and Y minimizes IOs (by not using huge pages), then Z combines

the best performance features of X and Y. The additive term in (3)

says that a vanishingly small fraction 1/poly(𝑃) of page accesses
are permitted to be page faults inZ despite not being page faults

in Y.

Experiments and related work. Section 6 illustrates experimen-

tally the IO-versus-TLB-miss tradeoff between virtual huge pages

and physical huge pages. Section 7 discusses related work in depth.

3 HUGE-PAGE DECOUPLING
The idea behind huge-page decoupling is to enable the use of huge

pages in the TLB, while letting the paging algorithm operate on nor-

mal pages. This will work by encoding the physical page addresses

in the TLB entry for a given virtual huge page.

More precisely, a huge-page decoupling scheme takes as input

a page replacement policy for RAM (the RAM-replacement pol-
icy) and a huge-page replacement policy for the TLB (the TLB-
replacement policy). It consists of a RAM-allocation scheme that

reduces the associativity of page placements in RAM, and an en-

coding/decoding scheme for translating between TLB values and

physical addresses. All of these components must interact carefully.

For example, the RAM-allocation scheme not only must achieve

low associativity but also must be amenable to fast encoding and

decoding; and unlike a standard TLB, which only covers virtual

addresses that are mapped in physical memory, the encoding/de-

coding scheme must specify if a page is mapped or not. With so

many moving parts, we take this section to carefully define all com-

ponents of the system and their requirements before moving on to

our main theorems.

Recall that the goals of a huge-page decoupling scheme are to

maximize the size ℎmax of huge pages in the TLB, and minimize

the resource-augmentation parameter 𝛿 ∈ (0, 1) for RAM.

The input replacement policies. Let 𝑉 be the number of pages

in virtual memory and 𝑃 be the number of pages in physical mem-

ory. A virtual page address is any element of [𝑉] = {1, 2, . . . ,𝑉 }.
A physical page address is any element of [𝑃] = {1, 2, . . . , 𝑃}. A
virtual huge-page address is any element of [𝑉 /ℎmax] (we as-

sume ℎmax divides 𝑉). We use ℓ to denote the number of entries in

the TLB, and𝑤 to denote the number of bits in each TLB value.

The RAM-replacement policy determines which virtual page

addresses are in RAM at any given moment; we refer to the set of

such addresses as the active set A ⊆ [𝑉]. The only restrictions on

the RAM-replacement policy are that |A| ≤ (1 − 𝛿)𝑃 at all times,

and that it is oblivious to the state and operation of the huge-page

decoupling scheme.

The TLB-replacement policy determines which virtual huge-

page addresses are in the TLB at any given moment; we refer to the

set of such addresses as T ⊆ [𝑉 /ℎmax]. The only restrictions on

the TLB-replacement policy are that |T | ≤ ℓ at all times, and that it

is oblivious to the state and operation of the huge-page decoupling

scheme.

The huge-page decoupling scheme. A huge-page decoupling

scheme is an algorithm with three parts: a RAM-allocation
scheme, a TLB-encoding scheme, and TLB-decoding scheme.

The RAM-allocation scheme determines the physical address for

each page fetched by the RAM-replacement policy. At any given

moment in time, we use𝜙 : A → [𝑃] to denote the physical address
𝜙 (𝑣) corresponding to each virtual page address 𝑣 ∈ A. The RAM-

allocation scheme gets to decide the value of 𝜙 (𝑣) whenever a
new page is added to A by the RAM-replacement policy. The only

restrictions on the RAM-allocation scheme are that 𝜙 must always

be an injection and that 𝜙 must be stable—that is, once a virtual
page 𝑣 ∈ A is assigned a physical address 𝜙 (𝑣), that address cannot
change until 𝑣 is removed from A.

The TLB-encoding scheme determines the𝑤-bit TLB value for

each virtual huge page in the TLB. At any given moment in time,

we use 𝜓 : T → [2𝑤] to denote the current set of TLB values.

The value of𝜓 (𝑣) is set (resp. unset) by the TLB-encoding scheme

when the TLB-replacement policy inserts (resp. removes) 𝑣 from

T . And the value of𝜓 (𝑣) is updated by the TLB-encoding scheme

whenever any of the constituent virtual page addresses 𝑢 of 𝑣 are

added or removed from A by the RAM-replacement policy.

The TLB-decoding scheme translates TLB values into physi-

cal addresses via a TLB-decoding function 𝑓 : ([𝑉] × [2𝑤]) →
([𝑃] ∪ {−1}). The TLB-decoding function must offer the following

guarantee: If𝑢 is a virtual huge-page address in T , and 𝑣 is a virtual

page address contained in 𝑢, then

𝑓 (𝑣,𝜓 (𝑢)) =
{
𝜙 (𝑣) if 𝑣 ∈ A
−1 otherwise.

(4)

In other words, for every virtual page address 𝑣 that is both con-

tained in 𝑢 and is in the active page set A, the TLB-decoding func-

tion must be able to recover the physical page address 𝜙 (𝑣) associ-
ated with 𝑣 . And for every virtual page address 𝑣 that is contained

in 𝑢 but is not in the active page set A, the decoding function must

encode the fact that 𝑣 is not in A by returning the null address −1.
The TLB-decoding function 𝑓 is determined once at the begin-

ning of time and cannot be subsequently changed. The function 𝑓

is permitted to be randomized (and thus can read the random bits

used by our algorithm).

Constant-time high-probability decoupling schemes. A

huge-page decoupling scheme is said to be constant time if, each

time that the TLB-replacement policy modifies T or the RAM-

replacement policy modifies A, the huge-page decoupling scheme

spends time 𝑂 (1) updating 𝜙 and𝜓 ; and if the TLB-decoding func-

tion 𝑓 can be evaluated in time 𝑂 (1).
In order to establish probability bounds over arbitrarily long

sequences of requests for RAM-allocation schemes that have less

than full associativity, we must deal with what happens when page

𝑣 experiences a paging failure, that is, when it is added toA by the

RAM-replacement policy but cannot be assigned a physical address

by the RAM-allocation scheme. The paging failure associated with

𝑣 lasts until the RAM-replacement policy evicts 𝑣 . We use F ⊆
A to denote the set of virtual page addresses on which paging

failures are occurring at a given moment. A randomized huge-page

decoupling scheme is said to succeed with high probability in 𝑃

if, at every point in time, the probability that |F | > 0 is at most

1/poly(𝑃). Later in the paper, when we use huge-page decoupling

to construct efficient memory-management algorithms, we will

handle paging failures by temporarily bringing the affected page

into RAM whenever it is needed, and then allowing the page to

subsequently be paged back out to disk.

4 LOW-ASSOCIATIVITY PAGING AND
COMPACT TLB ENCODINGS

The key challenge in designing a huge-page decoupling scheme

is to limit the associativity of the RAM-allocation scheme, so that

each page in RAM has only a small number of options for where it

can reside. At the same time, we must support an arbitrary RAM-

replacement policy (i.e., the paging algorithm for managing which

pages are in RAM), whose only constraint is that it never places

more than (1 − 𝛿)𝑃 pages in RAM at a time.

In order to limit the associativity of the RAM-allocation scheme,

we partition RAM into 𝑛 buckets, each one comprising 𝐵 = 𝑃/𝑛
consecutive pages. To place a page in RAM, we randomly choose 𝑘

buckets by computing 𝑘 hash functions of the virtual page address;

we select one of the buckets; and we place the page in some free

slot within the chosen bucket. This yields an associativity of 𝑘𝐵.

The bucket size 𝐵 controls a trade-off between associativity and

IO complexity: the smaller the 𝐵, the more likely it is for a page to

find all of its 𝑘 chosen buckets already full.

We show that, surprisingly, any (oblivious) RAM-replacement

policy can be implemented with a low-associativity RAM-allocation

scheme, using a small amount of resource augmentation. Our main

theorem in this section is that this can be attained using 𝑘 = 3 hash

functions and buckets of size 𝐵 = Θ̃(log log 𝑃), ultimately leading

to a decoupling scheme that achieves ℎmax = Θ(𝑤/log log log 𝑃)
and 𝛿 = 𝑜 (1).

We begin the section by showing, as a warmup, how to achieve

ℎmax = Θ(𝑤/log log 𝑃) using 𝑘 = 1 hash functions. We then extend

the result to use 𝑘 = 3 in order to achieve the stronger bound of

ℎmax = Θ(𝑤/log log log 𝑃).

Balls-and-bins games. We model RAM-allocation algorithms

as dynamic balls-and-bins games. In our balls-and-bins game,

there are 𝑛 bins, and there is an adversary that specifies an arbitrary

sequence of ball insertions and deletions (and perhaps re-insertions),

such that there are never more than𝑚 balls in the system. On each

insertion, a ball is thrown into some bin according to a rule that

randomly chooses𝑘 bins and places the ball in one of them. The goal

is to design the placement rule, such that it minimizes the maximum

load across all bins. Importantly, the adversary is oblivious to the

game’s randomness; otherwise it could force all balls to go to the

same bin.

The relationship between RAM-allocation schemes and balls-

and-bins games is as follows. Each bin represents a bucket in

RAM, and each ball represents a page. The adversary is the RAM-

replacement policy (and the sequence of page requests), and the

balls insertions/deletions correspond to page insertions/deletions

in A. Based on this analogy, we can use 𝑛 and𝑚 in both contexts.

We will use 𝜆 =𝑚/𝑛 to denote the (maximum allowable) average

occupancy of the bins.

Observe that not every balls-and-bins game models a RAM-

allocation scheme—it has to be online (i.e., balls are sequentially
placed before seeing future requests) and stable (i.e., balls are not
moved around once inserted). Both of these features are required

in a huge-page decoupling scheme: page requests (and, thus, TLB

and paging operations) are served in an online fashion, and the

physical address of a page must not be changed until the page is

swapped out.

The difficulty of reducing associativity. Suppose that a single
hash function is used (i.e., 𝑘 = 1) and that buckets have size 𝐵 =

1, so that the associativity is 1. Then, physical addresses do not

require any bits at all—virtual addresses are translated simply by

computing their hash value, and thus no translations need to be

cached in the TLB. The problem, of course, is that this configuration

lends to a prohibitively large number of paging failures (recall that

huge-page decoupling schemes must incur no paging failures with

high probability in 𝑃 , at any given point in time). To quantify this

statement, consider a sequence of 𝑃 distinct page accesses, starting

from an empty RAM. By a standard balls-and-bins argument, where

balls represent pages and bins represent page slots in physical

memory (the unit-sized buckets), approximately 𝑃/𝑒 slots remain

unused, with high probability in 𝑃 . Thus, any paging algorithm that

doesn’t evict pages during the first (1 − 𝛿)𝑃 insertions (e.g., LRU,

FIFO, etc.) will incur at least (1/𝑒 − 𝛿)𝑃 paging failures with high

probability in 𝑃 . For 𝛿 = 𝑜 (1), this is Ω(𝑃) paging failures with

high probability in 𝑃 .

Achieving associativity 𝚯̃(log 𝑷) with 𝒌 = 1. Let𝑚 = (1 − 𝛿)𝑃
be the maximum number of pages that the RAM-replacement policy

can cache simultaneously. We specify the bin size 𝐵 and 𝛿 (and,

thus, also𝑚 and 𝑛) below. For now, we use 𝑘 = 1, which means that

each ball is simply assigned to a random bin. In order so that no

bins overflow, we must set the bin size 𝐵 to be large enough that the

maximum load of any bin is at most a 1 + 𝛿 factor larger than the

average load. On the other hand, subject to bins not overflowing,

we want 𝐵 as small as possible to obtain a small associativity.

Since 𝑘 = 1, at any given moment, the maximum load is
(1 + 𝑜 (1)) log𝑛

log(log𝑛/𝜆) if 1 ≤ 𝜆 = 𝑜 (log𝑛)
Θ(𝜆) if 𝜆 = Θ(log𝑛)
𝜆 +𝑂 (

√
𝜆 log𝑛) if 𝜆 = 𝜔 (log𝑛),

(5)

with high probability in 𝑛 [44]. Thus, bin sizes 𝐵 that allow for a

𝛿 = 𝑜 (1) are in the third case.

Set the number of bins to be 𝑛 = 𝑚/(log 𝑃 log log 𝑃), so that

the average load is 𝜆 = log 𝑃 log log 𝑃 = 𝜔 (log𝑛). Then, with high

probability in 𝑛 (and thus 𝑃), the maximum load is

𝜆 +𝑂 (
√
𝜆 log𝑛) = 𝜆 +𝑂 (log 𝑃

√
log log 𝑃)

= 𝜆(1 + 𝛿),

where 𝛿 = 𝑂 (1/
√
log log 𝑃).

Note that the bucket size satisfies

𝐵 =
𝑃

𝑛
=

𝑃

𝑚
· 𝜆 =

𝑃

(1 − 𝛿)𝑃 · 𝜆 =
1

1 − 𝛿
· 𝜆 > (1 + 𝛿)𝜆,

which means that 𝐵 is at least as large as the maximum load of

the balls-and-bins game. Thus, every page fits in RAM at any fixed

point in time, with high probability in 𝑃 . Since addresses have size

log𝐵 = Θ(log log 𝑃), we get a decoupling scheme with huge-page

size ℎmax = Θ(𝑤/log log 𝑃).

Theorem 1. There exists a constant-time huge-page decoupling

scheme using resource augmentation 𝛿 = 𝑜 (1) that supports huge-
page size ℎmax = Θ(𝑤/log log 𝑃) with high probability in 𝑃 .

Proof. Recall that a huge-page decoupling scheme consists of

three parts: a RAM-allocation scheme, a TLB-encoding scheme, and

a TLB-decoding scheme. By having the RAM-allocation scheme

use the balls-and-bins strategy described above, we ensure that

each page has at most 𝐵 positions where it can reside, where 𝐵 =

Θ(log 𝑃 log log 𝑃).
The TLB-encoding and decoding schemes can treat each TLB

value as an array of Θ(log log 𝑃)-bit elements 𝑎1, 𝑎2, . . . , 𝑎ℎmax
. If 𝑣

is the 𝑖th page in the huge page represented by the TLB entry, and

𝑣 hashes to bin 𝑗 , then 𝑎𝑖 indicates the position in bin 𝑗 where 𝑣

resides (or −1 if 𝑣 is not in A). Note that the huge-page decoupling

scheme is easily made constant time by maintaining a hash table

that keeps track of what the current value of 𝜓 (𝑢) should be for

each virtual huge page 𝑢 that has at least one constituent page in

RAM.

Our final task is to analyze the size of the failure set F . For

the sake of analysis, whenever a ball is inserted into a bin, label

the ball as failed if the ball is inserted into a bin that already has

𝐵 other balls (that are not labeled as failed). Note that the ball

retains its failed label even if subsequently the load of the bin falls

below 𝐵. From the perspective of the balls-and-bins game, failed

balls are like any other balls. On the other hand, for the huge-page

decoupling scheme, failed balls correspond to paging failures. That

is, |F | is equal to the number of balls in the system that have

the failed label. At any given moment, there are up to𝑚 = 𝑂 (𝑃)
balls 𝑏1, . . . , 𝑏𝑚 present. For each 𝑖 , when 𝑏𝑖 was inserted it had a

1/poly(𝑃) probability of being labeled as failed. By a union bound, it
follows that Pr[|F | > 0] ≤ 𝑚/poly(𝑃) = 1/poly(𝑃), as desired. □

Achieving associativity 𝚯̃(log log 𝑷) with 𝒌 = 3. A natural way

to try to improve the associativity further is to use the balls-and-

bins rule known as Greedy[2], in which each ball chooses 2 bins

independently at random, and the ball is placed in the less full bin.

With this rule, the maximum load at any moment is at most

𝑂 (𝜆) + log log𝑛 +𝑂 (1), (6)

with high probability in 𝑛 [49]. This approach fails because the

difference between the average load 𝜆 and the bound on the maxi-

mum load is Ω(𝜆), no matter what we choose 𝜆 to be.
3
Therefore,

this forces the use of 𝛿 = Ω(1) resource augmentation. Using

Greedy[𝑑] for 𝑑 > 2 doesn’t help the situation, because the maxi-

mum load still grows as 𝑂 (𝜆) rather than 𝜆.

Until recently, no balls-and-bins strategy was known to be

simultaneously online, stable, and to have a maximum load of

(1+𝑜 (1))𝜆+𝑂 (log log𝑛). The authors of this paper have another pa-
per under submission that presents a balls-and-bin rule that has all

of these features [34]. The rule, which is called Iceberg[𝑑], chooses
𝑑 + 1 bins per ball. In the case of 𝑑 = 2, it attains the following

bound.

Theorem 2 ([34]). With high probability in 𝑛, at any fixed point

in time the maximum load of Iceberg[2] is at most

(1 + 𝑜 (1))𝜆 + log log𝑛 +𝑂 (1),

in the dynamic setting, against any oblivious adversary.

For concreteness, we sketch out Iceberg[2] here. Balls are placed
into bins using three independent hash functions ℎ1, ℎ2, ℎ3. When

inserting a ball 𝑥 , we first look at bin ℎ1 (𝑥) and insert the ball

there if it is not too full. Otherwise, we use ℎ2 and ℎ3 to insert via

Greedy[2].4 Intuitively, the reason that Iceberg[2] works so well

is that even though the vast majority of balls get inserted using ℎ1,

their contribution to the maximum load is capped at (1 + 𝑜 (1))𝜆
(because, beyond that point, balls are inserted using Greedy[2]).
This makes it so that the number of balls managed by Greedy[2]
at any given moment is only𝑂 (𝑛); and therefore the known bound

from (6) [49] bounds their contribution to the maximum load as

log log𝑛 +𝑂 (1).
We now modify our low-associativity construction to use

Iceberg[2] (with 𝑘 = 3 hash functions) instead of just a single hash

function. Set the number of bins to be𝑚/(log log 𝑃 log log log 𝑃),
so that the average load is 𝜆 = log log 𝑃 log log log 𝑃 = 𝜔 (log log𝑛).
Then, with high probability in 𝑛 (and thus 𝑃), the maximum load is

(1 + 𝑜 (1))𝜆 + log log𝑛 +𝑂 (1) = 𝜆(1 + 𝛿),

with 𝛿 = 𝑜 (1).5
Using this value of 𝛿 as the resource-augmentation parameter, it

follows that the bin size is (with high probability) at least as large

as the maximum load. Since the bin size is 𝐵 = Θ̃(log log 𝑃), the
associativity of the scheme is 3𝐵 = Θ̃(log log 𝑃). Thus we have a
decoupling scheme with huge-page size ℎmax = Θ(𝑤/log log log 𝑃)
and resource augmentation parameter 𝛿 = 𝑜 (1).

3
Interestingly, it is unknown whether the asymptotic dependence on 𝜆 is an artifact

of the proof. If one could prove a maximum load of 𝜆 +𝑂 (log log𝑛) for Greedy[2],
then one could use Greedy[2] to achieve the results in this section.

4
As a minor technical point, the insertions performed using ℎ1 ignore all balls that

were inserted using ℎ2 and ℎ3 , and, similarly, the Greedy[2] insertion of balls using

ℎ2 and ℎ3 ignores all balls that were inserted using ℎ1 .

5
For our purposes here, we do not make an effort to optimize 𝛿 beyond ensuring that

𝛿 = 𝑜 (1) . We point out, however, that if one wanted optimize 𝛿 further, one could set

the associativity to poly(log log𝑃) (which only changes ℎmax by a constant factor),

and obtain 𝛿 = 1/poly(log log𝑃) , for a polynomial of our choice.

Theorem 3 (The Decoupling Theorem). There exists a constant-

time huge-page decoupling scheme using resource augmentation 𝛿 =

𝑜 (1) that supports huge-page size ℎmax = Θ(𝑤/log log log 𝑃) with
high probability in 𝑃 .

Proof. The proof follows just as for Theorem 1, but using Ice-

berg[2] instead of a single hash function. □

5 OPTIMIZING THE COST OF ADDRESS
TRANSLATION

Finally, we consider the task of optimizing the total TLB and IO

cost of a memory-management algorithm on a sequence of page

requests. More specifically, in this section, we prove that in order to

optimize the cost of a memory-management algorithm, it’s enough

to independently optimize the TLB cost and the paging cost, and

combine the two solutions via huge-page decoupling. Moreover,

these two separate problems are each equivalent to the classic

paging problem [47].

We begin by formalizing the definitions of arbitrary memory-

management algorithms and of the address-translation cost model.

These definitions must carefully address several subtleties of the

model. First, what is the full range of control that an arbitrary

memory-management algorithm has? This needs to be carefully

specified so that we we can prove competitiveness results. Second,

how do we define the cost of a memory-management algorithm

that sometimes brings pages into RAM even when those pages are

not being accessed (e.g., a memory-management algorithm that

implements virtual huge pages as physical huge pages, and thus

brings entire physical huge pages into RAM at once)? And finally,

what types of failures are permitted for a memory-management

algorithm? In particular, paging failures (as defined in Section 3)

are not acceptable, but we shall see that these types of failures can

be handled at a cost of additional IOs.

What a memory-management algorithm controls. We begin

by extending the definitions from Section 3 in order to define what

an arbitrary memory-management algorithm controls. A memory-

management algorithm controls:

• which virtual huge-page addresses T are in the TLB;

• which virtual page addresses are in the active set A;

• what the TLB-decoding function 𝑓 is;

• and what the virtual-to-physical mapping 𝜙 is.

In other words, a memory-management algorithm controls not

only the features of the system that a huge-page decoupling

scheme controls, but also the TLB-replacement policy and the RAM-

replacement policy.

Whereas a huge-page decoupling scheme treats T as consist-

ing of virtual huge pages of size ℎmax, in general, a memory-

management algorithm is permitted to use virtual huge pages of

any mixture of sizes in {1, 2, 4, 8, . . . , ℎmax} (we assume ℎmax is a

power of two).
6
Recall from Section 3 that, if a huge page is of size

6
The fact that we allow memory-management algorithms to potentially use many

different huge-page sizes at the same time will only make our results stronger. In

particular, this will allow the memory-management algorithms X and Y that are

used as inputs to Theorem 4 to be more sophisticated; on the other hand, the output

memory-management algorithm Z produced by Theorem 4 uses only a single size

ℎmax for huge pages.

2
𝑟
, then it is associated with an address that is an integer multiple

of 2
𝑟
.

Servicing page requests. The purpose of a memory-management

algorithm is to service a sequence of virtual-page requests 𝜎 =

(𝑝1, 𝑝2, . . . , 𝑝𝑛), where each 𝑝𝑖 ∈ [𝑉].
In order for the memory-management algorithm to be able to

service a page request 𝑝𝑖 , the algorithm must ensure that virtual

page 𝑝𝑖 is in RAM (i.e., if 𝑝𝑖 ∉ A, then 𝑝𝑖 must be added to A); and

the algorithm must also ensure that a virtual huge page containing

𝑝𝑖 is contained in the TLB. Once the page 𝑝𝑖 is mapped in both

RAM and the TLB, the request 𝑝𝑖 can be serviced.
7

The address-translation cost model. The running time of

a memory-management algorithm is evaluated in the address-
translation cost model: the cost of adding a new entry to T is

𝜀 and the cost of adding a new element to the active set A is 1.

Evictions (from either the TLB or RAM) are free; and so is updating

the TLB value 𝜓 (𝑢) for a virtual huge page address 𝑢 ∈ T when

one of 𝑢’s constituent pages is added or removed from A.

In order to allow for a full range of TLB decoding/encoding

schemes, it is necessary to also capture the notion of a decoding
miss, which costs 𝜀. A decoding miss occurs if a virtual huge page𝑢

is in the TLB, and a virtual page 𝑣 contained in 𝑢 is in RAM, but the

decoding function 𝑓 (𝑣,𝜓 (𝑢)) incorrectly evaluates to −1 (instead of
𝜙 (𝑣)). Imagine, for example, that a memory-management algorithm

chooses to encode for each virtual huge page 𝑢 in the TLB only

the physical addresses of 𝑢’s most commonly accessed constituent

pages; then the pages that do not get encoded would incur decoding

misses when they were accessed. We will use decoding misses in

Theorem 4 to capture what happens if a huge-page decoupling

scheme experiences a paging failure; we will construct a memory-

management algorithm that brings the page experiencing failure

into RAM without giving it a TLB encoding.

Recall that for a given memory-management algorithm X,

𝐶 (X, 𝜎) denotes the total cost of X (on the request sequence 𝜎),

𝐶TLB (X, 𝜎) denotes the total TLB cost (this does not include decod-

ing misses), and 𝐶IO (X, 𝜎) denotes the total IO cost. Additionally,

we define𝐶D (X, 𝜎) as the total cost incurred due to decodingmisses.

Then, 𝐶 (X, 𝜎) = 𝐶TLB (X, 𝜎) +𝐶IO (X, 𝜎) +𝐶D (X, 𝜎).

Huge-page decoupling as a technique for simultaneously op-
timizing IO costs and TLB costs. Having defined the address-

translation cost model and how it applies to memory-management

algorithms, we can now prove Theorem 4.

Theorem 4 (The Simulation Theorem). Let 𝑉 and 𝑃 be the

number of pages in the virtual and physical address spaces, respec-

tively. Let ℓ be the number of entries in the TLB, and𝑤 be the number

of bits in each TLB value.

7
Whereas RAM truly requires that pages be present in order to be accessed, the same

requirement isn’t strictly necessary for the TLB (since we can always just find the

physical address via the page table). On the other hand, in the address-translation cost

model, adding an element TLB has the same cost as incurring a TLB miss would. Thus

we can assume without loss of generality that every page that is accessed is first added

to the TLB’s coverage if necessary.

Let D be a huge-page decoupling scheme that uses resource-

augmentation 𝛿 = 𝑜 (1) and supports huge-page size ℎmax with high

probability in 𝑃 .

Let 𝜎 = (𝑝1, . . . , 𝑝𝑛) ∈ [𝑉]𝑛 be a sequence of virtual page ad-

dresses that need to be serviced. Let X be an arbitrary memory-

management algorithm using parameters ℓ,𝑤,𝑉 , 𝑃 , and using huge

pages with sizes between 1 and ℎmax pages; let Y be an arbitrary

memory-management algorithm using parameters ℓ,𝑤,𝑉 , (1 − 𝛿)𝑃 ,
and using huge pages with sizes between 1 and ℎmax pages. Using D,

one can construct a new memory-management algorithmZ, using

virtual huge pages of size ℎmax, satisfying

𝐶 (Z, 𝜎) ≤ 𝐶TLB (X, 𝜎) +𝐶IO (Y, 𝜎) + 𝑛

poly(𝑃) , (7)

with high probability in 𝑃 . Moreover, ifX andY are online algorithms,

then so isZ.

Proof. To design Z, we combine all three of X, Y, and D. The

idea is to use X’s TLB-replacement policy, to use Y’s as the RAM-

replacement policy, and then to use D in order to combine those

two policies into a new memory-management algorithmZ.

We begin by describing how to use X to determine the TLB-

replacement policy for D. Whereas the TLB for X may use huge

pages of many different sizes (up to size ℎmax), the TLB for Z uses

virtual huge pages exclusively of size ℎmax. Let TZ denote the set of

virtual huge-page addresses in Z’s TLB at any given moment and

let TX denote the set of virtual huge-page addresses in X’s TLB at

any given moment. For each virtual address 𝑣 ∈ 𝑉 , let 𝑟 (𝑣) = 𝑣 − (𝑣
(mod ℎmax)) denote the virtual address of the size-ℎmax virtual

huge page containing 𝑣 . We say that an address 𝑣 ∈ 𝑉 is covered by

a size-ℎmax virtual huge-page address 𝑢 if 𝑟 (𝑣) = 𝑢. Note that, if a

virtual huge-page address 𝑣 ∈ TX is covered by a size-ℎmax virtual

huge-page address 𝑢, then so are all of the constituent virtual pages

𝑣 ′ of 𝑣 .
We define the TLB-replacement policy for D so that

TZ = {𝑟 (𝑣) | 𝑣 ∈ TX}.
Note that, since |TX | ≤ ℓ , we also always have |TZ | ≤ ℓ . And,

moreover, the TLB-replacement policy only modifies TZ if it is also

modifying TX .
Next we describe how to use Y to determine the RAM-

replacement policy for D. We simply have the RAM-replacement

policy for D maintain the active set A to always match the active

set for Y. Note that, since Y operates on a physical memory of

size (1 − 𝛿)𝑃 , the active set A is never of size more than (1 − 𝛿)𝑃 ,
which in turn meets the resource-augmentation requirement for

the huge-page decoupling scheme D.

Although the RAM-replacement policy for D maintains the

active set to match the active set for Y, the huge-page decoupling

scheme D may sometimes experience a paging failure, causing a

virtual page 𝑣 that is in the active set for Y to not be present in the

active set forZ. Whenever a page request 𝑝𝑖 is to a page 𝑣 for which

D is currently experiencing a paging failure, we have the memory-

management algorithm Z handle the page request 𝑝𝑖 as follows:

(1) the algorithmZ spends an IO (of cost 1) to temporarily add 𝑣 to

Z’s active set; (2) the algorithmZ sets 𝜙 (𝑣) to be an arbitrary free

physical page address; and (3) the algorithmZ services the page

request to 𝑣 , incurring an additional cost of 𝜀 due to the ensuing

decoding miss (note, in particular, that Z does not make any effort

to encode the translation from 𝑣 to 𝜙 (𝑣) in the TLB). Thus the total

cost of servicing a page request 𝑝𝑖 to a page 𝑣 that is experiencing

a paging failure is 1 + 𝜀. Once the request 𝑝𝑖 is serviced, then 𝑣 may

be removed fromA whenever convenient (i.e., wheneverD wishes

to assign some other virtual page address 𝑣 ′ ≠ 𝑣 to the physical

address 𝜙 (𝑣) that 𝑣 is currently assigned to).

We have now completely defined the memory-management al-

gorithm Z. In summary, Z is constructed via the huge-page de-

coupling scheme D using X as the TLB-replacement policy and Y
as the RAM-replacement policy; and the only time thatZ departs

from the behavior of D is when D is experiencing a paging failure

on a page request 𝑝𝑖 . In this case, Z serves the page request at

a total cost of 1 + 𝜀. Note that, if X and Y are online algorithms,

meaning that at any given moment they only know the value of

the next page 𝑝𝑖 that will be requested, then Z is also online.

We conclude by analyzing the cost𝐶 (Z, 𝜎). First note that, since
D is a huge-page decoupling scheme that succeeds with high prob-

ability, the probability that there is a paging failure during a given

page request 𝑝𝑖 is at most 1/poly(𝑃) (for a polynomial of our choice).

By linearity of expectation, the expected number of page requests

𝑝𝑖 at which paging failure is being experienced is at most𝑛/poly(𝑃).
Applying Markov’s inequality, it follows that with high probabil-

ity in 𝑃 , at most 𝑛/poly(𝑃) page requests 𝑝𝑖 occur during paging

failures. (Note that the application of Markov’s inequality shrinks

the poly(𝑃) term in the denominator, but it nonetheless remains a

polynomial of our choice.) The total cost incurred byZ due to pag-

ing failures ofD is therefore at most (1+𝜀)𝑛/poly(𝑃) ≤ 𝑛/poly(𝑃)
with high probability in 𝑃 .

To complete the proof, we perform the rest of the analysis ig-

noring costs incurred byZ due to paging failures. By using X as

the TLB-replacement policy, we ensure thatZ only ever adds ele-

ments to TZ when X also adds an element to TX . Thus (ignoring
requests that experience paging failures), the TLB cost ofZ is at

most the TLB cost of X. At the same time, by using Y as the RAM-

replacement policy, we ensure that X only ever adds elements to

its active set when Y adds the same element to its active set (again,

ignoring paging failures). Thus the total IO cost of Z (ignoring

paging failures) is at most the total IO cost for Y. Since Z does

not experience any decoding misses except during paging failures,

the cost incurred byZ due to decoding misses is absorbed by the

paging failure cost. This completes the proof. □

Theorem 4 reduces the optimization problem of minimizing

𝐶 (Z, 𝜎) to the independent (and separate) optimization problems

of minimizing 𝐶TLB (X, 𝜎) and 𝐶IO (Y, 𝜎). We conclude the section

by observing that these two individual optimization problems are

equivalent to the classic paging problem, which counts the number

cache misses incurred by a paging algorithm to service a sequence

of page requests 𝑝1, 𝑝2, . . . , 𝑝𝑛 on a cache of some size. The paging

problem does not have a unique optimal online solution (and thus

many algorithms for the problem have been studied [11, 12, 19, 20,

52, 53]). Nonetheless the theoretical and practical properties of the

paging problem are well understood.

Lemma 1. Let X and Y be the memory-management algorithms

from Theorem 4, and let 𝜎 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) ∈ [𝑉]𝑛 . For each vir-

tual page 𝑣 ∈ 𝑉 , let 𝑟 (𝑣) denote the virtual huge page of size ℎmax

containing 𝑣 .

The problem of minimizing 𝐶TLB (X, 𝜎) in Theorem 4 is equivalent

to the paging problem on the request sequence 𝑟 (𝑝1), 𝑟 (𝑝2), . . . , 𝑟 (𝑝𝑛)
using a cache of size ℓ .

The problem of minimizing 𝐶IO (Y, 𝜎) in Theorem 4 is equivalent

to the paging problem on the request sequence 𝑝1, 𝑝2, . . . , 𝑝𝑛 using a

cache of size (1 − 𝛿)𝑃 .

Proof. If we wish to design X to minimize 𝐶TLB (X, 𝜎), then we

can assume without loss of generality that the TLB for X uses only

huge pages of size ℎmax. In particular, any virtual huge page 𝑣 of

size smaller than ℎmax in the TLB can be substituted with a larger

huge page 𝑟 (𝑣) of size ℎmax without any increase in TLB cost. If

we assume that X uses huge pages of size ℎmax, then the page

request sequence accesses virtual huge pages 𝑟 (𝑝1), 𝑟 (𝑝2), We

can further assume without loss of generality that X only adds a

virtual huge page 𝑣 to the TLB when that virtual huge-page is about

to be accessed in the request sequence (since otherwise, X could

hold off on adding 𝑣 until 𝑣 is next accessed). Thus the problem

of minimizing 𝐶TLB (X, 𝜎) is exactly the problem of servicing the

virtual huge-page requests 𝑟 (𝑝1), . . . , 𝑟 (𝑝𝑛) using the TLB as a size-ℓ

cache. Adding a virtual huge page to the TLB in the former problem

corresponds exactly to incurring a cache miss in the latter problem.

To see the claim about 𝐶IO (Y, 𝜎), observe that the active set A
forY corresponds directly to the cache in the paging problem. Note

that, without loss of generality,Y only adds a page toA when that

page is about to be accessed. Thus the IOs incurred byY correspond

exactly to the cache misses incurred in the paging problem. □

6 THE IO TLB-MISS TRADE-OFF IN HUGE
PAGES

This section presents experimental data illustrating the trade-off

between IOs and TLB misses when using huge pages (that are both

virtually and physically contiguous).

We developed a trace-driven simulator for the TLB and RAM and

used it to measure IOs and TLB misses as a function of the huge-

page size ℎ ∈ {1, 2, 4, . . . , 1024}. We use a base page size of 4kB.

Thus, each entry in the TLB represents ℎ 4kB virtually contiguous

pages, which map to an equal number of physically contiguous

pages. Therefore, each page fault moves ℎ pages between RAM

and secondary memory, at a cost of ℎ IOs. For our experiments,

we regard the TLB as a fully associative cache and use LRU as the

replacement policy both for the TLB and RAM. For all experiments,

the TLB is modeled with 1536 entries. The amount of physical

memory modeled varies, as detailed below.

We ran the following workloads:

• Bimodal uniform accesses (Figure 1a):A synthetic stress

test that frequently accesses one “hot” page and infrequently

accesses another “cold” page. The “hot” page is selected at

random from a 1 GB region ofmemory, within a 64 GB virtual

address space; the “cold” page is selected at random from the

entire virtual address space. This workload is designed to be

a worst case for huge pages. Small ℎ results in frequent TLB

IOs TLB misses

2
0

2
5

2
10

10
5

10
6

10
7

10
8

10
5

10
7

10
9

Huge-page size

I
O
s

T
L
B
m
i
s
s
e
s

(a) A bimodal distribution in which 99.99%
of accesses are uniformly random in a 1GB
working set, and the remaining accesses
are uniformly random over a 64GB virtual-
address space. Cache was 16GB.

2
0

2
5

2
10

10
6

10
8

10
10

10
8.1

10
8.4

10
8.7

Huge-page size

I
O
s

T
L
B
m
i
s
s
e
s

(b) A random walk among pages, where
each page has a logarithmic number of
outgoing edges, and edge destinations are
Pareto distributed with Pareto parameter
𝛼 = 0.01, i.e. the probability that an edge
goes to the 𝑖th page is proportional to 𝑖−𝛼−1.
Cache was 32GB.

2
0

2
5

2
10

10
5

10
7

10
9

10
2

10
4

10
6

Huge-page size

I
O
s

T
L
B
m
i
s
s
e
s

(c) graph500, a BFS on a large graph with a
520MB cache.

Figure 1: IOs and TLB misses as a function of the huge-page size for a bimodal uniform random workload, a random graph
walk, and for a trace from the graph500 benchmark. All TLBs had 1536 entries. In all workloads, increasing the huge-page size
increases the IO cost by at least three orders of magnitude, but reduces the TLB miss count by up to four orders of magnitude.

misses on accesses to the 1GB virtual region, whereas large

ℎ incurs large IO amplification on the infrequent 64GB space

accesses. The size of RAM is 16GB.We performed 100 million

accesses to warm up the cache, then measured IOs and TLB

misses for another 100 million accesses.

• Random walk on a graph (Figure 1b): A synthetic work-

load that performs a randomwalk on a large graph, modeling

a PageRank-like computation. We model each page as a node

in the graph, where each node has a logarithmic number of

outgoing edges. The destination page of each outgoing edge

is chosen from a Pareto distribution over all the pages in the

system, with Pareto constant 𝛼 = 0.01 (i.e., the probability

of selecting the 𝑖th page is proportional to 𝑖−𝛼−1). The size
of the allocated virtual memory is 64GB and the cache has

size 32GB. We performed 100 million warm-up accesses, and

then measured TLB misses and IOs for 100 million more

accesses.

• graph500 (Figure 1c): A well-known data-intensive high-

performance computing benchmark [31] that performs a

BFS traversal on a large graph. We ran the simulator on

a trace that consists of approximately 5 million memory

accesses performed by graph500 during a period of high

memory pressure and high TLB miss rate. The trace was

recorded from an execution on a machine with 64GB of

RAM, and the memory footprint was 60GB. During this trace,

graph500 touches roughly 525MB of RAM. Our simulator’s

RAM was set slightly below this value, at 520MB, to create

some memory contention.

Notice that, in all three workloads, if we don’t use huge pages at

all (i.e., the huge page size is 1), then the TLB miss count is 1 to 4

orders of magnitude larger than the IO count. Thus these are the

type of workloads where huge pages can help TLB performance.

All three workloads exhibit a similar trend: On the one hand,

without huge pages, there are relatively few IOs, but a relatively

large number of TLB misses. On the other hand, if we use large

huge pages, then the TLB misses plummet, but the workloads incur

several orders of magnitude more IOs. There is no good choice for

the huge page size that simultaneously attains low IO cost and low

TLB miss count—huge pages can be a boon for TLBs but a bane in

terms of IO.

These experiments show that physically contiguous huge pages

have an unsavory trade-off between TLB misses and IO costs. In

contrast, a huge-page decoupling scheme has the potential to realize

both the low TLB miss rates of huge pages while retaining the low

IO costs of regular-sized pages.

7 RELATEDWORK

Limited-associativity paging. Sleator and Tarjan [47] gave com-

petitive analyses of LRU and FIFO paging algorithms, both with and

without resource augmentation. These results were subsequently

generalized by many authors [11, 12, 19, 20, 52, 53].

Due to the importance of limited-associativity caches in hard-

ware, there has also been substantial theoretical work on pag-

ing algorithms in the low-associativity setting. One direction of

work has been to analyze the competitive ratio of low-associativity

paging algorithms, where OPT is also limited in its associativity

[6, 13, 14, 23, 39]. Another direction of work has been to design

cache-aware algorithms that interact well with caches of low asso-

ciativity. Notably, Frigo et al. [24, 25] and Prokop [43] showed how

to take any algorithm in the external-memory model [5] and change

the algorithm’s access patterns in order so that a direct-mapped

cache (i.e., a cache with associativity 1) can be used to simulate a

fully-associative cache up to a constant factor in performance. In

a similar direction, Sen and Chatterjee [46] present cache-aware

algorithms for several basic problems (e.g. sorting, FFT, and permu-

tations) in a variant of the external-memory model [5, 24, 25] in

which cache has limited associativity.

In contrast with past work, our results show how to convert any

fully associative paging scheme into one with limited associativity

at almost no overhead. Thus, rather than designing a paging algo-

rithm (or designing an algorithm whose memory accesses play well

with a paging algorithm), we are interested deciding where pages

should reside in memory. And rather than aiming for a constant

competitive ratio, our application of address translation requires

us to be (1 + 𝑜 (1))-competitive with the paging algorithm that we

are simulating. On the other hand, whereas past work often treats

the associativity as constant (and possibly even 1), our schemes are

allowed to use super-constant associativity (although, remarkably,

we show that even 𝑂̃ (log log 𝑃)-associativity suffices).

Huge pages. Increasing the granularity of address translation is

a standard method to amplify TLB coverage. For instance, Linux

provides software support for huge pages of size larger than the

typical 4kB [26]. Manufacturers typically manage heterogeneity of

page sizes using dedicated TLBs for different sizes. For instance,

Intel’s Cascade Lake microarchitecture allows 2MB and 1GB pages,

and provides a 1536-entry L2 data TLB for 4kB and 2MB pages, and

a 16-entry L2 data TLB for 1GB pages [15]. The actual coverage

gains are limited by the dedicated TLB size, and are thus much less

than the multiplicative blowup in page size.

For some workloads, huge pages are wasteful, creating unneces-

sary memory pressure that is in turn worsened by the increased

swapping cost. Two attempts to overcome this lack of flexibility

are Linux’s transparent huge pages (THP) and superpages [32], that

work by coalescing areas of virtually and physically contiguous

pages into larger blocks (a huge/super page). In these schemes,

the OS must either enforce contiguity of physical huge pages, or

have fallback mechanisms when it cannot allocate a physical huge

page. THP attempts to reserve enough space for a huge page and,

in case of failure, falls back to allocating typical 4kB pages that are

reallocated later on. Page reallocation incurs large performance

penalties, since all applications whose pages are being moved are

paused, and in fact a number of commercial databases and other

products recommend huge pages should be disabled for optimal

performance [1–4]. The superpage system avoids reallocation by

always over-allocating memory, and keeps track of unused pages

within a superpage so they can be reclaimed by other superpages.

The downside is an increased complexity and overhead of OS mem-

ory management. Both approaches suffer from increased swapping

costs, because once a huge or superpage is created, it is treated as

an indivisible mapping unit.

For some workloads huge pages increase page fault latency be-

cause Linux has to clear up much larger pages and consolidates

fragmented pages to create large continuous physical pages syn-

chronously. Ingens [30] points out that workloads that fragment

memory quickly, such as in multi-tenant cloud environments, suffer

significant performance penalty, and implements an adaptive policy

to promote huge pages and asynchronously defragment memory.

HawkEye [35] proposes to synchronously pre-zero freed pages to

further reduce latency. GLUE [42] observes that huge pages hurt

lightweight system memory management and reduce consolidation

in the over-committed cloud deployments which depends on page

sharing to share memory. TEMPO [10], a prefetching optimization

technique to reduce TLB misses, reports in experiments how much

huge pages de-optimize: the more frequent huge pages are used

the less effective the optimization becomes.

TLB encodings. Because of the difficulties in maintaining physical

contiguity, a number of research projects have explored practical

TLB optimizations that leverage some contiguity when it is present,

such as coalescing TLB entries for runs of contiguous translations

that are smaller than a huge page [17, 38, 40, 41], or composing a

huge page out of “medium” sized frames [21]. Direct Segments [8]

allow a programmer to map gigabyte- to terabyte-sized primary

segments of memory and making the hardware to represent these

segments using a single TLB translation entry. Proposals such as

COLT [41] and Translation Ranger [50] identify physically con-

tiguous pages mapped in a process address space, and compress

the TLB translation into a single entry. As these examples show,

huge paging schemes that require physical contiguity saddle the

OS developer with solving the difficult, open problem of efficiently

maintaining physical contiguity.

To the best of our knowledge, our work is the first to completely

remove the requirement that huge pages be stored physically con-

tiguously.

8 CONCLUSION
In addition to showing how to potentially improve address trans-

lation on existing hardware, our results suggest ways that it may

make sense to change hardware in the future to improve address

translation.

Specifically, this paper treats 𝑤 as a fixed parameter. On the

other hand, when designing the hardware of TLBs, there is an op-

portunity to change the value of𝑤 if the payoff is big enough. An

interesting feature of our results is that they change the asymp-

totic relationship between 𝑤 and the coverage of the TLB: even

small increases in𝑤 correspond to potentially large gains in TLB

coverage (and, moreover, these gains do not require the storage of

additional keys!). Thus larger values of 𝑤 may make sense using

our techniques than was previously the case.

On the other hand, as long as𝑤 remains reasonably small, then

a hybrid approach may be sensible: one can use both huge-page

decoupling and physical huge pages of moderate size. So, for exam-

ple, if an optimal virtual huge page size is 𝑞 ≫ ℎmax pages, then we

could implement decoupled huge pages where the physical huge

pages would have size only 𝑞/ℎmax, thus achieving all the coverage

of the very large huge pages while mitigating the adverse effects

on I/Os.

9 ACKNOWLEDGEMENTS
This research was supported in part by NSF grants CCF-2106827,

CCF-1725543, CSR-1763680, CCF-1716252, CNS-1938709, CCF-

1617618, CCF-1916817, CCF-2106999, CSR-1938180 and CCF-

1715777, as well as an NSF GRFP fellowship and a Fannie and

John Hertz Fellowship.

This research was also partially sponsored by the United States

Air Force Research Laboratory and was accomplished under Co-

operative Agreement Number FA8750-19-2-1000. The views and

conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies,

either expressed or implied, of the United States Air Force or the

U.S. Government. The U.S. Government is authorized to reproduce

and distribute reprints for Government purposes notwithstanding

any copyright notation herein.

REFERENCES
[1] Couchbase: Disabling transparent huge pages (THP).

https://docs.couchbase.com/server/current/install/thp-disable.html. Accessed:

2/11/2021.

[2] MongoDB: Disable transparent huge pages (THP).

https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/. Accessed:

2/11/2021.

[3] Oracle database: Disabling transparent hugepages.

https://docs.oracle.com/en/database/oracle/oracle-

database/12.2/ladbi/disabling-transparent-hugepages.html. Accessed:

2/11/2021.

[4] Percona: Settling the myth of transparent hugepages for databases.

https://www.percona.com/blog/2019/03/06/settling-the-myth-of-transparent-

hugepages-for-databases/. Accessed:

2/11/2021.

[5] Alok Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and

related problems. Commun. ACM, 31(9):1116–1127, September 1988.

[6] Kunal Agrawal, Michael A. Bender, and Jeremy T. Fineman. The worst

page-replacement policy. In Proceedings of the 4th International Conference on

Fun with Algorithms (FUN), page 135–145. Springer-Verlag, 2007.

[7] Inc. AMD. Amd-v nested paging.

[8] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.

Swift. Efficient virtual memory for big memory servers. In Proceedings of the

40th Annual International Symposium on Computer Architecture (ISCA). ACM,

2013.

[9] Abhishek Bhattacharjee. Preserving virtual memory by mitigating the address

translation wall. IEEE Micro, 37(5):6–10, 2017.

[10] Abhishek Bhattacharjee. Translation-triggered prefetching. In Proceedings of the

Twenty-Second International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 63–76. ACM, 2017.

[11] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.

Cambridge University Press, USA, 1998.

[12] Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. The relative worst-order ratio

applied to paging. J. Comput. Syst. Sci., 73(5):818–843, August 2007.

[13] Mark Brehob, Richard Enbody, Eric Torng, and Stephen Wagner. On-line

restricted caching. In Proceedings of the Twelfth Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 374–383. Society for Industrial and

Applied Mathematics, 2001.

[14] Niv Buchbinder, Shahar Chen, and Joseph (Seffi) Naor. Competitive algorithms

for restricted caching and matroid caching. In Proceedings of the 22nd European

Symposium on Algorithms (ESA), pages 209–221. Springer Berlin Heidelberg,

2014.

[15] Intel’s Cascade Lake microarchitecture.

https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake. Accessed:

02/02/2020.

[16] Fernando J. Corbató. A paging experiment with the Multics system. In MIT

Project MAC Report MAC-M-384, 1969.

[17] Guilherme Cox and Abhishek Bhattacharjee. Efficient address translation for

architectures with multiple page sizes. In Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 435–448. ACM, 2017.

[18] Peter J. Denning. The working set model for program behavior. Commun. ACM,

11(5):323–333, May 1968.

[19] Reza Dorrigiv and Alejandro López-Ortiz. Closing the gap between theory and

practice: New measures for on-line algorithm analysis. In Shin-ichi Nakano and

Md. Saidur Rahman, editors, WALCOM: Algorithms and Computation, pages

13–24. Springer Berlin Heidelberg, 2008.

[20] Reza Dorrigiv, Alejandro López-Ortiz, and J. Ian Munro. On the relative

dominance of paging algorithms. Theor. Comput. Sci., 410(38–40):3694–3701,

September 2009.

[21] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem. Supporting superpages

in non-contiguous physical memory. In 2015 IEEE 21st International Symposium

on High Performance Computer Architecture (HPCA), pages 223–234, Feb 2015.

[22] Amos Fiat, Richard M Karp, Michael Luby, Lyle A McGeoch, Daniel D Sleator,

and Neal E Young. Competitive paging algorithms. Journal of Algorithms,

12(4):685 – 699, 1991.

[23] Amos Fiat, Manor Mendel, and Steven Seiden. Online companion caching.

Theoretical Computer Science, 324:499–511, 09 2002.

[24] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.

Cache-oblivious algorithms. In Proceedings of the 40th Annual Symposium on

Foundations of Computer Science (FOCS), page 285, 1999.

[25] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.

Cache-oblivious algorithms. ACM Transactions on Algorithms, 8(1):4, 2012.

[26] Mel Gorman. Linux huge pages. https://lwn.net/Articles/375096/, 2010.

[27] Mel Gorman. AMD Zen architecture.

https://en.wikichip.org/wiki/amd/microarchitectures/zen, 2018.

[28] Inc. Intel. Intel® 64 and ia-32 architectures software developer’s manual volume

3a: System programming guide, part 1.

[29] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley, M. Nemirovsky,

M. M. Swift, and O. S. Unsal. Energy-efficient address translation. In 2016 IEEE

International Symposium on High Performance Computer Architecture (HPCA),

pages 631–643, 2016.

[30] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and

Emmett Witchel. Coordinated and efficient huge page management with ingens.

In 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI), pages 705–721. USENIX Association, November 2016.

[31] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang.

Introducing the graph 500. Cray Users Group (CUG), 19:45–74, 2010.

[32] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan L. Cox. Practical,

transparent operating system support for superpages. In 5th Symposium on

Operating System Design and Implementation (OSDI), 2002.

[33] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli, Michael Cui, Yiying Zhang,

Haggai Eran, Liran Liss, Michael Wei, Dan Tsafrir, and Marcos K. Aguilera.

Storm: a fast transactional dataplane for remote data structures. CoRR,

abs/1902.02411, 2019.

[34] Omitted for Anonymity. Dynamic balls-and-bins and iceberg hashing. Under

review, 2021. Manuscript available upon request.

[35] Ashish Panwar, Sorav Bansal, and K. Gopinath. Hawkeye: Efficient fine-grained

os support for huge pages. In Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 347–360. Association for Computing Machinery, 2019.

[36] Ashish Panwar, Aravinda Prasad, and K. Gopinath. Making huge pages actually

useful. SIGPLAN Not., 53(2):679–692, March 2018.

[37] Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaehyuk Huh. Hybrid tlb

coalescing: Improving tlb translation coverage under diverse fragmented

memory allocations. SIGARCH Comput. Archit. News, 45(2):444–456, June 2017.

[38] Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaehyuk Huh. Hybrid TLB

coalescing: Improving TLB translation coverage under diverse fragmented

memory allocations. In Proceedings of the 44th Annual International Symposium

on Computer Architecture (ISCA), pages 444–456. Association for Computing

Machinery, 2017.

[39] Enoch Peserico. Online paging with arbitrary associativity. In Proceedings of the

Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

555–564. Society for Industrial and Applied Mathematics, 2003.

[40] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh. Increasing TLB reach by

exploiting clustering in page translations. In 2014 IEEE 20th International

Symposium on High Performance Computer Architecture (HPCA), pages 558–567,

Feb 2014.

[41] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee. CoLT: coalesced

large-reach TLBs. In 2012 45th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 258–269, December 2012.

[42] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee. Large pages and lightweight

memory management in virtualized environments: Can you have it both ways?

In Proceedings of the 2015 48th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 1–12, Dec 2015.

[43] H. Prokop. Cache oblivious algorithms. Master’s thesis, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, June 1999.

[44] Martin Raab and Angelika Steger. “balls into bins” — a simple and tight analysis.

In Randomization and Approximation Techniques in Computer Science, pages

159–170. Springer Berlin Heidelberg, 1998.

[45] SandyBridge. https://www.7-cpu.com/cpu/SandyBridge.html.

[46] Sandeep Sen and Siddhartha Chatterjee. Towards a theory of cache-efficient

algorithms. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 829–838, USA, 2000. Society for Industrial and

Applied Mathematics.

[47] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and

paging rules. Commun. ACM, 28(2):202–208, February 1985.

[48] Michael M. Swift. Towards𝑂 (1) memory. In Proceedings of the 16th Workshop

on Hot Topics in Operating Systems (HotOS), pages 7–11, 2017.

https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://lwn.net/Articles/375096/
https://en.wikichip.org/wiki/amd/microarchitectures/zen

[49] Berthold Vöcking. How asymmetry helps load balancing. J. ACM, 50(4):568–589,

July 2003.

[50] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. Translation

ranger: Operating system support for contiguity-aware TLBs. In Proceedings of

the 46th International Symposium on Computer Architecture (ISCA), pages

698–710, New York, NY, USA, 2019.

[51] Jian Yang, Joseph Izraelevitz, and Steven Swanson. Filemr: Rethinking RDMA

networking for scalable persistent memory. In 17th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 20), pages 111–125, Santa

Clara, CA, February 2020. USENIX Association.

[52] N. Young. The 𝑘-server dual and loose competitiveness for paging. Algorithmica,

11(6):525–541, Jun 1994.

[53] Neal E. Young. On-line file caching. In Proceedings of the Ninth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 82–86, USA, 1998.

Society for Industrial and Applied Mathematics.

[54] AMD’s Zen microarchitecture.

https://en.wikichip.org/wiki/amd/microarchitectures/zen. Accessed: 07/15/2020.

https://en.wikichip.org/wiki/amd/microarchitectures/zen

	Abstract
	1 Introduction
	2 Results and Technical Overview
	3 Huge-Page Decoupling
	4 Low-Associativity Paging and compact TLB Encodings
	5 Optimizing the Cost of Address Translation
	6 The IO TLB-Miss Trade-Off in Huge Pages
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

