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Abstract—GPUs are becoming first-class compute citizens
and increasingly support programmability-enhancing features
such as shared virtual memory and hardware cache coherence.
This enables them to run a wider variety of programs. However,
a key aspect of general-purpose programming where GPUs still
have room for improvement is the ability to invoke system calls.

We explore how to directly invoke system calls from
GPUs. We examine how system calls can be integrated with
GPGPU programming models, where thousands of threads
are organized in a hierarchy of execution groups. To answer
questions on GPU system call usage and efficiency, we im-
plement GENESYS, a generic GPU system call interface for
Linux. Numerous architectural and OS issues are considered
and subtle changes to Linux are necessary, as the existing
kernel assumes that only CPUs invoke system calls. We assess
the performance of GENESYS using micro-benchmarks and
applications that exercise system calls for signals, memory
management, filesystems, and networking.

Keywords-accelerators and domain-specific architecture,
graphics oriented architecture, multicore and parallel archi-
tectures, virtualization and OS, GPUs

I. INTRODUCTION

GPUs have evolved from fixed function 3D accelerators
to fully programmable units [1–3] and are now widely
used for high-performance computing (HPC), machine learn-
ing, and data-analytics. Increasing deployments of general-
purpose GPUs (GPGPUs) have been partly enabled by
programmability enhancing features like virtual memory [4–
9] and cache coherence [10–14].

GPU programming models have evolved with these hard-
ware changes. Early GPGPU programmers [15–19] adapted
graphics-oriented programming models such as OpenGL [20]
and DirectX [21] for general-purpose usage. Since then,
GPGPU programming has become increasingly accessible to
traditional CPU programmers, with graphics APIs giving
way to computation-oriented languages with a familiar
C/C++ heritage such as OpenCL [22], C++AMP [23], and
CUDA [24]. However, access to privileged OS services via
system calls is an important aspect of CPU programming
that remains out of reach for GPU programs.

*Author contributed to this work while working at AMD Research

Designers have begun exploring ways to fill this research
void. Studies on filesystem I/O (GPUfs [25]), networking I/O
(GPUnet [26]), and GPU-to-CPU callbacks [27] established
that direct GPU invocation of some specific system calls
can improve GPU performance and programmability. These
studies have two themes. First, they focus on specific system
calls (i.e., for filesytems and networking). Second, they
replace the traditional POSIX-based APIs of these system
calls with custom APIs to drive performance. In this study,
we ask – can we design an interface for invoking any system
call from GPUs, and can we do so with standard POSIX
semantics to enable seamless and wider adoption? To answer
these questions, we design the first framework for generic
system call invocation on GPUs, or GENESYS. GENESYS
offers several concrete benefits.

First, GENESYS can support implementation of most of
Linux’s 300+ system calls. As a proof of concept, we go
beyond the specific set of system calls from prior work
[25–27] and implement not only filesystem and networking
system calls, but also those for asynchronous signals, memory
management, resource querying, and device control.

Second, GENESYS’s use of POSIX allows programmers
to reap the benefits of standard APIs developed over decades
of real-world usage. Recent work on SPIN [28] takes a step
in this direction by considering how to modify the specific
system calls in GPUfs to match traditional POSIX semantics.
But GENESYS’s generality in supporting all system calls
means that it goes further, enabling, among other things,
backwards compatibility – GENESYS makes it possible to
deploy on GPUs the vast body of legacy software written to
invoke OS-managed services.

Third, GENESYS’s generality enables GPU acceleration of
programs that were previously considered a poor match for
GPUs. For example, it allows applications to directly manage
their memory, query the system for resource information,
employ signals, interface with the terminal, etc., in a manner
that lowers programming effort for GPU deployment. These
examples underscore GENESYS’s ability to support new
programming strategies and even legacy applications (e.g.,
using terminal/signals).



Finally, GENESYS can leverage the benefits of support for
important OS features that prior work cannot. For example,
GPUnet’s use of custom APIs precludes the use traffic
shaping and firewalls that are already built into the OS.

When designing GENESYS, we ran into several design
questions. For example, what system calls make sense for
GPUs? System calls such as pread/pwrite to file(s) or
send/recv to and from the network stack are useful because
they underpin many I/O activities required to complete a
task. But system calls such as fork and execv do not, for now,
seem necessary for GPU threads. In the middle are many
system calls that need adaptation for GPU execution and
are heavily dependent on architectural features that could
be supported by future GPUs. For example, getrusage can
be adapted to return information about GPU resource usage.
We summarize the conclusions from this qualitative study.

We then perform a detailed design space study on the
performance benefits of GENESYS. Key questions are:

How does the GPU’s hardware execution model impact
system call invocation strategies? To manage parallelism,
the GPU’s underlying hardware architecture decomposes
work into a hierarchy of execution groups. The granularity
of these groups ranges from work-items (or GPU threads)
to work-groups (composed of hundreds of work-items) to
kernels (composed of hundreds of work-groups)1. This
naturally presents the following research question – at which
of these granularities should GPU system calls be invoked?

How should GPU system calls be ordered? CPU system
calls are implemented such that instructions prior to the sys-
tem call have completed execution, while code following the
system call remains unexecuted. This model is a good fit for
CPUs, which generally target single-threaded execution. But
such “strong ordering” semantics may be overly conservative
for GPUs. It acts as implicit synchronization barriers across
thousands of work-items, compromising performance. Similar
questions arise as to whether GPU system calls should be
“blocking” or “non-blocking.”

Where and how should GPU system calls be processed?
Like all prior work, we assume that system calls invoked by
GPU programs need to ultimately be serviced by the CPU.
This makes efficient GPU-CPU communication and CPU-
side processing fundamental to GPU system calls. We find
that careful use of modern GPU features like shared virtual
addressing [4] and page fault support [8, 9], coupled with
traditional interrupt mechanisms, can enable efficient CPU-
GPU communication of system call requests and responses.

To explore these questions, we study GENESYS with
microbenchmarks and end-to-end applications. Overall, our

1 Without loss of generality, we use AMD’s terminology of work-items,
work-groups, kernels, and compute unit (CU), although our work applies
equally to the NVIDIA threads, thread-blocks, kernels, and streaming
multiprocessors (SMs), respectively.

contributions are:

1©: We take a step toward realizing truly heterogeneous
programming by enabling GPUs to directly invoke OS-
managed services, just like CPUs. This builds on the promise
of recent work [25–28] but goes further by enabling direct
invocation of any system call through standard POSIX APIs.
This permits GPUs to use the entire ecosystem of OS-
managed system services developed over decades of research.

2© As a proof-of-concept, we use GENESYS to realize system
calls previously unavailable on GPUs to directly invoke OS
services for memory management, signals, and specialized
file-system use. Additionally, we continue supporting all the
system services made available by prior work (i.e., GPUs,
GPUnet, SPIN), but do so with standard POSIX APIs.

3© We shed light on several novel OS and architectural
design issues in supporting GPU system calls. We also offer
the first set of design guidelines for practitioners on how to
directly invoke system calls in a manner that meshes with
the execution hierarchy of GPUs to maximize performance.
While we use Linux as a testbed to evaluate our concepts, our
design choices are applicable more generally across OSes.

4© We publicly release GENESYS hosted under the Radeon
Open Compute stack [29–33], offering its benefits broadly.

II. MOTIVATION

A reasonable question to ponder is, why equip GPUs with
system call invocation capabilities at all? Conceptually, OSes
have traditionally provided a standardized abstract machine
in the form of a process to user programs executing on
the CPU. Parts of this process abstraction, such as memory
layout, the location of program arguments, and ISA, have
benefited GPU programs. Other aspects, however, such as
standardized and direct protected access to the filesystem,
network, and memory allocation, are extremely important for
processes but are yet lacking for GPU code. Allowing GPU
code to invoke system calls is a further step to providing a
more complete process abstraction to GPU code.

Unfortunately, GPU programs can currently only invoke
system calls indirectly, and thereby suffer from performance
challenges. Consider the diagram on the left in Figure 1.
Programmers are currently forced to delay system call
requests until the end of the GPU kernel invocation. This
is not ideal because developers have to take what was a
single conceptual GPU kernel and partition it into two – one
before the system call and one after it. This model, which is
akin to continuations, is notoriously difficult to program [34].
Compiler technologies can assist the process [35], but the
effect of ending the GPU kernel, and restarting another is
the same as a barrier synchronization across all GPU threads
and adds unnecessary round-trips between the CPU and the
GPU, both of which incur significant overhead.



Table I
GENESYS ENABLES NEW CLASSES OF APPLICATIONS AND SUPPORTS ALL PRIOR WORK.

Type Application Syscalls Description

Previously
Unrealizable

Memory Management miniAMR madvise, getrusage Uses madvise to return unused memory to the OS
(Sec VIII-A).

Signals signal-search rt sigqueueinfo Uses signals to notify the host about
partial work completion (Sec VIII-B).

Filesystem grep read, open, close Work-item invocations not supported by prior work,
prints to terminal (Sec VIII-C).

Device Control (ioctl) bmp-display ioctl, mmap Kernel granularity invocation to query and setup
framebuffer properties (Sec VIII-E)

Previously
Realizable

Filesystem wordsearch pread, read Supports the same workloads as prior work (GPUfs)
(Sec VIII-C).

Network memcached sendto, recfrom Possible with GPUnet but we do not need
RDMA for performance (Sec VIII-D).
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Figure 1. (Left) Timeline of events when the GPU has to rely on a CPU to
handle system services; and (right) when the GPU has system call invocation
capabilities.

In response, recent studies invoke OS services from GPUs
[25–28], as shown on the right in Figure 1. This approach
eliminates the need for repeated kernel launches, enabling
better GPU efficiency. System calls (e.g., request data)
still require CPU processing, as they often require access
to hardware resources that only the CPU interacts with.
However, CPUs only need to schedule tasks in response
to GPU system calls as and when needed. CPU system call
processing also overlaps with the execution of other GPU
threads. Studies on GPUfs, GPUnet, GPU-to-CPU callbacks,
and SPIN are seminal in demonstrating such direct invocation
of OS-managed services but suffer from key drawbacks:

Lack of generality: They target specific OS-managed ser-
vices, and therefore, realize only specific APIs for filesystem
or networking services. These interfaces are not readily

extensible to other system calls/OS services.

Lack of flexibility: They focus on specific system call
invocation strategies. Consequently, there has been no design
space exploration on the general GPU system call interface.
Questions such as the best invocation granularity (i.e.,
whether system calls should be invoked per work-item, work-
group, or kernel) or ordering remain unexplored, and as we
show, can affect performance in subtle and important ways.

Reliance on non-standard APIs: Their use of custom
APIs precludes the use of many OS-managed services (e.g.,
memory management, signals, process/thread management,
scheduler). Further, custom APIs do not readily take advan-
tage of existing OS code-paths that enable a richer set of
system features. Recent work on SPIN points this out for
filesystems, where using custom APIs causes issues with
page caches, filesystem consistency, and incompatibility with
virtual block devices such as software RAID.

While these past efforts broke new ground and demon-
strated the value of OS services for GPU programs, they did
not explore the question we pose – why not simply provide
generic access from the GPU to all POSIX system calls?

III. HIGH-LEVEL DESIGN

Figure 2. High-level overview of how GPU system calls are invoked and
processed on CPUs.

Figure 2 outlines the steps used by GENESYS. When the
GPU invokes a system call, it has to rely on the CPU to
process system calls on its behalf. Therefore, in step 1 ,
the GPU places system call arguments and information in
a portion of system memory also visible to the CPU. We
designate a portion of memory as the syscall area to store
this information. In step 2 , the GPU interrupts the CPU,
conveying the need for system call processing. Within the



interrupt message, the GPU also sends the ID number of the
wavefront issuing the system call. This triggers the execution
of an interrupt handler on the CPU. The CPU uses the
wavefront ID to read the system call arguments from the
syscall area in step 3 . Subsequently, in step 4 , the CPU
processes the interrupt and writes the results back into the
syscall area. Finally, in step 5 , the CPU notifies the GPU
wavefront that its system call has been processed.

We rely on the ability of the GPU to interrupt the CPU
and use readily-available hardware [36–38] for this. However,
this is not a fundamental design requirement; in fact, prior
work [25, 27] uses a CPU polling thread to service a
limited set of GPU system service requests instead. Further,
while increasingly widespread features such as shared virtual
memory and CPU-GPU cache coherence [4, 8, 9, 13] are
beneficial to our design, they are not necessary. CPU-GPU
communication can also be achieved via atomic reads/writes
in system memory or GPU device memory [39].

IV. ANALYZING SYSTEM CALLS

While designing GENESYS, we classified all of Linux’s
over 300 system calls and assessed which ones to support.
Some of the classifications were subjective and were debated
even among ourselves. Many of the classification issues relate
to the unique nature of the GPU’s execution model.

Recall that GPUs use SIMD execution on thousands
of concurrent threads. To keep such massive parallelism
tractable, GPGPU programming languages like OpenCL [22]
and CUDA [24] expose hierarchical groups of concurrently
executing threads to programmers. The smallest granularity
of execution is the GPU work-item (akin to a CPU thread).
Several work-items (e.g., 32-64) operate in lockstep in the
unit of wavefronts, the smallest hardware-scheduled unit of
execution. Many wavefronts (e.g., 16) constitute programmer
visible work-groups and execute on a single GPU compute
unit (CU). Work-items in a work-group can communicate
among themselves using local CU caches and/or scratchpads.
Hundreds of work-groups comprise a GPU kernel. The CPU
dispatches work to a GPU at the granularity of a kernel. Each
work-group in a kernel can execute independently. Further,
it is possible to synchronize just the work-items within a
single work-group [12, 22]. This avoids the cost of globally
synchronizing across thousands of work-items in a kernel,
which is often unnecessary in a GPU program and might not
be possible under all circumstances2.

The bottom-line is that GPUs rely on far greater forms
of parallelism than CPUs. This implies the following
OS/architectural considerations in designing system calls:

Level of OS visibility into the GPU: When a CPU thread
invokes the OS, that thread has a representation within the

2 Although there is no single formally-specified barrier to synchronize
across work-groups today, recent work shows how to achieve the same
effect by extending existing non-portable GPU inter-work-group barriers to
use OpenCL 2.0 atomic operations [40].

kernel. The vast majority of modern OS kernels maintain
a data-structure for each thread for several common tasks
(e.g., kernel resource use, permission checks, auditing). GPU
tasks, however, have traditionally not been represented in the
OS kernel. We believe this should not change. As discussed
above, GPU threads are numerous and short lived. Creating
and managing a kernel structure for thousands of individual
GPU threads would vastly slow down the system. These
structures are also only useful for GPU threads that invoke
the OS and represent wasted overhead for the rest. Hence,
we process system calls in OS worker threads and switch
CPU contexts if necessary (see Section VI). As more GPUs
support system calls, this is an area that will require careful
consideration by kernel developers.

Evolution of GPU hardware: Many system calls are heavily
dependent on architectural features that could be supported
by future GPUs. For example, consider that modern GPUs
do not expose their thread scheduler to software. This
means that system calls to manage thread affinity (e.g.,
sched setaffinity) are not implementable on GPUs today.
However, a wealth of research has shown the benefits of
GPU warp scheduling [41–45], so should GPUs require
more sophisticated thread scheduling support appropriate for
implementation in software, such system calls may ultimately
become valuable.

With these design themes in mind, we discuss our
classification of Linux’s system calls.

1© Readily-implementable: Examples include pread, pwrite,
mmap, munmap, etc. This group is also the largest subset,
comprising nearly 79% of Linux’s system calls. In GENESYS,
we implemented 14 such system calls for filesystems (read,
write, pread, pwrite, open, close, lseek), networking (sendto,
recvfrom), memory management (mmap, munmap, madvise),
system calls to query resource usage (getrusage), and signal
invocation (rt sigqueueinfo). Furthermore, we also implement
device control ioctls. Some of these system calls, like read,
write, lseek, are stateful. Thus, GPU programmers must use
them carefully; the current value of the file pointer determines
what value is read or written by the read or write system
call. This can be arbitrary if invoked at work-item or work-
group granularity for the same file descriptor because many
work-items/work-groups can execute concurrently.

An important design issue is that GENESYS’s support
for standard POSIX APIs allows GPUs to read, write, and
mmap any file descriptor Linux provides. This is particularly
beneficial because of Linux’s “everything is a file” philosophy
– GENESYS readily supports features like terminal for user
I/O, pipes (including redirection of stdin, stdout, and stderr),
files in /proc to query process environments, files in /sys to
query and manipulate kernel parameters, etc. Although our
studies focus on Linux, the broader domains of OS-services
represented by the specific system calls generalize to other



Table II
EXAMPLES OF SYSTEM CALLS THAT REQUIRE HARDWARE CHANGES TO BE IMPLEMENTABLE ON GPUS. IN TOTAL, THIS GROUP CONSISTS OF 13% OF

ALL LINUX SYSTEM CALLS. IN CONTRAST, WE BELIEVE THAT 79% OF LINUX SYSTEM CALLS ARE READILY-IMPLEMENTABLE.

Type Examples Reason that it is not currently implementable
capabilities capget, capset Needs GPU thread representation in the kernel
namespace setns Needs GPU thread representation in the kernel
policies set mempolicy Needs GPU thread representation in the kernel
thread scheduling sched yield, set cpu affinity Needs better control over GPU scheduler
signals sigaction Signals require the target thread to be paused and then resumed after signal

suspend action has been completed. GPU threads cannot be targeted. It is currently
sigreturn not possible to independently set program counters of individual threads.
sigprocmask Executing signal actions in newly spawned threads might require freeing

of GPU resources.
architecture specific ioperm Not accessible from GPU

OSes like FreeBSD and Solaris.
At the application level, implementing this array of system

calls opens new domains of OS managed services for GPUs.
In Table I, we summarize previously unimplementable system
calls realized and studied in this paper. These include
applications that use madvise for memory management and
rt sigqueueinfo for signals. We also go beyond prior work
on GPUfs by supporting filesystem services that require
more flexible APIs with work-item invocation capabilities for
good performance. Finally, we continue to support previously
implementable system calls.

2© Useful but implementable only with changes to GPU
hardware: Several system calls (13% of the total) seem use-
ful for GPU code, but are not easily implementable because
of Linux’s existing design. Consider sigsuspend/sigaction
– there is no kernel representation of a GPU work-item to
manage and dispatch a signal to. Additionally, there is no
lightweight method to alter the GPU program counter of a
work-item from the CPU kernel. One approach is for signal
masks to be associated with the GPU context and for signals
to be delivered as additional work-items. This works around
the absence of GPU work-item representation in the kernel.
However, POSIX requires threads that process signals to
pause execution and resume only after the signal has been
processed. Targeting the entire GPU context would mean
that all GPU execution needs to halt while the work-item
processing the signal executes, which goes against the parallel
nature of GPU execution. Recent work has, however, shown
the benefits of hardware support for dynamic kernel launch
that allows on-demand spawning of kernels on the GPU
without any CPU intervention [46]. Should such approaches
be extended to support thread recombination assembling
multiple signal handlers into a single warp (akin to prior
approaches on control flow divergence [42]), sigsuspend or
sigaction may become implementable. Table II presents more
examples of currently not implementable system calls (in
their original semantics).

3© Requires extensive modification to be supported:
This group (8% of the total) contains perhaps the most
controversial set of system calls. At this time, we do not

believe that it is worth the implementation effort to support
these system calls. For example, fork necessitates cloning a
copy of the executing caller’s GPU state. Technically, this
can be done (e.g., it is how GPGPU code is context switched
with the graphics shaders) but it seems unnecessary at this
time.

V. DESIGN SPACE EXPLORATION

A. GPU-Side Design Considerations

Invocation granularity: In assessing how best to use GPU
system calls, several questions arise. The first and most
important question is – how should system calls be aligned
with the hierarchy of GPU execution groups? Should a GPU
system call be invoked separately for each work-item, once
for every work-group, or once for the entire GPU kernel?

Consider a GPU program that writes sorted integers to a
single output file. One might, at first blush, invoke the write
system call at each work-item. This can present correctness
issues, however, because write is position-relative and re-
quires access to a global file pointer. Without synchronizing
the execution of write across work-items, the output file will
be written in a non-deterministic unsorted order.

Using different system call invocation granularities can fix
this issue. One could, for example, use a memory location
to temporarily buffer the sorted output. Once all work-items
have updated this buffer, a single write system call at the
end of the kernel can be used to write the contents of the
buffer to the output file. This approach loses some benefits of
the GPU’s parallel resources, because the entire system call
latency is exposed on the program’s critical path and might
not be overlapped with the execution of other work-items.
Alternatively, one could use pwrite system calls instead of
write system calls. Because pwrite allows programmers to
specify the absolute file position where the output is to be
written, per-work-item invocations present no correctness
issue. However, per-work-item pwrites result in a flood of
system calls, potentially harming performance.

Overly coarse kernel-grained invocations also restrict per-
formance by reducing the possibility of overlapping system
call processing with GPU execution. A compromise may be
to invoke a pwrite system call per work-group, buffering



Figure 3. Work-items in a work-group (shown as a blue box) execute
strongly ordered system calls.

Figure 4. Work-group invocations can be relax-ordered by removing one
of the two barriers.

the sorted output of the work-items until the per-work-group
buffers are fully populated. Section VII demonstrates that
these decisions can lead to a 1.75× performance difference.

System call ordering semantics: When programmers invoke
system calls on CPUs, they expect that all program instruc-
tions before the system call will complete execution before
the system call executes. They also expect that instructions
after the system call will only commence once the system call
returns. We call this “strong ordering.” For GPUs however,
we introduce “relaxed ordering” semantics. The notion of
relaxed ordering is tied to the hierarchical execution scopes of
the GPU and is needed for both correctness and performance.

Figure 3 shows a programmer-visible work-group (in blue),
consisting of four wavefronts A, B, C and D. Each wavefront
has two work-items (e.g., A0 and A1). If system calls (SysCs)
are invoked per work-item, they are strongly ordered. Another
approach is depicted in Figure 4, where one work-item, A0,
invokes a system call, on behalf of the entire work-group.
Strong ordering is achieved by placing work-group barriers
(Bar1, Bar2) before and after system call execution. One can
remove these barriers with relaxed ordering, allowing threads
in wavefronts B, C, and D to execute overlapping with the
CPU’s processing of A’s system call.

For correctness, we need to allow programmers to use
relaxed ordering when system calls are invoked at kernel
granularity (across work-groups). This is because kernels can
consist of more work-items than can concurrently execute on
the GPU. For strongly ordered system calls at the kernel-level,
all kernel work-items must finish executing pre-invocation
instructions prior to invoking the system call. But all work-
items cannot execute concurrently because GPU runtimes
do not preemptively context switch work-items of the same
kernel. It is not always possible for all work-items to execute
all instructions prior to the system call. Strong ordering at
kernel granularity risks deadlocking the GPU.

At the work-group invocation granularity, relaxed order-

ing can improve performance by avoiding synchronization
overheads and overlapping CPU-side system call processing
with the execution of other work-items. The key is to remove
the barriers Bar1/Bar2 in Figure 4. To do this, consider that
from the application point of view, system calls are usually
producers or consumers of data. Take a consumer call like
write, invoked at the work-group level. Real-world GPU
programs may use multiple work-items to generate the data
for the write, but instructions after the write call typically
do not depend on the write outcome. Therefore, other work-
items in the group need not wait for the completion of the
system call, meaning that we can remove Bar2, improving
performance. Similarly, producer system calls like read
typically require system calls to return before other work-
items can start executing program instructions post-read, but
do not necessarily require other work-items in the work-group
to finish executing all instructions before the read invocation.
Bar1 in Figure 4 becomes unnecessary in these cases. The
same observations apply to per-kernel system call invocations
that need relaxed ordering for correctness anyway.

In summary, work-item invocations imply strong ordering.
Programmers balance performance/programmability for work-
group invocations by choosing strong or relaxed ordering.
Finally, programmers must use relaxed ordering for kernel
invocations so that the GPU does not deadlock.

Blocking versus non-blocking approaches: Most tradi-
tional CPU system calls – barring those for asynchronous
I/O (e.g., aio read, aio write) – return only after the system
call completes execution. Blocking system calls have a
disproportionate impact on performance because GPUs use
SIMD execution. In particular, if even a single work-item is
blocked on a system call, no other work-item in the wavefront
can make progress either. We find that GPUs can often
benefit from non-blocking system calls that can immediately
return before system call processing completes. Non-blocking
system calls can therefore overlap system call processing on
the CPU with useful GPU work, improving performance by
as much as 30% in some of our studies (see Section VII).

The concepts of blocking/non-blocking and strong/relaxed
ordering are related but orthogonal. The strictness of ordering
refers to the question of when a system call can be
invoked with respect to the progress of work-items within
its granularity of invocation. System call blocking refers to
how the return from a system call relates to the completion
of its processing. Relaxed ordering and non-blocking can be
combined in several useful ways. For example, consider a
case where a GPU program writes to a file at work-group
granularity. The execution may not depend upon the output
of the write, but the programmer may want to ensure that the
write successfully completes. In such a scenario, blocking
writes may be invoked with weak ordering. Weak ordering
permits all but one wavefront in the work-group to proceed
without waiting for completion of the write (see Section VI).



Blocking invocation, however, ensures that one wavefront
waits for the write to complete and can raise an alarm if the
write fails. Consider another scenario, where a programmer
wishes to prefetch data using read system calls but may not
use the results immediately. Here, weak ordering with non-
blocking invocation is likely to provide the best performance
without breaking the program’s semantics. In short, different
combinations of blocking and ordering enable programmers
to fine-tune performance and programmability tradeoffs.

B. CPU Hardware

GPUs rely on extreme parallelism for performance. This
means there may be bursts of system calls that CPUs need
to process. System call coalescing is one way to increase
the throughput of system call processing. The idea is to
collect several GPU system call requests and batch their
processing on the CPU. The benefit is that CPUs can
manage multiple system calls as a single unit, scheduling
a single software task to process them. This reduction in
task management, scheduling, and processing overheads
can often boost performance (see Section VII). Coalescing
must be performed judiciously as it improves system call
processing throughput at the expense of latency. It also
implicitly serializes the processing of system calls within a
coalesced bundle.

To allow the GPGPU programmer to balance the benefits
of coalescing with its potential challenges, GENESYS accepts
two parameters – a time window length within which the
CPU coalesces system calls, and the maximum number of
system call invocations that can be coalesced within the time
window. Section VII shows that system call coalescing can
improve performance by as much as 10-15%.

C. CPU-GPU Communication Hardware

Prior work implemented system calls using polling, where
GPU wavefronts monitored predesignated memory locations
populated by CPUs upon system call completion. But recent
advances in GPU hardware enable alternate modes of CPU-
GPU communication. For example, AMD GPUs now allow
wavefronts to relay interrupts to CPUs and then halt execution,
relinquishing SIMD hardware resources [36]. CPUs can in
turn message the GPU to wake up halted wavefronts.

We have implemented polling and halt-resume approaches
in GENESYS. With polling, if the number of memory
locations that needs to be polled by the GPU exceeds its
cache size, frequent cache misses lower performance. On the
other hand, halt-resume has its own overheads, namely the
latency to resume a halted wavefront.

We have found that polling yields better performance when
system calls are invoked at coarser work-group granularities
since fewer memory locations are needed to convey informa-
tion at the work-group versus work-item level. Consequently,
the memory locations easily fit in the GPU’s L2 data cache.
When system calls are invoked per work-item however, the

Table III
SYSTEM CONFIGURATION USED FOR OUR STUDIES.

SoC Mobile AMD FX-9800PTM

CPU 4× 2.7GHz
AMD Family 21h Model 101h

Integrated-GPU 758 MHz AMD GCN 3 GPU
Memory 16 GB Dual-Channel DDR4-1066MHz

Operating system Fedora 26 using
ROCm stack 1.6

(based on Linux 4.11)
Compiler HCC-0.10.17166 + LLVM 5.0

C++AMP with HC extensions

Figure 5. Content of each slot in syscall area.

Figure 6. State transition diagram for a slot in syscall area. Green shows
GPU state/actions, blue shows that of the CPU.

sheer number of such memory locations becomes so high
that cache thrashing becomes an issue. In these situations,
halt-resume approaches outperform polling. We quantify the
impact of this in the following sections.

VI. IMPLEMENTING GENESYS

We implemented GENESYS on the system in Table III. We
used an AMD FX-9800P processor with an integrated GPU
and ran the open-source Radeon Open Compute (ROCm)
software stack [47]. Although we use a system with integrated
GPU, GENESYS is not specific to integrated GPUs, and
generalizes to discrete GPUs. We modified the GPU driver
and Linux kernel to enable GPU system calls. We also
modified the HCC compiler to permit GPU system call
invocations in C++AMP.

Invoking GPU system calls: GENESYS permits work-item,
work-group, and kernel-level invocation. At work-group or
kernel-level invocations, a single work-item is designated as
the caller. For strongly ordered work-group invocations, we
use work-group scope barriers before and after system call
invocations. For relaxed ordering, a barrier is placed either
before (for consumer system calls) or after (for producer
calls) system call invocation.

GPU to CPU communication: GENESYS facilitates effi-
cient GPU to CPU communication of system call requests.



GENESYS uses a preallocated shared memory syscall area
to allow the GPU to convey parameters to the CPU (see
Section III). The syscall area maintains one slot for each
active GPU work-item. The OS and driver code can identify
the desired slot by using the hardware ID of the active work-
item, which is available to GPU runtimes. This hardware ID
is distinct from the programmer-visible work-item ID. Each
of the work-items has a unique work-item ID visible to the
application programmer. At any one point in time, however,
only a subset of these work-items executes (as permitted by
the GPU’s CU count, supported work-groups per CU, and
SIMD width). The hardware ID distinguishes among these
active work-items. Overall, our system uses 64 bytes per slot,
totaling 1.25 MBs of syscall area.

Figure 5 shows the contents in a slot – the requested
system call number, the request state, system call arguments
(as many as 6, in Linux), and padding to avoid false sharing.
The field for arguments is also re-purposed for the return
value of the system call. When a GPU program’s work-item
invokes a system call, it atomically updates the state of the
corresponding slot from free to populating (Figure 6). If the
slot is not free, system call invocation is delayed. Once the
state is populating, the invoking work-item populates the
slot with system call information and changes the state to
ready. The work-item also adds one bit of information about
whether the invocation is blocking or non-blocking. The
work-item then interrupts the CPU using a scalar wavefront
GPU instruction 3 (s sendmsg on AMD GPUs). For blocking
invocation, the work-item either waits and polls the state of
the slot or suspends itself using halt-resume.

CPU-side system call processing: Once the GPU interrupts
the CPU, system call processing commences. The interrupt
handler creates a new kernel task and adds it to Linux’s
work-queue. This task is also passed the hardware ID of the
requesting wavefront. At an expedient future point in time
an OS worker thread executes this task. The task scans the
64 syscall slots of the given hardware ID and atomically
switches any ready system call requests to the processing
state. The task then carries out the system call work.

A challenge is that Linux’s traditional system call routines
implicitly assume that they are to be executed within the
context of the original process invoking the system call.
Consequently, they use context specific variables (e.g., the
current variable used to identify the process context). This
presents a challenge for GPU system calls, which are instead
serviced purely in the context of the OS’ worker thread.
GENESYS overcomes this challenge in two ways – it either
switches to the context of the original CPU program that
invoked the GPU kernel, or it provides additional context
information in the code performing system call processing.

3 Scalar wavefront instructions are part of the Graphics Core Next ISA
and are executed once for the entire wavefront, rather than for each active
work-item. See Chapter 4.1 in the manual [36].

The exact strategy is determined on a case-by-case basis.
GENESYS implements coalescing by waiting for a prede-

termined amount of time in the interrupt handler before
enqueueing a task to process a system call. If multiple
requests are made to the CPU during this time window,
they are coalesced with such that they can be handled as a
single unit of work by the OS worker-thread. GENESYS uses
Linux’s sysfs interface to communicate coalescing parameters.

Communicating results from the CPU to the GPU: Once
the CPU worker-thread finishes processing the system call,
the results are put in the field for arguments in the slot
for blocking requests. Further, the thread also changes the
state of the slot to finished for blocking system calls. For
non-blocking invocations, the state is changed to free. The
invoking GPU work-item is then re-scheduled (on hardware
that supports wavefront suspension) or automatically restarted
because it was polling on this state. The work-item can
consume the result and continue execution.

Other architectural design considerations: GENESYS re-
quires two key data structures to be exchanged between
GPUs and CPUs – the syscall area and for some system
calls, syscall buffers that maintain data required for system
call processing. We discovered that carefully leveraging
architectural support for CPU-GPU cache coherence in
the context of these data structures was vital to overall
performance.

Consider, for example, the syscall area. As described in
Section III, every GPU work-item invoking a system call is
allocated space in the syscall area. Like many GPUs, the one
used as our experimental platform supports L2 data caches
that are coherent with CPU caches/memory but integrates
non-coherent L1 data caches. At first blush, one may decide
to manually invalidate L1 data cache lines. However, we
sidestepped this issue by restricting per-work-item slots in
the syscall area to individual cache lines. This design permits
us to use atomic instructions to access memory – these atomic
instructions, by design, force lookups of the L2 data cache
and guarantee visibility of the entire cacheline, sidestepping
the coherence challenges of L1 GPU data caches. We quantify
the measured overheads of the atomic operations we use
for GENESYS in Table IV, comparing them to the latency
of a standard load operation. Through experimentation, we
achieved good performance using cmp-swap atomics to claim
a slot in the syscall area when GPU work-items invoked
system calls, atomic-swaps to change state, and atomic-loads
to poll for completion.

Unfortunately, the same approach of using atomics does not
yield good performance for accesses to syscall buffers. The
key issue is that syscall buffers can be large and span multiple
cache lines. Using atomics here meant that we suffered the
latency of several L2 data cache accesses to syscall buffers.
We found that a better approach was to eschew atomics in
favor of manual software L1 data cache coherence. This



Table IV
PROFILED PERFORMANCE OF GPU ATOMIC OPERATIONS.

Op cmp-swap swap atomic-load load
Time(us) 1.352 0.782 0.360 0.243
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Figure 7. Impact of system call invocation granularity. The graphs show
average and standard deviation of 10 runs.

meant, for example, that we preceded sys write system calls
with L1 data cache flush.

VII. MICROBENCHMARK EVALUATIONS

Invocation granularity: Figure 7 quantifies performance for
a microbenchmark that uses pread on files in tmpfs4. The
x-axis plots the file size, and y-axis shows read time, with
lower values being better. Within each cluster, we separate
runtimes for different pread invocation granularities.

Figure 7(left) shows that work-item invocation granularities
tend to perform worst. This is not surprising as it is the finest
granularity of system call invocation and leads to a flood of
individual system calls that overwhelm the CPU. On the other
end of the granularity spectrum, kernel-level invocation is
also challenging as it generates a single system call and fails
to leverage any potential parallelism in processing of system
call requests. This is particularly pronounced at large file
sizes (e.g., 2GB). A good compromise is to use work-group
invocation granularities. It does not overwhelm the CPU
with system call requests while still being able to exploit
parallelism in servicing system calls.

When using work-group invocation, an important question
is how many work-items should constitute a work-group.
While Figure 7(left) uses 64 work-items in a work-group,
Figure 7(right) quantifies the performance impact of pread
system calls as we vary work-group sizes from 64 (wg64)
to 1024 (wg1024) work-items. In general, larger work-group
sizes enable better performance, as there are fewer unique
system calls necessary to handle the same amount of work.

Blocking and ordering strategies: To quantify the impact
of blocking/non-blocking with strong/relaxed ordering, we

4 Tmpfs is a filesystem without permanent backing storage. In other
words, all structures and data are memory-resident.
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Figure 8. Performance implications of system call blocking and ordering
semantics. The graph shows average and standard deviation of 80 runs.

designed a GPU microbenchmark that performs block permu-
tation on an array, similar to the permutation steps performed
in DES encryption. The input data array is preloaded with
random values and divided into 8KB blocks. Work-groups
each execute 1024 work-items independently permute blocks.
The results are written to a file using pwrite at work-group
granularity. The pwrite system calls for one block of data
are overlapped with permutations on other blocks of data. To
vary the amount of computation per system call, we permute
multiple times before writing the result.

Figure 8 quantifies the impact of using blocking versus non-
blocking system calls with strong and weak ordering. The
x-axis plots the number of permutation iterations performed
on each block by each work-group before writing the results.
The y-axis plots execution time for one permutation (lower
is better). Figure 8 shows that strongly ordered blocking
invocations (strong-block) hurt performance. This is expected
as they require work-group scoped barriers to be placed
before and after pwrite invocations. The GPU’s hardware
resources for work-groups are stalled waiting for the pwrite
to complete. Not only does the inability to overlap GPU par-
allelism hurt strongly ordered blocking performance, it also
means that GPU performance is heavily influenced by CPU-
side performance vagaries like synchronization overheads,
servicing other processes, etc. This is particularly true at
iteration counts where system call overheads dominate GPU-
side computation – below 15 compute iterations. Even when
the application becomes GPU-compute bound, performance
remains non-ideal.

Figure 8 shows that when pwrite is invoked in a non-
blocking manner (with strong ordering), performance im-
proves. This is because non-blocking pwrites permit the
GPU to end the invoking work-group, freeing GPU resources
it was occupying. CPU-side pwrite processing can overlap
with the execution of another work-group permuting on
a different block of data. Figure 8 shows that latencies
generally drop by 30% compared to blocking calls at low
iteration counts. At higher iteration counts (beyond 16), these
benefits diminish because the latency to perform repeated
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Figure 9. Impact of polling on memory contention.

permutations dominates any system call processing times.
For relaxed ordering with blocking (weak-block), the post-

system-call work-group-scope barrier is eliminated. One
out of every 16 wavefronts5 in the work-group waits for
the blocking system call, while others exit, freeing GPU
resources. The GPU can use these freed resources to run
other work-items to hide CPU-side system call latency.
Consequently, the performance trends follow those of strong-
non-block, with minor differences in performance arising
from differences GPU scheduling of the work-groups for
execution. Finally, Figure 8 shows system call latency is best
hidden using relaxed and non-blocking approaches (weak-
non-block).

Polling/halt-resume and memory contention: As previ-
ously discussed, polling at the work-item invocation gran-
ularity leads to memory reads of several thousands of per-
work-item memory locations. We quantify the resulting
memory contention in Figure 9, which showcases how the
throughput of CPU accesses decreases as the number of
polled GPU cache lines increases. Once the number of polled
memory locations outstrips the GPU’s L2 cache capacity
(roughly 4096 cache lines in our platform), the GPU polls
locations spilled to the DRAM. This contention on the
memory controllers shared between GPUs and CPUs. We
advocate using GENESYS with halt-resume approaches at
such granularities of system call invocation.

Interrupt coalescing: Figure 10 shows the performance
impact of coalescing system calls. We use a microbenchmark
that invokes pread. We read data from files of different
sizes using a constant number of work-items. More data is
read per pread system call from the larger files. The x-axis
shows the amounts of data read and quantifies the latency
per requested byte. We present two bars for each point on the
x-axis, illustrating the average time needed to read one byte
with the system call in the absence of coalescing and when
up to eight system calls are coalesced. Coalescing is most
beneficial when small amounts of data are read. Reading
more data takes longer; the overhead reduction is negligible
compared to the significantly longer time to process the
system call.

5Each wavefront has 64 work-items. Thus, a 1024 work-item work-group
has 16 wavefronts.
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Figure 10. Implications of system call coalescing. The graph shows average
and standard deviation of 20 runs.

VIII. CASE STUDIES

A. Memory Workload

We now assess the end-to-end performance of workloads
that use GENESYS. Our first application requires memory
management system calls. We studied miniAMR [48] and
used the madvise system call directly from the GPU to better
manage memory. MiniAMR performs 3D stencil calculations
using adaptive mesh refinement and is a candidate for memory
management because it varies its memory needs in a data-
model-dependent manner. For example, when simulating
regions experiencing turbulence, miniAMR needs to model
with higher resolution. However, if lower resolution is possi-
ble without compromising simulation accuracy, miniAMR
reduces memory and computation usage, making it possible to
free memory. While relinquishing excess memory in this way
is not possible in traditional GPU programs without explicitly
dividing the offload into multiple kernels interspersed with
CPU code (see Figure 1), GENESYS permits this with direct
GPU madvise invocations. We invoke madvise using work-
group granularities with non-blocking and weak ordering.
We leverage GENESYS’ generality by also using getrusage
to read the application resident set size (RSS). When the
RSS exceeds a watermark, madvise relinquishes memory.
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Figure 11. Memory footprint of miniAMR using getrusage and madvise
to hint at unused memory.

We execute miniAMR with a dataset of 4.1GB – just
beyond the hard limit we put on physical memory available
to GPU. Without using madvise, memory swapping increases



so dramatically that it triggers GPU timeouts, causing the
existing GPU device driver to terminate the application.
Because of this, there is no baseline to compare to as the
baseline simply does not complete.

Figure 11 shows two results: one for a 3GB RSS water-
mark, and one for 4GB. Not only does GENESYS enable
miniAMR to complete, it also permits the programmer to
balance memory usage and performance. While rss-3GB
lowers memory utilization, it also worsens runtime compared
to rss-4GB. This performance gap is expected; the more
memory is released, the greater the likelihood that the GPU
program suffers from page faults when the memory is touched
again in the future, and the more frequent the madvise system
call is invoked. Overall, Figure 11 illustrates that GENESYS
allows programmers to perform memory allocation to trade
memory usage and performance on GPUs analogous to CPUs.

B. Workload Using Signals
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map reduce workload.

GENESYS also enables sys-
tem calls that permit the
GPU to send asynchronous
notifications to the CPU.
This is useful in many
scenarios. We study one
such scenario and imple-
ment a map-reduce appli-
cation called signal-search.
The application runs in two
phases. The first phase per-
forms parallel lookup in a

data array, while the second phase processes blocks of
retrieved data and computes sha512 checksums on them.
The first phase is a good fit for GPUs since the highly
parallel lookup fits its execution model, while the second
phase is more appropriate for CPUs, many of which support
performance acceleration of sha checksums via dedicated
instructions.

Without support for signal invocation on GPUs, program-
mers would launch a kernel with the entire parallel lookup on
the GPU and wait for it to conclude before proceeding with
the sha512 checksums. GENESYS overcomes this restriction
and permits a heterogeneous version of this code, where
GPU work-groups can emit signals using rt sigqueueinfo to
the CPU, indicating per-block completions of the parallel
search. As a result, the CPU can begin processing these
blocks immediately, permitting overlap with GPU execution.

Operationally, rt sigqueueinfo is a generic signal system
call that allows the caller to fill a siginfo structure that
is passed along with the signal. In our workload, we find
that work-group level invocations perform best, so the GPU
passes the identifier of this work-group through the siginfo
structure. Figure 12 shows that using work-group invocation
granularity and non-blocking invocation results in roughly
14% performance speedup over the baseline.

C. Storage Workloads

We have also studied how to use GENESYS to support
storage workloads. In some cases, GENESYS permits the
implementation of workloads supported by GPUfs, but in
more efficient ways.
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Supporting storage workloads more efficiently than
GPUfs: We implement a workload that takes as input a
list of words and a list of files. It then performs grep -F -l
on the GPU, identifying which files contain any of the words
on the list. As soon as these files are found, they are printed
to the console. This workload cannot be supported by GPUfs
without significant code refactoring because of its use of
custom APIs. Instead, since GENESYS naturally adheres to
the UNIX “everything is a file” philosophy, porting grep to
GPUs requires only a few hours of programming.

Figure 13 shows the results of our GPU grep exper-
iments. We compare a standard CPU implementation, a
parallelized OpenMP CPU implementation, and two GPU
implementations with GENESYS, with non-blocking system
calls invoked at work-item (WI) and work-group (WG)
granularities. Furthermore, since work-item invocations can
sometimes achieve better performance using halt-resume
(versus work-group and kernel invocations, which always
achieve better performance with polling), we separate results
for WI-polling and WI-halt-resume. GENESYS enables our
GPU grep implementation to print output lines to console or
files using standard OS output. GENESYS achieves 2.0-2.3×
speedups over an OpenMP version of grep.

Figure 13 also shows that GENESYS’ flexibility with invo-
cation granularity, blocking/non-blocking, and strong/relaxed
ordering can boost performance (see Section V). For our
grep example, because a file only needs to be searched
until the first instance of a matching word, a work-item
can immediately invoke a write of the filename, rather than
waiting for all matching files. We find that WI-halt-resume
outperforms both WG and WI-polling by roughly 3-4%.
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Workload from prior work: GENESYS also supports a
version of the same workload that is evaluated in the original
GPUfs work; traditional word count where using open, read,
and close system calls. Figure 13 shows our results. We
compare the performance of a parallelized CPU version
of the workload with OpenMP, a GPU version of the
workload with no system calls, and a GPU version with
GENESYS. Both CPU and GPU workloads are configured
to search for occurrences of 64 strings. We found that with
GENESYS, these system calls were best invoked at work-
group granularity with blocking and weak-ordering semantics.
All results are collected on a system with an SSD.

We found that GENESYS achieves nearly 6× performance
improvement over the CPU version. Without system call
support, the GPU version is far worse than the CPU version.
Figure 14 sheds light on these benefits. We plot traces for
CPU and GPU utilization and disk I/O throughput. GENESYS
extracts much higher throughput from the underlying storage
device (up to 170MB/s compared to the CPU’s 30MB/s).
Offloading search string processing to the GPU frees up the
CPU to process system calls effectively. The change in CPU
utilization between the GPU workload and CPU workload
reveals this trend. In addition, we found that the GPU’s
ability to launch more concurrent I/O requests enabled the
I/O scheduler to make better scheduling decisions.

D. Network Workloads

We have studied the benefits of GENESYS for network I/O
in the context of memcached. While this can technically be
implemented using GPUnet, the performance implications
are unclear because the original GPUnet paper used APIs
that extracted performance using dedicated RDMA hardware.
We make no such assumptions and focus on the two core
commands – SET and GET. SET stores a key-value pair, and
GET retrieves a value associated with a key if it is present.
Our implementation supports a binary UDP memcached
version with a fixed-size hash table as a back-end storage. The
hash table is shared between CPU and GPU, and its bucket
size and count are configurable. Further, this memcached
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implementation enables concurrent operations. CPUs can
handle SETs and GETs, while the GPU supports only GETs.
Our GPU implementation parallelizes the hash computation,
bucket lookup, and data copy. We use sendto and recvfrom
system calls for UDP network access. These system calls are
invoked at work-group granularity with blocking and weak
ordering as this performs best.

Figure 15 compares the performance of a CPU version
of this workload with GPU versions using GENESYS. GPUs
accelerate memcached by parallelizing lookups on buckets
with more elements. For example, Figure 15 shows speedups
when there are 1024 elements per bucket (with 1KB data
size). Without system calls, GPU performance lags behind
CPU performance. However, GENESYS achieves 30-40%
latency and throughput benefits over not just CPU versions,
but also GPU versions without direct system calls.

E. Device Control

Finally, we also used GENESYS to implement ioctl system
calls. As an example, we used ioctl to query and control
framebuffer settings. The implementation is straightforward;
the GPU opens /dev/fb0, and issues a series of ioctl commands
to query and set settings of the active frame buffer. It then
proceeds to mmap the framebuffer memory and fill it with
data from a previously mmaped raster image. This results
in the image displayed on computer screen. While not a
critical GPGPU application, this ioctl example demonstrates
the generality and flexibility of OS interfaces implemented
by GENESYS.

IX. DISCUSSION

Asynchronous system call handling: GENESYS enqueues
the GPU system call’s kernel task and processes it outside of
the interrupt context. We do this because Linux is designed
such that few operations can be processed in an interrupt
handler. A potential concern with this design, however, is
it defers the system call processing to potentially past the
end of the life-time of the GPU thread and potentially the
process that created the GPU thread itself! It is an example of
a more general problem with asynchronous system calls [49].



Figure 16. Raster image copied to the framebuffer by the GPU.

Our solution is to provide a new function call, invoked by
the CPU, that ensures all GPU system calls have completed
before the termination of the process.

Related work: Beyond work already discussed [25, 26, 28],
the latest generation of C++AMP [23] and CUDA [24]
provide access to the memory allocator. These efforts use
a user-mode service thread on the CPU to proxy requests
from the GPU [27]. Like GENESYS, system call requests are
placed in a shared queue by the GPU. From there, however,
the designs are different. Their user-mode thread polls this
shared queue and “thunks” the request to the libc runtime
or OS. This incurs added overhead for entering and leaving
the OS kernel.

Some studies provide network access to GPU code [26, 50–
52]. NVidia provides GPUDirect [52], used by several MPI
libraries [53–55], that allows the NIC to bypass main memory
and communicate directly to memory on the GPU itself.
GPUDirect does not provide a programming interface for
GPU-side code. The CPU must initiate communication with
the NIC. Oden exposed the memory-mapped control interface
of the NIC to the GPU and thereby allowed the GPU to
directly communicate with the NIC [51]. This low-level
interface, however, lacks the benefits of a traditional OS
interface (e.g., protection, sockets, TCP).

X. CONCLUSIONS

We shed light on research questions fundamental to the
idea of accessing OS services from accelerators by realizing
an interface for generic POSIX system call support on GPUs.
Enabling such support requires subtle changes of existing
kernels. In particular, traditional OSes assume that system
call processing occurs in the same context as the invoking
thread, and this needs to change for accelerators. We have
released GENESYS to make these benefits accessible for
broader research on GPUs.
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