
Mosaic Pages: Big TLB Reach with Small Pages
Krishnan Gosakan∗
Rutgers University

USA
krishnan.gosakan@gmail.com

Jaehyun Han∗
The University of North Carolina at

Chapel Hill
USA

jaehyun@cs.unc.edu

William Kuszmaul
Massachusetts Institute of Technology

USA
kuszmaul@mit.edu

Ibrahim N. Mubarek
Carnegie Mellon University

USA
imubarek@andrew.cmu.edu

Nirjhar Mukherjee
Carnegie Mellon University

USA
nirjhar@cmu.edu

Karthik Sriram
Yale University

USA
karthik.sriram@yale.edu

Guido Tagliavini
Rutgers University

USA
guido.tag@rutgers.edu

Evan West
Stony Brook University

USA
etwest@cs.stonybrook.edu

Michael A. Bender
Stony Brook University

USA
bender@cs.stonybrook.edu

Abhishek Bhattacharjee
Yale University

USA
abhishek@cs.yale.edu

Alex Conway
VMware Research

USA
me@ajhconway.com

Martin Farach-Colton
Rutgers University

USA
martin@farach-colton.com

Jayneel Gandhi
Meta
USA

jayneel@meta.com

Rob Johnson
VMware Research

USA
robj@vmware.com

Sudarsun Kannan
Rutgers University

USA
sudarsun.kannan@rutgers.edu

Donald E. Porter
The University of North Carolina at

Chapel Hill
USA

porter@cs.unc.edu

ABSTRACT
The TLB is increasingly a bottleneck for big data applications. In
most designs, the number of TLB entries are highly constrained
by latency requirements, and growing much more slowly than the
working sets of applications. Many solutions to this problem, such
as huge pages, perforated pages, or TLB coalescing, rely on physical
contiguity for performance gains, yet the cost of defragmenting
memory can easily nullify these gains.

This paper introduces mosaic pages, which increase TLB reach
by compressing multiple, discrete translations into one TLB entry.
∗Both authors contributed equally

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9918-0/23/03. . . $15.00
https://doi.org/10.1145/3582016.3582021

Mosaic leverages virtual contiguity for locality, but does not use
physical contiguity. Mosaic relies on recent advances in hashing
theory to constrain memory mappings, in order to realize this
physical address compression without reducing memory utilization
or increasing swapping.

This paper presents a full-system prototype of Mosaic, in gem5
and modified Linux. In simulation and with comparable hardware
to a traditional design, mosaic reduces TLB misses in several work-
loads by 6–81%. Our results show that Mosaic’s constraints on
memory mappings do not harm performance, we never see con-
flicts before memory is 98% full in our experiments — at which
point, a traditional design would also likely swap. Once memory
is over-committed, Mosaic swaps fewer pages than Linux in most
cases. Finally, we present timing and area analysis for a verilog im-
plementation of the hashing function required on the critical path
for the TLB, and show that on a commercial 28nm CMOS process;
the circuit runs at a maximum frequency of 4 GHz, indicating that
a mosaic TLB is unlikely to affect clock frequency.

433

https://orcid.org/0000-0002-9900-7522
https://orcid.org/0000-0002-6052-7889
https://orcid.org/0000-0002-3855-3036
https://orcid.org/0000-0001-7844-8022
https://orcid.org/0000-0002-3327-8442
https://orcid.org/0000-0002-2387-7732
https://orcid.org/0000-0001-8493-1395
https://orcid.org/0000-0002-5974-7745
https://orcid.org/0000-0001-7639-530X
https://orcid.org/0000-0003-2742-2679
https://orcid.org/0000-0003-4890-7413
https://orcid.org/0000-0003-3616-7788
https://orcid.org/0000-0003-1696-400X
https://orcid.org/0000-0002-0784-7410
https://orcid.org/0000-0003-4009-8586
https://orcid.org/0000-0002-9804-0857
https://doi.org/10.1145/3582016.3582021
https://www.acm.org/publications/policies/artifact-review-and-badging-current

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Gosakan et al.

CCS CONCEPTS
• Software and its engineering→Virtualmemory;Mainmem-
ory; • Computer systems organization → Architectures.

KEYWORDS
virtual memory, address translation, TLB, paging, hashing

ACM Reference Format:
Krishnan Gosakan, Jaehyun Han, William Kuszmaul, Ibrahim N. Mubarek,
Nirjhar Mukherjee, Karthik Sriram, Guido Tagliavini, Evan West, Michael
A. Bender, Abhishek Bhattacharjee, Alex Conway, Martin Farach-Colton,
Jayneel Gandhi, Rob Johnson, Sudarsun Kannan, and Donald E. Porter. 2023.
Mosaic Pages: Big TLB Reach with Small Pages. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3582016.3582021

1 INTRODUCTION
Data-hungry applications, such as data and graph analytics, are
often bottlenecked on the translation lookaside buffer (TLB). A
typical TLB can only cache a relatively small number of address
translations—often caching fewer translations than theworking sets
of these applications. For example, the data-intensive Graph500
benchmark, when running a breadth first search on a tree with
over 220 nodes, has an approximate working set size of 215MiB,
whereas a typical TLB using 4KiB pages can only cache transla-
tions for about 8.6MiB of physical memory at once. Some of these
applications, such as graph analytics, also tend to have irregular,
pointer-based memory traversals with poor locality of reference,
thwarting common heuristics such as prefetching. As a result, many
modern applications report 20–30% overhead attributable to TLB
misses [19, 20, 32, 54], and some as high as 83% [5].

Address translation has become a bottleneck because TLBs have
few entries, and their growth is much slower than system memory
capacity growth. For instance, upcoming disaggregated memory
technologies have increased main memory into the terabytes [35],
yet Intel’s recent Golden Cove server chips have only 2,488 discrete
translations across all page sizes, even in the larger, L2 TLB [14].
TLBs have few entries to satisfy architectural constraints. L1 TLBs
are on the critical path for L1 cache accesses, and therefore must
be extremely fast. Moreover, TLBs tend to be power-hungry, con-
suming 3-13% of a processor’s power, and higher associativity and
deeper TLB hierarchies further increase dynamic energy usage [29].

One of the main techniques for increasing TLB reach is to in-
crease the size of translation units, via the use of huge pages,
segments, or opportunistic coalescing of contiguous entries. These
techniques depend upon physical contiguity, and therefore incur
the costs of defragmentation. Defragmenting physical memory is
expensive and has no good solutions in the worst case—so much
so that defragmentation can overwhelm any performance gains
from greater TLB reach. For instance, Zhu et al. [66] recently report
that a cold cache Redis workload shows a 29% throughput gain
on Linux when switching from 4KiB pages to transparent 2MiB
pages—with no fragmentation; when memory is 50% fragmented
on Linux, however, throughput with 2MiB pages drops to only 89%
of the throughput with 4 KiB pages.

Valid? Tag (Virtual Page #) Physical Frame #

1 0x1010

1 0x1011

1 0x1012

1 0x1013

0 … …

Valid? Tag (Mosaic Virtual Pg #) Compressed Physical
Frame Numbers (CPFNs)

1 0x101

1 0x138

0 … …

Figure 1: The top depicts a stylized, traditional TLB, which
maps virtual addresses (tags) to physical page frames. In
this figure, a series of four virtually contiguous pages map to
different physical addresses. The bottom shows how aMosaic
TLB compresses the same run of physical pages into one
entry, by only storing the bucket and offset for each page. We
note that the figures are truncated for brevity, but we assume
a similar cache geometry for a traditional or Mosaic design.

Finally, some proposals mitigate fragmentation in large pages
by adding more complex hardware, which can stitch together phys-
ically discontiguous sub-pages into a larger huge page [16, 53, 65].
For instance, perforated pages [40] introduce a shadow page table
layer that redirects portions of a huge page to 4 KiB pages without
the need to defragment. A key point about these designs is that the
performance gains still come from the residual physical contigu-
ity in the mappings; filling holes and combining sub-mappings is
arguably more efficient in total than defragmenting memory.

This paper introduces mosaic pages, a technique for increas-
ing TLB reach without using physical contiguity. Without the
need for physical contiguity, one need not defragment memory.
To demonstrate the feasibility and capabilities of mosaic pages,
we presentMosaic, an end-to-end redesign of address translation
mechanisms across the hardware TLBs and the OS. Mosaic inter-
nally uses the recently developed Iceberg hashing [8] for physical
address compression and mitigating TLB conflicts.

Physical address compression. The key idea behind mosaic
pages is to compress each address translation, so that multiple,
virtually contiguous translations fit into a single TLB entry, illus-
trated in Figure 1. We achieve our compression by restricting each
virtual address to map to only a small number ℎ of physical page
frames (via hashing), so that a virtual page’s physical address can
be encoded using only logℎ bits. For concreteness, we set ℎ = 104
in our experiments, which means we encode each translation in
seven bits. In contrast, conventional virtual memory systems allow
each virtual page to be mapped to (almost) any of the 𝑝 physical
page frames, requiring log 𝑝 bits per address. We call one discrete
translation a Compressed Physical Frame Number (CPFN), en-
coding which of the ℎ page frames this virtual address maps to.

434

https://doi.org/10.1145/3582016.3582021
https://doi.org/10.1145/3582016.3582021

Mosaic Pages: Big TLB Reach with Small Pages ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

By compressing translations, we can pack translations for several
contiguous virtual pages into a single TLB entry, expanding TLB
reach by 𝑎 = log 𝑝/logℎwithout increasing the number TLB entries.
As we show in Section 3.1, we can increase coverage by at least
𝑎 = 4 using TLB entries of the same size as in today’s hardware. By
widening TLB entries, we can plausibly increase 𝑎 to 64 without
prohibitive costs.

Like huge pages, mosaic pages leverage virtual contiguity but,
unlike huge pages, do not require physical contiguity. In our design,
each TLB sub-entry can be mapped independently. Furthermore,
mosaic pages compose with other techniques, such as huge pages,
because any base page size can be mapped by TLB sub-entries.

Mitigating conflicts. The concern with reducing ℎ is that it in-
creases conflicts in mapping virtual addresses to physical pages,
and resolving these conflicts has a cost. Specifically, when mapping
a new virtual page, we may find that its ℎ allowed locations are
already occupied by hot pages. In this case, the conflict must be
resolved, e.g., by swapping a conflicting page to disk. Mapping
restrictions may force the eviction of a hotter page than an uncon-
strained mapping would. The more restricted the mapping (i.e., the
smaller ℎ), the more likely it is that a conflict will make a worse
eviction choice than an unconstrained mapping. On the other hand,
smaller ℎ decreases the size of TLB encodings, which mosaic uses to
increase TLB reach. One of the principal contributions of this paper
is showing that it is possible to have a small ℎ with comparable
swapping costs.

Mosaic overview. Mosaic structures physical memory as a buck-
eted hash table, where each bucket consists of a collection of con-
tiguous physical page frames, which we call slots. Each virtual
address is hashed to a small number 𝑑 of the buckets, and the vir-
tual page may be placed in any of the ℎ total slots among those 𝑑
buckets. Thus, the TLB only needs to store an encoding of which of
the ℎ slots was chosen. In our experiments each virtual address is
mapped to one bucket of 56 slots and 6 buckets of 8 slots, for a total
of ℎ = 104 slots, so the TLB entry effectively encodes a (bucket,
slot) tuple as a small integer (§2.2 and §3.1).

We note that although this paper uses hashing to increase TLB
reach, mosaic does not require hashed or inverted page tables. A
mosaic page table should support looking up the CPFN (instead of
PFN) for a virtual address, but can otherwise be structured using
radix trees, hash tables, etc. Our prototype uses a modified version
of the standard radix-tree page table (§3.1).

Mosaic’s hashing scheme. The hash table underlying mosaic’s
page allocation should have the following properties: it must allo-
cate pages to a small number of places (in order to reduce the size
of a CPFN), it must, with very high probability, operate successfully
at load factors within a few percent of 100% (so that each slot can be
usefully occupied), and it must be stable, meaning that it does not
move items to resolve conflicts (to avoid complex and expensive
page migration).

Interestingly, these properties seem to be at odds with each other,
and it’s not obvious that they can be attained simultaneously. For
instance, one way to realize high load factors is to migrate entries

in the table, as in cuckoo hashing, but this violates the stability
goal. In fact, Iceberg hashing [7, 8, 38], the hashing scheme that
we use in Mosaic, was first proposed only last year and is the first
hash table to provably meet all of these criteria. Section 2.3 explains
how iceberg hashing obtains all these seemingly contradictory
properties simultaneously.

Our contributions. This paper contributes an end-to-end system
co-design and implementation of mosaic pages, from the archi-
tecture to the OS. We implement the TLB changes in the gem5
simulator [12], and modify Linux to implement mosaic for anony-
mous, unshared pages.

Using this experimental infrastructure, we give a thorough
demonstration that mosaic can indeed reduce TLB misses of real-
world workloads, such as Graph500, by 6–81% in simulation with
comparable TLB entry width as a current x86 chip.

Second, we contribute an implementation of our hashing scheme
for the TLB in Verilog and measure it on an FPGA and with a 28nm
commercial CMOS process. The timing analysis yields a maximum
clock frequency of 4 GHz, indicating that the hashing we add to
the critical path is unlikely to harm overall clock frequency or have
significant area cost.

Finally, the paper demonstrates empirically that mosaic under
memory pressure has swapping comparable to an unconstrained
page mapping. We measure swapping events on longer, bare metal
workloads under two conditions: sufficient memory and insufficient
memory. Our experiments show that, commensurate with Iceberg’s
probabilistic bounds, as long as only 2% of memory is held in reserve
and the application(s) fit into DRAM, conflicts are not observed. We
find that the system swaps only after memory is over 98% utilized—
similar to unmodified Linux swapping once memory is fully utilized.
Once memory is over-subscribed, mosaic typically swaps less than
default Linux.

Futurework. Themosaic prototype leaves some features for future
work. Most notably, we do not demonstrate support for shared
memory mappings in the iceberg design, although we do outline
how one might add this feature in future work (§2.5). More broadly,
modern memory protection has incorporated a number of features,
such as encryption (Intel TME, AMD SEV), sub-page protections
(e.g., Intel MPK), trusted execution environments (e.g., Intel’s SGX),
and nested paging; a production deployment of mosaic would need
to integrate with a very long tail of features. This paper argues
that the performance gains of mosaic are sufficiently appealing to
warrant this future work.

2 MOSAIC PAGES
In this section, we describe the design and theoretical background
for mosaic pages.

2.1 Overview of Mosaic Pages
A mosaic page is a large virtual page, composed of 𝑎 virtually
consecutive, but not necessarily physically contiguous, base pages
(4 KiB).We say that 𝑎 is the arity of a mosaic page. For concreteness,
we use 𝑎 = 4 as a default setting, but experiment with powers of
two up to 64 in the evaluation (§4). Moreover, it is even possible

435

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Gosakan et al.

TLB Entry

 decode CPFN

bucket 0 bucket 1 bucket n

Front yard
Pages

Backyard
Pages

MVPN
(30 bits)

Page offset
(12 bits)

 Mosaic Offset
(6 bits)

Virtual Address

CPFN1MetadataMVPN

Physical memory organized as buckets

bucket_id, offset

...

Table of Contents
(ToC)

...

...

CPFN2CPFN3CPFN4

Figure 2: High-level Design of Mosaic Address Translation.
Physical memory is organized as buckets in a hash table;
buckets have a front and back yard for load balancing (§2.3).
The TLB is indexed by the upper bits of the virtual address
(the Mosaic virtual page number), and the TLB entry stores a
run of 𝑎 = 4 compressed physical addresses (CPFNs), which
are virtually but not physically contiguous. Compression is
realized through hashing a virtual address to a small num-
ber of physical frames; the TLB need only store which of
the small number of frames was chosen—here, a bucket and
offset.

that only a subset of the pages are in memory at any given moment.
Hence, mosaic avoids the complexities and costs of maintaining
physical contiguity.

The key idea is to compress each translation such that transla-
tions for all 𝑎 = 4 base pages fit in one TLB entry, as illustrated in
Figure 2. Although the frames are allocated independently, we will
ensure that each page’s location can be encoded with just a few bits
of information—these bits are known as the compressed physical
frame number (CPFN) of the page. The TLB is indexed bymosaic
virtual page number (MVPN) (or the aligned, virtual address of
the mosaic page), and each entry in the TLB holds a series of CPFNs
for each virtual page in that mosaic page. Together, we call these
CPFNs the table of contents (ToC) for the mosaic page.

A TLB lookup for a virtual address returns the ToC for the rel-
evant mosaic page. The base page offset within the mosaic page
(ormosaic offset) then determines which entry in the 𝑇𝑜𝐶 corre-
sponds to the desired virtual page. The CPU then uses the CPFN
to compute the page’s actual page frame number (PFN), which is
explained in §2.2.

Mosaic pages increase the reach of the TLB by a factor of 𝑎 by
leveraging virtual locality, without requiring physical contiguity.
To get a ballpark estimate of how much we can increase TLB reach,
we consider current x86 TLBs, which use 36-bit physical frame

numbers. If we use 8-bit CPFNs, then we can fit 𝑎 = 4 CPFNs in a
single TLB entry, increasing TLB reach by a factor of 4. Furthermore,
there is good reason to believe that we can actually increase the
width of TLB entries without incurring too much cost in terms of
power or chip area, so a future production implementation might
have 𝑎 = 16 or even larger.

TLBs typically store several pieces of metadata about each page,
such as permissions and accessed/dirty bits. In our prototype, we
store valid bits per CPFN, but assume other bits can be tracked
at the granularity of a mosaic page, similar to other recent work
on extending TLB reach [5, 45]. We expect that most applications
could be recompiled with linker directives to ensure all mappings
are created with similar alignment and permissions. One could also
widen the TLB and store all of these entries on a per-base-page
basis.

Mosaic page tables map MVPNs to ToCs, but mosaic can use
any page-table structure, such as radix trees, hash tables, or even
a software-managed TLB, as long as they don’t impose any page
mapping restrictions that conflict with mosaic’s, described next.

2.2 Compressed Physical Frame Numbers
The key to compressing PFNs is that whenever we need to allocate
a physical frame for virtual address 𝑣 , we limit ourselves to a small
set of possible frames (ℎ; for concreteness, ℎ = 104 in our exper-
iments). We use the term associativity to describe these limits
on the number of frames that can map a given 4KiB base page;
although associativity is a common concept in hardware caches,
here we are not discussing how data can be placed in CPU caches,
but as a restriction on virtual page mappings. Thus the CPFN needs
to indicate only which of the ℎ options was chosen by the page
allocator. This means that a CPFN can be stored simply as a number
in the set {0, 1, , . . . , ℎ − 1}, which requires only logℎ bits.

Our page allocator treats the frames in physical memory as slots
in a hash table, in which slots are grouped into buckets. Each VPN
is mapped to one or more buckets via a hashing scheme, and the
CPFN records which bucket and which slot within that bucket were
chosen by the allocator. In practice, we hash (ASID, VPN) pairs, but
for simplicity we omit the ASID except when relevant.

Note that this contrasts with conventional virtual memory
schemes, in which every virtual page can be mapped to any physi-
cal frame. Thus, conventional virtual memory schemes are fully
associative, whereas mosaic is a low-associativity virtual-memory
scheme.

The potential drawback of low associativity is that, if it is imple-
mented naively, then associativity conflicts can become a problem.
That is, because each virtual address has only ℎ options for where
it can go in physical memory, the system may be forced to swap
some other virtual address that we would not otherwise choose to
swap out. Thus, even if our working set size is smaller than physical
memory, associativity conflicts might prevent mapping the entire
working set at once.

There are two core details to be filled in to complete this design:
what hashing scheme do we use for page allocation, and what
swapping algorithm to use?

436

Mosaic Pages: Big TLB Reach with Small Pages ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

2.3 Low-Associativity Page Allocation with
Hashing

The hashing scheme we use in our page allocation scheme must
meet three criteria:

(1) Low Hashing Associativity: For each item (i.e., virtual
address) the set of possible positions where the item could
reside in the hash table is less than or equal to a small ℎ.

(2) Stability: Once an item is inserted into the hash table, it is
not moved until a future deletion removes it. This implies
that once mapped, pages never need to be copied within
memory to ensure good performance, whereas schemes like
cuckooing must migrate elements to maintain performance.

(3) HighUtilization: If 𝑝 is the total number of slots in the hash
table (i.e., the total number of physical frames), then the hash
table can handle up to (1 − 𝛿)𝑝 elements at a time for some
small 𝛿 (𝛿 ≈ .02 in our experiments). Practically speaking,
this means that nearly all of memory can be allocated (98%
in our experiments) before seeing conflicts, with extremely
high probability.

Iceberg hashing. Mosaic allocates pages by using Iceberg hash-
ing [8], a recently proposed hashing scheme that achieves the
above three criteria simultaneously, which had long been an open
problem in hash-table design.

Many classical hash tables meet two of the three. For example,
cuckoo hashing has low associativity and can have a load factor
of > 90%, but moves items around (i.e., it is unstable). Other open-
addressing schemes such as linear probing or quadratic probing can
be stable and support high load factors, but have high associativity.

We now review Iceberg hashing, since it will be relevant to the
overall design of mosaic. An Iceberg hash table consists of two
components: a front yard and a (much smaller) backyard, illus-
trated in Figure 2. The front yard is broken into 𝑠 bins of some fixed
size 𝑓 = 𝜔 (log log𝑝) (e.g., 𝑓 = Θ(log2 log 𝑝)). The backyard also
consists of 𝑠 bins, each with capacity 𝑏 = Θ(log log𝑝), where 𝑝 is
the total number of slots in the hash table (i.e., the total number
of frames in physical memory). Note that front yard and backyard
buckets can be quite small in practice. For example, for 64-bit sys-
tems, log log𝑝 ≈ 5.7, so a reasonable choice would be front yard
buckets of size 5.72 ≈ 32 (or larger) and backyard buckets of size
≈ 5.7 (or larger).

We illustrate insertion in Figure 3. Whenever an item 𝑥 is in-
serted, it first hashes to some bin ℎ0 (𝑥) in the front yard. If there is
a free slot in ℎ0 (𝑥), then the insertion uses that slot (as illustrated
in the first case of Figure 3). Otherwise, if bin ℎ0 (𝑥) is full, then 𝑥

is placed into the backyard. Elements in the backyard are assigned
a bin using the power of 𝑑 choices: the element hashes to 𝑑 bins
ℎ1 (𝑥), . . . , ℎ𝑑 (𝑥) and is placed in the emptiest of those bins. This is
illustrated in the second case of Figure 3.

The full dynamics of the front yard/backyard scheme are quite
difficult to analyze [8, 9]. What one can show, however, is that as
long as 𝑓 = 𝜔 (log log𝑝), then the number of elements in the back-
yard will always be 𝑜 (𝑝/log log𝑝). Then, a classic theoretical result
on the power-of-𝑑-choices [59] guarantees that the probability of
bins in the backyard overflowing is negligible, so the hash table
supports space utilization 1 − 𝛿 for very small 𝛿 = 𝑜 (1). These

. . .Front
Yard

Back
Yard

1) Insert():
h0()

2) Insert():
 h0() h1(), h2() … h6()

Figure 3: Allocation of pages in mosaic, where physical mem-
ory ismodeled as an Iceberg hash table. Pages are divided into
buckets, split into a front yard and backyard. For specificity,
we illustrate using the mosaic prototype parameters: bucket
size of 64 page frames, split into a front yard of 56 frames
and a backyard of 8 frames. Gray frames are in use. The first
insertion of the fucshia pagemapping usesℎ0 to select a front
yard bucket; in this case, there is space so the mapping is
created. In the second insertion of the cyan page mapping,
the front yard bucket is full. Thus, the hash scheme selects
𝑑 = 6 backyard buckets and maps the cyan virtual page to a
frame in the least full backyard.

theoretical guarantees hold with high probability over the random
choices made by the algorithm, i.e., the choice of hash function, for
any set of page requests made without knowledge of the algorithm’s
randomness (i.e., the hash function). We measure empirically in
Section 4.2 that 𝛿 is roughly 2%. Moreover, the hash table is stable
and has associativity ℎ = 𝑓 +𝑑 ·𝑂 (log log𝑝). Thus Iceberg hashing
is an ideal candidate to serve as the theoretical starting point for
mosaic.

In our prototypes, we use front yard bins of size 𝑓 = 56, backyard
bins of size 8, and 𝑑 = 6. As a consequence, the total associativity ℎ
is 104, so the number of bits in a CPFN is 7.

Mosaic frame allocation. Mosaic structures memory as an Ice-
berg hash table and uses Iceberg hashing for page allocation. Al-
locating a mosaic page is analogous to inserting into an Iceberg
hash table: we hash the virtual address to a front yard bucket and,
if there is room in the bucket, store the page there. Otherwise we
attempt to store it in a backyard bucket chosen using the power of
𝑑 choices.

2.4 Mosaic Swapping
When no slot is available for a new allocation, we must choose
a page to evict. Specifically, we must choose a page from among
the buckets that can be used for the new allocation. To solve this
problem, we propose a new eviction algorithm, Horizon LRU , that
is designed specifically to work with Mosaic. Horizon LRU is based
on an algorithm with strong bounds on its paging costs (relative
to baseline LRU) and, as we will see in §4, good performance in
practice. The naive solution of simply evicting the least-recently-
used page in the target buckets does not have the same performance
guarantees.

Horizon LRU builds on prior work [7], which described an effi-
cient page-eviction algorithm for a low-associativity cache. The key

437

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Gosakan et al.

idea in prior work is to simply implement cache replacement as if
the cache were slightly smaller (less than 1 − 𝛿 in size), so that one
never sees associativity conflicts, only capacity evictions. The total
number of evictions will be the same as LRU running on a fully
associative cache of size (1 − 𝛿)𝑝 . The downside of this algorithm
is that it completely wastes a fraction 𝛿 of memory.

Horizon LRU extends the above ideas, making two improvements
while preserving the theoretically backed structure of the page
eviction algorithm.

First, Horizon LRU does not evict any page until absolutely nec-
essary. Rather, it marks pages that would be evicted unnecessarily
as ghost pages. Ghost pages are kept in memory in case they are
referenced again, but the page allocation algorithm treats them as
if their frames are free. So, for example, if there is a ghost page in
the front yard bucket for an allocation, then it actually evicts that
page and uses its slot for the new allocation. In the backyard, ghost
pages do not count towards a bucket’s occupancy when choosing
the least-occupied bucket in the power-of-𝑑-choices algorithm.

Second, Horizon LRU exploits the local structure of the mosaic
page-allocation scheme to implement LRU without having to main-
tain a global LRU list. Horizon LRU tracks the last time that each
page was accessed, as well as a global time stamp, called the hori-
zon, which is the high-water mark of the access times of all pages
it has evicted. All pages whose most recent access time is prior to
the current horizon are ghosts.

Horizon LRU simulates a global LRU algorithm because every
time we update the horizon, we are marking all the pages with
access times older than the new horizon as effectively evicted—
exactly the set of pages that a global LRU algorithm would have
actually evicted.

2.5 Limitations and Extensions
There are some limitations that arise as a result of the dependence
of PFNs on their corresponding VPNs and the process’s ASID. In
particular, the set of possible PFNs for one (ASID, VPN)-pair are
generally completely distinct from those of a different (ASID, VPN)-
pair. As a result, mosaic pages as described above do not support
duplicate mappings of the same physical memory within a single
address space, or page sharing across address spaces. Similarly, as
described above, mosaic does not support multiple mappings of the
same file, even within a single address space.

We see several options in a large design space of possible solu-
tions to the page sharing problem, either through special casing or
a layer of indirection. We present a few representative solutions
below. Ultimately, determining the best course will require careful
empirical evaluation to ensure a careful balance among competing
concerns, including latency, space usage, application requirements,
and chip area.

A simple way to support page sharing is to introduce special-
casing for shared pages so that they use traditional (non-Mosaic)
TLB entries.

There are also approaches that more directly integrate shared
pages into the Mosaic framework. For example, rather than using
(ASID, VPN) as the input to the hash function, we give each ToC
a unique identifier, which we call its location ID. Then, to deter-
mine the PFN of the 𝑖th page within any mosaic page, we hash

(location ID, 𝑖) instead of (ASID, VPN). Now we can use the same
ToC multiple times within a single process’s address space (for, e.g.
duplicate mmaps), or use it in different address spaces to create
shared memory.

This approach has two costs. First, each TLB entry needs to store
its ToC’s location ID, so TLB entries get larger. Second, during
address translation, the hash function cannot be evaluated until
after the TLB lookup completes, whereas hashing (ASID, VPN) could
be done in parallel with the TLB lookup. This could potentially
increase the latency of address translations. We can compensate for
the lack of parallelism as follows. First, we have the OS generate
location IDs randomly. (Although this may cause a few ToCs to be
assigned the same location ID, Iceberg hashing is robust enough to
handle this.) Now we can use extremely simple, low-latency hash
functions, because the inputs to the hash functions are already
randomized.

One could also adapt techniques used in other contexts to address
the problem. For instance, rather than assigning a unique location
ID to every ToC, one could assign location IDs to each segment
and use a modest table of segments to translate (ASID, VPN) pairs
to (location ID, offset) pairs. Or one could adapt techniques for
handling aliases in virtually indexed caches, which map one virtual
address to another within the cache [64]. We leave it as future work
to evaluate these approaches.

3 IMPLEMENTATION OF MOSAIC PAGES
This section describes the gem5-based mosaic hardware simulator
and prototype mosaic page allocator in Linux that we implemented
in order to evaluate the performance and feasibility of mosaic pages.
Mosaic pages require changes to four system components: the TLB,
the page table, the OS page allocator, and the OS page eviction
algorithm.

3.1 Gem5 Full-System Simulation
We implement mosaic pages using gem5 [12], a widely used ar-
chitectural simulator. Our implementation involves systematically
redesigning both the TLB and parts of the traditional radix-tree
page table, and provides a full system simulation with support for
mosaic pages.

Mosaic TLB. We extend gem5 to support mosaic TLB entries,
using front yard buckets of size 𝑓 = 56, backyard buckets of size
𝑏 = 8, and 𝑑 = 6 choices of backyards. Thus the total associativity
of the page allocation scheme is 56+ 8× 6 = 104. We encode CPFNs
into 7 bits as follows. An unmapped page is the all-ones CPFN.
Otherwise, the leading bit indicates whether the page is mapped to
the front yard or the backyard. If it is mapped to the front yard, then
the remaining 6 bits indicate the frame offset within the bucket. If
it is mapped to the backyard, then the next 3 bits indicate which of
the 6 backyard buckets was chosen, and the last 3 bits indicate the
frame offset within that bucket. We store a valid bit per sub-page,
and we use additional bits for permissions and other metadata, at
mosaic page granularity.

Our mosaic TLB model takes as a parameter the mosaic arity,
which may lead to very wide TLB entries when configured with
large arity. By default our simulator uses an arity of 4 and 7-bit

438

Mosaic Pages: Big TLB Reach with Small Pages ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Index

(8 bits)

Value

(32 bits)

0
…
7
8
9
10
…

255

Static Table Ti

bi 32 bit
4 to 1
Mux

Hash Selection
Bits

Outputs of
Other Tables

Hash Output
(32 bits)

Figure 4: Hardware diagram for Tabulation Hashing with
probing to produce four hash function outputs. Here the
diagram for a single table is shown.We use one table for each
byte of the VPN.

CPFNs. This yields ToCs of 28 bits, which mean that TLB entries
are smaller than the 36-bit PFNs stored in most current x86 TLBs.

Note that the mosaic TLB design changes the update and decode
logic for TLB entries (and maybe their width), but the mosaic mem-
ory mapping restrictions are orthogonal to the associativity of the
TLB itself. Therefore a mosaic TLB can store the TLB entries using
any caching design that it could use for a conventional TLB. So,
for example, the TLB hardware could store TLB entries in a fully
associative cache, a direct-mapped cache, or an N-level associative
cache. We analyze the effect of different TLB associativity levels in
Section 4.1.

When the OS invalidates a mapping of a sub-page within a
mosaic page and invalidates the TLB entry, our TLB model only
invalidates the sub-page’s entry within the larger mosaic page’s
ToC. We do not invalidate the entire mosaic page’s entry in the
TLB. Upon a capacity miss, the TLB manages its own space using
LRU to evict TLB entries for an entire mosaic page.

In our gem5 model, for ease of simulation, we maintain one TLB
for the conventional (vanilla) mode and another TLB for the mosaic
mode; results are computed for both modes simultaneously. Each
memory access is fed to both TLBs with a separate page table walker
for each TLB to handle misses. In mosaic mode, a conventional
mapping consumes an entire TLB entry. We did this to keep the
total number of TLB entries consistent for the evaluation, while
compensating for the lack of sharing (i.e., shared pages still take
up space in the TLB).

We further note that our model treats all shared pages as if
they were copied and unshared in a mosaic address space, and are
therefore compressible. None of our workloads use shared memory
other than for library code, but it does mean that our results reflect
a marginal trade of DRAM space for higher TLB reach.

Hash functions. In order to maintain TLB hit performance, we
require a hash function that can run within the latency of the L1
TLB. Tabulation hashing is an established hashing technique that
can produce high-quality hash values using small static tables [43].
Specifically, for an input 𝐼 each byte 𝑏 ∈ 𝐼 is an index into separate

CR4

L4

+

L2L3

L3 Pointer

ToCL2 Pointer

Page table organization

L4
10 bits

 Mosaic Offset
6 bits

L2
10 bits

L3
10 bits

Page Offset
12 bits

Virtual Address

1. Upon TLB miss, lookup in page table

2. Decode physical
 page from ToC

bucket_id, offset

bucket 0 bucket n

...

MVPN
(30 bits)

Page offset
(12 bits)

 Mosaic Offset
(6 bits)

...

+

+

Figure 5: Upon a TLB miss, Mosaic walks the page table,
which may be any structure; here, we present a traditional
radix tree. As an optimization, the leaf nodes are modified to
store tables of contents (ToCs), which are decoded to identify
the physical location of the pages, using the same logic as
TLB entries.

tables, each with 256 entries. The values returned by all these tables
are then XOR’d together to give the output of the hash.

To produce multiple hash results from a single set of tables
we probe from the value of 𝐼𝑏 using the hash function id as an
offset. For example, with 4 hash functions and a static table 𝑇 , the
hashes of an input 𝐼 would be 𝐻0 =

⊕
𝑇𝑏 [𝐼𝑏], 𝐻1 =

⊕
𝑇𝑏 [𝐼𝑏 + 1],

𝐻2 =
⊕

𝑇𝑏 [𝐼𝑏 + 2], and 𝐻3 =
⊕

𝑇𝑏 [𝐼𝑏 + 3]. Probing in this way
allows us to produce sufficiently random hash results without the
need for additional tables (and thus power and chip area) for each
hash function. This design is outlined in Figure 4.

Note that a hardware implementation can compute all the hash
functions in parallel with the TLB lookup to obtain the CPFN. It
can then use the CPFN to select the correct hash function’s output
and compute the PFN.

Mosaic page table structure and hardware. In large part, the
changes required by mosaic pages are orthogonal to the page table
design. In our simulation, we modify the leaves of the page table
to map MVPNs to ToCs, illustrated in Figure 5, but we keep the
overall radix-tree structure of the default gem5 page table. This
structure allows the system to efficiently fetch and map a virtual
mosaic page to ToC translation.

Our current prototype stores permission, present, accessed, and
dirty bits in the page table for each encoded physical page in the
ToC, even though permission bits must be identical within a mosaic
page. The TLB currently only caches the present bit per CPFN,
and other bits at the granularity of a mosaic page. We retain this
flexibility in the page table to study the impact of this restriction in
future work.

439

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Gosakan et al.

3.2 Mosaic Page Management in Linux
This section describes our prototype implementation of mosaic
page management in Linux. This prototype is designed to run on
unmodified hardware, so it implements only the restricted alloca-
tion and swapping mechanisms used in mosaic pages and uses the
standard TLB and page table from x86 (in contrast to Section 3.1).
However, all allocations and swaps obey the mosaic rules in Sec-
tion 2, and so the prototype faithfully captures the conflicts that a
full mosaic paging system would incur.

Specifically, we implement the mosaic page allocator in Linux
kernel version 5.11.6. This allocator replaces the Linux allocator
only for anonymous memory allocation. To support this, memory is
split into two parts: at boot time a fixed amount (4 GiB) of physical
memory is reserved for the mosaic page allocator, and the rest is
used for the Linux default page allocator. We allocate anonymous,
unshared memory for the process under test from this pool; all
shared mappings, file caches, and the kernel are still placed in
pages used by the standard Linux page allocator. We evaluate the
system with applications whose space usage is largely anonymous,
unshared mappings. Our prototype does not support inheriting
mosaic pages via fork(), which would cause anonymous pages to
become shared; our test applications do not use fork() to create
child processes.

Our prototype Linux mosaic page allocator uses the same param-
eters as our gem5 simulator, i.e., front yard buckets of size 𝑓 = 56,
backyard buckets of size 8, and 𝑑 = 6 choices. Each bucket contains
a linked list of free pages. When a process requests an anonymous
page, the allocator hashes the (ASID, VPN)-pair in order to obtain
the buckets which can be used for allocation, as in Section 2. We
use xxHash [13], a fast hash algorithm available in the mainline
Linux kernel. The allocation happens when the process accesses
the page because Linux uses demand paging.

Horizon LRU in Linux. We implement swapping using the Hori-
zon LRU algorithm as described in Section 2.4.

One challenge is that Horizon LRU requires access timestamps,
but current hardware maintains only access bits, not timestamps. A
real mosaic page system would store timestamps instead of access
bits, so this is only a challenge for our prototype, not of a real
mosaic system. Our implementation uses the access bits to emulate
up-to-date timestamps. We create a background daemon, which
scans mosaic memory at regular intervals (1 s by default). If a page
has been accessed since the last scan, we update the timestamp and
clear the accessed bit. In the x86 architecture, a processor invalidates
TLB entry once software clears the access bit in the corresponding
page table entry. This leads to a high TLB misses and becomes
an overhead. To alleviate the overhead, we use a sampling based
approach [32]. For each page, we maintain 8 recent histories of
access status, and classify the page is hot or cold. During scanning,
we always read and clear the access bit of cold pages. For hot pages,
we read and clear the access bit for 20% of pages and we consider
remaining 80% of pages as accessed.

4 EVALUATION
This section presents experiments to answer the following questions
about Mosaic performance:

Table 1: Experimental platform details.

(a) Gem5 Experiment Environment (§4.1)

Processors Single core TimingSimpleCPU
Address

sizes
36-bit VPNs and 36-bit PFNs

L1 DTLB Unified TLB for 4 KiB and 2MiB pages, 1024
entries, 1 to 1024-way (varied) set associative

L1 ITLB Unified TLB for 4 KiB and 2MiB pages, 1024
entries, 1 to 1024-way (varied) set associative

L1d cache 64 KiB, 2-way set associative
L1i cache 32 KiB, 2-way set associative
L2 cache 2MiB, 8-way set associative
L3 cache 16MiB, 16-way set associative
Memory 16GB DDR4

OS Linux 4.16, Debian

(b) Linux Experiment Environment (§4.2–4.3)

Processor Intel Xeon E3-1220 v6 (Sandy Bridge), 4 cores,
3.00GHz

Memory 32GiB (4GiB reserved for Mosaic)
OS Linux 5.11.6, Ubuntu 20.04

Swap
Device

4GiB Ramdisk

Table 2: Workloads used for evaluating hardware TLB and
OS designs.

Workload Description
Memory
Footprint

Instructions
(billions)

Graph500 Parallel graph processing
benchmark.

1010MiB ≈ 16.0

BTree Benchmark for index lookups
on a B+ Tree data structure.

2618MiB ≈ 54.3

GUPS Microbenchmark that gener-
ates random accesses, resulting
in high TLB misses.

8207MiB ≈ 23.2

XSBench HPC benchmark that repre-
sents a key computational ker-
nel of the Monte Carlo neutron
transport algorithm.

1012MiB ≈ 20.0

• Does Mosaic reduce TLB misses? (§4.1)
• Does Mosaic reduce memory utilization? (§4.2)
• Does Mosaic increase swapping? (§4.3)
• Is Mosaic hardware feasible? (§4.4)

4.1 Does Mosaic Reduce TLB Misses?
Table 1a describes the system that we simulated using gem5. We
vary the TLB in two dimensions. First, we vary the mosaic arity
from 4 to 64, i.e., we vary the size of mosaic pages from 16KiB to
256KiB. Second we vary the associativity of the TLB from direct-
mapped to fully associative.

440

Mosaic Pages: Big TLB Reach with Small Pages ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Direct 2-Way 4-Way 8-Way Full0M
50

M
10
0M

10
7M

97
M

73
M

40
M

12
M20
M

18
M

18
M

18
M

18
M

11
M

10
M

10
M

10
M

9M6M 6M 6M 6M 5M3M 3M 3M 3M 3M2M 2M 2M 2M 2M

TL
B
M
is
se
s

Vanilla Mosaic-4 Mosaic-8
Mosaic-16 Mosaic-32 Mosaic-64

(a) Graph500

Direct 2-Way 4-Way 8-Way Full0M
20
0M

40
0M

34
3M

29
7M

28
7M

28
2M

24
5M

22
7M

19
9M

19
4M

19
1M

18
3M22
0M

18
7M

17
8M

17
6M

17
2M18
6M

16
6M

16
2M

16
0M

15
4M17
4M

15
0M

14
6M

14
6M

13
8M15
3M

13
7M

13
5M

13
3M

12
4M

TL
B
M
is
se
s

(b) BTree

Direct 2-Way 4-Way 8-Way Full0M
50

M
10
0M

76
M

74
M

72
M

72
M

53
M

73
M

70
M

70
M

70
M

70
M78
M

69
M

68
M

68
M

69
M

71
M

68
M

68
M

68
M

68
M

70
M

67
M

67
M

67
M

67
M

69
M

66
M

66
M

66
M

66
M

TL
B
M
is
se
s

(c) GUPS

Direct 2-Way 4-Way 8-Way Full0M
0.
5M

1M
1.
5M

1,
24
6K

94
0K

93
8K

93
7K

81
7K

83
3K

70
6K

68
8K

72
5K

71
8K

74
5K

61
4K

64
9K 75
5K

64
1K72
9K

61
1K 68
3K

58
2K

57
4K68
4K

51
9K

50
3K

51
5K

53
0K63
5K

51
2K

51
0K

50
5K

51
0K

TL
B
M
is
se
s

(d) XSBench

Figure 6: TLB Misses on the Graph500, BTree XSBench,
and GUPS workloads with Mosaic and Vanilla TLBs with
different-sized tables of contents (ToC) and set-associativity.

To study the TLB performance of Mosaic compared to a standard
“vanilla” TLB, we run four widely used workloads, Graph500, BTree,
GUPS, and XSBench using full system gem5 hardware simulation.
Table 2 shows the total instructions simulated.

Figure 6 shows the number of TLB misses incurred during each
workload. Vanilla represents standard Linux and x86 page tables.
Although we disabled huge pages for application use, the Linux
kernel itself was mapped using huge pages in vanilla, giving vanilla
a slight advantage over mosaic.

The high-level take-away is that mosaic pages can reduce TLB
misses across a wide variety of workloads and TLB associativities.

In many cases, Mosaic can reduce TLBmisses by a dramatic amount,
e.g., almost completely eliminating them in Graph500 and XSBench,
reducing them by up to about half in B-Tree and about a quarter in
GUPS.

Mosaic arity. In this experiment, we measure the sensitivity of
the TLB misses to the number of CPFNs that are in one TLB entry
(arity). We vary the number of CPFNs from 4 to 64. Note that
with an arity of 4, all 4 CPFNs fit in a single unmodified x86 TLB
entry. Even with an arity of only 4 (Mosaic-4), Mosaic shows a
substantial reduction of 6–81% in TLB misses for Graph500, BTree,
and XSBenchworkloads, andwith an arity of 64 (Mosaic-64) reduces
misses by 11–98%. Mosaic shows less improvement on GUPS, which
is unsurprising, because GUPS is a synthetic benchmark designed
to stress the system with extremely random memory accesses.

TLB associativity. As Figure 6 shows, increasing TLB associativity
reduces TLBmisses for all approaches due to reduced conflictmisses.
However, switching from a vanilla TLB to a mosaic TLB is far more
effective at reducing TLB misses than increasing the associativity of
the TLB. For example, observe that a direct-mapped Mosaic-8 TLB
outperforms a fully associative vanilla TLB for Graph500, BTree,
and XSBench. In fact, the performance of Mosaic is not significantly
impacted by TLB-associativity indicating that a Mosaic system
could use more efficient lower-associativity TLB designs.

We note that vanilla with a fully associative TLB out-performs
Mosaic-4 on Graph500 and Mosaic-4–16 on GUPS. This is because
vanilla Linux uses huge pages to map the kernel, effectively gaining
a slightly larger TLB than Mosaic. Smaller experiments with huge
pages fully disabled remove this artifact (giving all Mosaic arities
fewer TLB misses than vanilla), but we were not able to complete
all simulations with this change in time for the final paper deadline.

4.2 Does Mosaic Reduce Memory Utilization?
In this section we empirically measure 𝛿 , the memory overhead
discussed in Section 2, and compare this to the memory utilization
achieved by the default Linux virtual-memory subsystem.

The hardware and software used in these experiments are pre-
sented in Table 1b. Each data point reports the average and standard
deviation of ten runs, unless otherwise stated. We use the seq-csr
implementation of Graph500 unless otherwise stated. To reduce
noise from various processes in the system, we use the Mosaic page
allocator only for the benchmark process. All other processes on
the system use the default Linux allocator.

We scale the workloads down to approximately 4 GiB and limit
memory for the test workload to 4GiB, in order to work around
missing features in our current prototype, such as the inability to
put the kernel or shared mappings in mosaic pages. The other 28
GiB are available only for system background processes, not the
benchmark. We limit application memory on unmodified Linux
using cgroups. We restrict the amount of mosaic memory in our
prototype to 4 GiB, except for a small amount of file memory (~400
KiB), which we could not easily restrict in the mosaic case. This
memory split is an experimental artifact, not a design feature.

As discussed in Section 2, Mosaic may start to have associativity
conflicts once it hits a memory utilization of 1−𝛿 . However, memory

441

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Gosakan et al.

Table 3: Memory utilization under the Mosaic page alloca-
tion at the point of the first associativity conflict, and the
steady-state utilization over the entire workload. The stan-
dard Linux allocator begins swapping at about 99.2%memory
utilization, so Mosaic has essetially no memory overhead in
these benchmarks.

Workload Footprint First associativity
conflict (1 − 𝛿)

Steady-state
utilization

Graph500 4158MiB 98.07% ±0.04 99.22% ±0.01
XSBench 4156MiB 98.02% ±0.08 99.21% ±0.01
BTree 4154MiB 98.03% ±0.10 99.21% ±0.01
Graph500 4413MiB 98.02% ±0.06 99.79% ±0.01
XSBench 4412MiB 98.04% ±0.13 99.73% ±0.01
BTree 4409MiB 98.00% ±0.06 99.74% ±0.01
Graph500 4669MiB 98.05% ±0.04 99.99% ±0.00
XSBench 4668MiB 98.01% ±0.02 99.92% ±0.01
BTree 4664MiB 98.04% ±0.04 99.96% ±0.01
Graph500 4924MiB 98.05% ±0.03 100.00% ±0.00
XSBench 4924MiB 98.05% ±0.07 99.98% ±0.01
BTree 4919MiB 98.00% ±0.07 99.99% ±0.00

utilization can go beyond 1−𝛿 due to ghost pages (§2.4). To evaluate
these two effects, we measure both the memory utilization when
our benchmark experiences its first associativity conflict and its
steady-state memory utilization over the entire benchmark run.

We measure this by running Graph500, XSBench, and BTree
configured to have memory footprints between 4.06GB to 4.80GB,
so that, in a fully associative paging scheme, memory would be
nearly 100% utilized. Table 3 presents the memory utilization at the
time of the first associativity conflict (1 − 𝛿) and the steady-state
memory utilization.

As the table shows, the first conflict appears at around 98.03%
utilization across all workloads, indicating that 𝛿 is roughly 2%. In
contrast, we observed that Linux with the default allocator began
swapping once memory utilization reached 99.2% (because each
memory zone has its own watermark). Thus Mosaic’s associativity
restrictions do not cause Mosaic to begin swapping significantly
sooner than with the default Linux allocator. Furthermore, over
the entire execution, the workloads are able to utilize over 99.2% of
available memory, and this increases as the footprint increases, so
the overall memory overhead of Mosaic is less than 1%.

4.3 Does Mosaic Increase Swapping?
We run each workload with a variety of memory footprints, from
just over the size of available memory to about 57% larger, and
report the total number of swap I/Os as reported by sysstat. We
use the same hardware and software as in the previous section. We
present the average of 5 runs. Standard deviations were all below
5%.

Table 4 compares the behavior of Mosaic’s swapping algorithm,
Horizon LRU (§2.4), to the default Linux implementation. The differ-
ence column gives the percent reduction in swapping I/O performed
by Mosaic (i.e. higher is better). Green cells indicate that Mosaic

Table 4: Number of memory swapping operations while in-
creasing the workloads sizes

Workload
Memory
Footprint
(MiB)

Linux
4096MiB
(K pages)

Mosaic
4096MiB
(K pages)

Difference
(%)

Graph500

4158 1031.10 2043.86 -98.22
4413 29908.91 24644.36 17.60
4669 62785.90 44585.39 28.99
4924 79450.93 57818.43 27.23
5180 82670.25 68392.23 17.27
5436 85026.79 79061.77 7.02
5691 93284.21 90125.03 3.39
5947 104071.54 102121.28 1.87
6203 114875.52 113780.59 0.95
6459 125003.06 119083.55 4.74

XSBench

4156 337.55 391.79 -16.07
4412 1465.91 1279.11 12.74
4668 2726.31 2404.34 11.81
4924 4071.57 3693.00 9.30
5180 5416.14 5043.78 6.88
5435 6778.77 6443.30 4.95
5691 8141.77 7910.56 2.84
5947 9538.62 9421.29 1.23
6203 10802.44 10678.59 1.15
6459 11871.56 11888.83 -0.15

BTree

4154 983.57 1166.02 -18.55
4409 5790.18 5127.18 11.45
4664 11609.53 10338.29 10.95
4919 18142.24 15605.34 13.98
5175 25256.59 21081.30 16.53
5430 32684.41 26973.25 17.47
5685 40369.66 33539.42 16.92
5940 48305.64 41217.21 14.67
6196 55108.28 48766.51 11.51
6451 60877.65 54952.76 9.73

performed less swapping, and red indicates that it performed more.
When theworkload is just slightly over the size of available memory,
Mosaic performs more swapping than the default Linux allocator.
This is because, as we showed in Section 4.2, Linux is able to utilize
about 1% more memory than Mosaic. However, once the workload
footprint passes this edge case, Mosaic matches or outperforms
Linux, sometimes by a significant amount (up to 29% in the best
case). This may be because the associativity restrictions in Mosaic
slightly perturb LRU’s choices, preventing it from suffering from
well-known bad cases, such as cyclic memory references.

4.4 Hardware Evaluation
We used a two-step hardware evaluation to assess the viability of
our approach. Our first set of evaluations were performed using
an FPGA fabric. We then performed an evaluation using a 28nm
CMOS process/foundry with more detailed timing analysis.

For our FPGA implementation, we evaluated the latency and
area impact of adding hashing to the TLB hit path, as described in

442

Mosaic Pages: Big TLB Reach with Small Pages ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 5: Size and latency of Tabulation Hash circuit on an
FPGA given a number of hash functions.

H LUTs Registers F7 Mux F8 Mux Latency
1 858 32 0 0 2.155ns
2 1696 32 32 0 2.155ns
4 3392 32 64 32 2.155ns
8 6208 32 2880 160 2.155ns

§3.1 in Verilog. Synthesizing for an Artix-7 FPGA, we used simple
lookup tables to implement the static tables. We found the latency
of the Tabulation Hash circuit to be 2.155ns or a clock frequency
of 464MHz. When varying the number of hash functions from 4-8,
the clock frequency of the circuit was unchanged. Increasing the
number of hash functions increases the number of values extracted
from the static tables and the size of the post-table muxes. As
the latency of the circuit is unchanged, generating multiple hash
outputs by probing as described in §3.1 is an efficient approach.
Furthermore, the Tabulation hash circuit with eight hash functions
requires 6208 Slice LUTs, 32 Slice Registers, 2880 F7 Muxes, and 160
F8 Muxes. Table 5 gives the sizes of the circuit with other quantities
of hash functions.

Encouraged by these results, we also then implemented our
hardware changes in System Verilog and synthesized it using a
commercial 28nm CMOS process. We implemented the static tables
as registers, and used Cadence synthesis tools with standard cell
libraries to generate results. We present results for the worst-case
variation corner (i.e., TrFF, VddMIN, and RCBEST, at 1V Vdd, 125 °C).

The synthesized circuit ran at a maximum frequency of 4 GHz
and a latency of 220 ps and 20 picoseconds positive slack. Addition-
ally, increasing the number of hash functions did not increase the
latency while increasing the area minimally. This increase in area
is due to larger muxes needed to select from more values looked
up from the table. Therefore, generating multiple hash outputs by
probing as described in §3.1 is an efficient approach. The design
uses 13.806 KGE area for 8 hash functions, normalized to a 2-input
NAND gate in our process node when using 8 hash functions.

5 RELATEDWORK
Because virtual memory is a nearly ubiquitous abstraction for pro-
grammers, ensuring low address translation overheads is a peren-
nial goal. Prior research on navigating the tension between increas-
ing TLB reach and the costs of defragmentation spans decades. This
section describes related work on improving TLB reach through
larger pages and more efficient defragmentation, as well as MMU
caching. Like Mosaic, hashed page tables use hashing to acceler-
ate address translation, although hashed page tables are intended
to reduce TLB miss costs and total space overhead of page tables,
whereas mosaic increases TLB reach. We also summarize prior
research that reduces the associativity of memory mapping.

5.1 Huge Pages and Defragmentation
On current hardware, one must balance the CPU costs and mem-
ory bandwidth of defragmentation against potential gains from
huge pages, as one can easily squander the performance gains from
huge pages on defragmentation overhead [32, 39, 66]. Several works

have proposed techniques that balance the costs of defragmenting
memory in the OS with gains from TLB coverage [32, 37, 62, 66]. A
related issue is memory bloat—when an application maps huge
pages but would use considerably less space with smaller pages.
Memory bloating increases memory pressure and can induce swap-
ping [37]; for this reason, many databases recommend disabling
huge pages [36, 48, 51, 60]. An underlying reason for both issues is
that performance gains from contiguity are all-or-nothing.

In order to mitigate defragmentation costs and memory bloat,
one can tolerate some discontinuity in the physical memory backing
a huge page, such as by adding an intermediate address translation
layer and augment hardware [16, 40, 53, 65]. A recent example is
perforated pages [40], which start with a 2MiB huge page but allow
the OS to redirect individual 4 KiB “holes” to different physical
pages. This requires an extended page table structure to map these
hole pages and extend both the L1 and L2 TLB with bitmaps to filter
holes and trigger additional page table traversals. This indirection
is also sufficient to handle issues such as sharing regions of memory
across processes or unusable regions of DRAM (“dead pages”). The
performance intuition behind these techniques is that if one could
not form an entire huge page, but had enough contiguity to split the
virtual huge page into a small number of discrete physical extents,
this is an improvement over falling back to strictly using 4 KiB pages.
Mosaic also composes larger pages from dis-contiguous physical
pages; a key distinction is that mosaic leverages a low-associative
hashing scheme to reduce hardware costs while providing sufficient
flexibility for software.

In summary, the road to huge pages has not been smooth. De-
spite the appeal and apparent simplicity of huge pages and decades
of research, transparent support for 2MiB pages is still under active
development, and modern OSes do not transparently support 1 GiB
pages yet.

5.2 Redesigning TLB Layout
Alternatively, there are approaches to increase the TLB reach by
redesigning the TLB layout. A related strategy to leverage smaller
contiguity than a huge page is to coalesce adjacent TLB entries into
one entry if the entries happen to be both virtually and physically
contiguous [45]. This approach adds modest hardware to infer
when TLB entries can be coalesced; later work shows OS support
for coalescing [42]. For TLB coalescing, the performance gains are
proportional to the amount of physical and virtual contiguity, and
unlike standard huge pages, this approach does not depend on 2MiB
increments in contiguity.

In a cache design, subblocking (or sectoring) is a technique to
leverage spatial locality to cache a larger block from a set of sub-
blocks [23, 33]. Correspondingly, there are approaches to apply
subblocking to TLB design [55]. Some MIPS processors have a TLB
with a subblock factor of two, which means single TLB entry stores
two different PFNs for two adjacent VPNs [22], at a cost of widening
the TLB entry by the additional PFNs. Mosaic can be viewed as
a TLB with a subblocking factor of arity (four in our prototype),
combined with PFN compression, which ensures that Mosaic pages
fit within the same TLB entry width.

Perhaps most similar to this work are several papers based in
part on the observation that even non-contiguous pages are often

443

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Gosakan et al.

nearby in physical memory, enabling a form of prefix compression
by sharing the upper bits in the physical address and packing the
differing, lower bits into the entry [2, 44, 57]. All these papers and
Mosaic improve TLB reach when virtual mappings are constrained.
Although these papers relax the contiguity requirements, Mosaic
removes the need for contiguity altogether.

Another approach to economize TLB entries is by introduc-
ing segmentation, specifically on dedicated servers without multi-
tenancy and workloads size matched to server memory capacity.
Basu et al. [5] show that a single, variable-sized segment can elim-
inate nearly all TLB misses for a set of common workloads by
increasing virtual and physical contiguity. This idea has been ex-
tended with multiple segments (or ranges) [28, 41]. However, these
approaches leverage deployment-specific characteristics, such as
no swapping, that would not necessarily be true of all deployments.

Orthogonal designs have explored increasing TLB reach by mov-
ing the TLB off of the hit path for the L1 cache and onto the miss
path. However, for this to work, caches accessed without the TLB
must be indexed by a virtual address rather than a physical address,
called virtual caching [6, 18, 30, 41, 61]. However, virtual address
indexing complicates shared data handling. In contrast, mosaic
techniques increase the reach of a TLB, regardless of whether the
TLB is on the L1 cache hit path; however, the need to compress
physical addresses is more acute when the TLB is accessed on the
L1 hit path.

5.3 Limited Associativity VM
Reducing the associativity of virtual memory mappings has been
used to optimize CPU cache behavior. Page coloring [31, 58] is a
technique to ensure that sequential virtual pages will not contend
for the same cache line. However, the introduction of multi-way
set-associative caches reduces the demand for page coloring. As a re-
sult, some OSes, including Linux, do not support page coloring [24].
Although page coloring restricts the physical page placement, the
resulting associativity is much higher than Mosaic, e.g., in a system
with 4GiB RAM with 128 colors, each virtual page can be mapped
to 8,192 physical page frames. Because Mosaic’s mapping restric-
tions are more stringent than page coloring, it is unlikely that the
two techniques can be profitably combined. However, Mosaic’s
randomization of virtual-to-physical mappings may be sufficient
in expectation to avoid the cache pathologies prevented by page
coloring, which we leave for future work.

Several works studied how to use mainmemory as set associative
caches. Alan Jay Smith studied the performance of set associative
main memory mapping, finding a small increase in the number
of page faults compared to LRU in a fully associative memory
mapping design [50]. More recently, Picorel et al. [47] proposed set-
associative memory for near-memory processors. They observed
that a 4-way set associative memory can eliminate most conflict
misses of a single process application. Conventionally, restricting
physical page placement comes with a cost of a memory underuti-
lization. To avoid this issue, Utopia [27] splits system memory into
multiple segments, flexible segments and restrictive segments; a
restrictive segment is organized as a set associative memory. Utopia
measures the number of TLB misses for each page and records the
counter in the page table entry. Pages with a high TLB miss count

are migrated into a restrictive segment. In summary, prior work
has shown that the flexibility of fully associative memory comes at
a cost, and that this high degree of flexibility may not be strictly
necessary.

5.4 MMU Caching
A complementary approach to increasing TLB reach is reducing the
costs of a TLB miss. Specifically, by caching portions of the page
tables in hardware MMU caches [3, 10, 11], one can potentially
eliminate a series of sequential loads to walk the page table data
structure. These caches are also amenable to common optimizations
such as pre-fetching and speculation [4, 46], which can further
reduce the TLB miss penalties. The effectiveness of these caches
is also a function of the complexity of the underlying mapping
structure: these caches are very effective for nested hardware page
tables [1, 4, 10], where each memory access in the guest triggers a
page table walk in the supervisor, Translation-triggered prefetching
observes that by integrating MMU caches with data caches, one can
use TLB miss information as a hint to prefetch the related data into
the data caches, with very high accuracy. This prefetching can be
further improved with modest changes to how the OS places page
tables in physical memory [34]. The primary downside of these
techniques is that they all require more chip area and power.

5.5 Hashed Page Tables
Hashing has also been used in page tables [15, 17, 21, 25, 26, 56].
In a hashed page table, upon a TLB miss, the CPU hashes the re-
quested virtual address and process identifier to identify a bucket
of page table entries. Ideally, this bucket holds only the target page
table entry, and requires only one memory reference to determine
the physical address. Much more commonly, this bucket stores a
collision chain of such page table entries, requiring several memory
references to identify the desired page table entry [3]—easily erod-
ing the best-case gains in the worst cases. Recent work [49, 52, 63],
however, suggests that these shortcomings may not be fundamen-
tal to the hashed page table approach, but rather to the choice of
hashing schemes. More recent work also points out the opportunity
for nested, hashed page tables to unlock more parallelism in the
TLB miss path than a radix-tree page table structure [52].

A key distinction between Mosaic and hashed page tables is that
Mosaic uses hashing to increase TLB reach (and, thus, the TLB hit
rate), whereas hashed page tables reduce the TLB miss cost. Mosaic
is compatible with any page table design, and in our prototype, we
retain radix-tree page tables.

Mosaic’s iceberg hashing may improve upon cuckoo hashing in
the page table, which we will explore in future work. However, we
do note that in cuckoo hashing-based page tables, the tables must
be resized after they reach an occupancy threshold (60% occupied
in Elastic Cuckoo Tables); at this point, page contents must be
copied to new frames. A key improvement of Iceberg hashing is
that it is stable and has a high load factor: even when memory is
nearly full, page contents do not need to be copied to new frames
to ensure the same performance as when the memory is not full.
A key contribution of the mosaic design is delaying conflicts (and
conflict resolution) until the system would swap anyway.

444

Mosaic Pages: Big TLB Reach with Small Pages ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

6 CONCLUSIONS
This paper shows how one can compress physical addresses in
the TLB, thereby reducing TLB misses for big data workloads by
6–81% with comparable hardware, and even further with wider
TLB entries. Many techniques for increasing TLB reach rely on
physical contiguity, whereas Mosaic does not require contiguity
or defragmentation. Moreover, we show that these constrained
mappings do not induce additional swapping on average. Key to
these results is a hashing scheme with the right properties for
address translation: a high load factor, stability, and relatively few
choices. Finally, Mosaic is compatible with many of the techniques
in the literature to increase TLB reach, and these techniques can be
profitably composed in future work.

DATA-AVAILABILITY STATEMENT
The data that support the findings of this study are openly avail-
able in Zenodo at http://doi.org/10.5281/zenodo.7709303, reference
number [67].

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments
on prior drafts of the work. We thank Montek Singh for assistance
with the Verilog/FPGA toolchain. We thank Rajit Manohar for giv-
ing us access to the physical synthesis flow used for our hardware
evaluations. Part of this work was completed while Mubarek and
Mukherjee were at UNC. This work was supported in part by NSF
grants CNS-1700512, CCF-1716252, CCF-1725543, CSR-1763680,
CNS-1910593, CCF-1916817, CNS-1938709, CSR-1938180, CNS-
1938709, CCF-2106827, CCF-2106999, CCF-2118620, CCF-2118830,
CCF-2118832, CCF-2118851, CCF-2119300, CNS-2154771, as well as
an NSF GRFP fellowship and a Fannie and John Hertz Fellowship.

This research was also partially sponsored by the United States
Air Force Research Laboratory and the United States Air Force
Artificial Intelligence Accelerator and was accomplished under
Cooperative Agreement Number FA8750-19-2-1000. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the United States Air Force or the
U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding
any copyright notation herein.

A ARTIFACT APPENDIX
A.1 Abstract
There are three artifacts for this paper: a Gem5 model to reproduce
Figure 4, a modified Linux kernel to reproduce Tables 3 and 4, and
Verilog code to reproduce Table 5. The Linux artifact includes scripts
to setup a KVM environment with Mosaic and vanilla Linux kernels.
The artifact also includes scripts to run the Linux workloads in a
VM and a script to generate tables.

A.2 Artifact Check-List (Meta-Information)

Gem5.
• Program: Linux

• Compilation: The artifact includes a script to compile the
modified gem5 simulator, create a QEMU-based virtual ma-
chine, and compile the Linux kernel.

• Binary: Binaries for Graph500, XSBench, BTree, and GUPS
bench-marks are included.

• Run-time environment: Experiments are run in a virtual ma-
chine, on top of the gem5 simulator, which runs on baremetal.

• Hardware: A Linux systemwith 4 to 8 Intel CPUs, 20GB of free
RAM, and superuser access permission to install packages.

• Output: The output generates regular Gem5 logs, summarized
TLB statistics, and filtered TLB miss rate information for
vanilla and Mosaic designs. The artifact describes the output
files and information.

• Experiments: The experimentsmeasure the total TLB accesses
and total TLB misses incurred.

• How much disk space required (approximately)?: 20-30GB
disk for sequential runs, and 100GB for parallel runs.

• How much time is needed to prepare workflow (approxi-
mately)?: 30 minutes

• How much time is needed to complete experiments (approxi-
mately)?: The artifacts have two types of input: (1) a tiny input
to check if everything works, which can complete within 2
hours; (2) a large input used in the paper, which can take
about 400 hours (a week if all steps are followed correctly) to
complete for all data points.

• Publicly available?: Yes
• Code licenses (if publicly available)?: GPLv2
• Archived (provide DOI)?: Yes https://doi.org/10.5281/zenodo.
7592600

Linux.

• Program: Linux
• Compilation: The artifact includes a script to compile the
modified Linux kernel.

• Binary: Binaries (and source) for Graph500, XSBench, and
BTree benchmarks are included.

• Run-time environment: The experiments can be run either
in a bare-metal system or in a VM.

• Hardware: A Linux system with more than 12GB of RAM and
2-cores of CPU is required.

• Execution: The artifact includes a set of scripts to execute the
experiments.

• Output: The artifact will produce two tables in form of CSV
documents.

• Experiments: The experiment will measure the number of
swapping with provided benchmarks.

• How much disk space required (approximately)?: 15GiB
• How much time is needed to prepare workflow (approxi-
mately)?: 30 Minutes

• How much time is needed to complete experiments (approxi-
mately)?: 20 Hours

• Publicly available?: Yes
• Code licenses (if publicly available)?: GPLv2
• Archived (provide DOI)?: Yes https://doi.org/10.5281/zenodo.
7592600

Verilog.

• Program: Verilog
• Compilation: Vivado

445

https://doi.org/10.5281/zenodo.7592600
https://doi.org/10.5281/zenodo.7592600
https://doi.org/10.5281/zenodo.7592600
https://doi.org/10.5281/zenodo.7592600

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Gosakan et al.

• Binary: All source Verilog, constraints, and memory files are
included for the experiment

• Run-time environment: The experiment can be run either in
a bare-metal system or VM

• Hardware: A Windows computer with at least 80 GB of free
disk space, or an external storage device with at least 80 GB
of free space

• Execution: The artifact includes a tutorial on Vivado installa-
tion and step by step instructions on how to run the experi-
ment

• Output: Multiple reports will be generated by the experiment
in Vivado. 2 of these reports will contain the experimental
results we are concerned with

• Experiments: The experiment will measure latency and used
resources of a tabulation hash function implementation

• How much disk space required (approximately)?: 80 GB
• How much time is needed to prepare workflow (approxi-
mately)?: 1-2 Hours for Vivado Installation

• How much time is needed to complete experiment (approxi-
mately)?: 1 Hour After Vivado Installation

• Publicly available?: Yes
• Archived (provide DOI)?: Yes https://doi.org/10.5281/zenodo.
7592600

A.3 Description
A.3.1 How to Access. The artifacts are available on GitHub: https:
//github.com/oscarlab/mosaic-asplos23-artifacts

A.3.2 Hardware Dependencies. For the Linux experiments, a sys-
tem with an x86-64 CPU is required. The minimum system needs 2
cores of CPU and 12GB of RAM, and 15GB of available disk space.

The instructions for the gem5 and verilog experiments are tai-
lored to and tested on an x86 host system, but may work on other
ISAs.

To setup and run the Verilog experiment following the provided
instructions a Windows computer with at least 80 GB of free disk
space is required
A.3.3 Software Dependencies.

Gem5. We run workloads in a Ubuntu 18.04 or 20.04 system

Linux. We run workloads in a Ubuntu 20.04 system.

Verilog. Microsoft Windows and Vivado 2020.2 (Vivado HL Web-
PACK, Vivado Design Suite, Vivado, Vitis HLS, DocNav, Artix-7
devices, and cable drivers).

A.4 Installation

Gem5. The artifact includes scripts to compile the gem5 simula-
tor along with automated steps to install packages, compile the
Linux kernel required for running Gem5 VM, and scripts to pre-
pare a VM image. All compilation scripts are clubbed into one
(compile.sh), and the QEMU VM image preparation script can be
found in create_qemu_img.sh. There are other helper scripts, as
mentioned in the artifact README file.

Linux. The artifact includes scripts to prepare a VM image and
build kernels. To create a VM image, use create_kvm_disk.sh.
And to build mosaic and vanilla kernels, use get_kernel.sh.

Verilog. The README documents show how to download the
Vivado tools from the Xilinx website and install them on aWindows
system.

A.5 Experiment Workflow

Gem5. While there are several supporting steps (please see the
README file), to launch a gem5 simulation using full system simu-
lation the following command is used:

$ test-scripts/prun.sh $appname $associativity
$tocsize $port $inputsize

Linux. To launch a KVM with a mosaic kernel:
$./run_qemu.sh -w
To launch a KVM with a vanilla kernel:
$./run_qemu.sh -wv

Verilog. The README describes how to synthesize the included
verilog files, and run a timing and resource analysis, which gener-
ates multiple reports that contain the latency and resource usage
results we presented

A.6 Evaluation and Expected Results

Gem5. The artifact includes one main script to launch a QEMU VM
and run the experiments run a workload test-scripts/prun.sh.
To reduce the execution time, the artifact feeds each memory refer-
ence to a vanilla TLB as well as Mosaic’s TLB, and the TLB miss rate
for vanilla and Mosaic are simultaneous displayed on the screen
after execution.

Further, because each data point (associativity and TOC size
combination) can take days for full system execution, the README
describes how to perform parallel execution. Further, the detailed
result files can be seen in the result folder, which uses the following
structure to save the output:
result/$app/mosaic/$associativity/$tocsize
More details can be found in the artifact’s README.

The expected output should be within 1–2% on shorter experi-
ments, and within 10% on longer-running experiments.

Linux. The artifact includes two scripts to run workloads in a
cgroup or in a Mosaic environment. Launch run-cgroup.sh or
run-mosaic.sh script according to the running kernel. After get-
ting results from both experiments, use copy_kvm_homedir.sh to
copy files from the VM to the host. Then use process.sh to gener-
ate tables in csv form.

The amount of swapping varies from run to run; on our test
systems, we saw a typical standard deviation less than 5%.

446

https://doi.org/10.5281/zenodo.7592600
https://doi.org/10.5281/zenodo.7592600
https://github.com/oscarlab/mosaic-asplos23-artifacts
https://github.com/oscarlab/mosaic-asplos23-artifacts

Mosaic Pages: Big TLB Reach with Small Pages ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Verilog. The output of the analysis should be visible as a re-
port in the verilog tools. Under "Route Design" you should find a
"Timing Summary - Route Design" file. This file will should state
the worst slack and total violation is -0.155ns. Since the design
was synthesized using a clock with a period of 2ns, this means
the minimum operational clock period of the Verilog design is
2𝑛𝑠 + .155𝑛𝑠 = 2.155𝑛𝑠 , which implies a maximum operational clock
frequency of 464 MHz. Resource utlization can be found in the
tabulationHash4_utilization_placed.rpt in reports.

We expect these results to be deterministic with respect to the
input parameters.

A.7 Experiment Customization

Gem5. Our scripts support easy customization of simulation pa-
rameters including the table of contents (ToC) size (for Mosaic
only), the associativity of the TLB, and the application to run. The
scripts can be edited to adjust application parameters, or other
architectural parameters we did not vary in the paper.

REFERENCES
[1] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh. 2015. Fast Two-Level Address

Translation for Virtualized Systems. IEEE Trans. Comput. 64, 12 (dec 2015),
3461–3474. https://doi.org/10.1109/tc.2015.2401022

[2] Chloe Alverti, Stratos Psomadakis, Vasileios Karakostas, Jayneel Gandhi, Kon-
stantinos Nikas, Georgios Goumas, and Nectarios Koziris. 2020. Enhancing
and Exploiting Contiguity for Fast Memory Virtualization. In Proceedings of the
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA
’20). IEEE, IEEE, Virtual Event, 515–528. https://doi.org/10.1109/ISCA45697.2020.
00050

[3] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation Caching: Skip,
Don’t Walk (the Page Table). In Proceedings of the 37th Annual International
Symposium on Computer Architecture (Saint-Malo, France) (ISCA ’10). ACM, New
York, NY, USA, 48–59. https://doi.org/10.1145/1815961.1815970

[4] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2011. SpecTLB: A Mechanism for
Speculative Address Translation. In Proceedings of the 38th Annual International
Symposium on Computer Architecture (San Jose, California, USA) (ISCA ’11). ACM,
New York, NY, USA, 307–318. https://doi.org/10.1145/2000064.2000101

[5] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.
Swift. 2013. Efficient Virtual Memory for Big Memory Servers. In Proceedings
of the 40th Annual International Symposium on Computer Architecture (Tel-Aviv,
Israel) (ISCA ’13). ACM, New York, NY, USA, 237–248. https://doi.org/10.1145/
2485922.2485943

[6] Arkaprava Basu, Mark D. Hill, and Michael M. Swift. 2012. Reducing Memory
Reference Energy with Opportunistic Virtual Caching. In Proceedings of the 39th
Annual International Symposium on Computer Architecture (Portland, Oregon)
(ISCA ’12). IEEE Computer Society, USA, 297–308.

[7] Michael A. Bender, Abhishek Bhattacharjee, Alex Conway, Martín Farach-Colton,
Rob Johnson, Sudarsun Kannan, William Kuszmaul, Nirjhar Mukherjee, Don
Porter, Guido Tagliavini, Janet Vorobyeva, and Evan West. 2021. Paging and
the Address-Translation Problem. In Proceedings of the 33rd ACM Symposium
on Parallelism in Algorithms and Architectures (Virtual Event, USA) (SPAA ’21).
ACM, New York, NY, USA, 105–117. https://doi.org/10.1145/3409964.3461814

[8] Michael A. Bender, Alex Conway, Martín Farach-Colton, William Kuszmaul, and
Guido Tagliavini. 2021. All-Purpose Hashing. https://doi.org/10.48550/ARXIV.
2109.04548

[9] Michael A. Bender, Alex Conway, Martín Farach-Colton, William Kuszmaul, and
Guido Tagliavini. 2023. Tiny Pointers. In Proceedings of the 2023 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA ’23). Society for Industrial and
Applied Mathematics, USA, 477–508. https://doi.org/10.1137/1.9781611977554.
ch21 arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611977554.ch21

[10] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. 2008.
Accelerating Two-Dimensional Page Walks for Virtualized Systems. In Proceed-
ings of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems (Seattle, WA, USA) (ASPLOS XIII). ACM, New
York, NY, USA, 26–35. https://doi.org/10.1145/1346281.1346286

[11] Abhishek Bhattacharjee. 2013. Large-Reach Memory Management Unit Caches.
In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microar-
chitecture (Davis, California) (MICRO-46). ACM, New York, NY, USA, 383–394.
https://doi.org/10.1145/2540708.2540741

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (aug 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[13] Yann Collet. 2016. xxHash: Extremely fast hash algorithm. https://cyan4973.
github.io/xxHash/.

[14] Intel Coorporation. 2022. Intel 64 and IA-32 architectures optimization reference
manual.

[15] Cort Dougan, Paul Mackerras, and Victor Yodaiken. 1999. Optimizing the Idle
Task and Other MMU Tricks. In Proceedings of the Third Symposium on Operating
Systems Design and Implementation (New Orleans, Louisiana, USA) (OSDI ’99).
USENIX Association, USA, 229–237. https://doi.org/10.5555/296806.296833

[16] Yu Du, Miao Zhou, Bruce R Childers, Daniel Mossé, and Rami Melhem. 2015.
Supporting Superpages in Non-Contiguous Physical Memory. In Proceedings of
the 21st International Symposium on High Performance Computer Architecture
(HPCA ’15). IEEE, USA, 223–234. https://doi.org/10.1109/hpca.2015.7056035

[17] Stephane Eranian and David Mosberger. 2000. The Linux/ia64 Project: Kernel
Design and Status Update. HP LABORATORIES TECHNICAL REPORT HPL 85
(2000).

[18] James R. Goodman. 1987. Coherency for Multiprocessor Virtual Address Caches.
In Proceedings of the Second International Conference on Architectual Support
for Programming Languages and Operating Systems (Palo Alto, California, USA)
(ASPLOS II). ACM, ew York, NY, USA, 72–81. https://doi.org/10.1145/36206.36186

[19] Mel Gorman. 2010. Linux Huge Pages. https://lwn.net/Articles/375096/.
[20] Mel Gorman. 2018. AMD Zen Architecture. https://en.wikichip.org/wiki/amd/

microarchitectures/zen.
[21] Charles Gray, Matthew Chapman, Peter Chubb, David Mosberger-Tang, and

Gernot Heiser. 2005. Itanium: A System Implementor’s Tale. In Proceedings of
the Annual Conference on USENIX Annual Technical Conference (Anaheim, CA)
(ATEC ’05). USENIX Association, USA, 264–278.

[22] Joe Heinrich et al. 1994. MIPS R4000 Microprocessor User’s Manual. MIPS Tech-
nologies, Inc.

[23] Mark D. Hill and Alan Jay Smith. 1984. Experimental Evaluation of On-Chip
Microprocessor Cache Memories. In Proceedings of the 11th Annual International
Symposium on Computer Architecture (ISCA ’84). ACM, New York, NY, USA,
158–166. https://doi.org/10.1145/800015.808178

[24] Michal Hocko and Tomas Kalibera. 2010. Reducing Performance Non-
Determinism via Cache-Aware Page Allocation Strategies. In Proceedings of the
First Joint WOSP/SIPEW International Conference on Performance Engineering (San
Jose, California, USA) (WOSP/SIPEW ’10). ACM, New York, NY, USA, 223–234.
https://doi.org/10.1145/1712605.1712640

[25] Jerry Huck and Jim Hays. 1993. Architectural Support for Translation Table
Management in Large Address Space Machines. In Proceedings of the 20th Annual
International Symposium on Computer Architecture (San Diego, California, USA)
(ISCA ’93). ACM, New York, NY, USA, 39–50. https://doi.org/10.1145/165123.
165128

[26] Bruce L. Jacob and Trevor N. Mudge. 1998. A Look at Several Memory Manage-
ment Units, TLB-Refill Mechanisms, and Page Table Organizations. In Proceedings
of the Eighth International Conference on Architectural Support for Programming
Languages and Operating Systems (San Jose, California, USA) (ASPLOS VIII). ACM,
New York, NY, USA, 295–306. https://doi.org/10.1145/291069.291065

[27] Konstantinos Kanellopoulos, Rahul Bera, Kosta Stojiljkovic, Can Firtina, Rachata
Ausavarungnirun, Nastaran Hajinazar, Jisung Park, Nandita Vijaykumar, and
Onur Mutlu. 2022. Utopia: Efficient Address Translation using Hybrid Virtual-
to-Physical Address Mapping. https://doi.org/10.48550/arXiv.2211.12205
arXiv:2211.12205

[28] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill,
Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman Ünsal.
2015. Redundant Memory Mappings for Fast Access to Large Memories. In
Proceedings of the 42nd Annual International Symposium on Computer Architecture
(Portland, Oregon) (ISCA ’15). ACM, New York, NY, USA, 66–78. https://doi.org/
10.1145/2749469.2749471

[29] Vasileios Karakostas, Jayneel Gandhi, Adrián Cristal, Mark D. Hill, Kathryn S.
McKinley, Mario Nemirovsky, Michael M. Swift, and Osman S. Unsal. 2016.
Energy-efficient address translation. In Proceedings of the 22nd International
Symposium on High Performance Computer Architecture (HPCA ’16). IEEE, USA,
631–643. https://doi.org/10.1109/HPCA.2016.7446100

[30] Stefanos Kaxiras and Alberto Ros. 2013. A New Perspective for Efficient Virtual-
Cache Coherence. In Proceedings of the 40th Annual International Symposium on
Computer Architecture (Tel-Aviv, Israel) (ISCA ’13). ACM, New York, NY, USA,
535–546. https://doi.org/10.1145/2485922.2485968

[31] Richard E Kessler and Mark D Hill. 1992. Page Placement Algorithms for Large
Real-Indexed Caches. ACM Transactions on Computer Systems 10, 4 (nov 1992),
338–359. https://doi.org/10.1145/138873.138876

[32] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett
Witchel. 2016. Coordinated and Efficient Huge Page Management with Ingens.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and

447

https://doi.org/10.1109/tc.2015.2401022
https://doi.org/10.1109/ISCA45697.2020.00050
https://doi.org/10.1109/ISCA45697.2020.00050
https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/2000064.2000101
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/3409964.3461814
https://doi.org/10.48550/ARXIV.2109.04548
https://doi.org/10.48550/ARXIV.2109.04548
https://doi.org/10.1137/1.9781611977554.ch21
https://doi.org/10.1137/1.9781611977554.ch21
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611977554.ch21
https://doi.org/10.1145/1346281.1346286
https://doi.org/10.1145/2540708.2540741
https://doi.org/10.1145/2024716.2024718
https://cyan4973.github.io/xxHash/
https://cyan4973.github.io/xxHash/
https://doi.org/10.5555/296806.296833
https://doi.org/10.1109/hpca.2015.7056035
https://doi.org/10.1145/36206.36186
https://lwn.net/Articles/375096/
https://en.wikichip.org/wiki/amd/microarchitectures/zen
https://en.wikichip.org/wiki/amd/microarchitectures/zen
https://doi.org/10.1145/800015.808178
https://doi.org/10.1145/1712605.1712640
https://doi.org/10.1145/165123.165128
https://doi.org/10.1145/165123.165128
https://doi.org/10.1145/291069.291065
https://doi.org/10.48550/arXiv.2211.12205
https://arxiv.org/abs/2211.12205
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1109/HPCA.2016.7446100
https://doi.org/10.1145/2485922.2485968
https://doi.org/10.1145/138873.138876

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Gosakan et al.

Implementation (Savannah, GA, USA) (OSDI ’16). USENIX Association, USA,
705–721. https://doi.org/10.5555/3026877.3026931

[33] John S. Liptay. 1968. Structural Aspects of the System/360 Model 85: II the Cache.
IBM Systems Journal 7, 1 (mar 1968), 15–21. https://doi.org/10.1147/sj.71.0015

[34] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot. 2019.
Prefetched Address Translation. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (Columbus, OH, USA) (MICRO-52).
ACM, New York, NY, USA, 1023–1036. https://doi.org/10.1145/3352460.3358294

[35] Chris Mellor. 2022. SK hynix announces CXL 2 memory cards and SDK.
https://blocksandfiles.com/2022/08/02/sk-hynix-announces-cxl-2-memory-
cards-and-sdk/.

[36] MongoDB 2022. "Disable Transparent Huge Pages (THP)". https://www.mongodb.
com/docs/manual/tutorial/transparent-huge-pages/.

[37] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan Cox. 2002. Practical, Trans-
parent Operating System Support for Superpages. In Proceedings of the 5th Sym-
posium on Operating Systems Design and Implementation (Boston, Massachusetts)
(OSDI ’02). USENIX Association, USA, 89–104. https://doi.org/10.5555/1060289.
1060299

[38] Prashant Pandey, Michael A. Bender, Alex Conway, Martín Farach-Colton,
William Kuszmaul, Guido Tagliavini, and Rob Johnson. 2023. IcebergHT: High
Performance PMEM Hash Tables Through Stability and Low Associativity. In
Proceedings of the 2023 International Conference on Management of Data, to be
published (Seattle, WA, USA) (SIGMOD ’23). ACM, New York, NY, USA.

[39] Ashish Panwar, Sorav Bansal, and K. Gopinath. 2019. HawkEye: Efficient Fine-
Grained OS Support for Huge Pages. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY, USA,
347–360. https://doi.org/10.1145/3297858.3304064

[40] Chang Hyun Park, Sanghoon Cha, Bokyeong Kim, Youngjin Kwon, David Black-
Schaffer, and Jaehyuk Huh. 2020. Perforated Page: Supporting Fragmented
Memory Allocation for Large Pages. In Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture (Virtual Event) (ISCA ’20). IEEE
Press, Virtual Event, 913–925. https://doi.org/10.1109/ISCA45697.2020.00079

[41] Chang Hyun Park, Taekyung Heo, and Jaehyuk Huh. 2016. Efficient Synonym
Filtering and Scalable Delayed Translation for Hybrid Virtual Caching. In Pro-
ceedings of the 43rd International Symposium on Computer Architecture (ISCA ’16).
IEEE, Seoul, Republic of Korea, 217–229. https://doi.org/10.1109/ISCA.2016.28

[42] Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaehyuk Huh. 2017. Hybrid
TLB Coalescing: Improving TLB Translation Coverage under Diverse Fragmented
Memory Allocations. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). ACM, New York, NY,
USA, 444–456. https://doi.org/10.1145/3079856.3080217

[43] Mihai Patrascu and Mikkel Thorup. 2011. The Power of Simple Tabulation
Hashing. In Proceedings of the Forty-Third Annual ACM Symposium on Theory
of Computing (San Jose, California, USA) (STOC ’11). ACM, New York, NY, USA,
1–10. https://doi.org/10.1145/1993636.1993638

[44] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H. Loh. 2014.
Increasing TLB reach by exploiting clustering in page translations. In Proceedings
of the 20th International Symposium on High Performance Computer Architecture
(HPCA ’14). IEEE, Los Alamitos, CA, USA, 558–567. https://doi.org/10.1109/
HPCA.2014.6835964

[45] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattachar-
jee. 2012. CoLT: Coalesced Large-Reach TLBs. In Proceedings of the 45th In-
ternational Symposium on Microarchitecture (MICRO-45). IEEE, USA, 258–269.
https://doi.org/10.1109/MICRO.2012.32

[46] Binh Pham, Ján Veselý, Gabriel H. Loh, and Abhishek Bhattacharjee. 2015. Large
Pages and Lightweight Memory Management in Virtualized Environments: Can
You Have It Both Ways?. In Proceedings of the 48th International Symposium on
Microarchitecture (Waikiki, Hawaii) (MICRO-48). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/2830772.2830773

[47] Javier Picorel, Djordje Jevdjic, and Babak Falsafi. 2017. Near-Memory Address
Translation. In Proceedings of the 26th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT ’17). IEEE Computer Society, Los
Alamitos, CA, USA, 303–317. https://doi.org/10.1109/PACT.2017.56

[48] Redis 2022. Redis Administration. https://redis.io/docs/manual/admin/.
[49] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas. 2020.

Elastic Cuckoo Page Tables: Rethinking Virtual Memory Translation for Paral-
lelism. In Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Lausanne,
Switzerland) (ASPLOS ’20). ACM, New York, NY, USA, 1093–1108. https:

//doi.org/10.1145/3373376.3378493
[50] Alan Jay Smith. 1978. A Comparative Study of Set Associative Memory Mapping

Algorithms and Their Use for Cache and Main Memory. IEEE Transactions on
Software Engineering SE-4, 2 (mar 1978), 121–130. https://doi.org/10.1109/TSE.
1978.231482

[51] Splunk 2021. Transparent huge memory pages and Splunk performance. https:
//docs.splunk.com/Documentation/Splunk/7.3.1/ReleaseNotes/SplunkandTHP.

[52] Jovan Stojkovic, Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep
Torrellas. 2022. Parallel Virtualized Memory Translation with Nested Elastic
Cuckoo Page Tables. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’22). ACM, New York, NY, USA, 84–97. https:
//doi.org/10.1145/3503222.3507720

[53] Mark Swanson, Leigh Stoller, and John Carter. 1998. Increasing TLB Reach
Using Superpages Backed by Shadow Memory. In Proceedings of the 25th Annual
International Symposium on Computer Architecture (Barcelona, Spain) (ISCA ’98).
IEEE Computer Society, USA, 204–213. https://doi.org/10.1145/279361.279388

[54] Michael M. Swift. 2017. Towards 𝑂 (1) Memory. In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems (Whistler, BC, Canada) (HotOS ’17).
ACM, New York, NY, USA, 7–11. https://doi.org/10.1145/3102980.3102982

[55] Madhusudhan Talluri and Mark D. Hill. 1994. Surpassing the TLB Performance
of Superpages with Less Operating System Support. In Proceedings of the Sixth
International Conference on Architectural Support for Programming Languages and
Operating Systems (San Jose, California, USA) (ASPLOS VI). ACM, New York, NY,
USA, 171–182. https://doi.org/10.1145/195473.195531

[56] M. Talluri, M. D. Hill, and Y. A. Khalidi. 1995. A New Page Table for 64-Bit
Address Spaces. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles (Copper Mountain, Colorado, USA) (SOSP ’95). ACM, New
York, NY, USA, 184–200. https://doi.org/10.1145/224056.224071

[57] Xulong Tang, Ziyu Zhang, Weizheng Xu, Mahmut Taylan Kandemir, Rami Mel-
hem, and Jun Yang. 2020. Enhancing Address Translations in Throughput Pro-
cessors via Compression. In Proceedings of the ACM International Conference on
Parallel Architectures and Compilation Techniques (PACT ’20). ACM, New York,
NY, USA, 191–204. https://doi.org/10.1145/3410463.3414633

[58] George Taylor, Peter Davies, and Michael Farmwald. 1990. The TLB Slice—a
Low-Cost High-Speed Address Translation Mechanism. In Proceedings of the 17th
Annual International Symposium on Computer Architecture (Seattle, Washington,
USA) (ISCA ’90). ACM, New York, NY, USA, 355–363. https://doi.org/10.1145/
325164.325161

[59] Berthold Vöcking. 2003. How Asymmetry Helps Load Balancing. Journal of the
ACM 50, 4 (jul 2003), 568–589. https://doi.org/10.1145/792538.792546

[60] VoltDB 2022. VoltDB Administrator’s Guide, S2.3 - Configure Memory Manage-
ment. https://docs.voltdb.com/AdminGuide/adminmemmgt.php.

[61] W. H. Wang, J.-L. Baer, and H. M. Levy. 1989. Organization and Performance
of a Two-Level Virtual-Real Cache Hierarchy. In Proceedings of the 16th Annual
International Symposium on Computer Architecture (Jerusalem, Israel) (ISCA ’89).
ACM, New York, NY, USA, 140–148. https://doi.org/10.1145/74925.74942

[62] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Trans-
lation Ranger: Operating System Support for Contiguity-Aware TLBs. In Pro-
ceedings of the 46th International Symposium on Computer Architecture (Phoenix,
Arizona) (ISCA ’19). ACM, New York, NY, USA, 698–710. https://doi.org/10.1145/
3307650.3322223

[63] Idan Yaniv and Dan Tsafrir. 2016. Hash, Don’t Cache (the Page Table). In Proceed-
ings of the 2016 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Science (Antibes Juan-les-Pins, France) (SIGMETRICS ’16).
ACM, New York, NY, USA, 337–350. https://doi.org/10.1145/2896377.2901456

[64] Hongil Yoon and Gurindar S. Sohi. 2016. Revisiting virtual L1 caches: A practical
design using dynamic synonym remapping. In Proceedings of the 22nd Interna-
tional Symposium on High Performance Computer Architecture (HPCA ’16). IEEE,
USA, 212–224. https://doi.org/10.1109/HPCA.2016.7446066

[65] Lixin Zhang, Evan Speight, Ram Rajamony, and Jiang Lin. 2010. Enigma: Ar-
chitectural and Operating System Support for Reducing the Impact of Address
Translation. In Proceedings of the 24th ACM International Conference on Supercom-
puting (Tsukuba, Ibaraki, Japan) (ICS ’10). ACM, New York, NY, USA, 159–168.
https://doi.org/10.1145/1810085.1810109

[66] Weixi Zhu, Alan L. Cox, and Scott Rixner. 2020. A Comprehensive Analysis
of Superpage Management Mechanisms and Policies. In Proceedings of the 2020
USENIX Conference on Usenix Annual Technical Conference (ATC ’20). USENIX
Association, USA, Article 57, 14 pages. https://doi.org/10.5555/3489146.3489203

[67] Sudarsun Kannan and Jaehyun Han. 2023. oscarlab/mosaic-asplos23-artifacts:
Mosaic ASPLOS’23 Artifacts. https://doi.org/10.5281/zenodo.7709303

448

https://doi.org/10.5555/3026877.3026931
https://doi.org/10.1147/sj.71.0015
https://doi.org/10.1145/3352460.3358294
https://blocksandfiles.com/2022/08/02/sk-hynix-announces-cxl-2-memory-cards-and-sdk/
https://blocksandfiles.com/2022/08/02/sk-hynix-announces-cxl-2-memory-cards-and-sdk/
https://www.mongodb.com/docs/manual/tutorial/transparent-huge-pages/
https://www.mongodb.com/docs/manual/tutorial/transparent-huge-pages/
https://doi.org/10.5555/1060289.1060299
https://doi.org/10.5555/1060289.1060299
https://doi.org/10.1145/3297858.3304064
https://doi.org/10.1109/ISCA45697.2020.00079
https://doi.org/10.1109/ISCA.2016.28
https://doi.org/10.1145/3079856.3080217
https://doi.org/10.1145/1993636.1993638
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/MICRO.2012.32
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1109/PACT.2017.56
https://redis.io/docs/manual/admin/
https://doi.org/10.1145/3373376.3378493
https://doi.org/10.1145/3373376.3378493
https://doi.org/10.1109/TSE.1978.231482
https://doi.org/10.1109/TSE.1978.231482
https://docs.splunk.com/Documentation/Splunk/7.3.1/ReleaseNotes/SplunkandTHP
https://docs.splunk.com/Documentation/Splunk/7.3.1/ReleaseNotes/SplunkandTHP
https://doi.org/10.1145/3503222.3507720
https://doi.org/10.1145/3503222.3507720
https://doi.org/10.1145/279361.279388
https://doi.org/10.1145/3102980.3102982
https://doi.org/10.1145/195473.195531
https://doi.org/10.1145/224056.224071
https://doi.org/10.1145/3410463.3414633
https://doi.org/10.1145/325164.325161
https://doi.org/10.1145/325164.325161
https://doi.org/10.1145/792538.792546
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
https://doi.org/10.1145/74925.74942
https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1145/2896377.2901456
https://doi.org/10.1109/HPCA.2016.7446066
https://doi.org/10.1145/1810085.1810109
https://doi.org/10.5555/3489146.3489203
https://doi.org/10.5281/zenodo.7709303

	Abstract
	1 Introduction
	2 Mosaic Pages
	2.1 Overview of Mosaic Pages
	2.2 Compressed Physical Frame Numbers
	2.3 Low-Associativity Page Allocation with Hashing
	2.4 Mosaic Swapping
	2.5 Limitations and Extensions

	3 Implementation of Mosaic Pages
	3.1 Gem5 Full-System Simulation
	3.2 Mosaic Page Management in Linux

	4 Evaluation
	4.1 Does Mosaic Reduce TLB Misses?
	4.2 Does Mosaic Reduce Memory Utilization?
	4.3 Does Mosaic Increase Swapping?
	4.4 Hardware Evaluation

	5 Related Work
	5.1 Huge Pages and Defragmentation
	5.2 Redesigning TLB Layout
	5.3 Limited Associativity VM
	5.4 MMU Caching
	5.5 Hashed Page Tables

	6 Conclusions
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization

	References

