
Mitosis: Transparently Self-Replicating Page-Tables
for Large-Memory Machines

Reto Achermann
ETH Zurich

reto.achermann@inf.ethz.ch

Ashish Panwar
IISc Bangalore

ashishpanwar@iisc.ac.in

Abhishek Bhattacharjee
Yale University

abhishek@cs.yale.edu

Timothy Roscoe
ETH Zurich

troscoe@inf.ethz.ch

Jayneel Gandhi
VMware Research

gandhij@vmware.com

Abstract
Multi-socket machines with 1-100 TBs of physical memory
are becoming prevalent. Applications running on such multi-
socket machines suffer non-uniform bandwidth and latency
when accessing physical memory. Decades of research have
focused on data allocation and placement policies in NUMA
settings, but there have been no studies on the question of
how to place page-tables amongst sockets. We make the case
for explicit page-table allocation policies and show that page-
table placement is becoming crucial to overall performance.
We propose Mitosis to mitigate NUMA effects on page-

table walks by transparently replicating and migrating page-
tables across sockets without application changes. This re-
duces the frequency of accesses to remote NUMA nodes
when performing page-table walks. Mitosis uses two compo-
nents: (i) a mechanism to efficiently enable and (ii) policies
to effectively control – page-table replication and migration.

We implementMitosis in Linux and evaluate its benefits on
real hardware. Mitosis improves performance for large-scale
multi-socket workloads by up to 1.34x by replicating page-
tables across sockets. Moreover, it improves performance by
up to 3.24x in cases when the OS migrates a process across
sockets by enabling cross-socket page-table migration.

CCS Concepts • Software and its engineering Oper-
ating systems; Virtual memory.

Keywords NUMA, TLB, Linux, page-table replication, large
pages, TLB miss overhead

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378468

ACM Reference Format:
Reto Achermann, Ashish Panwar, Abhishek Bhattacharjee, Tim-
othy Roscoe, and Jayneel Gandhi. 2020. Mitosis: Transparently
Self-Replicating Page-Tables for Large-Memory Machines. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (AS-
PLOS ’20), March 16–20, 2020, Lausanne, Switzerland. ACM, New
York, NY, USA, 18 pages. https://doi.org/10.1145/3373376.3378468

1 Introduction
In this paper, we investigate the performance issues in large
NUMA systems caused by the sub-optimal placement not of
program data, but of page-tables, and show how to mitigate
them by replicating and migrating page-tables across sockets.

The importance of good data placement across sockets for
performance on NUMA machines is well-known [15, 22, 31,
38]. However, the increase in main memory size is outpacing
the growth of TLB capacity. Thus, TLB coverage (i.e. the size
of memory that TLBs map) is stagnating and is causing more
TLB misses [6, 41, 61, 62]. Unfortunately, the performance
penalty due to a TLB miss is significant (up to 4 memory
accesses on x86-64). Moreover, this penalty will grow to 5
memory accesses with Intel’s new 5-level page- tables [34].
Our first contribution in this paper (§ 3) is to show by

experimental measurements on a real system that page-table
placement in large-memory NUMA machines poses perfor-
mance challenges: a page-table walk may require multiple

0
0.5

1
1.5

2
2.5

3
3.5

local remote Mitosis

GUPS

N
or

m
al

ize
d

Cy
cl

es

3.24x

0
0.2
0.4
0.6
0.8

1

first-touch first-touch

Canneal

N
or

m
al

ize
d

Cy
cl

es 1.34x

+Mitosis (interfere)

Sockets 0 1 2 3
Remote 86% 68% 71% 75%
Local 14% 32% 29% 25%

Single-Socket
Remote 100%
Local 0%

Figure 1. Top Table: Percentage of local and remote leaf
PTEs as observed from each socket on a TLB miss and Bot-
tom Graph: Normalized runtime cycles, for two workloads
showing multi-socket (left) and workload migration (right)
scenarios with their respective improvement using Mitosis.

Session 4A: Huge memories and
distributed databases — Now I remember!

283

https://doi.org/10.1145/3373376.3378468
https://doi.org/10.1145/3373376.3378468
https://www.acm.org/publications/policies/artifact-review-badging#functional
https://www.acm.org/publications/policies/artifact-review-badging#available

remote DRAM accesses on a TLB miss and such misses are
increasingly frequent. We show this effect due to page-table
placement on a large-memory machine in two scenarios.
The first is a multi-socket scenario (§ 3.1), where large-scale
multithreaded workloads execute across all sockets. In this
case, the page-table is distributed across sockets by the OS
as it sees fit. Such page placement results in multiple re-
mote page-table accesses, degrading performance. We show
the percentage of remote/local page-table entries (PTEs) on
a TLB miss as observed from each socket in the top left
table of Figure 1 for one workload (Canneal) from the multi-
socket scenario. We observe that some sockets experience
longer TLB misses since up to 86% of leaf PTEs are located
remotely. Large-memory workloads like key-value stores
and databases that stress TLB capacity are particularly sus-
ceptible to this behavior.

Our second analysis configuration focuses on a workload
migration scenario (§ 3.2), where the OS decides to migrate a
workload from one socket to another. Such behavior arises
for many reasons: the need to load balance, consolidate, im-
prove cache behavior, or save power/energy [21, 49, 64]. A
key question with migration is what happens to the data
that the workload accesses. Existing NUMA policies in com-
modity OSes migrate data pages to the target socket where
the workload has been migrated. Unfortunately, page-table
migration is not supported [58], making future TLB misses
expensive. Such misplacement of page-tables leads to per-
formance degradation for the workload since 100% of TLB
misses require remote memory access as shown in top right
table of Figure 1 for one workload (GUPS). Workload migra-
tion is common in environments where virtual machines
or containers are consolidated on large systems [49]. Ours
is the first study to demonstrate the problem arising out of
sub-optimal page-table placement on NUMAmachines using
these two commonly occurring scenarios.

Our second contribution (§ 4) is a technique,Mitosis, which
replicates and migrates page-tables to eliminate NUMA ef-
fects of page-table walks. Mitosis works entirely within the
OS and requires no change to application binaries. The de-
sign consists of a mechanism to enable efficient page-table
replication and migration (§ 5), and associated policies for
processes to effectively manage page-table replication and
migration (§ 6). Mitosis builds on widely-used OS mecha-
nisms like page faults and system calls and is hence applica-
ble to most commodity OSes.
Our third contribution (§ 5, 6) is an implementation of

Mitosis for an x86-64 Linux kernel. Instead of substantially
re-writing the memory subsystem, we extend the Linux PV-
Ops [44] interface to page-tables and provide policy exten-
sions to Linux’s standard user-level NUMA library, allowing
users to control migration and replication of page-tables, and
selectively enable it on a per-process basis. When a process
is scheduled to run on a core, we load the core’s page-table
pointer with the physical address of the local page-table

replica for the socket. Page-table updates are propagated to
all replicas efficiently while page-table accesses return consis-
tent values in Mitosis which sometimes requires consulting
all replicas (e.g., for access and dirty bits).
An important feature of Mitosis is that it requires no

changes to applications or hardware, and is easy to use on
a per-application basis. For this reason, Mitosis is readily
deployable and complementary to emerging hardware tech-
niques to reduce address translation overheads like segmen-
tation [6, 42], PTE coalescing [61, 62] and user-managed
virtual memory [1]. We have open-sourced Mitosis to aid
future research on page-table management [54, 55].

Our final contribution (§ 8) is a performance evaluation of
Mitosis on real hardware. We show the effects of page-table
replication and migration on a large-memory machine in
the same two scenarios used before to analyze page-table
placement. In the first,multi-socket scenario, we had observed
that page-table placement results in multiple remote memory
accesses, degrading performance for many workloads. The
graph on the bottom left of Figure 1 shows the performance
of a commonly used “first-touch” allocation policy which
allocates data pages local to the socket that touches the
data first. This policy is not ideal as it cannot allocate page-
tables locally for all sockets. Mitosis replicates page-tables
across sockets to improve performance by up to 1.34x in
this scenario. These gains are achieved with a modest 0.6%
memory overhead.

In the second,workloadmigration scenario, we observe that
page-table migration is not supported in current OSes, which
makes TLB misses even more expensive after a workload
is migrated to a different socket. The graph on the bottom
right in Figure 1 quantifies the worst-case performance im-
pact of misplacing page-tables on memory that is remote
with respect to the application socket (see remote (interfere)
bar). The local bar shows the ideal execution time with lo-
cally allocated page-tables. Mitosis improves this situation
by enabling cross-socket page-table migration, and boosts
performance by up to 3.24x.

2 Background
2.1 Virtual Memory
Translation Lookaside Buffers (TLBs) enable fast address
translation and are key to the performance of a virtual mem-
ory based system. Unfortunately, TLBs cover a tiny frac-
tion of physical memory available on modern systems while
workloads consume all memory for storing their large datasets.
Hence, memory-intensive workloads incur frequent costly
TLB misses requiring page-table lookup by hardware.

Research has shown that TLB miss processing is prohib-
itively expensive [6, 9–11, 30, 50] as walking page-tables
(e.g., 4-level radix tree on x86-64) requires multiple memory
accesses. Even worse, virtualized systems need two-levels
of page-table lookups which can result in much higher TLB

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

284

miss processing overheads (24 memory accesses instead of
four on x86-64). Consequently, address translation overheads
of 10–40% are not uncommon [6, 9, 10, 27, 28, 41], and will
worsen with emerging 5-level page-tables [34].

In response, many research proposals improve address
translation by reducing the frequency of TLB misses and/or
accelerating page-table walks. Use of large pages to increase
TLB-coverage [24–26, 56, 59, 67, 68, 70] and additional MMU
structures to cache multiple levels of the page-tables [4, 9, 11]
are some of the techniques widely adopted in commercial
systems. In addition, researchers have also proposed TLB-
speculation [5, 63], prefetching translations [39, 50, 66], elim-
inating or devirtualizing virtual memory [32], or exposing
virtual memory system to applications to make the case for
application-specific address translation [1].
We observe that prior works studied address translation

on single-socket systems. However, page-tables are often
placed across remote and local memories in large-memory
systems. Given the sensitivity of large page placement on
such systems [31], we were intrigued by the question of
how page-table placement affects overall performance. In
this paper, we present compelling evidence to show that
optimizing page-table placement is as crucial as optimizing
data placement.

2.2 NUMA Architectures
Multi-socket architectures, where CPUs are connected via a
cache-coherent interconnect, offer scalable memory band-
width even at high capacity and are frequently used in mod-
ern data centers and cloud deployments. Looking forward,
this trend will only increase; large-memory (1-100 TBs) ma-
chines are integrating even more devices with different per-
formance characteristics like Intel’s Optane memory [20].
Furthermore, emerging architectures using chiplets andmulti-
chip modules [23, 35, 36, 40, 46, 51, 69, 72] will drive the
multi-socket and NUMA paradigm: accessing memory at-
tached to the local socket will have higher bandwidth and
lower latency than accessing memory attached to a remote
socket. Note that accessing remote memory can incur 2-4x
higher latency than accessing local memory [43]. Given the
non-uniformity of access latency and bandwidth, optimizing
data placement in NUMA systems has been an active area
of research.

2.3 Data Placement in NUMAmachines
Modern OSes provide generic support for optimizing data
placement on NUMA systems through various allocation and
migration polices. For example, Linux provides first-touch
vs. interleaved allocation to control the initial placement of
data, and additionally employs AutoNUMA to migrate pages
across sockets in order to place data closer to the threads ac-
cessing it. To further optimize data placement, Carrefour [22]
proposed data-page replication along withmigration. In addi-
tion, data replication has also been proposed at data structure

level [15] and via NUMA-aware memory allocators [38] to
further reduce the amount of remote memory accesses. In
contrast, our work focuses on page-tables, not data pages.
Some prior research has proposed replicated data struc-

tures for address spaces. RadixVM [17] manages the process’
address space using replicated radix trees to improve the scal-
ability of virtual memory operations in the research-grade
xv6 OS [19]. However, RadixVM does not replicate page-
tables. Similarly, Corey [14] divides the address space into
shared and private per-core regions where these explicitly
shared regions share the page-table. In contrast, we replicate
page-tables to manage NUMA effects on a TLB miss in an
industry-grade OS.
Techniques for data vs. page-table pages: One may ex-
pect prior migration and replication techniques to extend
readily to page-tables. In reality, subtle distinctions between
data and page-table pages merit some discussion. First, data
pages are replicated by simple bytewise copying of data,
without any special reasoning of the contents of the pages.
Page-table pages, however, require more care and cannot
rely simply on bytewise copying – to semantically replicate
virtual-to-physical mappings, upper page-table levels must
hold pointers (physical addresses) to their replicated, lower
level page-tables – which differ from replica to replica except
at the leaf level. Moreover, data replication has high mem-
ory overheads and maintaining consistency across replicated
pages (especially for write-intensive pages) can outweigh the
benefits of replication. While data replication has its values,
we show that page-table replication is equally important – it
incurs negligible memory overhead, can be implemented effi-
ciently and delivers substantial performance improvement.

3 Page-Table Placement Analysis
In this section, we first present an analysis of page-table
distributions when running memory-intensive workloads
on a large-memory machine (multi-socket scenario § 3.1) and
then quantify the impact of NUMA effects on page-table
walks (workload migration scenario § 3.2). Our experimental
platform is a 4-socket Intel Xeon E7-4850v3 with 512 GB
main memory (more detailed machine configuration in § 8).

Process

Socket 2 Socket 3

Process

Socket 1Socket 0

Process ProcessD L4

L2

L3

L1

M
em

or
y

1
M

em
or

y
3

M
em

or
y

0
M

em
or

y
2

Figure 2.An illustration of current page-table and data place-
ment for a multi-socket workload using 4-socket system.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

285

3.1 Multi-Socket Scenario
We focus on page-table distributions where workloads use
almost all resources in a multi-socket system. Consider the
example in Figure 2. If a core in socket 0 has a TLB miss for
data "D", which is local to the socket, it has to perform up to
4 remote accesses to resolve the TLB miss to ultimately dis-
cover that data was actually local to its socket. Even though
MMU caches [4] help reduce some of the accesses, at least
leaf-level PTEs have to be accessed. Since big-data workloads
have large page-tables that are absent from the caches, main
memory accesses are often unavoidable [10].
Methodology.We are interested in the distribution of pages
for each level in the page-table; i.e., which sockets page-
tables are allocated on. We’ve written an utility tool, con-
sisting of a user-level CLI interface and kernel module, that
dumps and analyzes the page-table contents of a process. We
invoke the tool every 30 seconds while a multi-socket work-
load (e.g., Memcached) is running, producing a stream of
page-table snapshots over time. We use 30 second time inter-
vals as page-table allocation occurs relatively infrequently
and smaller time interval does not change results signif-
icantly. We use first-touch or interleaved data allocation
policy while enabling/disabling AutoNUMA [18] data page
migration with different page sizes for multi-socket work-
loads in Table 1.
Analysis.Weanalyze the distribution of page-tables for each
snapshot in time. For each page-table level, we summarize
the number of per-socket physical pages and the number of
valid PTEs pointing to page-table or data pages residing on
local and remote sockets. From these snapshots, we collect a
distribution of leaf PTEs and which sockets they are located
on. We focus on leaf PTEs as there are orders of magnitude
more of them than non-leaf PTEs and because they generally
dominate address translation performance (upper-level PTEs
can be cached in MMU caches [10]). These distributions
indicate how many local and remote sockets a page-table
walk may visit before resolving a TLB miss.
Results. Due to space limitations, we show a single, pro-
cessed snapshot of the page-table for Memcached in Figure 3.
This snapshot was collected using 4KB pages, local allocation,
and AutoNUMA disabled. We studied 2MB pages as well and
present observations from them later. The processed dump
shows the distribution of all four levels of the page-table
(L4 being the root, and L1 the leaf). The dump is organized
in four columns representing the four-sockets in this sys-
tem. In each cell, the first number is the total physical pages
at that level-socket combination (e.g. socket 1 has the only
L4 page-table page). Next is the distribution of pointers in
square brackets of the valid PTEs at this level/socket (e.g.
L4 on socket 1 has 8 pointers to L3 on socket 0, 3 pointers
locally, and 1 pointer to socket 3). The percentage numbers
in rounded brackets are the fraction of valid PTEs pointing
to physical pages placed on remote sockets.

Figure 4 shows the percentage of remote leaf PTEs ob-
served by a thread running on each socket for six different,
multi-threaded workloads. We made the following obser-
vations based on analyzing the page-table dumps and the
distribution of leaf PTEs:
1. Page-tables pages are allocated on the socket initializing

the first data structures that the page-table pages point
to. This is similar to data frame allocation but has im-
portant unintended performance consequences. Consider
that each page-table page has 512 entries. This means that
the placement of a page-table page is entirely dependent
upon which of the 512 entries in the page-table page gets
allocated first, and which socket the allocating thread runs
on. If subsequently, other entries in the page-table page
are used for threads on another socket, remote memory
references for page-table walks become common.

2. With first touch policy, the number of page-tables tends
to be skewed towards a single socket (e.g. socket 1 for
Graph500 in Figure 4). This is especially the case when a
single thread allocates and initializes all memory, a com-
mon practice in OpenMP programming.

3. The interleaved policy evenly distributes page-table pages
across all sockets. This is due to the round-robin allocation
of data pages.

Workload Description MS WM

Memcached
a commercial distributed in-memory object
caching system [53]. Params: keysize = 8, element
size = 24, num elements = 576M, 100% reads.

363GB –

Graph500
a benchmark for generation, compression and
search of large graphs [2]. Params: scale factor =
30, edge factor = 16.

420GB –

HashJoin
a benchmark for hash-table probing used in
databases and other large applications. Params
(MS): 2B elements. (WM): 128M elements.

455GB 33GB

Canneal

a benchmark for simulated cache-aware anneal-
ing to optimize routing cost of a chip design [12].
Params: generated netlist [60]. (MS): x = 120000, y
= 11000, num elements = 1200000000. (WM): x =
10000, y = 11000, num elements = 100000000.

382GB 32GB

XSBench

a key computational kernel of the Monte Carlo
neutronics application [71]. Params (MS): 112
threads, p factor = 25000000, g factor = 920000.
(WM): 16 threads, p factor = 15000000, g factor =
180000.

440GB 85GB

BTree

a benchmarks for index lookups used in database
and other large applications. Params: Order = 4.
Element Size = 16. (MS): 112 threads, 1500M ele-
ments. (WM): 1 thread, 350M elements.

145GB 35GB

LibLinear
a linear classifier for data with millions of in-
stances and features [47]. Params: 28 threads,
dataset = kdd12 [16].

– 67GB

PageRank
a benchmark for page rank used to rank pages in
search engines [8]. Params: 28 threads, nodes =
268435453, edges = 4236159837.

– 69GB

GUPS
a HPC Challenge benchmark to measure the
rate of integer random updates of memory [33].
Params: 1 thread, table size = 64GB.

– 64GB

Redis
a commercial in-memory key-value store [65].
Params: key size = 25, element size = 64, num el-
ements = 256M, 100% reads.

– 75GB

Table 1.Workloads used for analysis in multi-socket (MS)
and workload migration (WM) scenarios. Scripts and sources
available on GitHub [54, 55].

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

286

Level | Socket 0 | Socket 1 | Socket 2 | Socket 3
L4 | 0 [0 0 0 0] (0%) | 1 [8 3 0 1] (75%) | 0 [0 0 0 0] (0%) | 0 [0 0 0 0] (0%)
L3 | 1 [56 66 40 37] (72%) | 3 [33 43 26 26] (66%) | 0 [0 0 0 0] (0%) | 0 [0 0 0 0] (0%)
L2 | 89 [11k 11k 11k 11k] (75%) | 109 [13k 13k 13k 13k] (75%) | 66 [8k 8k 8k 8k] (75%) | 63 [7k 7k 7k 8k] (75%)
L1 | 40k [6M 4M 4M 4M] (67%) | 40k [4M 6M 4M 4M] (67%) | 40k [4M 4M 6M 4M] (67%) | 40k [4M 4M 4M 6M] (67%)

Figure 3. Analysis of page-table pointers from a page-table dump for a multi-socket workload: Memcached.

Config. Workload Page-Table Data Interference
(T)LP-LD A A: Local PT A: Local Data -
(T)LP-RD A A: Local PT B: Remote Data -
(T)RP-LD A B: Remote PT A: Local Data -
(T)RP-RD A B: Remote PT B: Remote Data -
(T)RPI-LD A B: Remote PT A: Local Data B: Interfere on PT
(T)LP-RDI A A: Local PT B: Remote Data B: Interfere on Data
(T)RPI-RDI A B: Remote PT B: Remote Data B: Interfere on PT&Data

Table 2. Configurations for workload migration scenario,
where A and B denote different sockets. T denotes if THP in
Linux is used for 2MB pages. Interference is another process
that runs on a specified socket and hogs its local memory
bandwidth. Figure 5 shows the 2-socket case.

4. While we observed data pages beingmigratedwith AutoN-
UMA, page-table pages were never migrated. The fraction
of data pages migrated over time depends on the workload
and its access locality.

5. On all levels, a significant fraction of page-table entries
points to remote sockets. In the case of interleave policy,
this is N−1

N for an N -socket system.
6. Due to the skew in page-table allocation, some sockets

experience longer TLB misses since up to 99% of leaf PTEs
are located remotely (e.g., BTree, HashJoin).

Summary On multi-socket systems, page-table allocation
is skewed towards sockets that initialize the data structures.
While data pages are migrated by OS policies, page-table
pages remain on the socket they are allocated. Consequently,
remote page-table walks are inevitable and multi-socket
workloads suffer from longer TLB misses as their associated
page-table walks require remote memory accesses.

3.2 Workload Migration Scenario
We now focus on the impact of NUMA on page-table walks
in scenarios where a process on a single socket is migrated
to another. Such situations arise frequently in commercial
cloud deployments due to the need for load balancing and
improving process-data affinity [13, 48]. Particularly, the
prevalence of virtual machines and containers that rely on

Canneal Memcached XSBench Graph500 HashJoin BTree
0%

25%

50%

75%

100%
Socket 0 Socket 1 Socket 2 Socket 3

Figure 4. Percentage of remote leaf PTEs as observed from
each socket for our multi-socket workloads.

hypervisors and NUMA-aware schedulers to consolidate
workloads in data centers are making inter-socket process
migrations increasingly common. For e.g., VMware ESXimay
migrate processes at a frequency of 2 seconds [49]. Today,
data can be migrated across sockets but page-tables cannot,
compromising performance.
Configurations.We run each workload in isolation while
tightly controlling and changing i) the allocation policies for
data pages and page-table pages, ii) whether or not the sock-
ets are idle and iii) whether transparent, 2MB large pages
(THP) are enabled. We disable NUMA migration. To study
page-table allocations in a controlled manner, we modified
Linux kernel to force page-table allocations on a fixed socket.
We use the configurations shown in Table 2 and visualized
in Figure 5. We use the STREAM benchmark [52] running on
the socket indicated by interference to create a worst-case
scenario of co-locating a memory-bandwidth heavy work-
load. Memory allocation and processor affinity are controlled
by numactl.
Measurements. We use perf to obtain hardware perfor-
mance counter values such as total execution cycles and TLB
load and store miss walk cycles (i.e., the cycles that the page
walker is active for).
Results.We run the eight workloads for all seven configura-
tions. Figure 6 shows the normalized performance with 4KB
pages. The base case is the LP-LD configuration where both
page-tables and data pages are local. For each configuration,
hashed part of the bar denotes the fraction of time spent on
page-table walks. We make the following observations from
this experiment:

1. All workloads spend a significant fraction of execution
cycles (up to 90%) performing page-table walks. Parts of
these walks may be overlapped with other work in mod-
ern out-of-order processors; nevertheless, they present a
performance impediment.

2. LP-LD runs most efficiently in all cases.
3. The local page-table, remote data case (LP-RD and LP-

RDI) suffers 3x slowdown versus the baseline. This is
not surprising and has motivated prior research on data
migration techniques in large-memory NUMA machines.

4. More surprisingly, the remote page-table, local data case
(RP-LD and RPI-LD) suffers 3.3x slowdown. This slow-
down can even be more severe than remote data accesses
even though page-tables consume little memory.

5. When both page-tables and data pages are placed remotely
(RP-RD and RPI-RDI), the slowdown is 3.6x and is the
worst placement possible for all workloads.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

287

PT D

Process

PT D

Process

D

(i) Baseline: LP-LD (ii) Process migration: RP-RD

Socket 0 Socket 1 Socket 0 Socket 1

PT D

Process

D
Data
migration

(iii) Data migration: RP-LD

Socket 0 Socket 1

PT

Process

D

(iv) Loaded remote PT: RPI-LD

Socket 0 Socket 1

Other
Process

process
migration

PT

Process

D

(v) Process re-migration from iii: LP-RD

Socket 0 Socket 1

PT

Other
Process

D

(vi) Loaded Remote Data: LP-RDI

Socket 0 Socket 1

Process
process
migration

Memory 0 Memory 1 Memory 0 Memory 1 Memory 0 Memory 1 Memory 0 Memory 1 Memory 0 Memory 1 Memory 0 Memory 1

Figure 5. Different configurations for workload migration scenario. We show only 6 out of 7 configurations here. The 7th
configuration (RPI-RDI) can be easily created from (ii) by running another process on Socket 0.

6. With 2MB page size (figure omitted for space), TLB reach
improves and the number of memory accesses for a page-
table walk decreases to 3 rather than 4. These two fac-
tors reduce the fraction of execution cycles devoted to
page-table walks. Even so, overall performance is still vul-
nerable to remote page-table placement. We include best
and worst cases for each workload in § 8.2 and show the
effects of fragmentation on large pages in Figure 11.

Summary. The placement of page-table pages has a sig-
nificant impact on the performance of memory-intensive
workloads in NUMA systems. Remote page-tables can have
similar, and in some cases even worse, slowdown than re-
mote data pages accesses. Moreover, the slowdown is visible
even with large pages.

4 Design Concept
Mitosis’ key concept is a mechanism and its policies to repli-
cate and migrate page-tables and reduce the frequency of re-
mote memory accesses in page-table walks. Mitosis requires
two components: i) a mechanism to support low-overhead
page-table replication and migration and ii) policies for pro-
cesses to efficiently manage and control page-table replica-
tion and migration. Figure 7 illustrates these concepts. Our
discussion focuses on the multi-socket and workload migra-
tion scenarios used before in § 3.

4.1 Design Goals
Target Workloads: We design Mitosis for workloads that
have high memory footprint beyond the reach of the proces-
sor’s TLB coverage and that experience high TLB pressure.
In other words, workloads that spend a good fraction of

their time walking page-tables and many of those page-table
walks miss the last-level cache.
Flexible Configuration: Not all tasks are equal. We want
Mitosis to be enabled selectively for specific workloads, while
using the default OS policy when Mitosis is disabled.
No slowdown: Mitosis does not target tasks that are short
running, have small memory footprint or exhibit low TLB
pressure. Activating Mitosis for such workloads should not
result in high memory or runtime overheads.

4.2 Multi-socket Scenario
We showed in § 3.1 that multi-socket workloads will, as-
suming a uniform distribution of page-table pages, have N−1

N
PTEs pointing to remote pages for an N -socket system. Page-
tables may be distributed among the sockets in a skewed
fashion. Figure 7 (a)(i) shows a scenario where threads of the
same workload running on different sockets have to make
remote memory accesses during page-table walks.

From Figure 7 (a)(i) we can see that if a thread in socket 0
has a TLB miss for data “D” (which is local to the socket), it
has to perform up to 4 remote accesses to resolve the TLB
miss to only find out that the data was local to its socket.

With Mitosis, we replicate the page-tables on each socket
where the process is running (shown in Figure 7 (a)(ii)). This
results in up to 4 local accesses to the page-table, precluding
the need for remote memory accesses in page-table walks.

4.3 Workload Migration Scenario
Single-socket workloads suffer performance loss when pro-
cesses are migrated across sockets while page-tables are
not (shown in Figure 7 (b)(ii)) The process is migrated from

GUPS BTree HashJoin Redis XSBench PageRank LibLinear Canneal
(0.45 TC) (0.63 TC) (0.83 TC) (0.12 TC) (12.75 TC) (14.78 TC) (56.92 TC) (1.54 TC)

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

0

1

2

3

4

No
rm

al
ize

d
Cy

cle
s

Figure 6. Normalized runtime of our workloads in workload migration scenario with 4KB page size. The lower hashed part of
each bar is time spent in walking the page-tables. All configurations are shown in Table 2. Absolute runtime for the baseline in
tera cycles (×1012 cycles) below the workload.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

288

Data migration

Page-table migration

L2

Process

So
ck

et
 2

So
ck

et
 3

Process

L3

L4

So
ck

et
 1

So
ck

et
 0

Process Process

D L4,L3,L2,L1 D L4,L3,L2,L1 D D L4,L3,L2,L1 D DL4,L3,L2,L1

L4,L3,L2,L1 L4,L3,L2,L1

L4,L3,L2,L1L4,L3,L2,L1 D

L1

(b) Workload migration scenario(a) Multi-socket scenario

(i) Process – initially (ii) Process after migration (iii) Process after migration with Mitosis (i) Process without page-table replication (ii) Process with page-table replication

Data migration

Process

So
ck

et
 2

So
ck

et
 3

Process

So
ck

et
 1

So
ck

et
 0

Process Process

So
ck

et
 2

So
ck

et
 3

So
ck

et
 1

So
ck

et
 0

Process

So
ck

et
 2

So
ck

et
 3

So
ck

et
 1

So
ck

et
 0

Process

So
ck

et
 2

So
ck

et
 3

So
ck

et
 1

So
ck

et
 0

Process

Figure 7. Mitosis: Page-table migration and replication on large-memory machines.

socket 0 to socket 1, the NUMA memory manager transpar-
ently migrates data pages, but page-table pages remain on
socket 1. In contrast, Mitosis migrates the page-tables along
with the data (Figure 7 (b)(iii)). This eliminates remote mem-
ory accesses for page-table walks, improving performance.

5 Mechanism
Replication and migration are inherently similar. We first
describe the building blocks for page-table replication, and
later show howwe can leverage the replication infrastructure
to achieve page-table migration.
Mitosis enables per-process replication; the virtual mem-

ory subsystem needs to maintain multiple copies of page-
tables for a single process. Efficient replication of page-tables
can be divided into three sub-tasks: i) strict memory allo-
cation to hold the replicated page-tables, ii) managing and
keeping the replicas consistent, and iii) using replicas when
the process is scheduled. We now describe each sub-task in
detail by providing a generalized design and our Linux im-
plementation. We also discuss how Mitosis handles accessed
and dirty bits.

5.1 Allocating Memory for Storing Replicas
General design: All page-table allocations are performed
by the OS on a page fault–an explicit mapping request can
be viewed as an eager call to the page fault handler for the
given memory area. Mitosis extends the same mechanism to
allocate memory across sockets for different replicas.

Such allocation is strict, i.e. it has to occur on a particular
list of sockets at allocation time. It is, therefore, possible that
it may fail due to the unavailability of memory on those
sockets. There are multiple ways to sidestep this problem.
First, the OS can reserve enough pages on each socket for
page-table allocations using per-socket page-cache. These
pages can be explicitly reserved through a system call or
automatically when a process allocates a virtual memory
region. Alternatively, the OS can reclaim physical memory
through demand paging mechanisms or evicting a data page
onto another socket.
Linux implementation: We rely on the existing page allo-
cation functionality in Linux to implement Mitosis. When

Replica
page 0

PTE

Replica
page 1

PTE

Replica
page 2

PTE

Replica
page 3

PTE

CR3-0 CR3-1 CR3-2 CR3-3

Metadata
for page 0

Metadata
for page 1

Metadata
for page 2

Metadata
for page 2

Added pointers for circular linked list

Figure 8. Circular linked list to locate all replicas efficiently
(implemented in Linux with struct page).

allocating page-table pages, we explicitly supply the list of
target sockets for page-table replication. Since strict allo-
cation can fail, we implemented per-socket page-caches to
reserve pages for page-table allocations. The size of this
page-cache is explicitly controlled using a sysctl interface.
The current prototype returns an out-of-memory error when
the page-table cache is depleted. This allows evaluating our
prototype and keep dynamic approaches like page-stealing
for future work.

5.2 Management of Updates to Replicas
General design: For security, OSes usually do not allow
user processes to directly manage their own page-tables.
Instead, OSes export an interface through which page-table
modifications are handled, e.g. map/unmap/protect of pages.
Mitosis extends the same interfaces for updates to page-tables
to keep all replicas consistent. One way to implement this
is to eagerly update all replicas at the same time via this
standard interface when the kernel modifies the page-table.

On an eager update, the OS finds the physical location to
update in the local replica by walking the local replica of
the page-table. It is required to walk other replicas of the
page-table to locate the physical location to update all the
replicas at the same time. Therefore, an N-socket system in
x86_64 will need 4N memory accesses with replication on
a page-table update: 4 memory accesses to walk the page-
table on each of the N sockets. To reduce this overhead, we
designed a circular linked-list of all replicas. The meta-data
about each physical page is utilized to store the pointers to

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

289

the next physical page holding the replica of the page-table.
Figure 8 shows an illustration with 4-way replication. This
allows updates to proceed without walking the page-tables.
With this optimization, the update of all N replicas takes 2N
memory references (N for updating the N replicas and N
for reading the pointers to the next replica).
Linux implementation:We implemented eager updates to
the replica page-tables in Linux. This required intercepting
any writes to the page-tables and propagate updates accord-
ingly. But instead of revamping the full-memory subsystem,
we used an already existing interface in Linux, PV-Ops [44],
which is required to support para-virtualization environ-
ments such as Xen [3]. The Linux kernel shipped with major
distributions like Ubuntu has para-virtualization support
enabled by default, and all page-table updates propagate
through this interface.
Conceptually, this is done by indirect calls to the native

or Xen handler functions. To avoid the overheads of indi-
rect calls, the PV-Ops subsystem patches the call sites with
direct call code to the respective handler function (in our
case the Mitosis variants) during initialization. The PV-Ops
subsystem interface consists of functions to allocate and free
page-tables of all levels, reading and writing the translation
base register (CR3 on x86_64), and writing page-table entries.
Some example functions from the PV-Ops interface can be
seen in Listing 1.
void write_cr3(unsigned long x);

void paravirt_alloc_pte(struct mm_struct *mm, unsigned

long pfn);

void paravirt_release_pte(unsigned long pfn);

void set_pte(pte_t *ptep , pte_t pte);

Listing 1. Excerpt of the PV-Ops interface.

We implemented Mitosis as a new backend for PV-Ops
alongside with the native and Xen backends. When the ker-
nel is compiled with Mitosis, the default PV-Ops is switched
to theMitosis backend. We implemented theMitosis backend
with great care to ensure identical behavior to the native
backend whenMitosis is turned off. Besides, note that replica-
tion is generally not enabled by default, and thus the behavior
is the same as the native interface.
The PV-Ops subsystem provides an efficient way for Mi-

tosis to track any writes to the page-tables in the system.
Propagating those updates efficiently requires a fast way to
find the replica page-tables based solely on the information
provided through the PV-Ops interface (Listing 1) which is
either the kernel virtual address (KVA) or a physical frame
number (PFN) of the page-table or an entry.

We augment the page meta-data to keep track of replicas
with our circular linked list. The Linux kernel keeps track
of each 4KB physical frame in the system using struct page.
Moreover, each frame has a unique KVA and PFN. Linux
provides functions to convert between struct page and it’s
corresponding KVA/PFN, which is typically done by adding,
subtracting or shifting the respective values and are hence

efficient operations. We can, therefore, obtain the struct page

directly from the information passed through the PV-Ops
interface and update all replicas efficiently.

5.3 Efficiently Utilizing Page-Table Replicas
General design: When the OS schedules a process or task,
it performs a context switch, restores processor registers and
resumes execution of the new process or task. The context
switch involves programming the page-table base register
of the MMU with the base address of the process’ page-table
and flushing the TLB. With Mitosis, we extend the context
switch functionality, to select and set the base address of the
socket’s local page-table replica efficiently. This enables a
task or process to use the local page-table replica if present.
Linux implementation: For each process, we maintain an
array of root page-table pointers which allows directly select-
ing the local replica by indexing this array using the socket
id. Initializing this array with pointers to the very same root
page-table is equivalent to the native behavior.

5.4 Handling of Bits Written by Hardware
General design: A page-table is mostly managed by soft-
ware (the OS) most of the time and read by the hardware
(on a TLB miss). On x86, however, hardware–namely the
page-walker–reports whenever a page has been accessed
or written to by setting the accessed and dirty bits in the
PTEs. In other words, page-table is modified without direct
OS involvement. Thus, accessed and dirty bits do not use the
standard software interface to update the PTE and cannot be
replicated easily without hardware support. Note, that these
two bits are typically set by the hardware and reset by the OS,
which uses them for system-level operations like swapping
or writing back memory-mapped files if they are modified
in memory. With Mitosis when replicated, we logically OR
accessed and dirty bits of all replicas when read by the OS.
Linux implementation: We need to read accessed/dirty
bits from all replicas as well as reset them in all replicas. Un-
fortunately, the PV-Ops interface doesn’t provide functions
to read a page-table entry, worse we have found code in the
Linux kernel which even writes to the page-table entry with-
out going through the PV-Ops interface. We augmented with
the corresponding get functions to PV-Ops which consult
all copies of page-table entry and make sure the flags are
returned correctly. The new function reads all the replicas
and ORs the bits in all replicas to get the correct information.

5.5 Page-Table Migration
We use replication to perform migration in the following
way: we use Mitosis to replicate the page-table on the socket
to which the process has been migrated. The first replica can
be eagerly freed after migration, or alternatively kept up-to-
date in the case the process gets migrated back and lazily
deallocated in case physical memory is becoming scarce.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

290

6 Policy
The policies we implement with Mitosis control when page-
tables are replicated and determine the processes and sockets
for which replicas are created. As with NUMA policies, page-
table replication policies can be applied system-wide or upon
user request. We discuss both in this section.

6.1 System-wide Policies
General design: System-wide policies can range from sim-
ple on/off knobs for all processes to policies that actively
monitor performance counter events provided by the hard-
ware to dynamically enable or disable Mitosis.

Event-based triggers can be developed for page-table mi-
gration and replication within the OS. For instance, the OS
can obtain TLB miss rates or cycles spent walking page-
tables through performance counters that are available on
modern processors and then apply policy decisions automat-
ically [57]. A high TLB miss rate suggests that a process can
benefit from page-table replication or migration. The ratio
between the time spent to serve TLB misses and the number
of TLB misses can indicate a replication candidate. Processes
with a low TLB miss rate may not benefit from replication.

Even if the OS makes a decision to migrate or replicate the
page-tables, it may be costly to copy the entire page-table as
big memory workloads easily achieve page-tables of multiple
GB in size. By using additional threads or even DMA engines
onmodern processors, the creation of a replica can happen in
the background and the application regains full performance
when the replica or migration has completed.

Mitosis primarily targets long-running big-memory work-
loads with high TLB pressure, and therefore we disable
page-table replication for short-running processes since the
memory and runtime overhead of replicating page-tables for
short-running processes cannot be amortized (§ 8.3).
Linux implementation:We support a straightforward, system-
wide policy with four states: i) completely disable Mitosis, ii)
enable per-process basis, iii) fix the allocation of page-tables
on a particular socket, and iv) enabled for all processes in
the system. This system-wide policy can be set through the
sysctl interface of Linux. We leave it as future work to
implement an automatic, counter-based approach.

6.2 User-controlled Policies
General design: System-wide policies usually imply a one-
size-fits-all approach for all processes, but user-controlled
policies allow programmers to use their understanding of
their workloads and to select policies explicitly. These user-
defined replication and migration policies can be combined
with data and process placement primitives. Such policies can
be selected when starting the program by defining the CPU
set and replication set, or at runtime using corresponding
system calls to set affinities and replication policies. All of

these policies can be set per-process so that users have fine-
grained control on replication and migration.
numactl [--pgtablerepl= | -r <sockets >]

void numa_set_pgtable_replication_mask(struct bitmask *);

Listing 2. Additions to libnuma and numactl

Linux implementation: We implement user-defined poli-
cies as an additional API call to libnuma and corresponding
parameters of numactl. Similar to setting the allocation pol-
icy, we can supply node-mask or a list of sockets to replicate
the page-tables (Listing 2). Applications can thus select the
replication policy at runtime, or we can use numactl to select
the policy without changing the program.
Both, libnuma and numactl use two additional system

calls to set and get the page-table replication bitmask. When-
ever a new mask is set, Mitosis will walk the existing page-
table and create replicas according to the new bitmask. The
bitmask effectively specifies the replication factor: N bits set
corresponds to copies on N sockets and by passing an empty
bitmask, the default behavior is restored.

7 Discussion
7.1 Why Linux Implementation?
As a proof-of-concept, we implement Mitosis in the widely-
used Linux OS. Choosing Linux as our testbed allows us to
prototype our ideas on a complex and complete OS where
subtle interactions of many systems features and Mitosis
stress-tests its evaluation. Specifically, we implemented Mi-
tosis on top of Linux kernel v4.17 for the x86_64 architecture.

7.2 Huge/Large Pages Support?
Large pages mitigate address translation overheads by in-
creasing the amount of memory that each TLB entry map by
orders of magnitude. Even with 2MB and 1GB page size sup-
port in x86-64 on an Intel Haswell processor, the TLB reach is
still less than 1%, assuming 1TB of main memory. Moreover,
many commodity processors provide limited numbers of
large page TLB entries especially for 1GB pages, which lim-
its their benefit [6, 27, 42]. Additionally large pages are not
always the best choice, particularly on NUMA systems [31].
Since, address translation overheads are non-negligible

even with large pages, they are also susceptible to NUMA
effects on page-table walks.Mitosis supports larger page sizes
by extending page-table replication support to transparent
huge pages (THP) in Linux.

7.3 Applicability to Virtualized Systems?
Virtualized systems widely use hardware-based nested pag-
ing to virtualize memory [29]. This requires two-levels of
page-table translation:
1. gVA to gPA: guest virtual address to guest physical address

via a per-process guest OS page-table (gPT)
2. gPA to hPA: guest physical address to host physical ad-

dress via a per-VM nested page-table (nPT)

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

291

In the best case, the virtualized address translation hits in the
TLB to directly translate from gVA to hPA with no overheads.
In the worst case, a TLB miss needs to perform a 2D page
walk that multiplies overheads because accesses to the guest
page-table also require translation by the nested page-table.
For x86-64, a nested page-table walk requires up to 24 mem-
ory accesses compared to four in native. The 2D page-table
walk also comes with additional hardware complexity.

Understanding page-table placement in virtualized sys-
tems is a major undertaking and requires a separate study.
We anticipate that higher performance gains can be obtained
by employingMitosis to replicate both levels of page-tables in
virtualized systems. We believe our design can be extended
to replicate both guest page-tables and nested page-tables in-
dependently if the underlying NUMA architecture is exposed
to the guest OS. To extend the design, we can rely on setting
accessed and dirty bits at both gPT and nPT by the nested
page-table walk hardware available since Haswell [37]. Thus,
we can extend our OS extension for or-ing the access and
dirty bits across replicas to get the correct information at
both levels independently. However, the main challenge is
that most cloud systems prefer not to expose the underlying
architecture to the guest OS. This calls for novel techniques
to replicate and migrate both levels of page-tables in a virtu-
alized environment.

7.4 Consistency Across Page-Table Replicas?
Coherence between hardware TLBs is maintained by the
OS with the help of TLB flush IPIs and updates to the page-
table are already thread-safe as they are performed within
a critical section. In Linux, a lock is taken whenever the
page-table of a process is modified and thus ensuring mutual
exclusion. The updates to the page-table structure are made
visible after releasing the lock. When an entry is modified,
its effect is made visible to other cores through a global TLB
flush as the old entry might still be cached.

Mitosis provides the same consistency guarantees as Linux
by updating all page-table replicas eagerly while being in
the critical section. Thus, only one thread can modify the
page-table at a time. Hardware may read the page-table while

updates are being carried out. The critical section ensures
correctness while serving page faults or other VM opera-
tions while TLB flushes ensure translation coherence after
modification of page-table entries.

7.5 Applicability to Library OS
We have chosen to implement the prototype of Mitosis in
Linux. However, the concept of Mitosis is applicable to other
operating systems. Microkernels, for instance, push most
of their memory management functionality into user-space
libraries while the kernel enforces security and isolation.
In Barrelfish [7], for example, processes manage their own
address space by explicit capability invocations to update
page-tables with new mappings.
In such a system, one could implement Mitosis purely in

user-space by linking to a Mitosis-enabled libraryOS, and
the kernel itself would not need to be modified. The library
can keep track of the address space, including page-tables,
replicas etc. Those data-structures can be augmented to in-
clude an array of page-table capabilities instead of a single
such table. This would allow policies to be defined at appli-
cation level by using an appropriate policy library. Updates
to page-tables might need to be converted to explicit update
messages to other sockets, which avoid the need for global
locks and propagates updates lazily. On a page fault, updates
can be processed and applied accordingly in the page fault
handling routine. We leave such an implementation to future
work, but believe it to be straightforward.

8 Evaluation
We evaluate Mitosis using a set of big-memory workloads
and micro-benchmarks. We show: (1) how multi-threaded
programs benefit from Mitosis (§ 8.1), (2) how Mitosis elim-
inates NUMA effects of page-walks when page-tables are
placed on remote sockets due to task migration (§ 8.2) and
(3), the memory and runtime overheads of Mitosis (§ 8.3).

HardwareConfiguration Weused a four-socket Intel Xeon
E7-4850v3 with 14 cores and 128GB memory per-socket (512
GB total memory) with 2-way hyper-threading running at
2.20GHz. The L3 cache is 35MB in size and the processor has

 F
 F

+M
 F

-A

 F
-A+M I

 I+
M F

 F
+M

 F
-A

 F
-A+M I

 I+
M F

 F
+M

 F
-A

 F
-A+M I

 I+
M F

 F
+M

 F
-A

 F
-A+M I

 I+
M F

 F
+M

 F
-A

 F
-A+M I

 I+
M F

 F
+M

 F
-A

 F
-A+M I

 I+
M

0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
rm

al
ize

d
Cy

cle
s

1.
34

x

1.
24

x

1.
16

x 1.
17

x

1.
13

x

1.
14

x

1.
12

x

1.
12

x

1.
10

x

1.
03

x

1.
07

x

1.
02

x

1.
08

x

1.
09

x

1.
05

x

1.
04

x

1.
02

x

1.
02

x

Canneal Memcached XSBench Graph500 HashJoin BTree
(371.5 TC) (157.3 TC) (84.0 TC) (96.7 TC) (34.1 TC) (178.1 TC)

(a) 4KB Pages

TF
TF+

M
TF-

A

TF-
A+M TI

TI+
M TF

TF+
M
TF-

A

TF-
A+M TI

TI+
M TF

TF+
M
TF-

A

TF-
A+M TI

TI+
M TF

TF+
M
TF-

A

TF-
A+M TI

TI+
M TF

TF+
M
TF-

A

TF-
A+M TI

TI+
M TF

TF+
M
TF-

A

TF-
A+M TI

TI+
M

0.0
0.2
0.4
0.6
0.8
1.0
1.2

1.
14

x

1.
31

x

1.
09

x

1.
13

x

1.
09

x

1.
01

x 1.
06

x

1.
05

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
03

x

1.
07

x

1.
03

x

Canneal Memcached XSBench Graph500 HashJoin BTree
(371.5 TC) (157.3 TC) (84.0 TC) (96.7 TC) (34.1 TC) (178.1 TC)

(b) 2MB Large Pages

Figure 9. Normalized performance with Mitosis for multi-socket workloads with 4KB and 2MB page size. The lower hashed
part of each bar is execution time spent in walking the page-tables. Absolute runtime for the baseline in tera cycles (×1012
cycles) below the workload.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

292

 LP
-LD

 R
PI-

LD

 R
PI-

LD
+M

 LP
-LD

 R
PI-

LD

 R
PI-

LD
+M

 LP
-LD

 R
PI-

LD

 R
PI-

LD
+M

 LP
-LD

 R
PI-

LD

 R
PI-

LD
+M

 LP
-LD

 R
PI-

LD

 R
PI-

LD
+M

 LP
-LD

 R
PI-

LD

 R
PI-

LD
+M

 LP
-LD

 R
PI-

LD

 R
PI-

LD
+M

 LP
-LD

 R
PI-

LD

 R
PI-

LD
+M

0

1

2

3

No
rm

al
ize

d
Cy

cle
s

3.
24

x

1.
83

x

2.
06

x

2.
10

x

1.
44

x

1.
80

x

1.
42

x

1.
95

x

GUPS PageRank BTree HashJoin XSBench Redis LibLinear Canneal
(0.45 TC) (14.78 TC) (0.63 TC) (0.83 TC) (12.75 TC) (0.12 TC) (56.92 TC) (1.54 TC)

(a) 4KB Pages

TLP
-LD

TR
PI-

LD

TR
PI-

LD
+M

TLP
-LD

TR
PI-

LD

TR
PI-

LD
+M

TLP
-LD

TR
PI-

LD

TR
PI-

LD
+M

TLP
-LD

TR
PI-

LD

TR
PI-

LD
+M

TLP
-LD

TR
PI-

LD

TR
PI-

LD
+M

TLP
-LD

TR
PI-

LD

TR
PI-

LD
+M

TLP
-LD

TR
PI-

LD

TR
PI-

LD
+M

TLP
-LD

TR
PI-

LD

TR
PI-

LD
+M

0

1

2

3

1.
00

x

1.
00

x

2.
35

x

1.
00

x

1.
02

x

1.
70

x

0.
92

x

1.
31

x

GUPS PageRank BTree HashJoin XSBench Redis LibLinear Canneal
(0.45 TC) (14.78 TC) (0.63 TC) (0.83 TC) (12.75 TC) (0.12 TC) (56.92 TC) (1.54 TC)

(b) 2MB Large Pages
Figure 10. Normalized performance with Mitosis for workloads in workload migration scenario with 4KB and 2MB page size.
The lower hashed part of each bar is execution time spent in walking the page-tables. Absolute runtime for the baseline in tera
cycles (×1012 cycles) below the workload.

a per-core two-level TLB with 64+1024 entries. Accessing
memory on the local NUMA socket has about 280 cycles la-
tency and throughput of 28GB/s. For a remote NUMA socket,
this is 580 cycles and 11GB/s respectively.

8.1 Multi-socket Scenario
In this part of the evaluation, we focus on multi-threaded
workloads running in parallel on all sockets in the system.
For a machine with N NUMA sockets, in expectation N−1

N of
page-table accesses will be remote while the remote sockets
are busy themselves. We evaluate six workloads (see § 3.1),
for all commonly used configurations that influence data and
page-table placement (see Table 3). Performance is presented
as an average of three runs, excluding the initialization phase.

The results are shown in Figure 9a for 4KB pages and Fig-
ure 9bwith 2MB large pages respectively. All bars are normal-
ized to 4KB first-touch allocation policy (bar: F). Bars with
the same allocation policy are grouped in boxes for com-
parison. The number on top of Mitosis bars (green) shows
improvement from corresponding non-Mitosis bars (purple)
within a box. Note that data allocation policy impacts per-
formance and is shown across boxes for each workload. The
results for 2MB pages are normalized to 4KB (bar: F) to show
performance impact with increase in page size.
We observe that with 4KB pages, up to 40% of the total

runtime is spent in servicing TLB misses. Mitosis reduces
the overall runtime for all applications with the best-case
improvement of 1.34x for Canneal. Most of the improvements

Config. Data pages Page-table pages
(T)F

First-touch allocation
First-touch allocation (bar: purple)

(T)F+M Mitosis replication (bar: green)

(T)F-A First-touch allocation First-touch allocation (bar: purple)
(T)F-A+M + Auto page migration Mitosis replication (bar: green)

(T)I
Interleaved allocation

Interleaved allocation (bar: purple)
(T)I+M Mitosis replication (bar:green)

Table 3. Configurations for multi-socket scenario where
workload runs on all sockets. T denotes Linux with THP. M
denotes that Mitosis is enabled in addition.

can be noted in the reduction of page-walk cycles due to
replication of page-tables.

Large pages can significantly reduce translation overheads
for many workloads. However, NUMA effects of page-table
walks are still noticeable, even if all workload memory is
backed by large pages. Hence, Mitosis provides significant
speedup, e.g. 1.14x, 1.13x, and 1.07x for Canneal, Memcached,
and BTree, respectively. Note that large pages can create
performance bottleneck on NUMA systems and hence may
not be used for many systems and workloads [31].

Using various data page placement policies improves per-
formance for our workloads as expected. In combination
with all policies, Mitosis consistently improves performance.

We have provided evidence that highly parallel workloads
experience NUMA effects of remote-memory accesses due
to page-table walks. Yet, running a workload concurrently
means we cannot inspect a thread in isolation: a TLB miss
on one core may populate the cache with the PTE needed
to serve the TLB miss on another core of the same socket.
Moreover, accessing a remote last-level cache may be faster
than accessing DRAM. Nevertheless, we have shown that
using replicated page-tables for address translation leads to
higher performance on largemulti-socket systems, providing
up to 1.34x speed up over a single page-table. Mitosis does
not cause any slowdown for these workloads.

8.2 Workload Migration Scenario
As we observed in § 3.2, NUMA schedulers can move pro-
cesses from one socket to another under various constraints.
In this part of the evaluation, we show that Mitosis elimi-
nates NUMA effects of page-walks originating due to data
and threads migrating to a different socket while page-tables
remain on the socket where workload was first initialized.
We execute the same workloads used for workload mi-

gration scenario in § 3.2. As an additional configuration, we
enabledMitosis when the page-table is allocated on a remote
socket. Recall, we disabled Linux’ AutoNUMA migration,
and pre-allocated and initialized the working set (17-85GB).
The results are shown in Figure 10a and Figure 10b with

4KB and 2MB page sizes respectively. Table 2 in § 3.2 showed

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

293

GUPS BTree Redis XSBench Canneal
(0.45 TC) (0.58 TC) (0.12 TC) (12.75 TC) (1.54 TC)

LP
-L

D
TL

P-
LD

TR
PI

-L
D

TR
PI

-L
D+

M

LP
-L

D
TL

P-
LD

TR
PI

-L
D

TR
PI

-L
D+

M

LP
-L

D
TL

P-
LD

TR
PI

-L
D

TR
PI

-L
D+

M

LP
-L

D
TL

P-
LD

TR
PI

-L
D

TR
PI

-L
D+

M

LP
-L

D
TL

P-
LD

TR
PI

-L
D

TR
PI

-L
D+

M0

1

2

No
rm

al
ize

d
Cy

cle
s

2.
74

x

1.
88

x

1.
59

x

1.
16

x

1.
87

x

Figure 11. Performance of Mitosis in workload migration
scenario with 2MB pages under heavy memory fragmenta-
tion. Absolute runtime for the baseline in tera cycles (×1012
cycles) below the workload.

the configurations used for evaluation: LP-LD (Local PT -
Local Data) and RPI-LD (Remote PT with interference - Local
Data). RPI-LD+M shows the improvement with page-table
migration enabled by Mitosis when RPI-LD case arises in
the system. The boxes denote the bars to compare to see the
improvement due to page-table migration. The number on
top of the bar denotes the improvement due toMitosis (green
bar) as compared to non-mitosis bar (purple bar) within the
same box. All bars are normalized to 4KB LP-LD configu-
ration. The results for 2MB pages are normalized to 4KB
(LP-LD) to show performance impact of large pages.

With 4KB pages (Figure 10a), remote page-tables cause
1.4x to 3.2x slowdown (bar: RPI-LD) relative to the baseline
(LP-LD).Mitosis can mitigate this overhead and has the same
performance as the baseline by migrating the page-tables
with process migration.

With 2MB large pages (Figure 10b), we see that the page
walk overheads are comparatively lower, nevertheless we
observe a slowdown of up to 2.3x for TRPI-LD over TLP-LD
configuration. Again, Mitosis can mitigate this overhead and
has the same performance as the TLP-LD configuration. Note
that for certain workloads page-tables are cached well in the
memory hierarchy and thus there is no difference in runtime.
For example, in the case of GUPS, we observe roughly one
TLB miss per data access–two cache-line requests in total
per data array access. By breaking this down, we obtain
that each leaf page-table cache-line covers about 16MB of
memory which corresponds to 256k cache-lines of the data
array. Therefore, the page-table cache-lines are accessed 256k
more often than the data array cache-lines, and there are less
than 500k page-table cache lines which can easily be cached
in L3 cache of the socket. In summary, page-table entries are
likely to be present in the sockets processor cache.
Memory Fragmentation: Physical memory fragmentation
limits the availability of large pages as the system ages,
leading to higher page-walk overheads [45, 58]. Figure 11
shows the performance of Mitosis under heavy fragmenta-
tion while using 2MB pages in Linux. We use FMFI (Free
Memory Fragmentation Index [45]) to quantify fragmenta-
tion. The value of FMFI lies between 0 (no fragmentation)

Number of Replicas
Footprint PT Size 1 2 4 8 16

1 MB 0.02 MB 1.0 1.015 1.046 1.108 1.231
1 GB 2.01 MB 1.0 1.002 1.006 1.014 1.029
1 TB 2.00 GB 1.0 1.002 1.006 1.014 1.029
16 TB 32.0 GB 1.0 1.002 1.006 1.014 1.029

Table 4.Memory footprint overhead in Mitosis.

and 1 (severe fragmentation). We fragment physical memory
prior to running the workload using a custom benchmark
that allocates/frees memory repeatedly and populates the
OS page cache until FMFI reaches a high value (> 0.9). Kernel
services khugepaged and kcompactd remain active (default)
to generate large pages in the background.
We observe that all workloads, including those that did

not show performance improvement with Mitosis while us-
ing 2MB pages in Figure 10b, show dramatic improvement
with Mitosis in this case. This is due to workloads falling
back to 4KB pages under fragmentation – which we have
already shown to be susceptible to NUMA effects of page-
table walks. Note that we present this experiment under
heavy fragmentation to demonstrate that even if large pages
are enabled, page-walk overheads can approach that of 4KB
pages. In practice, the actual state of memory fragmentation
may depend on several factors and these overheads will be
proportional to the failure rate of large page allocations.
Summary:With this evaluation, we have shown thatMitosis
completely avoids resulting overheads due to page-tables
being misplaced on remote NUMA sockets.

8.3 Space and Runtime Overheads
Enabling Mitosis implies maintaining replicas which con-
sume memory and use CPU cycles to ensure consistency. We
evaluate these overheads by estimating the additional mem-
ory requirement, then perform micro-benchmarks on the
virtual memory operations and wrap up by running applica-
tions end-to-end to set those overheads into perspective.

8.3.1 Memory Overheads
We estimate the overhead of the additional memory used
to store the page-table replicas when Mitosis is enabled. We
define the two-dimensional function

mem_overhead (Footprint,Replicas) = Overhead%
that calculates memory overhead relative to the single page-
table baseline and evaluate it using different values for the
application’s memory footprint and the number of replicas.
For this estimation, we assume 4-level x86 paging with a
compact address space e.g. the application uses addresses
0..FootPrint . Each level has at least one page-table allocated
and a page-table is 4KB in size.

Table 4 shows the memory overheads of Mitosis for small
to large applications using up to 16 replicas.We use the single
page-table case as the baseline. The page-table accounts
for about 0.19% of the total footprint, except for the 1MB
case where it accounts for 1.5%. With an increasing memory

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

294

Operation 4KB region 8MB region 4GB region
mmap 2.3k 2.4k (1.0x) 2.6M 2.6M (1.0x) 1.4G 1.4G (1.0x)

mprotect 0.9k 1.0k (1.1x) 1.1k 3.4k (3.2x) 5.5M 17.9M (3.2x)
munmap 2.0k 2.1k (1.0x) 6.4k 8.7k (1.3x) 0.3G 0.4G (1.4x)

Table 5.Overhead (in brackets) ofMitosis for virtual memory
operation using 4-way Replication in cycles.

footprint used by the application, Mitosis requires less than
2.9% of additional memory for 16-replicas, whereas our four-
socket machine used just 0.6% additional memory.
The page-tables use a small fraction of the total memory

footprint of the application. For small programs, the fraction
is higher because there is a hard minimum of at least 16KB
of page-tables–a 4KB page for each level. This is reflected
by the large 23.1% increase in memory consumption for
small programs. However, putting this into perspective we
advocate not to use Mitosis in this case as the 1MB memory
footprint falls within the TLB coverage.

In summary, we showed that even with a 16-socket NUMA
machine, Mitosis adds just 2.9% memory overhead and this
overhead drops to 0.6% for our four-socket machine.

8.3.2 VMA Operation Overheads
In this part of the evaluation, we are interested in the over-
heads of managing consistency across page-table replicas. In
particular, we evaluate the overheads of page-table replica-
tion on low-level virtual memory operations such as mmap,
mprotect and munmap.
We conducted a micro-benchmark that repeatedly calls

the VMA operations and measured the execution time of the
corresponding system calls. For each operation, we enforce
that the page-table modifications are carried out e.g. by pass-
ing the MAP_POPULATE flat to mmap. We varied the number of
affected pages from a single page to a large multi-GB region
of memory. We ran the micro-benchmark with and without
Mitosis using 4KB pages and 4-way replication.

The results of this micro-benchmark are shown in Table 5.
The table shows CPU cycles required to perform the oper-
ation on a memory region of size 4KB, 8MB, or 4GB with
Mitosis being on or off. Further, we calculate the overheads
of Mitosis by dividing the 4-way replicated case (Mitosis on)
with the base case,Mitosis off. For mmap, we observe an over-
head of less than 2%. For unmap, the overhead grows to 35%
while Mitosis adds more than 3x overheads for mprotect.

With 4-way replication, there are four sets of page-tables
that need to be updated resulting in four times the work.
We attribute the rather low overhead for mmap to the alloca-
tion and zeroing of new data pages during the system call.
Likewise, when performing the unmap the freed pages are
handed back to the allocator, but not zeroed resulting in less
work per page and thus higher overhead of replication.Mito-
sis experiences a large overhead for mprotect which is still
smaller than the replication factor. The mprotect operation
does a read-modify-write cycle on the affected page-table

Workload Mitosis Off Mitosis On Overhead
GUPS 270.93 (0.43) 272.18 (0.00) 0.46%
Redis 633.94 (0.34) 636.31 (0.86) 0.37%

Table 6. Runtimes with LP-LD setting, including initializa-
tion with and without Mitosis. (Standard Deviation).

entries. This process is efficient with no replicas as it results
in sequential access within a page-table. However, with the
PV-Ops interface, for each written entry all replicas are up-
dated accordingly which leads to poor locality. We expect
this to be improved by adapting the PV-Ops interface to
update multiple, consecutive entries in a single invocation.
Moreover, the integration of the updates with Linux’ TLB
shootdown mechanism and Mitosis-aware page fault han-
dlers may further reduce the latency of these operations by
deferring updates until they are really needed. This requires
further investigation.

8.3.3 No End-to-End Slowdown
We now set the VMA operations micro-benchmark of the
previous section into the perspective of real-world applica-
tions. We show that our modifications to the Linux kernel to
support Mitosis has negligible end-to-end overhead for ap-
plications. For this, we execute workloads with and without
Mitosis and measure overall execution time, including alloca-
tion and initialization phase using the LP-LD configuration,
i.e., everything is locally allocated. THP is deactivated.

The results are shown in Table 6. We observe that in both
cases, GUPS and Redis, the overheads ofMitosis are less than
half a percent, which is small compared to the improvements
we have demonstrated earlier.
Summary: Mitosis targets long-running, memory-intensive
workloads that suffer from high TLB pressure due to frequent
page-table walks missing the last-level cache (e.g. GUPS, Re-
dis, Canneal). Our evaluation shows that, for such workloads,
Mitosis is able to eliminate NUMA effects of page-table walks
without degrading performance in other cases.

9 Conclusion
We presented Mitosis: a technique that transparently repli-
cates page-tables on large-memory machines, and provides
the first platform to systematically evaluate page-table allo-
cation policies inside the OS. With strong empirical evidence,
we made the case for taking the allocation and placement of
page-tables to a first-class consideration. We open-source the
tools used in this work to inspire further research on page-
table management [55], and plan to work with the Linux
community to integrate Mitosis into the mainline kernel.

Acknowledgments
We would like to thank our anonymous reviewers, Chris
Rossbach, Dan Tsafrir, Mark Hill, Michael Swift and our
shepherd Tim Harris for their insightful comments and feed-
back on the paper.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

295

References
[1] Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. 2017.

Do-It-Yourself Virtual Memory Translation. In Proceedings of the
44th Annual International Symposium on Computer Architecture (ISCA
’17). Toronto, ON, Canada, 457–468. https : / /doi.org/10.1145/
3079856.3080209

[2] James Ang, Brian Barrett, Kyle Wheeler, and Richard Murphy. 2010.
Introducing the Graph500. (01 2010). https://graph500.org/

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the Art of Virtualization. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (SOSP ’03). Bolton Landing,
NY, USA, 164–177. https://doi.org/10.1145/945445.945462

[4] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation
Caching: Skip, Don’T Walk (the Page Table). In Proceedings of the 37th
Annual International Symposium on Computer Architecture (ISCA ’10).
Saint-Malo, France, 48–59. https://doi.org/10.1145/1815961.1815970

[5] ThomasW. Barr, Alan L. Cox, and Scott Rixner. 2011. SpecTLB: Amech-
anism for speculative address translation. In Proceedings of the 38th
Annual International Symposium on Computer Architecture (ISCA ’11).
San Jose, CA, USA, 307–317. https://doi.org/10.1145/2000064.2000101

[6] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and
Michael M. Swift. 2013. Efficient Virtual Memory for Big Memory
Servers. In Proceedings of the 40th Annual International Symposium
on Computer Architecture (ISCA ’13). Tel-Aviv, Israel, 237–248. https:
//doi.org/10.1145/2485922.2485943

[7] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles (SOSP ’09). Big Sky,
Montana, USA, 29–44. https://doi.org/10.1145/1629575.1629579

[8] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The
GAP Benchmark Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619
http://arxiv.org/abs/1508.03619

[9] Abhishek Bhattacharjee. 2013. Large-reach Memory Management
Unit Caches. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46). Davis, California, 383–
394. https://doi.org/10.1145/2540708.2540741

[10] Abhishek Bhattacharjee. 2017. Translation-Triggered Prefetching.
In Proceedings of the Twenty-Second International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’17). Xi’an, China, 63–76. https://doi.org/10.1145/
3037697.3037705

[11] Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi. 2011.
Shared Last-level TLBs for Chip Multiprocessors. In Proceedings of the
2011 IEEE 17th International Symposium on High Performance Computer
Architecture (HPCA ’11). San Antonio, Texas, USA, 62–73. https:
//doi.org/10.1109/HPCA.2011.5749717

[12] Christian Bienia and Kai Li. 2009. PARSEC 2.0: A NewBenchmark Suite
for Chip-Multiprocessors. In Proceedings of the 5th Annual Workshop
on Modeling, Benchmarking and Simulation.

[13] Justinien Bouron, Sebastien Chevalley, Baptiste Lepers, Willy
Zwaenepoel, Redha Gouicem, Julia Lawall, Gilles Muller, and Julien
Sopena. 2018. The Battle of the Schedulers: FreeBSD ULE vs. Linux
CFS. In Proceedings of the 2018 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC ’18). Boston, MA, USA, 85–96.
https://www.usenix.org/conference/atc18/presentation/bouron

[14] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans
Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yue-
hua Dai, Yang Zhang, and Zheng Zhang. 2008. Corey: An Operating
System for Many Cores. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation (OSDI’08). San Diego,
California, 43–57. https://www.usenix.org/legacy/event/osdi08/tech/

fullpapers/boyd-wickizer/boydwickizer.pdf
[15] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K.

Aguilera. 2017. Black-box Concurrent Data Structures for NUMA
Architectures. In Proceedings of the Twenty-Second International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS ’17). Xi’an, China, 207–221. https://doi.org/
10.1145/3037697.3037721

[16] Chih-Chung Chang and Chih-Jen Lin. 2019. Dataset for LibLinear
Classifier. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
binary.html#kdd2012.

[17] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2013.
RadixVM: Scalable Address Spaces for Multithreaded Applications. In
Proceedings of the 8th ACM European Conference on Computer Systems
(EuroSys ’13). 211–224. https://doi.org/10.1145/2465351.2465373

[18] Jonathan Corbet. 2012. AutoNUMA: the other approach to NUMA
scheduling. https://lwn.net/Articles/488709/.

[19] Russ Cox, Frans Kaashoek, and Robert Morris. 2019. Xv6, a simple
Unix-like teaching operating system. https://pdos.csail.mit.edu/
6.828/2019/xv6.html.

[20] Ian Cutress. 2019. Intel’s Enterprise Extravaganza 2019: Launching Cas-
cade Lake, Optane DCPMM, Agilex FPGAs, 100G Ethernet, and Xeon
D-1600. https://www.anandtech.com/show/14155/intels-enterprise-
extravaganza-2019-roundup.

[21] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi.
2011. Albatross: Lightweight Elasticity in Shared Storage Databases
for the Cloud Using Live Data Migration. Proc. VLDB Endow. 4, 8 (May
2011), 494–505. https://doi.org/10.14778/2002974.2002977

[22] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud,
Renaud Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth.
2013. Traffic Management: A Holistic Approach to Memory Place-
ment on NUMA Systems. In Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’13). Houston, Texas, USA, 381–394.
https://doi.org/10.1145/2451116.2451157

[23] Yigit Demir, Yan Pan, Seukwoo Song, Nikos Hardavellas, John Kim, and
Gokhan Memik. 2014. Galaxy: A High-performance Energy-efficient
Multi-chip Architecture Using Photonic Interconnects. In Proceedings
of the 28th ACM International Conference on Supercomputing (ICS ’14).
Munich, Germany, 303–312. https://doi.org/10.1145/2597652.2597664

[24] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem. 2015. Sup-
porting Superpages in Non-Contiguous Physical Memory. In 2015
IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA ’15). Burlingame, CA, USA, 223–234. https:
//doi.org/10.1109/HPCA.2015.7056035

[25] Zhen Fang, Lixin Zhang, John B. Carter, Wilson C. Hsieh, and Sally A.
McKee. 2001. Reevaluating Online Superpage Promotion with Hard-
ware Support. In Proceedings of the 7th International Symposium on
High-Performance Computer Architecture (HPCA ’01). Nuevo Leone,
Mexico, 63–72. https://doi.org/10.1109/HPCA.2001.903252

[26] Narayanan Ganapathy and Curt Schimmel. 1998. General Purpose
Operating System Support for Multiple Page Sizes. In Proceedings
of the Annual Conference on USENIX Annual Technical Conference
(USENIX ATC ’98). New Orleans, Louisiana. https://www.usenix.org/
conference / 1998 - usenix - annual - technical - conference / general -
purpose-operating-system-support-multiple

[27] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift.
2014. Efficient Memory Virtualization: Reducing Dimensionality of
Nested Page Walks. In Proceedings of the 47th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO-47). Cambridge,
United Kingdom, 178–189. https://doi.org/10.1109/MICRO.2014.37

[28] Jayneel Gandhi, Mark D. Hill, and Michael M. Swift. 2016. Agile Pag-
ing: Exceeding the Best of Nested and Shadow Paging. In Proceedings
of the 43rd International Symposium on Computer Architecture (ISCA
’16). Seoul, Republic of Korea, 707–718. https://doi.org/10.1109/

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

296

https://doi.org/10.1145/3079856.3080209
https://doi.org/10.1145/3079856.3080209
https://graph500.org/
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/2000064.2000101
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/1629575.1629579
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1145/2540708.2540741
https://doi.org/10.1145/3037697.3037705
https://doi.org/10.1145/3037697.3037705
https://doi.org/10.1109/HPCA.2011.5749717
https://doi.org/10.1109/HPCA.2011.5749717
https://www.usenix.org/conference/atc18/presentation/bouron
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/boyd-wickizer/boyd_wickizer.pdf
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/boyd-wickizer/boyd_wickizer.pdf
https://doi.org/10.1145/3037697.3037721
https://doi.org/10.1145/3037697.3037721
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2012
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2012
https://doi.org/10.1145/2465351.2465373
https://lwn.net/Articles/488709/
https://pdos.csail.mit.edu/6.828/2019/xv6.html
https://pdos.csail.mit.edu/6.828/2019/xv6.html
https://www.anandtech.com/show/14155/intels-enterprise-extravaganza-2019-roundup
https://www.anandtech.com/show/14155/intels-enterprise-extravaganza-2019-roundup
https://doi.org/10.14778/2002974.2002977
https://doi.org/10.1145/2451116.2451157
https://doi.org/10.1145/2597652.2597664
https://doi.org/10.1109/HPCA.2015.7056035
https://doi.org/10.1109/HPCA.2015.7056035
https://doi.org/10.1109/HPCA.2001.903252
https://www.usenix.org/conference/1998-usenix-annual-technical-conference/general-purpose-operating-system-support-multiple
https://www.usenix.org/conference/1998-usenix-annual-technical-conference/general-purpose-operating-system-support-multiple
https://www.usenix.org/conference/1998-usenix-annual-technical-conference/general-purpose-operating-system-support-multiple
https://doi.org/10.1109/MICRO.2014.37
https://doi.org/10.1109/ISCA.2016.67
https://doi.org/10.1109/ISCA.2016.67
https://doi.org/10.1109/ISCA.2016.67

ISCA.2016.67
[29] J. Gandhi, M. D. Hill, and M. M. Swift. 2017. Agile Paging for Efficient

Memory Virtualization. IEEEMicro 37, 3 (2017), 80–86. https://doi.org/
10.1109/MM.2017.67

[30] J. Gandhi, V. Karakostas, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. S. Ünsal. 2016. Range Translations
for Fast Virtual Memory. IEEE Micro 36, 3 (May 2016), 118–126. https:
//doi.org/10.1109/MM.2016.10

[31] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston,
Alexandra Fedorova, and Vivien Quéma. 2014. Large Pages May
Be Harmful on NUMA Systems. In Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference (USENIX ATC’14).
Philadelphia, PA, 231–242. https://www.usenix.org/node/183962

[32] Swapnil Haria, Mark D. Hill, andMichaelM. Swift. 2018. Devirtualizing
Memory in Heterogeneous Systems. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’18). Williamsburg, VA,
USA, 637–650. https://doi.org/10.1145/3173162.3173194

[33] HPCCALLENGE. 2019. RandomAccess: GUPS (Giga Updates Per Sec-
ond). https://icl.utk.edu/projectsfiles/hpcc/RandomAccess/.

[34] Intel Corporation. 2017. 5-Level Paging and 5-Level EPT.
https://software.intel.com/sites/default/files/managed/2b/80/5-
levelpagingwhitepaper.pdf.

[35] Intel Corporation. 2017. New Intel Core Processor Combines High-
Performance CPUwith CustomDiscrete Graphics fromAMD to Enable
Sleeker, Thinner Devices. https://newsroom.intel.com/editorials/
new-intel-core-processor-combine-high-performance-cpu-discrete-
graphics-sleek-thin-devices/.

[36] S. S. Iyer. 2016. Heterogeneous Integration for Performance and Scal-
ing. IEEE Transactions on Components, Packaging and Manufactur-
ing Technology 6, 7 (July 2016), 973–982. https://doi.org/10.1109/
TCPMT.2015.2511626

[37] Sunil Jain. 2014. Are You Ready to Innovate? Four New Virtualiza-
tion Technologies on the Latest Intel Xeon Product Family. https://
software.intel.com/en-us/blogs/2014/09/08/four-new-virtualization-
technologies-on-the-latest-intel-xeon-are-you-ready-to.

[38] Stefan Kaestle, Reto Achermann, Timothy Roscoe, and Tim Harris.
2015. Shoal: Smart Allocation and Replication of Memory for Parallel
Programs. In Proceedings of the 2015 USENIX Conference on Usenix
Annual Technical Conference (USENIX ATC ’15). Santa Clara, CA, 263–
276. https://www.usenix.org/conference/atc15/technical-session/
presentation/kaestle

[39] Gokul B. Kandiraju and Anand Sivasubramaniam. 2002. Going the Dis-
tance for TLB Prefetching: An Application-driven Study. In Proceedings
of the 29th Annual International Symposium on Computer Architecture
(ISCA ’02). Anchorage, Alaska, 195–206. https://doi.org/10.1109/
ISCA.2002.1003578

[40] A. Kannan, N. E. Jerger, and G. H. Loh. 2015. Enabling interposer-based
disintegration of multi-core processors. In 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). Waikiki, HI,
USA, 546–558. https://doi.org/10.1145/2830772.2830808

[41] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal,
Mark D. Hill, Kathryn S. McKinley, Mario Nemirovsky, Michael M.
Swift, and Osman Ünsal. 2015. Redundant Memory Mappings for
Fast Access to Large Memories. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture (ISCA ’15). Portland,
Oregon, 66–78. https://doi.org/10.1145/2749469.2749471

[42] V. Karakostas, O. S. Unsal, M. Nemirovsky, A. Cristal, and M. Swift.
2014. Performance analysis of the memory management unit under
scale-outworkloads. In 2014 IEEE International Symposium onWorkload
Characterization (IISWC). Raleigh, NC, USA, 1–12. https://doi.org/
10.1109/IISWC.2014.6983034

[43] Patrick Kennedy. 2017. AMD EPYC Infinity Fabric Latency DDR4
2400 v 2666: A Snapshot. https://www.servethehome.com/amd-epyc-

infinity-fabric-latency-ddr4-2400-v-2666-a-snapshot/.
[44] Kernel.org. 2019. Paravirt_ops. https : / /www.kernel.org/doc/

Documentation/virtual/paravirtops.txt.
[45] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,

and Emmett Witchel. 2016. Coordinated and Efficient Huge Page
Management with Ingens. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI’16). 705–721.
https://doi.org/10.1145/3139645.3139659

[46] Kevin Lepak, Gerry Talbot, Sean White, Noah Beck, and Sam Naffziger.
2018. The Next Generation AMD Enterprise Server Product Archi-
tecture. https://www.hotchips.org/wp-content/uploads/hcarchives/
hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.921-
EPYC-Lepak-AMD-v2.pdf.

[47] Chih-Jen Lin. 2019. LIBLINEAR – A Library for Large Linear Classifi-
cation. https://www.csie.ntu.edu.tw/~cjlin/liblinear/.

[48] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien
Quéma, and Alexandra Fedorova. 2016. The Linux Scheduler: A Decade
of Wasted Cores. In Proceedings of the Eleventh European Conference
on Computer Systems (EuroSys ’16). London, United Kingdom, 1–16.
https://doi.org/10.1145/2901318.2901326

[49] Xunjia Lu. 2017. Extreme Performance Series: vSphere Compute
& Memory Schedulers. https : / / static.rainfocus.com/vmware /
vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/
SER2343BUFORMATTEDFINAL1507912874739001gpDS.pdf.

[50] Daniel Lustig, Abhishek Bhattacharjee, and Margaret Martonosi. 2013.
TLB Improvements for Chip Multiprocessors: Inter-Core Cooperative
Prefetchers and Shared Last-Level TLBs. ACM Trans. Archit. Code
Optim. 10, 1, Article 2 (April 2013), 38 pages. https://doi.org/10.1145/
2445572.2445574

[51] Marvell Corporation. 2016. MoChi Architecture. http : / /
www.marvell.com/architecture/mochi/.

[52] John D. McCalpin. 2019. STREAM: Sustainable Memory Bandwidth in
High Performance Computers. https://www.cs.virginia.edu/stream/.

[53] memcached. 2019. memcached: a distributed memory object caching
system. https://memcached.org.

[54] Mitosis. 2019. Artifact Repository. https://github.com/mitosis-project/
mitosis-asplos20-artifact.

[55] Mitosis. 2019. Open Source Code Repository. https://github.com/
mitosis-project/.

[56] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. 2002. Prac-
tical, Transparent Operating System Support for Superpages. SIGOPS
Oper. Syst. Rev. 36, SI (Dec. 2002), 89–104. https://doi.org/10.1145/
844128.844138

[57] Ashish Panwar, Sorav Bansal, and K. Gopinath. 2019. HawkEye: Effi-
cient Fine-grained OS Support for Huge Pages. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’19). Providence,
RI, USA, 347–360. https://doi.org/10.1145/3297858.3304064

[58] Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge
Pages Actually Useful. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’18). Williamsburg, VA, USA, 679–692.
https://doi.org/10.1145/3173162.3173203

[59] M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos. 2015.
Prediction-based superpage-friendly TLB designs. In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA ’15). Burlingame, CA, USA, 210–222. https://doi.org/10.1109/
HPCA.2015.7056034

[60] PARSEC. 2012. Canneal Netlist Generator. https :
//parsec.cs.princeton.edu/download/other/cannealnetlist.pl.

[61] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh. 2014. In-
creasing TLB reach by exploiting clustering in page translations. In
2014 IEEE 20th International Symposium on High Performance Com-
puter Architecture (HPCA ’14). Orlando, FL, USA, 558–567. https:

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

297

https://doi.org/10.1109/ISCA.2016.67
https://doi.org/10.1109/ISCA.2016.67
https://doi.org/10.1109/MM.2017.67
https://doi.org/10.1109/MM.2017.67
https://doi.org/10.1109/MM.2016.10
https://doi.org/10.1109/MM.2016.10
https://www.usenix.org/node/183962
https://doi.org/10.1145/3173162.3173194
https://icl.utk.edu/projectsfiles/hpcc/RandomAccess/
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://newsroom.intel.com/editorials/new-intel-core-processor-combine-high-performance-cpu-discrete-graphics-sleek-thin-devices/
https://newsroom.intel.com/editorials/new-intel-core-processor-combine-high-performance-cpu-discrete-graphics-sleek-thin-devices/
https://newsroom.intel.com/editorials/new-intel-core-processor-combine-high-performance-cpu-discrete-graphics-sleek-thin-devices/
https://doi.org/10.1109/TCPMT.2015.2511626
https://doi.org/10.1109/TCPMT.2015.2511626
https://software.intel.com/en-us/blogs/2014/09/08/four-new-virtualization-technologies-on-the-latest-intel-xeon-are-you-ready-to
https://software.intel.com/en-us/blogs/2014/09/08/four-new-virtualization-technologies-on-the-latest-intel-xeon-are-you-ready-to
https://software.intel.com/en-us/blogs/2014/09/08/four-new-virtualization-technologies-on-the-latest-intel-xeon-are-you-ready-to
https://www.usenix.org/conference/atc15/technical-session/presentation/kaestle
https://www.usenix.org/conference/atc15/technical-session/presentation/kaestle
https://doi.org/10.1109/ISCA.2002.1003578
https://doi.org/10.1109/ISCA.2002.1003578
https://doi.org/10.1145/2830772.2830808
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1109/IISWC.2014.6983034
https://doi.org/10.1109/IISWC.2014.6983034
https://www.servethehome.com/amd-epyc-infinity-fabric-latency-ddr4-2400-v-2666-a-snapshot/
https://www.servethehome.com/amd-epyc-infinity-fabric-latency-ddr4-2400-v-2666-a-snapshot/
https://www.kernel.org/doc/Documentation/virtual/paravirt_ops.txt
https://www.kernel.org/doc/Documentation/virtual/paravirt_ops.txt
https://doi.org/10.1145/3139645.3139659
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.921-EPYC-Lepak-AMD-v2.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.921-EPYC-Lepak-AMD-v2.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.921-EPYC-Lepak-AMD-v2.pdf
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://doi.org/10.1145/2901318.2901326
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://doi.org/10.1145/2445572.2445574
https://doi.org/10.1145/2445572.2445574
http://www.marvell.com/architecture/mochi/
http://www.marvell.com/architecture/mochi/
https://www.cs.virginia.edu/stream/
https://memcached.org
https://github.com/mitosis-project/mitosis-asplos20-artifact
https://github.com/mitosis-project/mitosis-asplos20-artifact
https://github.com/mitosis-project/
https://github.com/mitosis-project/
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/3297858.3304064
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1109/HPCA.2015.7056034
https://doi.org/10.1109/HPCA.2015.7056034
https://parsec.cs.princeton.edu/download/other/canneal_netlist.pl
https://parsec.cs.princeton.edu/download/other/canneal_netlist.pl
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/HPCA.2014.6835964

//doi.org/10.1109/HPCA.2014.6835964
[62] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek

Bhattacharjee. 2012. CoLT: Coalesced Large-Reach TLBs. In Proceed-
ings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-45). Vancouver, B.C., CANADA, 258–269.
https://doi.org/10.1109/MICRO.2012.32

[63] Binh Pham, Ján Veselý, Gabriel H. Loh, and Abhishek Bhattacharjee.
2015. Large Pages and Lightweight Memory Management in Virtu-
alized Environments: Can You Have It Both Ways?. In Proceedings
of the 48th International Symposium on Microarchitecture (MICRO-48).
Waikiki, Hawaii, 1–12. https://doi.org/10.1145/2830772.2830773

[64] Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. 2009. Thread
Motion: Fine-grained Power Management for Multi-core Systems. In
Proceedings of the 36th Annual International Symposium on Computer
Architecture (ISCA ’09). Austin, TX, USA, 302–313. https://doi.org/
10.1145/1555754.1555793

[65] Redis Labs. 2019. Redis. https://redis.io.
[66] Ashley Saulsbury, Fredrik Dahlgren, and Per Stenström. 2000. Recency-

based TLB Preloading. In Proceedings of the 27th Annual International
Symposium on Computer Architecture (ISCA ’00). Vancouver, British
Columbia, Canada, 117–127. https://doi.org/10.1145/339647.339666

[67] A. Seznec. 2004. Concurrent Support of Multiple Page Sizes on a
Skewed Associative TLB. IEEE Trans. Comput. 53, 7 (July 2004), 924–
927. https://doi.org/10.1109/TC.2004.21

[68] Mark Swanson, Leigh Stoller, and John Carter. 1998. Increasing TLB
Reach Using Superpages Backed by Shadow Memory. In Proceedings
of the 25th Annual International Symposium on Computer Architec-
ture (ISCA ’98). Barcelona, Spain, 204–213. https://doi.org/10.1145/
279358.279388

[69] Taiwan Semiconductor Manufacturing Company Limited. 2019.
CoWoS Services. http://www.tsmc.com/english/dedicatedFoundry/
services/cowos.htm.

[70] Madhusudhan Talluri and Mark D. Hill. 1994. Surpassing the TLB Per-
formance of Superpages with Less Operating System Support. In Pro-
ceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS VI). San
Jose, California, USA, 171–182. https://doi.org/10.1145/195473.195531

[71] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.
2014. XSBench - The Development and Verification of a Performance
Abstraction for Monte Carlo Reactor Analysis. In PHYSOR 2014 - The
Role of Reactor Physics toward a Sustainable Future. Kyoto. https:
//www.mcs.anl.gov/papers/P5064-0114.pdf

[72] J. Yin, Z. Lin, O. Kayiran, M. Poremba, M. Shoaib Bin Altaf, N. Enright
Jerger, and G. H. Loh. 2018. Modular Routing Design for Chiplet-
Based Systems. In 2018 ACM/IEEE 45th Annual International Sym-
posium on Computer Architecture (ISCA). 726–738. https://doi.org/
10.1109/ISCA.2018.00066

A Artifact Appendix
A.1 Abstract
Our artifact provides x86_64 binaries of our modified Linux
kernel v4.17, user-space control libraries (libnuma) and eval-
uated benchmarks with their input files where appropriate.
We further provide source code of our Linux modifications,
user-space libraries and scripts to compile the binaries.
The exact invocation arguments and measurement in-

frastructure is provided through bash and python scripts
which allow reproducing the data and graphs in the paper
for a multi-socket Intel Haswell machine (or similar micro-
architecture) with at least 512GB of main memory.

A.2 Artifact check-list (meta-information)
• Algorithm: Page-table replication.
• Programs:Canneal,Memcached, XSBench, Graph500, HashJoin,
BTree, GUPS, Redis, PageRank, LibLinear.

• Compilation:GCCversion 7.4.0 (gcc-7 7.4.0-1ubuntu1~18.04.1)
• Transformations: Page-table replication implemented as
a Linux kernel extension.

• Binary: Included for x86_64. Source code and scripts in-
cluded to regenerate binaries.

• Data set: Generated netlist for Canneal. kdd12 dataset for
LibLinear. There are scripts to obtain those.

• Run-time environment: Provided by the supplied Linux
kernel binaries for x86_64 hardware, source code given.

• Hardware: We recommend a 4 socket Intel Xeon E7-4850v3
with 14 cores and 128GB memory per-socket (512 GB total
memory) to reproduce the paper results. Other multi-socket
x86_64 servers with at least 512GB main memory / 128GB
memory per NUMA node should give similar results.

• Run-time state: Workloads populate their runtime state
themselves.

• Execution: Natively on Mitosis-Linux using bash-scripts.
• Output: The artifact produces the graphs for each figure
used in the paper.

• Experiments: All of the programs above with different
NUMA policies, page sizes and replication settings.

• How much disk space required: 200 GB for workloads
and datasets etc.

• Howmuch time is needed to prepare workflow: 30-60
mins.

• How much time is needed to complete experiments:
3-4 days (1 day excluding Canneal benchmark).

• Publicly available: Private GitHub repository. Public re-
lase in the work.

• Workflow framework used?: No.
• Archived: Yes. DOI: 10.5281/zenodo.3605382.

A.3 Description
A.3.1 How delivered
All scripts are available in theGitHub repository https://github.com/
mitosis-project/asplos20-ae. Source code are currently in a private
GitHub repository to which we will share access. We are working
on a public release in meantime. Pre-compiled binaries are available
at https://zenodo.org/record/3560200.

A.3.2 Hardware dependencies
We recommend a 4 socket Intel Xeon E7-4850v3 with 14 cores and
128GB memory per-socket (512 GB total memory) to reproduce
the paper results. Other multi-socket x86_64 servers with at least
512GBmain memory / 128GBmemory per NUMA node should give
similar results. Note, the state memory sizes are a hard requirement
as some workloads use hardcoded data structure scaling sizes.

A.3.3 Software dependencies
The compilation environment and our provided binaries and scripts
assume Ubuntu 18.04 LTS, which also uses the Linux Kernel v4.17.
Similar Linux distributions may also work. In addition to the pack-
ages shipped with Ubunty 18.04 LTS, we require the following
packages:

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

298

https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/MICRO.2012.32
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/1555754.1555793
https://doi.org/10.1145/1555754.1555793
https://redis.io
https://doi.org/10.1145/339647.339666
https://doi.org/10.1109/TC.2004.21
https://doi.org/10.1145/279358.279388
https://doi.org/10.1145/279358.279388
http://www.tsmc.com/english/dedicatedFoundry/services/cowos.htm
http://www.tsmc.com/english/dedicatedFoundry/services/cowos.htm
https://doi.org/10.1145/195473.195531
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://doi.org/10.1109/ISCA.2018.00066
https://doi.org/10.1109/ISCA.2018.00066
https://github.com/mitosis-project/asplos20-ae
https://github.com/mitosis-project/asplos20-ae
https://zenodo.org/record/3560200

apt-get install build-essential libncurses-dev \
bison flex libssl-dev libelf-dev \
libnuma-dev python3 python3 \
python3-pip python3-matplotlib \
python3-numpy git wget \
kernel-package fakeroot ccache \
libncurses5-dev wget pandoc \
libevent-dev libreadline-dev

See https://www.kernel.org/doc/html/v4.17/process/changes.html
to get a detailed explanation for Linux kernel build dependencies

In addition, install the following python libraries with pip:
pip3 install zenodo-get

There is a docker image which you can use to compile. You can
do make docker-shell to obtain a shell in the docker container,
or just to compile everything type make docker-compile.

A.3.4 Data sets
The data sets are automatically obtained when executing the run
scripts. The generation and download scripts are present in the
datasets/.

A.4 Installation
To install, either download the complete artifact from Zenodo
(https://zenodo.org/record/3605382) (DOI 10.5281/zenodo.3605382),
or clone the GitHub repository from https://github.com/mitosis-
project/mitosis-asplos20-artifact. The GitHub repository contains
all needed scripts to run all artifacts, it does not contain any source
code or binaries. There are scripts which download the pre-compiled
binaries, or source code for compilation.

A.4.1 Obtaining pre-compiled binaries
To obtain the pre-compiled binaries execute:
./scripts/download_binaries.sh

The pre-compiled binaries are available on Zenodo.org (https:
//zenodo.org/record/3560200) You can download them manually
and place them in the precompiled directory.

A.4.2 Compiling Binaries
If you plan to use the pre-compiled binaries, you can skip this step.
Otherwise use the following commands to compile the binaries
from the sources.

The source code for the Linux kernel and evaluated worloads are
available on GitHub (https://github.com/mitosis-project. To obtain
the source code you can initialize the corresponding git submodules.
Note: contact us for the workload source code.

To compile everything just type make in the root directory. There
is a separate make target for each workload.

A.4.3 Installing Mitosis-Linux
Either place the vmlinux binary and boot from it or use the debian
packages to install Mitosis-Linux on your machine under test. See
the hardware dependencies for the minimum requirements for this
machine.

To install the kernel module for page-table dumping you need
to execute:
make install lkml

It’s best to compile it on the machine runnig Mitosis-Linux.

make mitosis-page-table-dump

A.4.4 Preparing Datasets
Canneal and LibLinear workloads require datasets to run. Scripts
to download or generate the datasets are placed in datasets/ and
require approximately 100GB of disk space. Datasets are generated
as part of experimental runs, if not already present. You can also
prepare datasets before running the experiments as:
./datasets/prepare_liblinear_dataset.sh
./datasets/prepare_canneal_datasets.sh

A.5 Experiment workflow
Once you have obtained the artifact sources or compiled the bina-
ries, you can execute the workloads as follows. We provide scripts
for each workload used in the paper, and to run all of them in one
go.

A.5.1 Deployment
You can download the artifact to the test machine and execute the
scripts directly.

Alternatively, you can deploy it to a separate test machine. To do
so, set your target host-name and directory in scripts/site_config.sh
and use the deploy script to copy the scripts, binaries and datasets
to your test machine.
./scripts/deploy.sh

A.5.2 Running all experiments
We advise to run the experiments natively and exclusively on a ma-
chine i.e. no virtual machines or compute/memory-intensive appli-
cation running concurrently. A test script (scripts/run_test.sh)
is provided to verify the experimental setup. To run all experiments,
execute:
./scripts/run_all.sh

To run experiments for individual figures, do:
• Figure 6 - ./scripts/run_f6_all.sh
• Figure 9a - ./scripts/run_f9a_all.sh
• Figure 9b - ./scripts/run_f9b_all.sh
• Figure 10a - ./scripts/run_10a_all.sh
• Figure 10b - ./scripts/run_10b_all.sh
• Figure 11 - ./scripts/run_f11.sh
• Table 5 - ./scripts/run_t5.sh

You can also execute each bar of the figures independently (refer
to scripts/run_f6_all.sh and scripts/run_f10a_all.sh for
more examples) as:
./scripts/run_f6f10_one.sh BENCHMARK CONFIG
./scripts/run_f9_one.sh BENCHMARK CONFIG

All output logs are redirected to evaluation/measured/FIGURENUM.
Logs can be processed by executing:
./scripts/process_logs_core.py

A.6 Evaluation and expected result
Once you’ve ran all experiments above, you can compare the out-
come with the expected results. The reference data set (as shown in
the paper) is obtained on a four-socket Intel Xeon E7-4850v3 with
14 cores and 128GBmemory per-socket (512 GB total memory) with

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

299

https://www.kernel.org/doc/html/v4.17/process/changes.html
https://zenodo.org/record/3605382
https://github.com/mitosis-project/mitosis-asplos20-artifact
https://github.com/mitosis-project/mitosis-asplos20-artifact
https://zenodo.org/record/3560200
https://zenodo.org/record/3560200
https://github.com/mitosis-project

2-way hyper-threading running at 2.20GHz). The data is located in
the folder evaluation/reference/.

A.6.1 Collecting the Results
If you used the deploy script to copy your data to the test machine,
you can collect the runtime results by executing
./scripts/collect-results.sh

A.6.2 Generate the Report
You can execute the report with the reference and measured data
and graphs using the following commands.
./scripts/compile_report.sh

This will produce a pdf and website to display the comparison.

A.7 Experiment customization
Experiments are not customizable and tailored to run on a machine
with at least 512GB of main memory, with 128GB of memory per
NUMA node.

A.8 Methodology
The artifact of this paper was submitted and reviewed follow-
ing the guidelines stated in http://cTuning.org/ae/submission-
20190109.html and http://cTuning.org/ae/reviewing-20190109.html.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

300

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html

	Abstract
	1 Introduction
	2 Background
	2.1 Virtual Memory
	2.2 NUMA Architectures
	2.3 Data Placement in NUMA machines

	3 Page-Table Placement Analysis
	3.1 Multi-Socket Scenario
	3.2 Workload Migration Scenario

	4 Design Concept
	4.1 Design Goals
	4.2 Multi-socket Scenario
	4.3 Workload Migration Scenario

	5 Mechanism
	5.1 Allocating Memory for Storing Replicas
	5.2 Management of Updates to Replicas
	5.3 Efficiently Utilizing Page-Table Replicas
	5.4 Handling of Bits Written by Hardware
	5.5 Page-Table Migration

	6 Policy
	6.1 System-wide Policies
	6.2 User-controlled Policies

	7 Discussion
	7.1 Why Linux Implementation?
	7.2 Huge/Large Pages Support?
	7.3 Applicability to Virtualized Systems?
	7.4 Consistency Across Page-Table Replicas?
	7.5 Applicability to Library OS

	8 Evaluation
	8.1 Multi-socket Scenario
	8.2 Workload Migration Scenario
	8.3 Space and Runtime Overheads

	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization
	A.8 Methodology

