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Abstract—Computational models of cognition enable a better
understanding of the human brain and behavior, psychiatric and
neurological illnesses, clinical interventions to treat illnesses, and
also offer a path towards human-like artificial intelligence. Cog-
nitive models are also, however, laborious to develop, requiring
composition of many types of computational tasks, and suffer
from poor performance as they are generally designed using
high-level languages like Python. In this work, we present Distill,
a domain-specific compilation tool to accelerate cognitive models
while continuing to offer cognitive scientists the ability to develop
their models in flexible high-level languages. Distill uses domain-
specific knowledge to compile Python-based cognitive models into
LLVM IR, carefully stripping away features like dynamic typing
and memory management that add performance overheads with-
out being necessary for the underlying computation of the models.
The net effect is an average of 27× performance improvement
in model execution over state-of-the-art techniques using Pyston
and PyPy. Distill also repurposes classical compiler data flow
analyses to reveal properties about data flow in cognitive models
that are useful to cognitive scientists. Distill is publicly available,
integrated in the PsyNeuLink cognitive modeling environment,
and is already being used by researchers in the brain sciences.

Index Terms—Domain-specific compilation, cognitive models,
human brain, JIT compilers, Python.

I. INTRODUCTION

Computational models that simulate the processes underlying

human cognition advance our understanding of the human

brain and mind. They describe how stimuli are acted upon

by various neural or mental mechanisms to produce cognitive

function. Insights from cognitive modeling have influenced

not only the brain, psychological, and cognitive sciences, but

also the field of artificial intelligence (AI), from the onset of

artificial neural networks to recent advances in deep learning

for gameplay and scientific computing [1], [2]. Cognitive

models are expected to augment AI by offering brain-like

intelligence not currently captured by deep learning (e.g.,

relational reasoning [3], planning [4], and more).

Cognitive models are computationally demanding. They are

typically run hundreds of thousands of times to estimate the best

model parameters to explain experimental data (e.g., human

responses to psychological tasks), to assess the dynamics of

cognitive processes over time steps, or to collect distributions

of outcomes when the models include stochastic elements.

Cognitive scientists typically use Python to rapidly prototype

cognitive models using optimized scientific computing libraries
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[5]–[9]. Unfortunately, models developed in Python run slowly.

As more sophisticated cognitive models are built to capture

advanced brain processes, Python’s inefficiency worsens to the

extent that some cognitive models can take several days or

weeks to run, hindering scientific progress.

Dynamic compilation tools like PyPy [10] and Pyston [11]

can accelerate cognitive models, but only partially. PyPy and

Pyston cannot optimize complex dependencies in cognitive

models because of the runtime checks needed for Python’s

dynamic data structures and dynamic typing. Large-scale

cognitive models also require integration of sub-models devel-

oped across environments (e.g., PyTorch [8], Emergent [12],

NEURON [9] or PsyNeuLink [7]); it is difficult to design

compilers that optimize across computations expressed in

several environments. All these aspects of cognitive models also

obscure the natural parallelism available in cognitive models,

and impede the ability to offload portions of the models onto

hardware accelerators for which they are otherwise suitable.

New domain-specific languages for cognitive modeling

would likely maximize performance, but require large-scale

community buy-in and porting of many models already built

across many research institutions using Python. Additionally,

cognitive models are heterogeneous, integrating components

with varying levels of biological fidelity, developed in different

frameworks and research groups; e.g., a single model can

include neurally accurate descriptions of some brain structures,

an artificial neural network from machine learning to determine

the attention allocated to inputs, and a behavioral model

of control to modulate the pathways. Extreme heterogeneity

impedes the design of a canonical set of language constructs

and software tools needed for a domain-specific language.

In response, we build Distill, a dynamic compilation tool

that exploits the domain knowledge of cognitive modeling

to generate efficient code for the models. Distill aggressively

eliminates Python’s dynamic code, and generates LLVM IR

for all the components in a model, including those developed

in ancillary environments (e.g., Pytorch) and the frameworks

used to run the models (e.g., PsyNeuLink). Distill is inspired

by the observation that cognitive scientists, like scientists in

other communities [13], [14], use Python because it is flexible,

easy and provides access to optimized scientific computing

libraries [5], [6], but do not need many of the dynamic language

features that degrade performance. Eliding these dynamic

features improves performance in itself, and also enables the use

of existing optimizations in the LLVM framework to further
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boost performance. The choice of LLVM IR also permits

leveraging LLVM’s existing code generation backends for CPU

architectures and accelerators, with no change.

Distill accelerates cognitive model execution by an average

of 27× and maximum of 923× compared to Pyston and PyPy

for a suite of well-known cognitive models. Distill enables

one widely-studied cognitive model to execute in under five

seconds, even though it originally failed to complete within

twenty-four hours. Distill also extracts parallelism from the

models and targets multi-core CPUs and GPUs, resulting in

additional 4.9× and 6.4× speedups, respectively.

Lowering entire cognitive models, including sub-models

from other environments and the execution framework, into

LLVM IR offers an additional benefit—the ability to use

compiler analysis to infer semantic properties about the model.

Distill automates several types of model-level analysis that have

traditionally been manually undertaken by scientists in labor-

intensive and tedious ways. These analyses also permit Distill to

discover user-guided optimizations specific to cognitive models.

We demonstrate two examples of Distill’s analyses and user-

guided optimizations. First, Distill identifies cases where entire

models can be verified to be equivalent, and for some models,

recognizes when certain complex nodes are equivalent with—

and hence, can be replaced by—simpler modules that have

an analytical solution. Second, Distill calculates the impact of

a cognitive model’s parameters on its outputs and finds their

optimal values entirely with compiler analysis built on LLVM’s

value range propagation and scalar evolution passes. Ordinarily,

parameter estimation requires over hundreds to thousands of

model runs, but Distill automates this step, saving days to

weeks of modeling effort. Moreover, because of the general

utility of our enhancements to LLVM’s passes (i.e., extending

support for integers to floating point), we have submitted a

patch to the LLVM community for mainline integration.

Distill’s design is guided by three main principles. First, we

wish to avoid requiring cognitive scientists to change the source-

code of their models or frameworks. Second, we delegate

performance extraction to the compiler, allowing scientists to

focus on creating models in the manner most intuitive to them.

Third, we minimize software engineering effort, reusing LLVM

IR and its associated infrastructure.

To summarize, our research contributions are:

1) Distill, a compilation tool that exploits domain-specific

knowledge to provide near-native execution speeds for

cognitive models, along with support to offload computa-

tions on accelerators. Distill does not require changes to

source code and reuses existing LLVM infrastructure.

2) Discovery that user-guided analyses and optimization can

be performed by compiler analysis, and incorporation of

this idea into Distill.

3) Evaluation of Distill-accelerated models on single and

multicore CPUs and GPU.

Distill is integrated with PsyNeuLink [7], a state-of-the-

art cognitive modeling framework1. PsyNeuLink, along with

the emerging Model Description Format (MDF) [15], enables

the import and execution of sub-models developed across

various modeling environments. Distill is being used in several

leading cognitive science research labs and in the classroom

internationally. Overall, Distill enables the design of larger and

more complex cognitive models than previously possible. This

is an important and necessary step towards the longstanding

research goal of understanding and replicating human cognition.

II. BACKGROUND AND MOTIVATION

A. Cognitive Models: Structure and Computation

Cognitive models are used to fit experimental data collected

from humans performing psychological tasks, simulating

cognitive processes, producing idealized outcomes, or for what-

if analysis to understand the impact of tunable structures and

parameters. Cognitive models are represented as graphs, where

nodes are sub-processes or computational functions. Edges

represent projections of signals between nodes. Nodes perform

their computation when activation conditions are met (e.g., the

arrival of an input, or, the passing of a specified time period).

Figure 1 illustrates the predator-prey task [16] that is used

to study the role of cognitive control in allocating attention.

An intelligent agent, either a human or non-human primate, is

given a controller and shown a screen with three entities—a

player that is positioned with the controller, a prey that the

player must capture, and a predator that the player must avoid.

The agent’s attention is limited, and there is a cost for paying

attention to an entity. Attention determines the accuracy with

which the agent can perceive that entity’s location. The agent

does not have to distribute its attention fully.

Action

ObsPlayer

ObsPredator

ObsPrey

Control

Objective

LocPlayer

LocPredator

LocPrey

Fig. 1: A computational cognitive model of an intelligent agent performing
the predator-prey task.

The role of attention in modulating perceived locations is

modeled through the Control, Objective and Obs nodes. Control

takes the exact 2-dimensional (2D) coordinates of all the entities

(Loc values) per time step. The exact locations are obtained

from an external environment like the gameplay interface that

is used by the agent. The Control node allocates attention to

each of the entities, determining the variances of three 2-D

Gaussian distributions whose means are the actual locations of

the entities. These distributions are sent to the Obs nodes that

sample from them to generate the observed locations. Finally,

Action calculates the player’s movement for the time-step based

on the observed positions of the three on-screen entities.

To identify the best allocation of attention for each entity,

Control searches over all possible attention allocations, evaluat-

ing the cost of each allocation and the quality of the associated

1PsyNeuLink, integrated with Distill, is publicly available at https://github.
com/PrincetonUniversity/PsyNeuLink/tree/master.
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move. The cost of each allocation is calculated by Control, and

the quality of the move is computed by Objective. Objective

uses the direction given by Action and the true location of the

prey to compute the goodness of the move. Control then selects

the parameters that have the lowest cost. The entire process,

from reading the input locations to searching over allocations,

is repeated per time-step until the prey or the player is captured.

Scientists are interested in both the final outcome of the task,

and the temporal dynamics of decision-making.

Figure 1 shows the basic predator-prey model, but advanced

variants can include the use of memory to recall previous

locations, neural networks trained on experimental data to

generate moves, or visual processors that extract locations from

screen frames. These added components may be developed in

PyTorch, Emergent, NEURON, and others.

B. The PsyNeuLink Framework

While cognitive models have historically been developed in

many environments, recent efforts focus on a single “lingua

franca” environment that can exchange models built across

environments [15]. PsyNeuLink, the environment in which we

prototype Distill, is prominent among emerging standardized

environments that accept models specified in MDF, a common

format to represent models from several environments including

PyTorch and ONNX [17]. Despite its nascence, PsyNeuLink is

already used in leading cognitive science research laboratories

and classrooms worldwide (e.g., at Princeton University,

Arizona State University, University of Leiden). Furthermore,

the MDF project, which is contributed by an even larger body

of researchers [15], greatly expands the reach of PsyNeuLink.

Figure 2 shows the predator-prey task modeled

in PsyNeuLink. Model nodes are referred to

as Mechanisms (ProcessingMechanism or

OptimizationControlMechanism), and the model

is a Composition. Each node contains a function

which could be a PsyNeuLink-defined function (e.g., the

GaussianDistort and GridSearch functions used in

the prey_obs and control nodes, respectively) or could

be user-defined (e.g., the action_fn in the action_mech

node). Inputs are defined as a dictionary and the composition

is run as many times as specified by num_trials.

The PsyNeuLink library contains functions common in the

cognitive sciences. Users can also define their own functions.

These functions perform numerical computations to model

neural or mental processing, and contain a subset of Python.

The current MDF specification [18], to which PsyNeuLink con-

forms, limits these functions to arithmetic, boolean, relational,

and conditional operators, as well as lists of homogeneous

types, tuples, arrays, Python built-in functions (e.g., sum, len,

max, int and float conversion), numpy functions (e.g., tanh, exp,

sqrt) and attributes (e.g., shape, flatten). MDF does not currently

allow generators, list comprehensions, I/O operations, as well

as try and except constructs in these functions. This is a

common standard in this domain—e.g., other environments like

NeuroML [19] for neuronal modeling, TorchScript for PyTorch

model creation [20], or even generic high-performance dynamic

#Import psyneulink and numpy libraries
import psyneulink as pnl
import numpy as np
from psyneulink.core.components.functions…
from psyneulink.core.components.mechanisms… 
… 
#Loc nodes
prey_loc = ProcessingMechanism(size=2,name=…)
… 
#Obs nodes with a PsyNeuLink library function
prey_obs = 

ProcessingMechanism(size=2,function=GaussianDistort
,name=…)

… 
#User defined action function
def action_fn(positions):

predator_pos = positions[0]

…
#floating point computations to obtain move
#e.g., numpy.sqrt, numpy.exp,… 
… 
return move

#Action node with the user defined function
action_mech = 

pnl.ProcessingMechanism(function=action_fn,
input_ports=["obs_predator",…],name="Action"…)

#Compose nodes into a model
agent_comp = Composition(name=”The Model”)
agent_comp.add_node(action_mech)
… 
#Add controller that uses the GridSearch function
control = 

OptimizationControlMechanism(agent_rep=agent_comp,
 function=GridSearch(…),…)

agent_comp.add_controller(control)
…
#Specify inputs
input_dict = 

{player_pos:[[XX,XX]],predator_pos:[[YY,YY]],prey_p

os:[[ZZ,ZZ]]}

#Run
run_results = agent_comp.run(inputs=input_dict, 

num_trials=1000,mode=…)

#Import psyneulink and numpy libraries
import psyneulink as pnl
import numpy as np
from psyneulink.core.components.functions…
from psyneulink.core.components.mechanisms… 
… 
#Loc nodes
prey_loc = ProcessingMechanism(size=2,name=…)
… 
#Obs nodes with a PsyNeuLink library function
prey_obs = 

ProcessingMechanism(size=2,function=GaussianDistort
,name=…)

… 
#User defined action function
def action_fn(positions):

predator_pos = positions[0]

…
#floating point computations to obtain move
#e.g., numpy.sqrt, numpy.exp,… 
… 
return move

#Action node with the user defined function
action_mech = 

pnl.ProcessingMechanism(function=action_fn,
input_ports=["obs_predator",…],name="Action"…)

#Compose nodes into a model
agent_comp = Composition(name=”The Model”)
agent_comp.add_node(action_mech)
… 
#Add controller that uses the GridSearch function
control = 

OptimizationControlMechanism(agent_rep=agent_comp,
 function=GridSearch(…),…)

agent_comp.add_controller(control)
…
#Specify inputs
input_dict = 

{player_pos:[[XX,XX]],predator_pos:[[YY,YY]],prey_p

os:[[ZZ,ZZ]]}

#Run
run_results = agent_comp.run(inputs=input_dict, 

num_trials=1000,mode=…)

…)
…

…):
…

…)
…)

…

…)
…

…):
…

…)
…)

…

Fig. 2: Specifying the predator-prey model in PsyNeuLink.

compilation frameworks like Numba [21] use a similar subset

of Python. This knowledge is not (but should be) used to

aggressively optimize cognitive models.

C. Cognitive Model Execution

Figure 3 shows the high-level steps behind running a model

in PsyNeuLink. When the model is run (in the format shown

in the last line of Figure 2), PsyNeuLink first performs

a sanitization check to ensure that the nodes are properly

connected. It runs through all nodes, initializing all parameters

and inputs with default values and propagating inter-node

signals. The shapes of each node’s inputs and outputs in the

sanitization run must match those used in the actual run.
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#Sanitize the model
sanitize()

#Parse inputs
parsed_inputs = parse_run_inputs(inputs)

#Run each trial
results = []

for trial_num in range(num_trials):
#Get the input for the trial
input = parsed_inputs[trial_num % len(parsed_inputs)]

#Execute
trial_output = execute_trial(inputs=input, 

                                 scheduler=…)
…
#Handle outputs
results.append(trial_output)

return results

#Execute one trial

def execute_trial(inputs=…):
…
while not termination_cond:

#Find all nodes ready to run in this iteration 
#and run them

ready_nodes = scheduler.run(…)
for node in ready_nodes:

node.execute(inputs=…)
…
#Collect results from the output ports of nodes 
#marked as outputs
result = []

for node in output_nodes:
result.append(node.output_port.value)

return result

#Sanitize the model
sanitize()

#Parse inputs
parsed_inputs = parse_run_inputs(inputs)

#Run each trial
results = []

for trial_num in range(num_trials):
#Get the input for the trial
input = parsed_inputs[trial_num % len(parsed_inputs)]

#Execute
trial_output = execute_trial(inputs=input, 

                                 scheduler=…)
…
#Handle outputs
results.append(trial_output)

return results

#Execute one trial

def execute_trial(inputs=…):
…
while not termination_cond:

#Find all nodes ready to run in this iteration 
#and run them

ready_nodes = scheduler.run(…)
for node in ready_nodes:

node.execute(inputs=…)
…
#Collect results from the output ports of nodes 
#marked as outputs
result = []

for node in output_nodes:
result.append(node.output_port.value)

return result

Fig. 3: Running a model in PsyNeuLink.

Next, PsyNeuLink prepares a list of inputs from the input

dictionary, such that each element of the list is an input to

the model for one trial. The model is run until the completion

of the trial (function execute_trial in Figure 3). A trial

terminates when certain conditions are met; e.g., after a move

for the player has been selected. During the trial, the scheduler

identifies the nodes that are ready to run in each iteration based

on the activation conditions that are explicitly specified per

node. Examples of such conditions include waiting until other

nodes are run a certain number of times, until the outputs

of particular nodes stabilize, or after an amount of time has

elapsed. Finally, the trial outputs are collected and returned.

D. Shortcomings of Dynamic Compilation Tools

Existing dynamic compilation tools like Pyston [11] and

PyPy [10] miss many optimization opportunities for cognitive

models because of several reasons. First, they cannot easily

identify opportunities to reduce the runtime overheads required

for tracking control flow. For example, the predator-prey model

in Section II-A is run many times for a single input, but the

path of execution is the same for all these runs. This is typical

of cognitive models, but takes significant resources for PyPy

and Pyston to track.

Second, existing dynamic compilation tools do not fully

eliminate unnecessary dynamic Python features; e.g., inter-node

signals have a fixed type, and also a fixed shape across runs.

Thus, dynamic Python structures such as lists and dictionaries

that are used to hold these values can be safely compiled

to static data structures. However, changing a data structure

requires updating all the accesses to that structure in the entire

program, but existing tools usually focus only on individual

functions and cannot undertake such aggressive optimizations.

Third, Pyston and PyPy cannot optimize across computations

from different frameworks, and across scheduling invocations

between executions of the model nodes. When a model uses

computations from multiple environments like PyTorch and

PsyNeuLink, even if the separate components are compiled,

optimization does not cross these frameworks. Additionally, ex-

ecution frequently switches between nodes and the scheduling

logic that identifies which nodes are ready to run. Transitions

back and forth between the model nodes and scheduler logic

limit the scope of compiler optimizations, switching execution

between compiled and interpreted modes.

Finally, available dynamic compilation tools cannot automat-

ically extract parallelism from the models or offload computa-

tions to accelerators like GPUs. This is a wasted opportunity

as there are several dimensions along which computations

in cognitive models can be parallelized. For example, in the

predator-prey model, the evaluations for each combination of

attention allocations could have been run in parallel. When

multiple samples are drawn from the distributions of observed

locations, each sample and subsequent action could also be

computed in parallel. While one might consider leveraging

existing multithreading and GPU programming libraries for

Python, they all require scientists to explicitly identify such

parallel computations and mark functions to be offloaded to

a GPU. A more desirable solution is to automate these steps

so that cognitive scientists can solely focus on their designs

rather than grapple with parallel programming constructs.

These shortcomings lead to cascading slowdowns. For

example, unoptimized data structures not only have longer

access times, but also prevent subsequent optimization passes

by hindering the propagation of values and references. Mul-

tithreading with Python does not result in parallel execution

because the threads are serialized by the Global Interpreter

Lock [22], unless the threads run compiled code, in which case

they do not have to take the lock. To maximally parallelize, it

is important to compile the Python threads.

III. DISTILL: DOMAIN-SPECIFIC COMPILATION FOR

COGNITIVE MODELS

Cognitive models are computational graphs with complex

scheduling rules. They are constructed in Python, and can fuse

heterogeneous sub-models developed in multiple frameworks.

Dynamic compilation with existing tools is not effective. Distill

has domain-specific knowledge about the structure of model

execution, and the expressions and data structures used in the

models (Sections II-B and II-C). It uses this knowledge to

optimize the models to near-native execution speeds.

While Python’s dynamic features ease model construction,

they are not actually necessary for model execution. Distill
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aggressively eliminates dynamic features and converts dynamic

data structures into statically-defined ones, yielding substantial

acceleration. Distill also extracts parallelism and computations

that are offloaded to GPUs. Lowering the entire model and the

execution framework into LLVM enables compiler analyses to

infer high-level semantic information about the models. Next,

we describe Distill’s workflow.

A. Type and Shape Extraction

As described in Section II-A, repeated computations in

the models have the same types and shapes for the values.

Thus, the first step in compiling cognitive models is to deduce

these types and shapes. Fortunately, this information is readily

available from PsyNeuLink’s sanitization run (Section II-C).

By construction, the types and shapes of the inputs and outputs

of each node during the sanitization run match those from

subsequent post-sanitization runs. Distill uses this information

to infer the types and shapes of all computations in the model.

B. Dynamic to Static Data Structure Conversion

Cognitive models use dynamic Python data structures like

dictionaries and lists for node inputs, parameters, and outputs.

Their shapes (and keys, for dictionaries) are execution-invariant.

We convert these entities into statically-defined structures.

We create two structures that hold the values of the outputs

of all nodes in the current and previous iterations (see the inner

loop inside the execute_trial function in Figure 3). Node

outputs are written to these top-level structures. We need two

structures because multiple nodes running in the same iteration

consume the values created in the previous iteration.

Next, we create separate structures for read-only and read-

write parameters. Parameters exist at the node level (e.g., the

attention levels in the Control node of the predator-prey model),

or as arguments to functions (e.g., the amplitude argument of a

function that computes a sinusoid). Such functions are defined

in the nodes or in the framework’s standard library. Creating

separate structures eases parallelization, enabling threads to

make local copies of the read-write parameter structure.

PsyNeuLink additionally contains two structures, one for

the set of inputs for all trials (the variable parsed_inputs

in Figure 3) and another for overall outputs in the trials. We

convert these two entities into arrays.

Finally, the original computations often use strings as keys

to fetch data. We convert strings to enumerated entries (enums),

that are used as offsets to index into the structures.

Knowledge of the sizes and types of the model’s parameters

and outputs is available during sanitization, and for the inputs,

this information is available whenever they are read. When

Distill cannot infer the shapes of intermediate variables stati-

cally, it does not compile the models. We have not encountered

this case in multiple years of working with cognitive models.

For models that select the parameter configuration with

the minimal cost (e.g., attention allocation in the predator-

prey model), multiple parameters may give the same minimal

cost. In such cases, it is customary to randomly pick one

parameter choice. To implement such constructs, we use

reservoir sampling [23] so that we do not need to store a

variable number of potential parameter choices, and then choose

one from that list. With reservoir sampling, we can have a

fixed size data structure that is statically defined.

Eliminating dynamic data structures significantly reduces

their access times, and enables several optimizations. In their

new format, it is easy to propagate values and references for

subsequent optimizations. In addition, the data structures are

now compact, improving cache performance.

C. Identifying Code Paths for Compilation

Dynamic compilation requires expensive tracking to deter-

mine which code paths to compile and when. In our case, we

know that the key computations reside in per-node execute

methods; we compile them because they are repeatedly invoked.

This obviates the need to run expensive hot path analysis. We

also compile metadata tracking functions, but not initialization

and visualization code because they are not repeatedly invoked.

D. Generating LLVM IR

Distill is built on the llvmlite package [24], and generates

LLVM IR for all model nodes and their functions.

1) Code Specialization: Standard library functions are

expressed with pre-defined templates specialized to the types

with which they are called. In the original execution, a function

could have been invoked with different types of parameters

due to Python’s polymorphic semantics. Distill generates

monomorphic code, creating a separate version of the function

for each lexical instance it is invoked. All nodes have a generic

template with the basic structure of a node (called a Mechanism

in PsyNeuLink), that is filled with the node’s computation.

2) Generating Code for Multiple Libraries and Frameworks:

Recall that cognitive models can use computations from other

libraries and frameworks. Distill takes these computations com-

monly used in cognitive models and generates LLVM IR. This

includes simple functions from the NumPy library (e.g., the

logistic function), and neural networks and optimizers from

PyTorch. Lowering these different computations to a common

IR allows optimization to span across them, resulting in more

efficient code. The common IR also enables the application of

compiler analysis for inferring high-level semantic information

about the models, as we describe later.

Figure 4 shows the LLVM IR for the predator-prey model

from Section II-B. Distill creates the literal struct types for

read-write and read-only parameters, the outputs of all nodes,

and model inputs and outputs. Then, it generates the code for

the remaining execution. These structures are instantiated (not

shown in the figure) before model execution; i.e., before the

@run_PREDATOR_PREY_COMPOSITION function is called.

The code structure in Figure 4 aligns with the original

PsyNeuLink model structure (Figure 2), and the PsyNeuLink

execution framework (Figure 3), and is self-explanatory. Distill

generates LLVM IR for the scheduling logic and uses a

statically-sized boolean array for tracking the nodes ready to run

in each iteration (in the @exec_trial function of Figure 4)

instead of lists in the original code. Distill generates IR for
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;Structure types

;Read-write parameters

"{ { { { { [1 x double], { [1 x double],…"
 

;Read-only parameters   

"{ { { { { double, double, double, double,…"

;Outputs of all nodes

"{ { { [2 x double] },…"

;Model input (for one trial)

[3 x [1 x [2 x double]]] 

;Model output (for one trial)

[1 x [2 x double]]

define void @run_PREDATOR_PREY_COMPOSITION (…) {
…
run_loop_body: 

   ;get the input for each trial

   %.20 = load i32, i32* %.7, align 4

   %.21 = urem i32 %.14, %.20

   …
   ;call execution of one trial 

   call void @exec_trial(…)
   store { [2 x double] } %.65, { [2 x double] }* 

%.64, align 8

   …
…

}

define void @exec_trial(…) {
…
;Create run status array

%sched_init:

   %run_set = alloca [9 x i1], align 1

   …
;check termination condition 

%scheduling_loop_condition:

   …
;check run conditions for each node

%sched_run:

   …
   %run_cond_ACTION = and i1 %.490, %.503

   …
;run nodes that are ready

%invoke__ProcessingMechanism_ACTION: 

      …
   call void @_ProcessingMechanism_ACTION(..)

…
}

define void @_ProcessingMechanism_ACTION (…)  {

…
;call the user defined function

%invoke__UserDefinedFunction__187:

   …
   call void @_UserDefinedFunction__187(…) 
…

}  

define void @_UserDefinedFunction__187(…) {
…
;code generated for numpy operations

%body:

   …
   %.133 = fadd double %.131, %.132

   …
…

}

…

;Structure types

;Read-write parameters

"{ { { { { [1 x double], { [1 x double],…"
 

;Read-only parameters   

"{ { { { { double, double, double, double,…"

;Outputs of all nodes

"{ { { [2 x double] },…"

;Model input (for one trial)

[3 x [1 x [2 x double]]] 

;Model output (for one trial)

[1 x [2 x double]]

define void @run_PREDATOR_PREY_COMPOSITION (…) {
…
run_loop_body: 

   ;get the input for each trial

   %.20 = load i32, i32* %.7, align 4

   %.21 = urem i32 %.14, %.20

   …
   ;call execution of one trial 

   call void @exec_trial(…)
   store { [2 x double] } %.65, { [2 x double] }* 

%.64, align 8

   …
…

}

define void @exec_trial(…) {
…
;Create run status array

%sched_init:

   %run_set = alloca [9 x i1], align 1

   …
;check termination condition 

%scheduling_loop_condition:

   …
;check run conditions for each node

%sched_run:

   …
   %run_cond_ACTION = and i1 %.490, %.503

   …
;run nodes that are ready

%invoke__ProcessingMechanism_ACTION: 

      …
   call void @_ProcessingMechanism_ACTION(..)

…
}

define void @_ProcessingMechanism_ACTION (…)  {

…
;call the user defined function

%invoke__UserDefinedFunction__187:

   …
   call void @_UserDefinedFunction__187(…) 
…

}  

define void @_UserDefinedFunction__187(…) {
…
;code generated for numpy operations

%body:

   …
   %.133 = fadd double %.131, %.132

   …
…

}

…
Fig. 4: LLVM snippets generated from compiling the predator-prey model.

all the Numpy operations in the user-defined action_fn

that was part of the model. Figure 5 shows the user-defined

action function of the predator-prey model, and Figure 6 shows

the code generated by Distill for this function, after being

optimized by LLVM’s standard passes at the O2 level.

#User defined action function
#Uses social forces (attraction and repulsion) to 
compute movement
 
def action_fn(positions):

#Unpack positions. Each position is a pair of X 
#and Y coordinates
predator_pos = positions[0]

player_pos = positions[1]

prey_pos = positions[2]

 #Get directions away from the predator and 
#towards the prey

    pred_to_player = player_pos - predator_pos

    player_to_prey = prey_pos - player_pos

    #Get distances between the player and the 
#predator and prey

    distance_to_predator =       

 np.sqrt(pred_to_player[0] * pred_to_player[0] + 
 pred_to_player[1] * pred_to_player[1])

    

distance_to_prey = np.sqrt(player_to_prey[0] * 
 player_to_prey[0] + player_to_prey[1] *  

 player_to_prey[1])

    #Normalized directions 
    pred_to_player_norm = pred_to_player /  

 distance_to_predator

    player_to_prey_norm = player_to_prey / 

 distance_to_prey

    #Weighted directions. Weights are designed so 
#that an entity closer to the player reduces the 
#player’s response to the other entity. 

    pred_to_player_wt = pred_to_player_norm * 

 (distance_to_prey / (distance_to_predator + 

 distance_to_prey))

player_to_prey_wt = player_to_prey_norm * 

 (distance_to_predator / (distance_to_predator + 

 distance_to_prey))

    return pred_to_player_wt + player_to_prey_wt

#User defined action function
#Uses social forces (attraction and repulsion) to 
compute movement
 
def action_fn(positions):

#Unpack positions. Each position is a pair of X 
#and Y coordinates
predator_pos = positions[0]

player_pos = positions[1]

prey_pos = positions[2]

 #Get directions away from the predator and 
#towards the prey

    pred_to_player = player_pos - predator_pos

    player_to_prey = prey_pos - player_pos

    #Get distances between the player and the 
#predator and prey

    distance_to_predator =       

 np.sqrt(pred_to_player[0] * pred_to_player[0] + 
 pred_to_player[1] * pred_to_player[1])

    

distance_to_prey = np.sqrt(player_to_prey[0] * 
 player_to_prey[0] + player_to_prey[1] *  

 player_to_prey[1])

    #Normalized directions 
    pred_to_player_norm = pred_to_player /  

 distance_to_predator

    player_to_prey_norm = player_to_prey / 

 distance_to_prey

    #Weighted directions. Weights are designed so 
#that an entity closer to the player reduces the 
#player’s response to the other entity. 

    pred_to_player_wt = pred_to_player_norm * 

 (distance_to_prey / (distance_to_predator + 

 distance_to_prey))

player_to_prey_wt = player_to_prey_norm * 

 (distance_to_predator / (distance_to_predator + 

 distance_to_prey))

    return pred_to_player_wt + player_to_prey_wt
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Fig. 5: User-defined action function for the predator-prey model as expressed
in PsyNeuLink.

Compiling the entire execution into a common IR enables

aggressive optimization and permits compiler analysis for

semantic information tracking. For example, replacing the

calls to NumPy functions (e.g., numpy.sqrt) with LLVM

instructions and intrinsics (e.g., @llvm.sqrt.f64) allows

compiler analyses to track information across these calls.

Additionally, the entire action function can be inlined where it

is invoked, for further optimization and analyses.

E. Optimizations

After Distill generates IR, we run LLVM’s standard optimiza-

tion passes. These passes, like constant propagation and loop

invariant code motion, work across multiple frameworks, and

across computations from the model and its scheduler to create
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optimized code. For example, they identify that when Control

in the predator-prey model creates an attention allocation, Obs

nodes can be run without explicit scheduler checks to identify

ready nodes. Additionally, generating a common IR removes the

invocation of the Python interpreter during the entire course of

model execution, significantly improving performance. Finally,

the compiled code does not hold the Global Interpreter Lock,

enabling true parallel execution when multithreading is used.

F. Parallelism and GPU Acceleration

When a cognitive model contains a node that performs an

exhaustive grid search (e.g., the Control node in the predator-

prey model), each evaluation can be run in parallel. Distill

can automatically extract multicore parallelism and offload

computations to accelerators like GPUs.

For multi-threading, Distill spawns one Python thread per

core. Each thread is assigned a segment of the grid search space,

in which it evaluates parameters using functions compiled in

the previous step. Each thread maintains a local copy of the

read-write parameters and the node outputs that it writes to.

Since threads only run compiled code, they do not need to

synchronize with the Global Interpreter Lock.

For GPUs, we use the NVPTX backend included with

LLVM [25] to generate NVPTX IR. This process generates a

kernel for the evaluation function where each thread evaluates

one point in the grid search space. The generated kernel is

imported to CUDA by PyCuda [26] and executed on GPUs.

Models that sample from psuedo-random number generators

(PRNGs)—e.g., sampling location distributions in the predator-

prey model—use independent PRNGs for all evaluations for

reproducibility. The state of the PRNG is a read-write parameter

that is used and restored on every invocation of the evaluation

function. This allows threads running in parallel to draw the

same random numbers. As we discuss, replicating the state for

each invocation has significant storage overheads.

G. Putting It All Together

Distill aggressively eliminates dynamic features used in

cognitive models, and generates LLVM IR for the computations

in them, even if they come from different environments.

This allows model-wide optimizations, avoids invoking the

interpreter, and naturally enables the extraction and exploitation

of parallelism. Existing tools like PyPy and Pyston do not

perform any of these optimizations as effectively.

IV. AUGMENTING DISTILL WITH MODEL ANALYSIS

The organization of nodes in a model and the CDFG of

the LLVM IR generated by Distill are closely connected. This

inspired us to augment Distill with compiler analysis that

provides model-level information to users. Analyzing a model’s

outcome when parameters or nodes are modified is an important

aspect of cognitive modeling. For example, a researcher may

want to assess the overall objective in the predator-prey model

if a new node that amplifies the perceived threat from the

predator is added to the model.
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define void @_UserDefinedFunction__187({ double, double,  
 i32, double, double, double }* noalias nocapture 

 nonnull readnone %.1, { [1 x double], [1 x double], [1 

 x [5 x i32]], [1 x double] }* noalias nocapture nonnull 

 readnone %.2, [3 x [2 x double]]* noalias nocapture 

 nonnull readonly %.3, [1 x [2 x double]]* noalias 

 nocapture nonnull %.4) local_unnamed_addr #8 {

entry:
   %.8.elt = getelementptr inbounds [3 x [2 x  

     double]], [3 x [2 x double]]* %.3, i64 0, i64 

     0, i64 0

   %.8.unpack = load double, double* %.8.elt, align 

     8

   %.8.elt1 = getelementptr inbounds [3 x [2 x 

     double]], [3 x [2 x double]]* %.3, i64 0, i64 

     0, i64 1

   %.8.unpack2 = load double, double* %.8.elt1, 

     align 8

   %.13.elt = getelementptr [3 x [2 x double]], [3 x 

     [2 x double]]* %.3, i64 0, i64 1, i64 0

   %.13.unpack = load double, double* %.13.elt, 

     align 8

   %.13.elt4 = getelementptr [3 x [2 x double]], [3 

     x [2 x double]]* %.3, i64 0, i64 1, i64 1

   %.13.unpack5 = load double, double* %.13.elt4, 

     align 8

   %.18.elt = getelementptr [3 x [2 x double]], [3 x 

     [2 x double]]* %.3, i64 0, i64 2, i64 0

   %.18.unpack = load double, double* %.18.elt, 

     align 8

   %.18.elt11 = getelementptr [3 x [2 x double]], [3 

     x [2 x double]]* %.3, i64 0, i64 2, i64 1

   %.18.unpack12 = load double, double* %.18.elt11, 

     align 8

   %.25 = fsub double %.13.unpack, %.8.unpack

   %.28 = fsub double %.13.unpack5, %.8.unpack2

   %.37 = fsub double %.18.unpack, %.13.unpack

   %.40 = fsub double %.18.unpack12, %.13.unpack5

   %.51 = fmul double %.25, %.25

   %.58 = fmul double %.28, %.28

   %.59 = fadd double %.51, %.58

   %.60 = tail call double @llvm.sqrt.f64(double 
   %.59)

   %.69 = fmul double %.37, %.37    

   %.76 = fmul double %.40, %.40

   %.77 = fadd double %.69, %.76

   %.78 = tail call double @llvm.sqrt.f64(double 
    %.77)

   %.84 = fdiv double %.25, %.60

   %.86 = fdiv double %.28, %.60

   %.94 = fdiv double %.37, %.78

   %.96 = fdiv double %.40, %.78

   %.105 = fadd double %.60, %.78

   %.106 = fdiv double %.78, %.105

   %.108 = fmul double %.84, %.106

   %.110 = fmul double %.86, %.106

   %.120 = fdiv double %.60, %.105

   %.122 = fmul double %.94, %.120

   %.124 = fmul double %.96, %.120

   %.133 = fadd double %.108, %.122

   %.136 = fadd double %.110, %.124

   %.139.repack = getelementptr inbounds [1 x [2 x 

     double]], [1 x [2 x double]]* %.4, i64 0, i64 

     0, i64 0

   store double %.133, double* %.139.repack, align 8

   %.139.repack14 = getelementptr inbounds [1 x [2 x 

     double]], [1 x [2 x double]]* %.4, i64 0, i64 

     0, i64 1

   store double %.136, double* %.139.repack14, align 

     8

   ret void

}

define void @_UserDefinedFunction__187({ double, double,  
 i32, double, double, double }* noalias nocapture 

 nonnull readnone %.1, { [1 x double], [1 x double], [1 

 x [5 x i32]], [1 x double] }* noalias nocapture nonnull 

 readnone %.2, [3 x [2 x double]]* noalias nocapture 

 nonnull readonly %.3, [1 x [2 x double]]* noalias 

 nocapture nonnull %.4) local_unnamed_addr #8 {

entry:
   %.8.elt = getelementptr inbounds [3 x [2 x  

     double]], [3 x [2 x double]]* %.3, i64 0, i64 

     0, i64 0

   %.8.unpack = load double, double* %.8.elt, align 

     8

   %.8.elt1 = getelementptr inbounds [3 x [2 x 

     double]], [3 x [2 x double]]* %.3, i64 0, i64 

     0, i64 1

   %.8.unpack2 = load double, double* %.8.elt1, 

     align 8

   %.13.elt = getelementptr [3 x [2 x double]], [3 x 

     [2 x double]]* %.3, i64 0, i64 1, i64 0

   %.13.unpack = load double, double* %.13.elt, 

     align 8

   %.13.elt4 = getelementptr [3 x [2 x double]], [3 

     x [2 x double]]* %.3, i64 0, i64 1, i64 1

   %.13.unpack5 = load double, double* %.13.elt4, 

     align 8

   %.18.elt = getelementptr [3 x [2 x double]], [3 x 

     [2 x double]]* %.3, i64 0, i64 2, i64 0

   %.18.unpack = load double, double* %.18.elt, 

     align 8

   %.18.elt11 = getelementptr [3 x [2 x double]], [3 

     x [2 x double]]* %.3, i64 0, i64 2, i64 1

   %.18.unpack12 = load double, double* %.18.elt11, 

     align 8

   %.25 = fsub double %.13.unpack, %.8.unpack

   %.28 = fsub double %.13.unpack5, %.8.unpack2

   %.37 = fsub double %.18.unpack, %.13.unpack

   %.40 = fsub double %.18.unpack12, %.13.unpack5

   %.51 = fmul double %.25, %.25

   %.58 = fmul double %.28, %.28

   %.59 = fadd double %.51, %.58

   %.60 = tail call double @llvm.sqrt.f64(double 
   %.59)

   %.69 = fmul double %.37, %.37    

   %.76 = fmul double %.40, %.40

   %.77 = fadd double %.69, %.76

   %.78 = tail call double @llvm.sqrt.f64(double 
    %.77)

   %.84 = fdiv double %.25, %.60

   %.86 = fdiv double %.28, %.60

   %.94 = fdiv double %.37, %.78

   %.96 = fdiv double %.40, %.78

   %.105 = fadd double %.60, %.78

   %.106 = fdiv double %.78, %.105

   %.108 = fmul double %.84, %.106

   %.110 = fmul double %.86, %.106

   %.120 = fdiv double %.60, %.105

   %.122 = fmul double %.94, %.120

   %.124 = fmul double %.96, %.120

   %.133 = fadd double %.108, %.122

   %.136 = fadd double %.110, %.124

   %.139.repack = getelementptr inbounds [1 x [2 x 

     double]], [1 x [2 x double]]* %.4, i64 0, i64 

     0, i64 0

   store double %.133, double* %.139.repack, align 8

   %.139.repack14 = getelementptr inbounds [1 x [2 x 

     double]], [1 x [2 x double]]* %.4, i64 0, i64 

     0, i64 1

   store double %.136, double* %.139.repack14, align 

     8

   ret void

}

Fig. 6: Generated LLVM code by Distill (after O2 optimization) for the
user-defined action function in Figure 5.
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We perform several such analyses entirely in the compiler

by modifying the analyses present in LLVM. Sometimes, it

becomes unnecessary to run the models at all to obtain such

information, saving time and effort. Model-level analyses also

enable user-guided optimizations; we envision Distill presenting

cognitive scientists with multiple code generation alternatives

with slightly different numerical properties and performance.

A. Sensitivity to Parameter Values

Cognitive modelers often wish to identify the impact of

model parameter values on the model outputs. Typically, this

is done by running the model with all the choices of parameter

values. However, in several cases, we can perform such analysis

entirely in the compiler using value range propagation.

Value range propagation (VRP) is a dataflow analysis that

determines ranges of variables based on control flow, type

restrictions, and operations used. For example, VRP can

determine that exp(x) can only ever be a positive number

or NaN, and a commonly used Logistic function can be shown

to always output values in the range (0,1]. We extend LLVM’s

existing integer-only implementation of VRP to also support

floating point types and common floating point operations.

Our extensions to LLVM’s VRP mirror its existing algorithm

and code, with three differences. First, we make floating

point ranges inclusive at both ends to avoid issues with

representing infinities. Second, the possibility of NaNs is

tracked separately in addition to the ranges. Finally, range

arithmetic conservatively rounds boundaries (lower boundary

toward -Inf, and upper boundary towards +Inf).

Extending VRP to floating point ranges is useful beyond

analyzing cognitive models. Many floating point operations

need special handling in the presence of special values like

negative zero, not-a-number, or infinities. While the compiler

can be instructed to optimize these using fast-math optimization

flags, these are currently set globally per compilation unit or

per function, or tracked in a limited way. Floating point ranges

can be used to determine the absence of such special values

for each operation, and fast-math optimizations can be applied

without breaking strict semantics. This is especially useful for

GPU targets, which often have specialized fast instructions that

do not fully adhere to IEEE floating point semantics.

B. Estimating Convergence Times

Researchers are often interested in the temporal dynamics of

brain processes that accumulate evidence over time. For these

models, they wish to discover the estimated time by which

evidence accumulation leads to a decision as model parameters

are varied. Distill performs such analyses using the scalar

evolution pass with LLVM. Scalar evolution (SCEV) extends

VRP to loops to track value ranges across loop iterations and

calculating the number of loop iterations if possible. Similar to

VRP, we extend LLVM’s SCEV pass to support floating point

types and to calculate the minimum number of loop iterations.

When integer values are needed (e.g., for loop iteration count),

the values are rounded. Variable ranges at a loop exit enable

continuation of range analysis beyond loops.

C. Adaptive Mesh Refinement for Subspace Search

Many cognitive models search a parameter space; for these

models, it is often useful to find regions of the space with

noteworthy behavior. We use Distill’s VRP to progressively

narrow an example cognitive model’s subspace of interest, akin

to adaptive mesh refinement. Crucially, we estimate the best

parameters without running the model, saving time.

Consider, for example, the predator-prey model. This model

uses grid search to find the best attention allocation. For

simplicity, consider that we want to find the best attention

allocation for the prey when a fixed attention is allocated to

the predator and player. The conventional approach is to run

the model for various levels of attention (among 100 possible

levels) for the prey. Moreover, for each level, the model must

be run several times to obtain the output distribution.

Figure 7 shows how VRP and binary search are used to

find the optimal attention allocation for the prey. In this case,

our VRP uses a 2σ range for the Gaussian distributions. The

X-axis of the chart is the attention level allocated to the prey

and the Y-axis is a cost metric to evaluate the allocation. The

boxes show how the search space is progressively refined.

For example, the first iteration of the analysis finds that the

range of the metric’s value is lower in the region between 2.4

and 4.6, than in the region from 0 to 2.4. Therefore, Distill

performs another binary search to find the metric’s value in

the region from 2.4 to 4.6 and so on. Eventually it finds the

optimal allocation, which is close to 4.6 after about 7 rounds.

In contrast, achieving the same outcome without VRP requires

several hundreds of evaluations, as also shown in Figure 7.
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Fig. 7: VRP-based binary search for the minimum cost in the predator-prey
model along with actual model evaluations.

D. Clone Detection for Model Similarity Analysis

Understanding whether a node or an entire model is

equivalent to another is beneficial in several ways. In the

simplest case, it helps verify correctness when a researcher

creates an alternative version of the model, without changing

the computations. This can happen when models are changed to

be more intuitive without affecting their computational behavior.

Model similarity analysis also enables substituting complex

nodes with equivalent nodes that have simpler computation.

We use LLVM’s existing FunctionComparator frame-

work to detect equivalent functions. Consider the Drift Diffu-

sion Model (DDM) and Leaky Competing Accumulator (LCA)

functions [27] to simulate decision-making. DDM simulates

two-choice decision-making and has an analytical solution,
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while LCA simulates multi-choice decision-making. DDM

(Equation 1), uses a and c as model parameters and N () as

Gaussian noise. LCA (Equation 2) uses multiple inputs and

outputs, with r, k as parameters, and N as generic noise.

Out put(T ) = Out put(T −∆T )+a× Input(T )×∆T +NG(0,c
√

∆T ) (1)

Out puts(T ) = Out put(T −∆T )+(Inputs(T )−r×Out puts(T −∆T ))×∆T

+
√

∆T ×N + k (2)

Invocations that use LCA with certain parameters (e.g., r = 0,

k = 0 and N = NG(0,1), are equivalent to the DDM (e.g.,

with a = 1 and c = 1) for which analytical solutions to the

dynamics are available. Clone detection can identify these cases,

enabling the user to replace LCA with an analytical alternative,

saving thousands of executions to identify the dynamics.

Aggressive inlining extends model similarity analysis beyond

functions to entire models. Distill found that a model for the

bistable perception of a Necker cube [28], and its hand-tuned

vectorized version were equivalent, even though they differed

in structure, node count, and computation of each node. This

was possible because our clone detection analysis works at the

IR level, independent of the original model’s structure.

V. EXPERIMENTAL SETUP

We evaluate Distill by using it to accelerate a selec-

tion of cognitive models designed in PsyNeuLink. We use

PsyNeuLink’s Python implementation as baseline and compare

execution using Python-3.6.9 (CPython), as well as two JIT

enhanced implementations, pyston-2.1.0 (Pyston), and pypy3-

7.3.2 (PyPy). We also run PyPy without JIT compilation (PyPy-

noJIT). Since Distill works with all Python implementations,

we report Distill model execution in all four environments.

A. Cognitive Models Used in Our Evaluations

Necker Cube: This model simulates the perception of a

subject when a bistable stimulus is shown, typically the line

drawing of a cube which can appear to either project out or into

the screen [28]. The model contains one node per vertex and

evaluates when the subject’s perception oscillates between the

two orientations due to gradual changes in the nodes’ values.

We evaluate three variants of the model: Necker Cube S, which

is the model for a 3-vertex drawing, Necker Cube M, which

uses a cube with 8 vertices, and Vectorized Necker Cube which

is a manually vectorized version of Necker cube M.

Predator Prey: We use 4 variants of the predator-prey model:

S, M, L and XL that have 2, 4, 6 and 100 levels of attention

per entity (prey, predator and player). Predator Prey XL is

representative of the complexity of emerging models.

Botvinick Stroop: This model simulates the conflict when

processing the name of a color, and the ink color with which

the name is written [29]. It calculates decision energy, which

changes over time due to the stimulus i.e., a colored word.

This evolution is of interest to cognitive scientists.

We also consider two extended versions of this model,

Extended Stroop A and Extended Stroop B that include the

task of finger-pointing in addition to color naming. Two DDM

nodes (one for color-naming and the other for finger-pointing)

are added to the output of the Stroop model to produce a

final decision. Versions A and B differ in how the inputs to

the DDMs are computed and how its outputs determine the

overall reward. While they are different conceptually, they are

equivalent computationally, as detected by Distill.

Multitasking: This model simulates conflict among neural

pathways responsible for representation in processing distinct

stimuli and performing separate tasks. While the brain is

subject to many types of representational conflict, this model

includes a neural network (designed in PyTorch) that gives

the color and shape of a stimulus image. This information,

along with the choice of tasks, is passed to an LCA mod-

ule (designed in PsyNeuLink) that accumulates evidence to

generate a decision. A distribution of response times and

histogram of correct/incorrect responses are collected. This

is a heterogeneous model that spans PyTorch and PsyNeulink.

B. Evaluation Infrastructure

Our test machine has a 3.20GHz Intel Core i7-8700 CPU

with 6 cores and 12 threads, and 16GB of 2666MHz DDR4

DRAM. This machine also has a GeForce GTX 1060 with 3GB

GDDR5 and CUDA 11.1 that we use for the GPU experiments.

We collect all execution times using the pytest-benchmark

package, and report the averages. We perform two warm-up

runs before collecting data, and therefore, exclude compilation

time, unless otherwise stated.

VI. PERFORMANCE EVALUATION

Figure 8 shows the running time of the models with the

different Python implementations (i.e., CPython, PyPy, PyPy-

nojit and Pyston) both without and with Distill. For the predator-

prey model, we only use the smallest variant in this chart, and

analyze the remaining variants separately. Execution times are

normalized to those obtained from the corresponding CPython

implementation, and are plotted on a logarithmic scale.

Consider the executions without Distill first. The execution

times with PyPy and PyPy-noJIT are 67% and 71% higher

than the standard CPython execution times, on average. The

poor performance of PyPy is surprising in that it claims to

improve performance and lower memory usage. Pyston has a

33% lower execution time than CPython, on average.

When Distill is used, execution times are 96%, 95%, 95%

and 96% faster than the standard execution for the respective

environments, on average. This translates to average speedups

of up to 27×, and a maximum speedup of ≈ 923× for the

Botvinick Stroop model over Pyston, and a maximum speedup

of ≈ 896× for the Multitasking model over CPython. Existing

JIT compilers fare poorly because they are designed for generic

Python usage while Distill exploits domain-specific information

for aggressive optimization, including eliminating the switching

between PsyNeuLink and PyTorch for Multitasking.

It is also noteworthy that not all benchmarks run successfully

with PyPy and Pyston. The Botvinick Stroop model and the

XL variant of the Predator Prey model fail to complete with

PyPy after exhausting all 16GB of memory available on our
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that did not run successfully are shown with the ××× symbol. The Botvinick Stroop model ran out of memory with PyPy, and the Multitasking model uses
PyTorch, which is not supported by PyPy and Pyston.

test system. Both Pyston and PyPy cannot run the Multitasking

model because they do not support PyTorch.

A. Scaling Model Sizes

Figure 9 shows the normalized execution time of the

four variants of the predator-prey model for CPython and

Distill. The variants have 2, 4, 6, and 100 attention levels per

entity, corresponding to 8, 64, 216 and 1,000,000 evaluations,

respectively. Values are normalized to the execution time of

the S variant with CPython, and are plotted on a log scale.

Figure 9 shows that the runtime for the S, M, and L variants

with Distill remains nearly the same while the baseline CPython

execution takes an order of magnitude longer time for each step

up in the model size. The XL variant does not complete even

after a full day with CPython alone, while Distill executes in

4.4s. Moreover, despite the number of evaluations increasing

by 4600× from L to XL, the running time with Distill only

goes up by ≈330× from about 0.02s to 4.4s. As cognitive

models become more complex to realistically capture human

behavior, Distill is critical to ensure reasonable runtimes.

S M L XL
10−2

10−1

100

101

102

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e CPython CPython-
Distill

Fig. 9: Normalized execution times of the Predator Prey model as a function
of increasing model sizes.

B. Model-Wide Optimizations

We create an environment (CPython-Distill-node-only) where

Distill generates optimized code per node but the optimizations

do not cross node boundaries and the PsyNeuLink scheduler

logic is excluded from compilation. Figure 10 shows the

execution time of Botvinick Stroop with this environment and

the CPython-Distill design that compiles the entire model

and scheduling logic, normalized to the CPython baseline.

Compared to CPython, Distill-node-only compilation and

default model-wide compilation result in 71% and 99.9% faster

execution, or 3.4× and 774× speedups, respectively. Per-node

compilation is not sufficient because the execution switches

between scheduling logic in Python and the compiled nodes.

This highlights the importance of model-wide compilation that

spans the nodes and PsyNeuLink’s scheduling logic.
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Fig. 11: Parallelized execution of
the Predator Prey XL model.

C. Parallel and GPU Execution

Figure 11 shows the normalized execution times when the

Predator Prey XL model (the largest of all the models evaluated)

is run on a 12-threaded multicore CPU and a GPU. The

values are normalized to the execution time of the CPython-

Distill environment. Compared to single thread execution, multi-

threaded CPU and GPU executions result in 4.9× and 6.4×
performance improvements, corresponding to execution times

of about 0.9s and 0.7s respectively. Recall that this model did

not complete execution even after 24 hours with the standard

CPython environment or with PyPy and Pyston. Importantly,

Distill automatically generated parallel code for multi-threaded

CPU and GPU execution without any user input.

Figure 11 also shows that the GPU execution is only about

28% faster than the multi-threaded CPU execution. This is

because of memory access divergence. Our implementation

replicates the state of the PRNGs used in each thread. Each

thread uses four PRNGs to obtain the observed coordinates

of the three entities, and for reservoir sampling, resulting in

a total PRNG state of nearly 7.5kB per thread. Such large

storage stresses the GPU memory hierarchy, resulting in slower
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execution. In fact, we find that ≈80% of the accesses to the L2

cache originate from the local memory, confirming that memory

divergence is the main cause of less-than-ideal speedup.

While we could have used GPU-friendly PRNGs, we did

not do so because the choice of a PRNG affects the values of

the model output [30]. There is no theoretical analysis on how

a new PRNG would impact the predator-prey model.

D. Cost of Compilation and Execution Time Analysis

The total execution time of a model includes the time to

construct the input structures from Python and extract outputs

to Python in addition to running the model’s computations.

These overheads are present whenever the model is run. There

are also one-time overheads to construct the model parameter

structures (a model with a given parameter set can be run many

times with various inputs) and for the compilation process.

Figure 12 shows the cost of dynamic compilation and break-

down of the total execution times for two of our large models,

the Predator Prey XL and Multitasking models. The values

are normalized to the total execution time of the respective

models with O0 optimization. Even though compilation times

are significant, they are amortized because the models are

typically run hundreds to thousands of times after compilation.
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Figure 12 also shows that standard LLVM optimizations

are very effective in accelerating the Multitasking model. This

model, unlike Predator Prey has a more complex structure

to begin with. Therefore, the impact of compilation and

subsequent optimization is even more pronounced.

VII. RELATED WORK

JIT-based Python implementations like PyPy [10] and

Pyston [11] are closest in spirit to Distill. But, unlike PyPy and

Pyston, Distill does not need to support the Python language

in its entirety, and instead focuses only on aspects required

by cognitive models. Our focus on compiling only a subset of

Python resembles Numba [21], [31]. However, Numba lacks the

domain-specific information for optimizing cognitive models.

It also requires code annotations, which we avoid.

We are not the first to notice the potential to leverage domain-

specific knowledge to improve Python. Tuplex [14] uses

knowledge of data types and hot paths to construct efficient data

processing pipelines. This enables extraction and compilation

of expected hot paths with exception checks that fall back

to fully interpreted Python. Unlike Tuplex, Distill benefits

from domain knowledge that a Python fallback is unnecessary

for cognitive models. This enables Distill to compile models

without any checks, and use the same IR for analysis.

Weld [13] also exploits the benefits of representing complete

programs in a single IR for high performance. Unlike Weld,

Distill relies on LLVM IR rather than designing a new IR.

SONNC [32] targets neural networks, plugs into MATLAB,

and performs static optimizations similar to Distill, but requires

source code changes. There are many compiler frameworks

for machine learning models (see [33] for a survey), which are

different from cognitive models. Delite [34] targets embedded

domain-specific languages for heterogeneous parallel devices.

Lastly, there have been several techniques proposed for

advanced clone detection, which we believe will benefit the

analysis of cognitive models [35]–[38].

VIII. CONCLUSIONS & FUTURE WORK

Cognitive models are vital to help explain the processes be-

hind human cognition. Distill examines the role of compilers in

supporting robust and high-performance modeling of cognitive

processes. Beyond offering large performance improvements

necessary to support complex cognitive models, we present the

suitability of compiler analyses for cognitive modeling analyses.

We propose and implement modifications to a production

compiler suite to accelerate cognitive models, and provide

rich feedback to cognitive modelers. All our contributions are

part of open-source projects and released for public use.

Looking ahead, we plan to extend Distill to include advanced

loop optimizations and parallelization using Polly [39]. We

will also explore compiler optimizations that further accelerate

cognitive models by embracing numerical deviation from non-

compiled execution, but continue to preserve statistical features

(e.g., stochastic optimizations, alternative PRNGs). Finally, we

will explore analysis techniques that enable Distill to offer

modelers statistical information of value (e.g., if a particular

output belongs to a particular distribution).
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