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ABSTRACT
Precise exceptions are a cornerstone of modern computing as they
provide the abstraction of sequential instruction execution to pro-
grammers while accommodating microarchitectural optimizations.
However, increasing compute capabilities in deep memory hierar-
chies (e.g., software event handlers, programmable accelerators) ex-
pose long exception detection latencies that forgo precise exception
semantics for retired stores awaiting completion. Unfortunately,
well-known post-retirement speculation mechanisms to tolerate
these latencies require excessively large microarchitectural struc-
tures per core. This paper rethinks the role of architecture and OS
in supporting precise exceptions. We show that instead of forcing
the architecture to support precise exceptions transparently in all
cases, it is preferable to employ hardware-software co-design to
handle imprecise store exceptions efficiently. We develop formal-
ism to prove that this approach complies with underlying memory
consistency models and design a RISC-V prototype that passes all
litmus tests, demonstrating its efficacy.
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1 INTRODUCTION
Precise exceptions [53] are vital to modern programming as they
provide the abstraction of sequential instruction execution to pro-
grammers. Precise exceptions simplify software development while
permitting various microarchitectural optimizations. A precise ex-
ception is one that is triggered exactly at the corresponding instruc-
tion after instructions earlier in program order have completed.
While long-latency arithmetic and floating-point operations on
co-processors [28, 30, 56] generated imprecise exceptions in the
past, all exceptions in modern CPUs are precise, to the best of our
knowledge. Only fatal ECC errors are handled imprecisely because
they are generated in the cache/memory hierarchy.

The advent of paradigms like near/in-memory compute [19, 48],
however, pose unique challenges to the traditional notion of precise
exceptions. Specifically, modern CPUs assume that stores have their
exceptions detected and handled before they retire (even if they
have not completed). But, as this paper will show, recent proposals
that push accelerator logic near/in-memory break this assumption.
In effect, store exceptions may now be detected post retirement,
which is problematic because retired store instructions can have
pending exceptions while younger instructions can retire.

Post-retirement store exceptions present a wider problem than
one may realize, and affect several recent research proposals, includ-
ing: 1) accelerators that, for example, compress/decompress data
requested by a load/store [50]; 2) software coherence handlers [12,
16, 26, 34, 44, 49, 60]; 3) informing memory operations [27] and
software handlers for cache misses [8, 37]; and 4) virtual cache hier-
archies [9, 10, 22, 33], and intermediate address space [23, 25, 61, 65]
designs where virtual memory exceptions are generated in the
cache/memory hierarchy.

A first approach to resolving the problems with post-retirement
store exceptions may be to disable the store buffer and ensure that
all retired stores have had their (even long-latency) exceptions
detected and handled. But, store buffers are essential for imple-
mentation of relaxed memory consistency models [14, 38]. Store
buffers boost performance by allowing long-latency stores to retire
early before completion, enabling faster de-allocation of reorder
buffer entries and faster retirement of younger instructions. There-
fore, though simple to implement, eliding store buffers degrades
performance severely.
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A second approach, proposed by Qiu and Dubois [41], uses out-
of-order techniques to tolerate/reduce long exception detection la-
tencies. Their approach uses memory prefetching to detect memory-
level exceptions sooner. But, as memory hierarchies grow deeper,
data prefetching does not adequately hide long-latency exceptions
in important classes of workloads effectively [15]. While outper-
forming store buffer elision at the cost of moderate complexity,
prefetching does not match traditional CPU performance.

A third approach relies on post-retirement speculation tech-
niques [7, 11, 20, 21, 42, 57]. These techniques were proposed to
hide long memory access latencies and can therefore be naturally
extended to handle long store exception detection latencies. But,
in order to match the performance of traditional CPUs, such tech-
niques require prohibitive amounts of buffering (tens of KBs of
SRAM) per core to maintain speculation state. With the end of
Moore’s law, the silicon required for speculation can instead be pro-
visioned for logic [2, 50, 63, 64] to provide higher performance and
energy efficiency. Moreover, microarchitectural structures for spec-
ulation, such as register files and map tables, reside in the critical
path of an out-of-order pipeline and cannot be scaled easily without
impacting the cycle time and increasing power consumption.

We take a different approach and ask whether it still makes sense
to provide precise exception semantics to the OS/user in all cases.
Does it instead make sense to accept imprecise store exceptions?

We show that it is possible to co-design the hardware and OS to
efficiently support imprecise exceptions for retired stores by obvi-
ating the need for speculative retirement while hiding exception-
detection latency. When stores generate imprecise exceptions due
to abstractions like virtual memory, then they are handled exclu-
sively in the OS and are not visible to the user. In contrast, if the
exceptions originate from other general-purpose compute units
and accelerators, then they might have to be exposed to the user for
correct imprecise exception handling. As imprecise store exceptions
indicate that the store can only be applied to memory after suc-
cessful exception handling, it is vital to understand the interaction
of such stores with other memory accesses in the system in the
context of the underlying memory consistency model. Fortunately,
exceptions are infrequent and therefore the key challenge in ad-
dressing imprecise exceptions is guaranteeing correctness rather
than optimizing design performance.

Formalism is key to enforcing that memory consistency models
are correctly implemented as such hardware designs are often prone
to concurrency bugs. We develop formalism to show that appropri-
ate mechanisms in the hardware and OS can implement imprecise
exceptions while preserving the underlying memory consistency
model. Our formalism shows that handling normal stores together
or separately from stores with imprecise exceptions gives rise to
different systems. While both systems are correct, handling the
stores together leads to a simpler design. Based on the formalism,
we introduce the hardware-OS co-design of a new architectural
interface to supply the stores with imprecise exceptions from the
microarchitecture to the OS while retaining the required order so
that the OS can perform the stores after successful exception han-
dling. The interface also enables various batching optimizations for
imprecise exception handling. Finally, we build a RISC-V-based pro-
totype with Linux and evaluate standard litmus tests for memory
consistency models to showcase the correctness of our design.

Overall, we make the following contributions:

• We identify that integrating compute capabilities in the deep
cache/memory hierarchy can forgo precise exception seman-
tics for retired stores.

• We demonstrate that while post-retirement speculation tech-
niques can be used to maintain precise exceptions, they re-
quire up to 25 KBs of SRAM per core for tracking additional
speculation state.

• We relax the precise exception semantics for retired stores
and develop formalism to demonstrate that imprecise store
exceptions correctly adhere to the underlying memory con-
sistency models.

• We introduce hardware-software co-design to implement im-
precise store exceptions efficiently while enabling batching
optimizations in the OS.

• We build a RISC-V prototype using Linux to showcase the
correctness of our design.

2 EXCEPTION HANDLING
In this section, we describe the challenges posed by post-retirement
store exception detection on the notion of precise exceptions. We
then discuss various “obvious" ways to address these challenges and
their shortcomings, particularly in the context of relaxed memory
consistency models.

2.1 Precise exceptions
Precise exceptions [53] are a de-facto abstraction assumed in mod-
ern CPUs as they simplify software at the cost of reasonable hard-
ware complexity. Precise exceptions allow programmers to assume
a simple sequential execution model where only one instruction
executes at a time, and any exceptions are detected and handled
before the corresponding instruction executes.

CPUs implementing precise exceptions require exceptions to be
triggered precisely at the corresponding instruction only after older
instructions completed and successfully modified process state,
and before younger instructions modified process state. All excep-
tions must be detected and handled before instruction retirement.
Microarchitecturally, exceptions are implemented by 1) executing
instructions such that they modify the process state sequentially,
but disabling out-of-order execution and its performance benefits,
or 2) employing speculative execution to roll back the effects of
any younger instructions along with the exception-generating in-
struction, benefiting the performance in the common case without
exceptions. Importantly, this approach extends to interrupts, with
the caveat that interrupts are generated asynchronously by external
devices and can be triggered on any instruction.

Virtual memory is an example of a common source of exceptions
as it requires every load/store instruction to perform address trans-
lation before it can be applied to the cache/memory hierarchy. If an
exception (e.g., page fault) is detected during address translation,
then the corresponding load/store and all the younger instructions
are flushed, and the exception handler is triggered precisely. Af-
ter the OS handles the exception and reschedules the process, the
load/store instruction is re-executed and completes successfully.
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Fault

Fetch
Control protection exception, Code page
fault, Code-segment limit violation

Decode Invalid opcode, Device not available, Debug

Execute
Divide by zero, Bound range exceeded,
FP error, Alignment check,
SIMD FP exception, Invalid TSS

Memory
Segment not present, Stack-segment fault,
Page fault, General protection fault,
Virtualization exception

Trap Debug, Breakpoint, Overflow
Abort Double fault, Triple fault, Machine Check

Table 1: Classification of x86 exceptions [29].

While precise exceptions are dominant today, there are cases
where imprecise exceptions have been adopted. In the past, im-
precise exceptions were generated by long-latency arithmetic or
floating-point operations implemented on co-processors [28, 30,
56]). Today, machine checks [54] (e.g., ECC errors in the cache/mem-
ory hierarchy) are the only example of imprecise exception in mod-
ern CPUs because they are non-restartable and cause the OS to
terminate the process or even crash. Finally, emerging accelera-
tors such as GPUs [55] adopt imprecise exceptions because precise
exceptions pose a dramatic performance overhead or require signif-
icantly more silicon area and power. As computing systems evolve,
the cost of supporting precise exceptions and their programming
implications are being gradually revisited with new constraints.
This paper studies the cost of supporting precise exceptions coming
from compute units embedded in the cache/memory hierarchy.

2.2 Long-latency exceptions can be imprecise
Today, cores are the only component in a CPU that can generate
exceptions, while all other components perform simpler operations
and cannot generate exceptions. Table 1 represents the x86 excep-
tions and their point of origin. Except for machine checks, all excep-
tions are generated in the fetch, decode, execute, or memory stages
and caught synchronously in the reorder buffer (ROB). But with
the integration of compute capabilities in the deep cache/mem-
ory hierarchies, the integrated compute units can also generate
exceptions when responding to load/store instructions executed
by the cores. As exceptions can originate from the cache/memory
hierarchy, exception detection can even include address translation
and memory latency (100s of cycles and growing).

The above problem generally appears in proposals that require
software intervention when servicing memory requests, such as 1)
software handling of cooperative/distributed shared memory [12,
16, 26, 34, 44, 49, 60]; 2) informing memory operations [27] and
software techniques for cache-miss handling [8, 24, 37]; 3) virtual
cache hierarchies [9, 10, 22, 33], or intermediate address space [23,
25, 61, 65] designs where virtual memory exceptions are gener-
ated in the cache/memory hierarchy; and 4) accelerators that can
generate exceptions when executing additional functionality for
memory requests performed by the cores [50]. Fortunately, this
problem does not apply to accelerators invoked using an explicit

request-response programming model [2, 35, 63, 64] where any gen-
erated exceptions are treated as interrupts by the cores. We further
illustrate the problem using the following two detailed examples:

Example 1 - täkō [50] is a semi-general-purpose accelerator con-
nected to the L2 and LLC slice of each core to perform user-defined
data transformations, such as compression and encryption. Users
can configure täkō to compress data when evicting it from the cache
and write the compressed version to memory. Upon reading the
compressed data from memory on a cache miss, täkō will install the
decompressed version in the cache. Such a design allows exceptions
(e.g., page fault, divide-by-zero) to be generated by the accelerator
when processing memory requests received from a core because
täkō relies on the virtual memory abstraction to allow users to
define data transformation logic using software-defined callbacks.
For example, when a core executes a store instruction resulting in a
cache miss, täkō will fetch and decompress data from memory and
can potentially encounter a page fault. The page fault will result
in a delayed notification of the exception being triggered on the
corresponding store instruction.

Example 2 - Midgard [23] is a novel virtual memory design in
which the address translation is broken into two parts using an
intermediate address space called Midgard. The Midgard address
space maps the virtual memory areas (VMAs) from all processes
and is used to index the cache hierarchy instead of physical ad-
dresses. The VMA-based (lightweight) virtual-to-Midgard address
translation is required for all cache-hierarchy accesses, while the
page-based (heavyweight) Midgard-to-physical address translation
is required only if the cache hierarchy misses. The overall benefit of
Midgard comes from the increasing cache-hierarchy capacity that
leads to higher hit rates and reduces the frequency of page-based
translations. In such a design, even after the VMA-based translation
has succeeded for a memory request, the page-based translation can
still generate exceptions due to page faults. For example, the core
can execute a store instruction that passes virtual-to-Midgard ad-
dress translation, misses in the cache hierarchy, detects a page fault
during the Midgard-to-physical address translation, and needs to
trigger an exception on the corresponding store instruction. Thus,
the MMU will notify the core of the exception in a delayed manner.

Modern CPUs use aggressive optimizations [14, 38] that remove
the store from the ROB (called retirement) once it becomes the
oldest instruction but is yet to write its value to the L1 cache
(called completion). As stores do not produce a register value for
the younger instructions, they are retired to unblock the pipeline
and wait for completion in the store buffer. Subsequently, if the
store triggers an exception as in the examples above, the resulting
exception cannot be precise because it cannot be triggered at the
corresponding store instruction as it has already retired, and the
pipeline might have further retired younger instructions. Fortu-
nately, such impreciseness is limited to only store instructions as
all the load instructions produce register values for the younger
instructions and cannot retire before completion.

2.3 Forced precise exceptions kill performance
To imitate the sequential strategy [53], we can disable the store
buffer optimization described above to force precise exceptions.
Disabling the store buffer would ensure that all load and store
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Core
16× ARM Cortex-A76 [59]
4-way OoO, WC, 128-entry ROB, 32-entry SB

TLB L1(I,D): 48 entries, L2: 1024 entries

L1 Caches
64KB 4-way L1D, 64KB 4-way L1I
64-byte blocks, 2 ports, 32 MSHRs
2-cycle latency (tag+data)

L2 1MB/tile, 16-way, 6-cycle access, non-inclusive
Coherence Directory-based MESI
Interconnect 4 × 4 2D mesh, 16B links, 3 cycles/hop
Memory 80 cycle access latency (default)

Table 2: System parameters for simulation on QFlex [40].

instructions await completion in the pipeline before they retire,
forcing any exception detection to happen in the ROB itself and
enabling triggering the exception handler precisely at the required
instruction. However, the store buffer is the cornerstone of relaxed
memory consistency models [38] such as Processor Consistency
(PC) and Weak Consistency (WC), and even techniques such as
end-to-end Sequential Consistency [52].

Relaxed memory consistency models (or memory models) allow
memory reorderings to significantly improve single-thread perfor-
mance. Such memory reorderings require the long-latency stores
to be retired and put aside in the store buffer, allowing any younger
instructions to retire, leading to a high pipeline throughput. Dis-
abling the store buffer optimization also disables such reorderings,
effectively reverting to Sequential Consistency (SC) and exposing
the long latency of stores to the pipeline. Doing so voids the typi-
cal 20-30% single-thread performance improvement due to relaxed
memory models, thus providing precise exceptions at a significant
performance cost.

In this paper, we discuss the following two solutions to main-
tain the performance gains of relaxed memory models. 1) Using
the speculation strategy [53], we demonstrate that speculation can
cover the long latency of memory operations to provide precise
exceptions with the performance of relaxed memory models but at
a much greater silicon cost than required for ROB speculation. 2)
We demonstrate that hardware-software co-design can efficiently
implement imprecise handling of store exceptions where the excep-
tion handler is triggered at an unrelated instruction instead of the
corresponding store instruction, thereby imitating an interrupt.

3 PRECISE EXCEPTIONS WITH SPECULATION
Post-retirement speculation has been shown to match and even
exceed the performance of relaxed memory models at the cost of
additional silicon. We now detail how these speculation techniques
can be used to maintain the abstraction of precise exceptions even
for long-latency store operations.

3.1 Post-retirement speculation
As described in subsection 2.3, relaxed memory model implementa-
tions utilize the store buffer to accommodate retired stores without
blocking the pipeline. If such a store triggers an exception after
retirement, then the exception handling cannot be precise as the

pipeline has potentially retired younger instructions. For enforcing
precise exceptions, the store must await completion and detect all
exceptions before retiring, forcing the legal execution to obey SC
without a store buffer.

Post-retirement speculation proposals [7, 11, 20, 21, 42, 57] ap-
plied to SC can match and even exceed the performance of relaxed
memory models such as PC and WC. These proposals obtain per-
formance benefits through speculative memory reorderings while
ensuring that other cores cannot observe them by using check-
pointing mechanisms to roll back the core to a legal SC state if
there is interaction with other cores. As there is little interaction
among cores, such proposals significantly benefit from speculative
reorderings. The same reasoning applies to exceptions as they are
infrequent, and speculative reorderings can provide performance
benefits in the common case, while checkpoints can be used to
restore the core to a legal SC state when triggering exceptions.

3.2 Case study: ASO
We adopt ASO [57] for imprecise exceptions. Other designs such
as SC++ [21] require more silicon than ASO, while Invisifence [7]
reduces silicon usage by limiting checkpoints, but also limits the
overall achievable performance. In ASO, when the core is stalled
due to an ordering requirement, it creates a checkpoint that allows
it to ignore the ordering requirement speculatively. ASO uses a
scalable store buffer to record the program order of all the specula-
tive stores while using the L1 cache to store the latest speculatively
read and written values which younger loads can then use, where
the speculatively-written values in L1 are not globally visible. The
speculation is successful when the core obtains the write permis-
sions for all speculatively written blocks and atomically drains all
of them to L2, making them globally visible.

The number of supported checkpoints is pre-decided as part of
the ASO implementation. Each checkpoint requires a map table
to record the physical registers representing the core’s legal state
before speculatively executing the checkpointed instruction. While
in traditional ROB-contained speculation, the physical register de-
noting the state prior to the instruction execution is freed when
the instruction retires, ASO requires keeping the physical registers
until the speculation succeeds and the checkpoint is freed. For im-
precise exceptions, each store miss requires a new checkpoint as the
missing store can potentially trigger an exception. Once the store
miss is resolved without exception, the corresponding checkpoint
is merged into the previous checkpoint and the relevant physical
registers are freed. Hence, the number of checkpoints reflects the
number of outstanding store misses. Speculation fails if an excep-
tion is detected on a speculated store, causing the core state to be
rolled back using checkpoints, followed by a precise invocation of
an exception handler.

3.3 Quantifying the speculation state
We use cycle-accurate full-system simulation with QFlex [40] to
measure the performance benefits of ASO for imprecise excep-
tions. Table 2 details system simulation parameters. Table 3 lists the
evaluated server benchmarks from GAP [6], Tailbench [32], and
Cloudsuite [17], along with the instruction mix and the IPC speedup
on a WC system. As the PR, CC, and TC in the GAP benchmark
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Instruction mix (%) WC Speculation state requirement (KB)
Store Load Sync Others speedup Baseline 2× memory latency 4× latency skew

GAP
[6]

BFS 11 22 <1 67 1.53 14 14 17
SSSP 3 22 1 74 1.06 21 21 21
BC 25 25 0 50 3.24 18 18 18

Tailbench
[32]

Silo 7 13 2 78 1.15 18 18 25
Masstree 14 13 <1 73 1.60 16 16 16

Cloudsuite
[17]

Data Caching 11 24 <1 65 1.12 17 17 22
Media Streaming 9 13 <1 78 1.16 14 14 17
Data Serving 9 24 <1 67 1.10 14 17 23

Table 3: We list the evaluated benchmarks, their instruction mix (%), the WC speedup over SC, and the speculation state
requirements (in KB) to achieve the full WC performance benefits in the baseline SC system, a system with 2×memory latency,
and a system with 4× store-to-load latency skew.

suite have <1% stores and no performance benefits from WC, we
do not evaluate them further.

Table 3 shows the amount of speculation state required per core
to obtain the speedup equivalent to that of WC. The speculation
state includes the scalable store buffer, per-word valid and Specu-
latively Written (SW) bits in L1D, the Speculatively Read (SR) bits
in the L1D and L2 cache, the additional physical registers required
to store the legal SC state before speculatively-retired instructions,
and the map tables to track the physical registers. Each entry in the
scalable store buffer is 16B, while each checkpoint can require up
to 32 extra physical registers (256B), resulting in a larger physical
register file. Finally, each map table contains 32 logical-to-physical
register mappings while storing 8-10 bits as the register index in a
256-1024 entry physical register file. Increasing the number of sup-
ported checkpoints increases the total required speculation state.
Table 3 demonstrates that post-retirement speculation can indeed
match the performance of corresponding WC implementations. As
most of our workloads have <1% synchronization instructions, we
do not achieve better performance from fence speculation. Unfortu-
nately, the required performance gain comes at a high silicon cost of
up to ∼25 KB per core. Moreover, most of the required speculation
state is part of the physical register file, which is a critical structure
in the pipeline and cannot be scaled easily.

We also perform additional studies to quantify the impact of
hardware scaling trends on the amount of speculation state re-
quired. To this end, we quantify the impact of memory latency
and the latency skew between stores and loads on the required
speculation state. As the memory capacity in the system scales,
the average memory latency becomes higher because of frequent
remote memory accesses across sockets and due to denser memory
technologies such as persistent memory. Moreover, modern systems
feature multiple sockets/chiplets per CPU [58], which can lead to
remote cache accesses from far-off sockets. In such a system, cache
coherence protocols require extra hops for servicing stores than
they need for servicing loads because stores require invalidating
all copies of the block, which might reside in far sockets/chiplets.

Table 3 depicts two additional systems with 2x the baseline
memory latency, and 4x the baseline store-vs-load latency skew re-
spectively. As demonstrated, a system with 2x the memory latency

requires about the same amount of speculation state to reach the
WC speedup as the baseline system. The reason is that increasing
the memory latency affects both the loads and stores, and as loads
typically outnumber the stores, they quickly become the perfor-
mance bottleneck. In contrast, the required speculation state can
increase considerably in a system where the stores take 4x longer
latency to complete than the loads. The reason is that as the skew
between store and load latencies increases, the pending stores in the
store buffer take more time and prevent further stores from retiring,
thus blocking the pipeline. Increasing the time required to drain
the store buffer also has performance side effects for other subsys-
tems, such as the tlbi instruction for performing TLB shootdowns.
Overall, while speculation can indeed provide the performance of
WC, it requires a significant amount of SRAM resources that are
not trivially obtained in the post-Moore era.

4 IMPRECISE STORE EXCEPTIONS
Maintaining precise exceptions with SC either leads to significant
performance degradation or requires post-retirement speculation
mechanisms to provide WC performance using tens of KBs of ex-
pensive per-core speculation state. Instead, we propose a hardware-
software co-design to implement PC/WC systems with the relaxed
semantics of imprecise store exceptions. In this section, we provide
the formalism for memory models with imprecise store exceptions
and demonstrate that with appropriate hardware and OS support,
imprecise store exceptions are compatible with both PC and WC.

4.1 Brief description
Similar to modern CPUs, we require that the stores are retired
and put in the store buffer to await completion. Subsequently, if
they trigger an exception, the exception handler must be triggered
imprecisely on the oldest instruction in the ROB. However, the
faulting stores (i.e., stores that trigger exceptions) present in the
store buffer can neither be drained to the cache hierarchy nor
rolled back to be re-executed later as they have already retired and
younger instructions have further modified the architectural state.
With exception handling latencies of several 𝜇𝑠 (e.g., lazy memory
allocation) to tens of𝑚𝑠 (e.g., demand paging), the stores cannot
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Notation Definition

L(A) Load latest value from address A
S(A), S(A, D) Store data D to address A

SOS(A), SOS(A, D) OS stores data D at address A
F Fence as a memory ordering primitive

X <p Y
Operation X happens before operation Y
in program order on the same core

X <m Y
Operation X happens before operation Y
in the global memory order

PUT(S(A)) Send S(A) to the architectural interface.

GET
Retrieve one faulting store from the
architectural interface

DETECT Detect an exception
RESOLVE Resolve the exception and resume execution

MAX<m ({}S(A))
Return the latest value in memory order
from the set of stores to address A

Table 4: Memory consistency formalism notations [38].

stay in the store buffer because they will eventually clog the store
buffer and prevent the core from executing younger instructions.

We create a new architectural interface to supply faulting stores
along with their address, data, byte mask, and the accelerator-
specific exception code to the OS so that we can free up the microar-
chitectural resources occupied by the store. When triggering an
imprecise exception handler, the OS first reads the faulting stores
using the architectural interface and then resolves the exception.
If the exception is recoverable (e.g., page fault), the OS applies
the obtained faulting stores to the corresponding addresses, and
the program resumes execution. If the exception is irrecoverable
(e.g., segmentation fault), the faulting stores are discarded, and the
program is terminated.

As the OS may take up to tens of𝑚𝑠 to resolve the exception
and apply the faulting store, the store is effectively reordered after
younger operations in the global memory order, which might seem
to violate the underlying memory model. While previous research
proposals [36, 46] studied the interaction between memory opera-
tions executed by the core and MMUs, there are no studies on such
OS-induced reorderings. We claim that we can make these reorder-
ings transparent to user programs with a formally-defined memory
model incorporating store exceptions and a hardware-software
co-design that conforms to required constraints.

4.2 Formal definition of memory models
We first describe the standard formalism [38] of PC and WC using
notations defined in Table 4. We study PC and WC because they are
the prevalent models in ISAs today (x86, AMD, ARM, RISC-V). We
use PC to represent Total Store Order (TSO) as they are identical in
modern cache-coherent systems [1].

PC relaxes the store-to-load ordering and is formally defined
with the following rules:

L(A) <p S(B) =⇒ L(A) <m S(B)

L(A) <p L(B) =⇒ L(A) <m L(B)
S(A) <p S(B) =⇒ S(A) <m S(B)

S(A) <p F <p L(B) =⇒ S(A) <m F <m L(B)
L(A) = MAX<m ({S(A, D) | S(A, D) <m/<p L(A)})

WC relaxes various other orderings present in PC and is formally
defined with the following rules:

L(A)/S(A) <p F =⇒ L(A)/S(A) <m F
F <p L(A)/S(A) =⇒ F <m L(A)/S(A)

L(A) <p L’(A)/S(A) =⇒ L(A) <m L’(A)/S(A)
S(A) <p S’(A) =⇒ S(A) <m S’(A)

L(A) = MAX<m ({S(A, D) | S(A, D) <m/<p L(A)})
where L’(A)/S’(A) depicts another load/store to address A. Overall,
WC relaxes all orderings except the ones involving fences and
memory operations to the same address.

We further require additional operations to handle imprecise
store exceptions. Assuming that S(A) triggers an exception, the
DETECT operation indicates the detection of the exception. Once
the exception is detected, then S(A) should be supplied to the ar-
chitectural interface using PUT(S(A)) operation, and consequently,
the OS will read the faulty store using GET operation and will
apply the faulting store to the address A using SOS(A) operation.
Finally, the OS can finish the exception handling and resume the
program execution using the RESOLVE operation. Overall, these
new operations strictly happen in the global memory order as:

DETECT <m PUT(S(A)) <m GET <m SOS(A) <m RESOLVE

4.3 Observing the memory order
Independent of the underlying memory model and the presence of
imprecise exceptions, programs can infer the order among memory
operations only by detecting value changes at the corresponding
addresses. Assume that an application applies two stores, S(A,1) and
S(B,1), to two zero-initialized memory locations, A and B. To detect
the memory order between S(A) and S(B), the program requires
two observer loads L(A) and L(B) that should be executed on a
different core to detect the change in values at addresses A and
B. The only way that the application can infer S(A,1) <m S(B,1) is
if L(A) <m L(B), L(A) reads 1, and L(B) reads 0, corresponding to
the execution S(A,1) <m L(A) <m L(B) <m S(B,1). Note that these
requirements create a total order among the four operations.

Similarly, the onlyway to infer S(B,1) <m S(A,1) is if L(B) <m L(A),
L(A) reads 0, and L(B) reads 1, corresponding to the execution
S(B,1) <m L(B) <m L(A) <m S(A,1). If any of the above requirements
are not fulfilled, then the order between S(A,1) and S(B,1) cannot be
inferred solely based on the value read by observer loads because
there is no dependency chain among the stores and loads. In sum-
mary, the order among memory operations can only be inferred by
the composition of preserved program orders [3] (memory orders
enforced from program order based on the memory model, e.g.,
program order between two stores in PC) and specific change in
value that loads can detect. Consequently, programs cannot infer
the memory order if the required value changes are not detectable.

Using the above rules, certain combinations of detectable value
changes can lead to violations of the memory model. Consider the
message-passing litmus test [38] shown in Figure 1, where Core 0
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Core 0 S(A, 1) S(B, 1)FENCE

Core 1 L(B) = 1 FENCE L(A) = 0<p

<p <p

<p

<m <m

Figure 1: Violation in the message-passing litmus test.

communicates B to Core 1 by first setting A to indicate the ready
status of B. For simplicity, we explicitly insert two fences between
two stores and two loads to make WC identical to PC. Out of four
possible results, only the execution with L(B) reading 1 and L(A)
reading 0 is prohibited because it indicates that both S(A, 1) <m L(A)
and L(A) <m S(A, 1) hold simultaneously, which is impossible. The
basis of our formalism is that the applications cannot detect any
violations due to faulting stores because the required value changes
to infer the memory ordering are either presented in the correct
order or are not detectable.

4.4 Contract among the cores, interface, and OS
Next, we describe the contract required between the cores, the
architectural interface, and the OS to adhere to the underlying
memory models, as shown in Table 5. Imprecise exception handling
requires an architectural interface to supply the faulting store to the
OS, and the interface is required to guarantee that the OS retrieves
the faulting stores in the same order as the core sends them. While
we do not require a total order among the faulting stores from all
cores, we require enforcing a per-core order for PC and do not
require any order for WC.

When using the interface to supply faulting stores, the cores
must ensure that the stores are supplied in the order the underlying
memory model prescribes. In PC, the faulting stores in the store
buffer should be supplied to the interface in the FIFO order of the
store buffer so that the OS can apply all the stores to memory in
the required order after successful exception handling. However, in
WC, as there is no order required among stores in the store buffer
except for stores to the same address that are already coalesced, the
order of supplying the faulting stores is irrelevant.

After successful exception handling, the OS retrieves the faulting
stores using the interface and applies them to their target addresses.
The order in which the faulting stores are applied is critical for
the correctness of the memory model, and requires the OS to obey
the following constraints. First, similar to precise exceptions, the
program or thread that triggered the imprecise exception can only
resume after the exception has been successfully handled. Second,
all the retrieved faulting stores must be applied to their target
addresses for the imprecise exception handling to be complete.
Third and last, the OS must ensure that the faulting stores are
applied to memory in the same order as retrieved from the interface.
The last rule applies only to PC which requires a strict order among
per-core stores. In the case of WC, the OS does not need to enforce
any order among stores as the memory model does not mandate it.

The above constraints also imply that if there is a precise excep-
tion on a load or if an imprecise exception is pinned on an atomic
or a fence instruction because it blocks the ROB waiting for the
store buffer to drain where a store in the store buffer generates the

Component Requirements for PC

Cores
Supply faulting stores to the interface in the
serial order dictated by the store buffer

Interface
Supply faulting stores to the OS in the same order
as received from the core

OS
1) Program resumes only after exception handling
2) Apply all faulting stores during handling
3) Apply the faulting stores in the interface order

Table 5: The contract among the cores, interface, and OS.

imprecise exception, then the load/atomic/fence instruction will be
re-executed only after successful exception handling indicated by
RESOLVE <m L(A)/Atomic/F . The overall intuition behind these
constraints is to ensure that the microarchitecture communicates
the order required for obeying the underlying memory model to
the OS, which then applies the faulting stores in the required order
to complete exception handling successfully before resuming the
program execution.

4.5 Formalism with split stream
When handling imprecise store exceptions, there are two approaches
to treat the non-faulting stores present along with faulting stores
in the store buffer. The non-faulting stores can be directly written
to memory or supplied to the interface along with faulting stores.
The first approach results in a formalism that treats non-faulting
stores and faulting stores as two separate streams of operations,
while the second approach results in all the stores being treated as
the same stream. We provide the formalism for both approaches
and describe their differences.

When a faulting store is in the store buffer, the other non-faulting
stores can still be drained to memory. We call this case split stream
because the stream of faulting stores is treated differently from that
of non-faulting stores. In PC, both streams should obey program
order, while in WC, the order of stores in each stream is irrelevant.
In both models, the non-faulting stores will be drained to memory
immediately, while the faulting stores will be applied later by the
OS, potentially breaking the required global memory order among
all the stores. We show this effect using the following formalism.
Assume that S(A) is faulting so that it is supplied to the interface,
while another non-faulting S(B) that happens after S(A) in program
order is drained to memory as usual. Eventually, an exception han-
dler is triggered, which retrieves S(A) from the interface and applies
it to memory, resolving the exception. We can formally represent
the scenario as follows:

S(A) <p S(B) =⇒ DETECT <m PUT(S(A)) <m S(B) <m
GET <m SOS(A) <m RESOLVE

As shown, S(B) can appear before SOS(A) in memory order and
violate the memory ordering requirements for PC. To be compat-
ible with PC, the hardware and software need to ensure that ob-
server loads cannot observe this violation, which requires that
SOS(A) <m RESOLVE <m L(A) so that L(A) cannot detect the value
change on A that leads to the violation.While it might seem like this
condition is easy to satisfy when address A is faulting, a subtle race
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Core 1

Core 0

TimeDETECT

DETECT

GET

RESOLVEPUT(S(A)) S(B, 1)

RESOLVE L’(A) = 0 L(B) = 1 L(A) = 0

GET SOS(A, 1)

(a) Execution with split stream.

Core 1

Core 0

TimeDETECT

DETECT

GET

RESOLVEPUT(S(A)) PUT(S(B))

RESOLVE L’(A) = 0 L(B) = 0 L(A) = 0

GET GETSOS(A, 1) SOS(B, 1)

(b) Execution without split stream.

Figure 2: Race condition between the GET operation on Core 1 and the PUT(S(A)) operation on Core 0.

condition exists in this case. Consider a program where Core 0 ex-
ecutes S(A,1) <p S(B,1), and Core 1 executes L’(A) <p L(B) <p L(A).
Assume that both A and B are zero-initialized, and the accesses
to address A will result in exceptions at both S(A) and L(A), corre-
sponding to the following two concurrent executions:

Core 0: DETECT <m PUT(S(A)) <m S(B) <m
GET <m SOS(A) <m RESOLVE

Core 1: DETECT <m GET <m RESOLVE <m
L’(A) <m L(B) <m L(A)

There can be a race between PUT(S(A)) on Core 0 and GET on Core
1 such that at the time GET completes, it cannot see PUT(S(A)). As
SOS(A) might not be applied before Core 1 performs its RESOLVE,
it can result in an execution where L(B) reads 1 and L(A) reads
0, as shown in Figure 2a. While such execution is legal in WC, it
violates PC because Core 1 can infer that S(B) has taken place, but
S(A) has not, even though it comes earlier in program order. For
the split stream formalism to work in real designs, the hardware
and OS should together ensure that the core executes PUT(S(A))
before the OS performs the final GET to avoid any data races. Such
a design would require a barrier or synchronization between the
hardware and software so that no further PUT(S(A)) can occur after
the GET. Though possible, building such designs is difficult because
of the complexity and performance overhead of implementing such
barrier or synchronization mechanisms.

4.6 Formalism without split stream
We now describe the second approach, where the faulting and non-
faulting stores are treated as the same stream. In PC, stores in the
store buffer should be applied to memory in program order. In
the presence of faulting stores, instead of sending younger non-
faulting stores to memory as another stream, they are supplied
to the architectural interface along with the faulting stores. The
faulting and younger non-faulting stores are still supplied to the
interface in the FIFO order of the store buffer, allowing the OS
to retrieve and apply them in the correct program order when
handling the imprecise store exception. The intuition behind this
approach is that if the faulting and any younger non-faulting stores
are supplied to the OS and applied by the OS in their original
program order, then there are no potential PC violations that the
OS needs to hide as in the previous case. Assuming that S(A) is
faulting while another younger S(B) is not, the core will supply

To prove that S(A) <p S(B) =⇒ S(A) <m S(B), we consider the
following four cases:

(1) Both S(A) and S(B) are not faulting,
(2) Only S(B) is faulting,
(3) Both S(A) and S(B) are faulting,
(4) Only S(A) is faulting.
Assume that S(B) is in the store buffer when S(A) is drained to

memory or supplied to the architectural interface.
Case 1 is the original PC case. The store buffer drains both S(A)

and S(B) to memory in their program order.
In case 2, the store buffer drains S(A) to memory and supplies

S(B) to the interface. The OS then retrieves S(B) from the interface
and applies it. This case represents the following execution:

S(A) <p S(B) =⇒ S(A) <m DETECT <m PUT(S(B)) <m
GET <m SOS(B) <m RESOLVE

=⇒ S(A) <m SOS(B)
In case 3, the store buffer supplies both S(A) and S(B) to the

interface. The OS then retrieves both stores from the interface
and applies them in the retrieved order. This case represents the
following execution:

S(A) <p S(B) =⇒ DETECT <m PUT(S(A)) <m
PUT(S(B)) <m GET <m SOS(A) <m
GET <m SOS(B) <m RESOLVE

=⇒ SOS(A) <m SOS(B)
Case 4 is same as case 3 because S(B) is supplied to and applied

by the OS as it follows the faulting S(A).
If S(B) is not in the store buffer because it has not retired,

then S(A) can either be applied to memory (case 1 and 2), or
trigger an exception (case 3 and 4) where the OS applies SOS(A) to
memory and executes the RESOLVE operation. In all cases, S(B)
is guaranteed to retire only after S(A) or SOS(A) has been already
applied to memory.

Proof 1: Store-store ordering rule of PC.

both stores to the architectural interface in the program order to be
applied by the OS. We can formally specify this scenario as follows:

S(A) <p S(B) =⇒ DETECT <m PUT(S(A)) <m
PUT(S(B)) <m GET <m SOS(A) <m
GET <m SOS(B) <m RESOLVE
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Figure 3: Imprecise store exception handling flow.

As shown, the OS always maintains the correct order between
SOS(A) and SOS(B) that comes from the program order of S(A) and
S(B). Considering the race condition discussed in the previous sub-
section, even though the race between PUT(S(A)) and GET still
exists, as long as L(B) reads 1, which indicates that SOS(B) <m L(B),
L(A) must also read 1 because the OS enforces the order between
SOS(A) and SOS(B) such that SOS(A) <m SOS(B) <m L(B) <m L(A),
as shown in Figure 2b. On the other hand, if L(B) reads 0, then L(A)
can either read 0 or 1, both of which are not PC violations. We
can formally prove that the same-stream approach obeys all five
rules for PC defined in subsection 4.2. Due to space limitations, we
only show the proof for the store-store rule S(A) <p S(B) =⇒ S(A)
<m S(B) in Proof 1. Other rules can be proved in a similar manner.

5 DESIGN
This section presents a detailed hardware-software co-design of
the architectural interface to supply faulting stores to the OS. We
assume a generic multicore system as shown in Figure 4. We also
assume that the imprecise store exceptions are generated by a
generic hardware component situated in the cache hierarchy and
away from the cores.

5.1 Exception detection
Figure 3 depicts the detection and handling flow for imprecise store
exceptions. When the store buffer receives a retired store from the
ROB, it sends a memory request for the store to the cache hierarchy.
In the case of a faulting store, the memory request cannot find the
required cache block, and eventually reaches the required hardware
component which generates an exception and sends a response
with an embedded error code back to the requesting core. The
response message backtracks through the cache hierarchy while
freeing the occupied resources, such as MSHRs allocated for the
request. The response is received by the L1-D, which then relays it
to the corresponding store buffer entry, completing the detection
of the imprecise store exception. Then, the store buffer drains the
store address, data, byte mask, and the error code into the Faulting
Store Buffer (FSB), which is the backing storage of the architectural
interface that temporarily accommodates faulting stores before
supplying them to the OS, as specified in subsection 4.4.

5.2 Faulting Store Buffer and Controller
Similar to the x86 virtualization mechanism where the core drains
the architectural state of the guest virtual machine to the Virtual
Machine Control Structure upon #VMExit [29], the store buffer
drains faulting stores to the FSB for imprecise store exceptions.
The FSB is a per-core ring buffer located in the main memory
with a head and tail pointer, as shown in Figure 4. The FSB is
similar to the ring buffers used in OS/virtualization like io uring
[13], XEN [5], and VirtIO [47], or hardware interfaces/protocols
like NVMe [39] and RDMA [43] that facilitate uni-directional order-
preserving communication. The order among faulting stores is
encoded in their relative positions in the FSB. We use a Faulting
Store Buffer Controller (FSBC) to control the order in which the
faulting stores are written into the FSB. Each core has a private
FSBC co-located with the store buffer, as shown in Figure 4. After
detecting an exception, the store buffer sends the faulting stores to
the FSBC in the order mandated by the memory model. The FSBC
then writes them to the tail pointer position of the FSB. After each
store draining completes, the FSBC increments the tail pointer and
sends a completion response back to the store buffer.

The FSBC is exposed to the OS using four per-core system regis-
ters in the ISA: base, mask, head pointer, and tail pointer. The OS
configures the base and mask to specify the address of the FSB
in memory, which is allocated by the OS and is not visible to the
application. The tail pointer is written by the FSBC and read by
the OS, specifying the position to drain the next faulting store. The
head pointer is written by the OS and read by the FSBC, specifying
the position of the oldest faulting store in the FSB. The OS can
retrieve the oldest faulting store by reading the entry at the head
pointer. The OS increments the head pointer to mark the faulting
store as read and retrieves the next faulting store (if present). Once
the head pointer matches the tail pointer, all faulting stores have
been handled. The FSB is sized according to the number of store
buffer entries, representing the maximum number of already retired
stores that might need to be drained. Our proposal does not require
any further changes to the existing core microarchitecture. The
load/store queues and store buffer can still have their original de-
sign and capacity. In the common case when there are no imprecise
store exceptions, the core works traditionally with the store buffer
providing WC performance benefits over SC. The control and data
paths of FSBC are activated only after the store buffer detects an
imprecise store exception.

5.3 Exception handling
On detecting an imprecise store exception, the core stops the in-
struction fetch and drains all unfinished stores present in the store
buffer to the private per-core FSB without requiring any special
synchronization or cache coherence transactions. After draining
each store, the FSBC sends a completion response to the store buffer
which then discards the corresponding entry. Once all entries are
drained, the FSBC triggers an imprecise exception which is attached
to the oldest uncommitted instruction in the ROB, resembling an
interrupt. Consequently, all the uncommitted instructions, includ-
ing the one with the attached exception, are flushed, and the core
jumps to the corresponding exception handler.
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Figure 4: Modifications to handle imprecise exceptions in a generic multicore system.

The store buffer dictates the order of stores and associated impre-
cise exceptions to obey the underlying memory model. In PC, after
the store buffer detects an imprecise store exception on a faulting
store, all the younger uncompleted stores are drained to the FSB
in program order, even if the coherence requests for those stores
are still ongoing and potentially result in more imprecise excep-
tions. Similarly, before handling any precise exception detected
in the pipeline, the core drains the store buffer to detect potential
imprecise store exceptions. If such an exception is detected on an
older store, the core flushes the pipeline, forgoes the precise excep-
tion, and handles the imprecise exception instead. Only after the
successful handling of imprecise store exceptions, the instruction
that triggered the precise exception is re-executed and re-generates
the precise exception again. Overall, the design ensures that all
exceptions are handled in program order.

The OS can correctly identify an imprecise store exception by
the dedicated exception code reserved in the ISA. In the exception
handler, the OS first copies all faulting stores from the FSB to an
OS-managed data structure and then starts the traditional excep-
tion handling. When the handler executes, the effects of all the
committed user instructions are present in registers, memory, or
the FSB, but the exact architectural state of the faulting store is
lost. To the best of our knowledge, typical exception handlers do
not examine the architectural state corresponding to past retired
instructions but receive the necessary information as part of the
exception. Similarly, for imprecise exceptions, the handler retrieves
the necessary information from the FSB, such as the faulting store’s
address and data, and handles the exception. In case of recoverable
exceptions, the OS resolves the exception, applies the faulting stores
to memory in the same order as they were retrieved from the FSB,
and then resumes the responsible application. In case of irrecover-
able exceptions, the OS terminates the responsible application and
the faulting stores are discarded.

While exception handling is serialized in time, interrupts can be
detected concurrently with imprecise store exceptions. In current
systems, handling interrupts does not require draining the store
buffer, which makes it possible for imprecise store exceptions to be
detected while the interrupt handler is executing. We rely on the
Interrupt Enable (IE) bit defined in the ISA to prevent the exceptions
from obstructing the interrupt handler. The IE bit is automatically
set when triggering interrupt and imprecise store exception han-
dlers and by the OS when it enters a non-interruptable critical
section. The OS clears the IE bit when it exits from the critical

section or is ready to handle new interrupts or imprecise store
exceptions. By manipulating the IE bit, the core and OS can serial-
ize the handling of interrupts/imprecise store exceptions and the
execution of critical sections. Moreover, pending/masked imprecise
store exceptions can stop the OS from resuming user applications
because the exception cannot be masked in user mode as the IE bit
is hard-wired to zero and not effective in user mode.

In contrast to precise exceptions, an imprecise store exception
can correspond to multiple faulting stores, allowing the OS to han-
dle them in batches. Consider the case where multiple faulting
stores generate major page faults due to demand paging. In the
traditional case, each major page fault triggers a precise exception
to let the OS schedule an IO request to load the corresponding page
back. The next page fault can be triggered only after the last IO re-
quest is done and the application is resumed, forcing all IO requests
to take place sequentially. In contrast, within a single invocation of
the imprecise store exception handler, the OS can schedule multiple
IO requests for all the faulting stores covered by the exception,
effectively overlapping IO latencies and improving IO throughput.
The batching effect also helps reduce the overhead of invoking the
handler, where the context switch, exception dispatch, and other
miscellaneous costs are only paid once per each handler invocation
instead of per faulting store.

5.4 OS requirements
As the FSBC controls the draining of the faulting stores into the
FSB, the OS should always pin the data pages allocated to FSBs in
memory, ensuring no page faults. As the FSB is sized according
to the store buffer, the OS only needs to reserve a few 4K pages
per core. As a minimal requirement, the OS should ensure that the
imprecise store exception handler does not trigger further imprecise
exceptions. Otherwise, the handler will need to support recursive
exceptions, which significantly complicates the system design. Such
recursion is not supported in traditional systems as well.

In caseswhere theOSmust send some data to the accelerator (e.g.,
when invoking copy_to_user where the user buffer is allocated
from the accelerator), the kernel can also generate imprecise store
exceptions. In such cases, the OS can utilize fence instructions
to fully contain imprecise store exceptions and limit them from
affecting other parts of the kernel. For example, after invoking
copy_to_user, the OS can issue a fence instruction to ensure that
any potential OS imprecise exceptions are properly reported and
handled. The OS can enhance any function that may potentially
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generate imprecise exceptions in this way. As the OS does not
directly use accelerators, we expect only a few OS functions to
require such enhancement. Similarly, the OS should issue a fence
before switching to the user mode to avoid OS imprecise exceptions
affecting user applications.

6 PROTOTYPE AND EVALUATION
In this section, we introduce our full-system prototype for impre-
cise store exceptions and evaluate our prototype’s silicon overhead,
functional correctness, and performance to demonstrate the feasi-
bility and benefit of handling store exceptions imprecisely.

6.1 Prototype overview
We use XiangShan [62], an open-source, high-performance, Out-
of-Order RISC-V CPU written in Chisel [4] to build our proto-
type. XiangShan implements the RISC-V Weak Memory Ordering
(RVWMO) [45] as its memory model. We extend XiangShan’s mi-
croarchitecture to support detecting and handling imprecise store
exceptions as described in subsection 5.2. We also port our proto-
type to AWS cloud FPGAs for fast simulation using FireSim [31].
Due to the limited capacity of cloud FPGAs, our prototype cur-
rently only supports two minimal XiangShan cores. We use Linux
5.15 as the OS and add various device drivers and handlers to sup-
port injecting and handling imprecise store exceptions as specified
in subsection 5.3.

We synthesize and implement our prototype using Vivado 2020.2.
In the routed design, FSBC consumes 354 CLB LUTs and 763 CLB
registers per core, corresponding to only 0.12% and 0.48% of the
total core consumption. As FSBC is tightly integrated into the core,
some core modules (e.g., the CSR module that manages system
registers and exceptions) are also changed accordingly. The silicon
overhead of these extra modifications is also minimal.

6.2 Error injection and handling
We create a hardware component EInject for error/poison injec-
tion to model imprecise store exceptions that accelerators might
generate. EInject monitors each non-coherent TileLink-UL [51]
transaction between the LLC and memory. For transactions whose
addresses lie in the memory region reserved by EInject, it looks up
a bitmap to check whether the targeting physical page is marked
as faulting. If so, EInject terminates the transaction and generates
a response to the LLC with a bus error by setting the denied bit.

As an MMIO device, EInject exposes two MMIO registers, set
and clr, to the software to manage the bitmap. Writing an address
A to these two registers sets or clears the bit corresponding to the
4KB page of that address in the bitmap. Thus, the software can
dynamically inject faults into the system by setting some pages
as faulting and handle these faults by setting the pages back to
non-faulting. We add a device driver in Linux to allow user-level
applications to mmap the memory reserved by EInject and control
the errors on the mapped pages by ioctl.

We implement a minimal OS handler for resolving imprecise
store exceptions. Since EInject is the only source of imprecise ex-
ceptions in the system, the handler marks the corresponding page
as non-faulting through the EInject interface for each faulting store,

Ordering relation Explanation
Cases
covered

Dependencies
Register dependencies for

2366
addr, data, and ctrl

Program order Rd-Rd or Wr-Wr to same the
368

(same location) address from the same core

Preserved
program order
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733in program order
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External Wr-Rd to the same address

1544
read-from order from different cores

Internal Wr-Rd to the same address
1304

read-from order from the same cores

Coherence order
Wr-Wr total order to

747
the same address

From-read order Rd-Wr to the same address 976

Barriers
Ordering imposed

1581
by barriers

Table 6: Ordering rules [3] covered in litmus tests.

performs the store using normal store instructions, and then incre-
ments the head pointer. The handler continues this action until the
head pointer catches the tail pointer, thus indicating that all the
faulting stores have been served.

6.3 Functionality correctness
We use the litmus tests [18] in the RISC-V specification [45] to verify
that our prototype does not violate RVWMO even with imprecise
store exceptions. The test suite targets various ordering relations
and constraints specified in RVWMO, as shown in Table 6. We
modify each test to allocate the memory for consistency check
from the EInject regions. Before running each test, we also intercept
the main function to mark the allocated memory as faulting, as
described in subsection 6.2, to inject bus errors on all load, store, and
atomic instructions, which generate many precise and imprecise
exceptions that are silently handled by theminimal handler in Linux.
We pick all (1600) 2-core litmus tests that can run successfully on
QEMU and run them in a large batch on our prototype system.
Our prototype does not produce any RVWMO violation for all the
litmus tests. Overall, we empirically prove that our prototype does
not break the underlying memory model.

6.4 Performance: microbenchmark
We use a microbenchmark with injected imprecise store exceptions
to evaluate the performance overhead incurred by both hardware
and software of our prototype. The microbenchmark runs multiple
iterations of a loop that applies 10 K stores to a 512 MB array. To
stress the imprecise store exception handling, at the start of each
iteration, the microbenchmark picks a random subset of 4KB pages
andmarks them as faulting using the EInject interface. The resulting
imprecise store exceptions are then transparently handled by the
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Figure 5: Overhead breakdown of imprecise exceptions with
and without batching.

minimal handler. The microbenchmark uses RISC-V’s performance
monitor counters to read clock cycle numbers from the hardware.

Figure 5 shows the breakdown of the overhead of handling a sin-
gle faulting store. The overhead consists of three parts: 1) microar-
chitectural overhead, which contains the time spent on draining
faulting stores to the FSB and ROB/pipeline flush, 2) OS overhead
of applying the faulting store, and 3) other OS overheads such as
context switches, exception dispatching, etc. We can see that in the
case of our minimal handler, handling each faulting store consumes
roughly 600 clock cycles, among which the microarchitectural over-
head is only a tiny fraction. Inmore realistic cases where the handler
has more complex OS logic, the overhead of microarchitecture and
applying the faulting store can be largely ignored.

As explained in subsection 5.3, one imprecise store exception can
correspond to multiple faulting stores if they are simultaneously
present in the store buffer. If the exception rate is sufficiently high,
then faulting stores are handled in batch, and the OS overhead per
faulting store is reduced significantly, as shown in Figure 5. The
microarchitectural overhead decreases because the store buffer is
drained only once for multiple faulting stores. We anticipate that
the overhead reduction will be more prominent in realistic cases if
the handler schedules batched IO operations.

6.5 Performance: real workloads
We run BFS, SSSP, and BC from GAP as well as Silo and Masstree
from Tailbench to evaluate the end-to-end performance of our pro-
totype. To inject synthetic imprecise exceptions, we modify the
workloads to allocate memory for the graph (in GAP) or the request
packets (in Tailbench) from the EInject region. All the allocated
memory regions are marked as faulting before the workload starts.
For GAP, we configure each workload to process a graph with ∼1M
nodes and ∼8M edges to stress the handling of imprecise excep-
tions. We use the total execution time, including both the user and
OS parts, of the computing kernel as the performance metric. For
Tailbench, we run each workload in the integrated mode for a fixed
duration and use the aggregated throughput as the performance
metric. In both cases, the workloads run as normal Linux processes,
experiencing all normal OS activities, including syscalls, task sched-
uling, and the handling of timer interrupts, page faults, and in-
jected imprecise exceptions. For comparison, we run the workloads
with and without imprecise exceptions, denoted as Imprecise and
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Figure 6: Relative performance of GAP and Tailbench work-
loads with imprecise store exceptions.

Baseline, respectively, to obtain the relative performance of each
workload with imprecise exceptions.

All the workloads can successfully run from the start to the end.
During the execution of each GAP workload, roughly 16K∼32K
injected imprecise store exceptions are transparently handled by
Linux. For each Tailbench workload, thousands of imprecise store
exceptions are injected per second, which is much larger than the
frequency at which page faults are triggered in modern workloads.
Our proposed prototype works and interacts flawlessly with the
entire hardware/software system.

Figure 6 shows the relative performance of various workloads in
the Imprecise case. Our prototype achieves over 96.5% of the Base-
line performance for all GAP workloads. Moreover, the difference
in user execution time between the Imprecise and Baseline cases is
below 1%. For Silo and Masstree, handling extra exceptions absent
in the Baseline case reduces the aggregated throughput by less
than 4%, which is minimal. Overall, our approach enables imprecise
exceptions while maintaining WC performance without excessive
silicon overhead.

7 CONCLUSION
Integration of compute capabilities in deep cache/memory hier-
archies makes it possible to have exceptions with long-latency
detection, which can forgo the precise exception semantics ex-
pected in modern programming. As continuing to support precise
exceptions in all cases comes at a high performance or silicon cost,
we investigated supporting imprecise exceptions for only retired
stores using efficient hardware-software co-design. We presented
a detailed analysis of imprecise store exceptions using memory
model formalism to show that we can ensure correct behavior us-
ing appropriate hardware and OS support. Finally, we showcase our
system design using a RISC-V prototype which passes all litmus
tests and successfully runs real workloads, showcasing the success
of our approach.
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A ARTIFACT APPENDIX
A.1 Abstract
The artifact provides pre-built binaries and scripts to help users
fully reproduce the evaluation results in the paper. The user should
have an AWS EC2 f1.2xlarge instance for the cloud FPGA to run
experiments. The results that are used to create figures in the paper
are also included for reference.

A.2 Artifact check-list (meta-information)
• Program: RISC-V litmus tests, GAP, Tailbench.
• Run-time environment: AWS EC2 f1.x2large instance.
• Hardware: AWS cloud FPGAs.
• Metrics: Total execution time and/or throughput.
• Output: Textual log files with expected results included.
• Experiments: Scripts provided.
• How much disk space required (approximately)?: 1 GB.
• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour.

• How much time is needed to complete experiments (approxi-
mately)?: 10 hours.

• Publicly available?: Yes.
• Workflow framework used?: No.
• Archived (provide DOI)?: No.

A.3 Description
A.3.1 How to access. The artifact, containing the pre-built binaries
and helper scripts for the experiments, can be downloaded from
https://github.com/parsa-epfl/imprecise_store_exceptions.

A.3.2 Hardware dependencies.

(1) An AWS EC2 f1.2xlarge instance.

A.3.3 Software dependencies.

(1) The python pandas library for data analysis.

A.4 Experiment workflow
All the experiments are performed on the AWS f1.2xlarge instance.
The user can refer to the official AWS EC2 documentation (here) to
launch, configure and start such instances.

The execution of the experiments on the cloud FPGA cannot be
automatically stopped. The user should press Ctrl-C to terminate
the execution after a “DONE!” shows up in the terminal.

To run the microbenchmark:

$ make rst
$ make run BIN=mbench.bin LOG=mbench.log MB=1

To run the litmus tests:

$ make rst
$ make run IMG=litmus.img LOG=litmus.log

To run the GAP workloads:

$ make rst
$ make run IMG=gap.img LOG=gap.log
$ make run IMG=gap-ref.img LOG=gap-ref.log

To run the Tailbench workloads:

$ make rst
$ make run IMG=silo.img LOG=silo.log
$ make run IMG=silo-ref.img LOG=silo-ref.log
$ make run IMG=masstree.img LOG=masstree.log
$ make run IMG=masstree-ref.img LOG=masstree-ref.log

A.5 Evaluation and expected results
The user can analyze the results either onAWS or on a local machine.
The following commands all assume that the log files generated
from previous steps are located in the post directory.

We also provide log files used to generate figures in the paper in
the res directory. Due to uncontrollable timing differences when
running the experiments on the cloud FPGA, we expect the results
the user generates to be close to ours but not strictly the same.

To analyze the result of the microbenchmark and generate data
for Fig. 5 of the paper:

$ post/1-mbench.py post/mbench.log

To analyze the results of litmus tests:

$ post/2-litmus.py post/litmus.log res/herd.log

The “OK” output indicates that there is no line in the original log
file that starts with “!!! Warning negative differences in”,
indicating that the hardware does not exhibit any behavior that the
model does not allow (as described in https://github.com/litmus-
tests/litmus-tests-riscv/blob/master/README.md), and thus the
hardware complies with the memory model.

To analyze the results of GAP and Tailbench workloads and
generate data for Fig. 6 of the paper:

$ post/3-gap.py post/gap.log
$ post/3-gap.py post/gap-ref.log
$ post/4-silo.py post/silo.log res/silo-ref.log
$ post/5-masstree.py post/masstree.log res/masstree-

ref.log
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