
1

ecoTLB: Eventually Consistent TLBs

STEFFEN MAASS
∗
, Georgia Institute of Technology

MOHAN KUMAR KUMAR
∗
, Georgia Institute of Technology

TAESOO KIM, Georgia Institute of Technology
TUSHAR KRISHNA, Georgia Institute of Technology
ABHISHEK BHATTACHARJEE, Yale University

We propose ecoTLB—software-based eventual translation lookaside buffer (TLB) coherence—that eliminates
the overhead of the synchronous TLB shootdown mechanism in operating systems that use address space
identifiers (ASIDs). With an eventual TLB coherence, ecoTLB improves the performance of free and page swap
operations, by removing the inter-processor interrupt (IPI) overheads incurred to invalidate TLB entries. We
show that the TLB shootdown has implications for page swapping in particular in emerging, disaggregated
data centers and demonstrate that ecoTLB can improve both the performance and the specific swapping policy
decisions using ecoTLB’s asynchronous mechanism. We demonstrate that ecoTLB improves the performance
of real-world applications, such as Memcached and Make, that perform page swapping using Infiniswap, a
solution for next generation data centers that use disaggregated memory, by up to 17.2%. Moreover, ecoTLB
improves the 99th percentile tail latency of Memcached by up to 70.8% due to its asynchronous scheme and
improved policy decisions. Furthermore, we show that recent features to improve security in the linux kernel,
like kernel page table isolation (KPTI), can result in significant performance overheads on architectures
without support for specific instructions to clear single entries in tagged TLBs, falling back to full TLB flushes.
In this scenario, ecoTLB is able to recover the performance lost for supporting KPTI due to its asynchronous
shootdown scheme and its support for tagged TLBs. Finally, we demonstrate that ecoTLB improves the
performance of free operations by up to 59.1% on a 120-core machine and improves the performance of Apache
on a 16-core machine by up to 13.7% compared to baseline Linux, and by up to 48.2% compared to ABIS, a
recent state-of-the-art research prototype that reduces the number of IPIs.

CCS Concepts: • Software and its engineering → Operating systems; Memory management; Virtual
memory.

Additional Key Words and Phrases: TLB; Translation Coherence; Asynchrony.

Extension of Conference Paper: “LATR: Lazy Translation Coherence”[31] was published in ASPLOS 2018. ecoTLB provides an
asynchronous TLB shootdown mechanism for page swap operations in next-generation data centers that use disaggregated
memory. In addition, ecoTLB supports asynchronous TLB shootdown mechanism in operating systems that use address
space identifiers (ASIDs).
∗Both authors contributed equally to this research.

Authors’ addresses: Steffen Maass Georgia Institute of Technology, steffen.maass@gatech.edu; Mohan Kumar Kumar
Georgia Institute of Technology, mohankumar@gatech.edu; Taesoo Kim Georgia Institute of Technology, taesoo@gatech.
edu; Tushar Krishna Georgia Institute of Technology, tushar@ece.gatech.edu; Abhishek Bhattacharjee Yale University,
abhishek.bhattacharjee@yale.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1544-3566/2020/7-ART1
https://doi.org/10.1145/3409454

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.

https://doi.org/10.1145/3409454


1:2 Steffen Maass, Mohan Kumar Kumar, Taesoo Kim, Tushar Krishna, and Abhishek Bhattacharjee

ACM Reference Format:

Steffen Maass, Mohan Kumar Kumar, Taesoo Kim, Tushar Krishna, and Abhishek Bhattacharjee. 2020. ecoTLB:
Eventually Consistent TLBs. ACM Trans. Arch. Code Optim. 1, 1, Article 1 (July 2020), 24 pages. https://doi.org/
10.1145/3409454

1 INTRODUCTION

Memory-intensive applications, such as web servers, key value stores, and graph analytics engines,
are widely used today for low-latency services in data centers. Such memory-intensive applications
are built on existing architectures in current data centers, and research systems propose novel
designs for applications, such as Infiniswap [28], in next-generation data centers using disaggre-
gated memory [23, 28, 30]. For memory-intensive applications, in both existing and next-generation
systems, maintaining translation lookaside buffer (TLB) coherence is critical in terms of operational
correctness and performance, which needs to be performed by an operating systems (OS).

Existing OSs’ TLB design can be classified into two categories: one that does not use application
space identifiers (ASIDs), and another that uses ASIDs. With a design that does not use ASIDs (e.g.,
versions before 4.14 in Linux), TLB entries are not tagged with process identifiers which require
a TLB flush1 during every context switch. The design that uses ASIDs (FreeBSD and versions
after 4.14 in Linux) tags TLB entries by using process identifiers that eliminate the need for a
TLB flush and preserves TLB entries across context switches, thereby improving TLB hit rates.
In particular, using ASIDs, called process context identifiers (PCID) in the x86 architecture, is a
performance-critical optimization for the Linux kernel that enables Kernel Page Table Isolation
(KPTI) [18], which attempts to mitigate the Meltdown [35] security vulnerability.

Even with a design using ASIDs, an OS maintains the hardware TLB coherence by performing
a TLB shootdown, the process of invalidating specific, stale TLB entries on remote cores, using
a synchronous inter-processor interrupt (IPI) mechanism, which is very expensive in modern
architectures (e.g., an IPI takes up to 6.6 𝜇s for 120 cores with 8 sockets [31]). With a synchronous
IPI, the core initiating a TLB shootdown first sends IPIs to all remote cores and then waits for their
acknowledgments while the corresponding IPI handlers on the remote cores complete the local
invalidation of a TLB entry. For example, with Linux 4.14 that uses the PCID support available in
the x86 architecture, a TLB shootdown takes around 108 𝜇s for 120 cores with eight sockets and
2.5 𝜇s for 16 cores with two sockets.
Such an expensive TLB shootdown in turn affects the performance of applications that trigger

frequent memory management operations, such as munmap() and page swapping, that need to
change their page table entries [1, 60]. For example, we observe that an Apache web server suffers
from high TLB shootdown overheads while serving static files, which requires frequent munmap()
operations (e.g., around 80K per second). Worse yet, the commonly enabled kernel page-table
isolation (KPTI) feature increases the shootdown overhead by 8.4% on various x86 architectures,
such as Ivy Bridge and below, that is provided by popular cloud providers [25].

In addition to existing architectures, TLB shootdown overhead plays an important role in next-
generation disaggregated data centers. For example, we observe that Memcached, a key value store
that can trigger page swap operations using Infiniswap [28], suffers from an increase of up to 2×
in tail latency due to shootdown overheads. The above observations show that applications and
features, developed on current and next-generation architectures, sometimes ignore the interactions
of these innovations with existing system abstractions.

To address the synchronous TLB shootdown overhead, hardware-based approaches [7, 42, 48, 49,
51, 60, 62] strive to provide TLB coherence in an efficient manner. Nevertheless, such hardware

1The process of invalidating all TLB entries using one IPI per remote core.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.

https://doi.org/10.1145/3409454
https://doi.org/10.1145/3409454


ecoTLB: Eventually Consistent TLBs 1:3

Operations

DiDi Oskin et al. ARM TLBI UNITD HATRIC ABIS Linux Latr

ecoTLB[60] [42] [4, 5, 47] [51] [62] [1] [58] [31]

Non-IPI-based approach ✓ × ✓ ✓ ✓ × × ✓ ✓
Software-based approach × × × × × ✓ ✓ ✓ ✓
Lazy TLB shootdown with PCIDs × × × × × × × × ✓
Disaggregated memory (Infiniswap) × × × × × × × × ✓

Table 1. Comparison between ecoTLB and other approaches to TLB shootdowns. ecoTLB provides a lazy

shootdown mechanism leveraging PCIDs, which is not available in Latr. Importantly, ecoTLB provides a lazy

shootdown mechanism for swapping pages to disaggregated memory using RDMA.

mechanisms need expensive hardware modification and are not available as part of the existing x86
architecture. Most existing software approaches [1, 8, 11, 15, 17, 44, 54, 55, 57] to synchronous TLB
shootdowns strive to reduce the number of necessary IPIs to be sent, either by batching TLB shoot-
downs, or by using alternative mechanisms instead of IPIs (e.g., message passing [11]). However, the
above hardware- and software-based approaches continue to use a synchronous TLB shootdown
mechanism, and do not eradicate its overhead. Latr [31], a software-based mechanism, proposes
an orthogonal, asynchronous lazy TLB shootdown mechanism that eliminates the shootdown
overhead only for free and AutoNUMA page migration operations. However, Latr does not address
the TLB shootdown overhead with next-generation architectures, both for addressing the emerging
usage of PCIDs as well as the impact of swapping in disaggregated datacenter environments. In
addition, none of the above research work bring out the intrinsic interplay between process-context
identifiers (PCIDs) and the TLB shootdown on various x86 architectures. Table 1 compares ecoTLB
to existing research approaches.

ecoTLB provides an asynchronous TLB shootdown mechanism for page swap operations in next-
generation data centers that use disaggregated memory, and shows the impact of the asynchronous
mechanism for free operations using PCIDs with security features such as KPTI on various x86
architectures. For free operations, ecoTLB stores the versions needed by a PCID design, and lazily
updates these versions during a context switch. In addition, ecoTLB provides a lazy page swap
mechanism that addresses the TLB shootdown overhead in next-generation data centers. For
free and page swap operations, ecoTLB removes the performance overheads associated with a
synchronous TLB shootdown.

We developed ecoTLB as a proof-of-concept in Linux, comparing it with stock Linux and ABIS,
a recent approach to reduce the IPI overheads. ecoTLB makes the following contributions:

• ecoTLB provides an eventual TLB coherence mechanism for free operations that use PCIDs,
and shows the benefits of ecoTLB on various x86 architectures.

• ecoTLB provides a lazy mechanism for page swapping with Infiniswap, a solution for next-
generation data centers that use disaggregated memory.

• We show the benefits of ecoTLB with real-world applications, such as Memcached, Make,
and Mosaic, running with Infiniswap. In addition, ecoTLB improves the performance of
free operations by 59.1% on a 120-core machine and improves the performance of Apache by
up to 13.7% compared to baseline Linux, and by up to 48.2% compared to ABIS on a 16-core
machine.

2 BACKGROUND ANDMOTIVATION

We first provide a primer on a current OS’ munmap() (using PCIDs) and page swapping design. We
then provide the needed background on Latr, which provides the components needed by ecoTLB.
The explanation about Linux is based on version 4.14, unless specified.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



1:4 Steffen Maass, Mohan Kumar Kumar, Taesoo Kim, Tushar Krishna, and Abhishek Bhattacharjee

2.1 Existing OS Design using PCIDs

Most architectures, including x86, do not support TLB coherence. In x86, the PCIDE bit in the CR4
register enables the PCID feature. When PCIDs are enabled, x86 supports two operations on TLBs:
invalidating a TLB entry based on a PCID using the INVPCID (only on supported architectures) or
INVLPG instruction and flushing all local TLB entries associated with the current PCID by writing
to the CR3 register with the 63rd bit set to zero. INVPCID, which invalidates TLB entries of a given
PCID, is not supported by all architectures that support PCIDs (e.g., Intel Ivy bridge and before). In
such architectures, in addition to flushing the entire TLB, INVLPG can be used to invalidate TLB
entries associated with the current PCID. Even with PCIDs, the x86 mechanisms provide control
only over the local, per-core TLB. Operating systems that use PCIDs, such as Linux and FreeBSD,
use IPIs to invalidate entries in remote TLBs, a process known as TLB shootdown. IPIs are delivered
via the Advanced Programmable Interrupt Controller (APIC) [26] that limits flexible multicast
delivery which induces software overheads [42].
Free operations with PCIDs. Since PCIDs are limited in number (e.g., 4096 in x86 architectures),
Linux uses a small pool of PCIDs per core (e.g., six PCIDs per core) instead of assigning a unique
PCID per process, thereby allowing multiple running processes on a given CPU to take advantage of
the PCID mechanism. In addition, the kernel maintains two TLB versions: a per-process version that
tracks the page table modifications and a per-CPU-PCID version that tracks the TLB state. These
versions track the deviation of the per-core TLB state from the per-process TLB state, which is used
to perform a shootdown or a flush during a free operation. We analyze the existing handling of a
free operation (munmap() in Linux), which uses the PCID and version mechanism on a system with
three cores (as shown in Figure 1a). The OS receives an munmap() system call from the application
to remove a set of virtual addresses on core 2 with the current process running on all existing cores
(1, 2, and 5). The munmap() handler removes the page table mappings for the set of virtual addresses,
and frees the virtual addresses and its associated physical pages. In addition, the munmap() handler
increments the per-process version by one. Core 2 performs a local TLB invalidation for the set of
virtual addresses, if the per-process version is greater (newer) than the per-CPU-PCID version by
one, before initiating an IPI (to cores 1 and 5) to perform the TLB shootdown. The TLB is flushed
if the per-process version is greater (newer) than the per-CPU-PCID version by more than one,
which is used by idle cores that deviate from the per-process version to flush their TLB entries.
On receipt of the interrupt, cores 1 and 5 perform a local TLB invalidation or flush, depending on
the per-process and per-core-PCID version, in their IPI handlers and send an ACK to core 2 by the
means of cache coherence. After the TLB shootdown, each core sets the per-core-PCID version
to the per-process version. After receiving both ACKs from cores 1 and 5, the munmap() handler on
core 2 finishes processing the munmap() system call and returns control back to the application.
The same TLB shootdown mechanism is used for all virtual address operations, though the page
table changes are different. The TLB shootdown mechanism outlined above shows three overheads:
Sending IPIs to remote cores, which has an increased overhead on large NUMA machines; handling
interrupts on remote cores, which might be delayed due to temporarily disabled interrupts; and the
wait time for ACKs on the initiating core.

Though the above overheads are addressed by Latr using a lazy TLB shootdown mechanism,
ecoTLB addresses two challenges in a lazy mechanism that uses PCIDs: one challenge is handling
the version update, and another challenge is to provide a generalized lazy mechanism for x86
architectures that do not support INVPCID.
Kernel page table isolation. KPTI is a feature available in the Linux kernel to mitigate the
Meltdown [35] security vulnerability, which splits the page tables into kernel and user-space page
tables. With this patch, any kernel to user-space transition, and vice versa, results in a context switch

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



ecoTLB: Eventually Consistent TLBs 1:5

IPI ACK

Time

ACKIPI

PA Clear PTE TLB inv Send IPI Wait for ACKs UnmapCore 2

3µs

Process A (PA) Process ACore 1 TLB invVersion check

Process ACore 5

PA

TLB invVersion check PA

(a) Page munmap() design in Linux.

Core 2 PA Clear PTE TLB inv Save state

Process A (PA)

Process A TLB inv

TLB inv

Process A

Process A

Process ACore 1

Core 5

Context Switch

30ms

Background task

Lazy reclaim

150ns 250ns

: ECOTLB operations

ECOTLB epoch

(b) Page munmap() design in ecoTLB.

Fig. 1. An overview of the operations involved in unmapping a page in both Linux and ecoTLB. ecoTLB

removes the instantaneous TLB shootdown from the critical path by executing it asynchronously.

that updates the CR3 register. The PCID feature in the Linux kernel avoids the expensive TLB flush
needed during a CR3 register update. However, an munmap() system call results in an expensive
TLB flush with x86 architectures that do not support INVPCID, as a targeted TLB shootdown is not
possible with the PCIDs for the kernel and user space being different. ecoTLB’s approach optimizes
the PCID mechanisms needed to support KPTI with various x86 architectures.

2.2 Page swapping

Page swapping is a feature in commodity OSes, such as Linux and FreeBSD, to swap least recently-
used (LRU) pages to disk during high memory pressure. In Linux, a kernel background task (kswapd)
maintains an active and inactive list of pages. To begin with, the kernel adds the allocated pages
to the inactive list. By tracking the page table entry (PTE) access bits, kswapd takes an informed
decision to move pages from the inactive to the active list, and vice versa. During high memory
pressure, pages are swapped out to disk from the inactive list, which triggers a synchronous TLB
flush as shown in Figure 2a.
With the advent of disaggregated data centers, the paradigm for page swapping shifts from

disks to remote memory using fast network interconnects. Instead of swapping pages to disk,
recent research systems, such as Infiniswap [28], advocate for the usage of remote memory using
Infiniband RDMA, which reduces the tail latency of page swapping by up to 61×. Due to the reduced
remote paging latency, the TLB shootdowns needed for swapping become an important contributor
to the cost of page swapping (contributing up to 18% for a Memcached workload using Infiniswap).
ecoTLB changes the swap mechanism to swap pages after its lazy TLB shootdown, eliminating
expensive IPIs and interrupt handlers. Importantly and due to its lazy technique, ecoTLB operates
on the pages that are being swapped out in the background (e.g., via a swapping daemon) rather
than directly in the critical path when running into memory pressure during allocation of new
memory.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



1:6 Steffen Maass, Mohan Kumar Kumar, Taesoo Kim, Tushar Krishna, and Abhishek Bhattacharjee

PA TLB flush Send IPI

Process A (PA)

IPI ACK

Wait for ACKs Process A

TLB flush

Swap out pages

Time

Core 2

Core 1 Process A

(a) Page swapping in Linux.

Swap out pagesTLB flushCore 2 kswapd: Save state

Process A TLB flushCore 1

Scheduler tick

1ms: ECOTLB operations

PA

Process A

PA

ECOTLB epoch

(b) Page swapping in ecoTLB.

Fig. 2. Page swapping in Linux and ecoTLB. ecoTLB removes the need for an immediate TLB flush after

pages are swapped out.

...S2 S64

ECOTLB States CPU1

Cache Coherency

CPU1 CPU2

TLB TLB

ECOTLB
States States

❶
ECOTLB

❷

S1: start; end; mm; flags; CPU list; active; PCID; version

QPI

CPU3 CPU4

TLB TLB

States States
ECOTLB ECOTLB

Fig. 3. Overview of ecoTLB, its interaction with the system, and the ecoTLB states ( 1 ). The states are shared
with cores on other sockets via the cache coherency ( 2 ) protocol. ecoTLB extends the Latr states and adds a

versioning record in accordance with the PCID versioning approach (as shown in dark gray).

2.3 Lazy TLB shootdown

Latr [31] proposes an asynchronous approach to eliminate the remote TLB shootdown overhead
when using IPIs. During a free operation, it saves the TLB shootdown information in Latr states
without issuing a synchronous TLB shootdown. During the next scheduler tick, all cores invalidate
their TLB entries lazily using the Latr states. Latr frees the virtual and physical address only after
this lazy TLB flush, which retrains the correctness for the lazy approach.
However, Latr was built and evaluated on Linux 4.10, without support for PCIDs and did not

address the issue of emerging, disaggregated data centers. ecoTLB addresses these shortcomings
by extending Latr to an Infiniswap-enabled environment and uses PCIDs to support the latest
changes of the Linux kernel including the KPTI feature. ecoTLB extends Latr’s states, by including
the PCID and a version, as shown in Figure 3.

2.4 Challenges

An asynchronous approach to TLB shootdowns introduces various challenges, in the form of corner
cases, for the correctness of the virtual-memory operations. With an asynchronous approach, the
operation that triggers a TLB shootdown returns immediately, and the cores perform a lazy TLB

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



ecoTLB: Eventually Consistent TLBs 1:7

SD: TLB Shootdown

: Phase 1

SDCore 3 Process A Process A

Core 2 Process A Process ASD

first S

last SD

Save States Process A SDCore 1 Process A

first SD

: Phase 2 : Phase 3

t0 t1 t2 t3

ECOTLB epoch

1ms

Fig. 4. An overview of exemplary cases that an eventual approach to TLB coherence has to cover for correctness.

We identify cases 1 through 3 which are covered in ecoTLB’s design to ensure correctness.

shootdown, which introduces different phases of TLB coherence. We define the different phases, as
shown in Figure 4, of the lazy TLB shootdown below:

• Phase 1 ranges from initiating a TLB shootdown to the time a remote core performs a TLB
shootdown, which is specific to each core. For example, on core 2, this phase ranges from 𝑡0
to 𝑡2.

• Phase 2 ranges from the current core’s TLB shootdown to the time of the last core’s shootdown,
which is specific to each core. For example, on core 2 this phase ranges from 𝑡2 to 𝑡3. The last
core performing the TLB shootdown (e.g., core 3) does not enter this phase. The cores that
did not cache the TLB entries will be in this phase up to 𝑡3.

• Phase 3 is any time after 𝑡3. In this phase, all TLB entries are coherent with the corresponding
page table entries.

During an ecoTLB epoch, each core in the system will either be in phase one or phase two.
The TLBs become eventually consistent at the end of phase two after all cores performed their
TLB shootdown. ecoTLB should provide correctness in all the three phases for the supported
virtual-memory operations.

3 OVERVIEW

ecoTLB proposes an eventual TLB shootdown approach, that uses PCIDs, for virtual memory
operations such as free (munmap() and madvise()) and page swapping that uses Infiniswap.
ecoTLB epoch. ecoTLB defines TLB shootdown epochs, an interval in which the TLB shootdowns
to the remote cores are recorded in ecoTLB states. These epochs serve as a batching interval, in
which remote shootdowns are not performed synchronously, but are only recorded to ecoTLB
states. During this interval, the TLB entries are inconsistent. At the end of an epoch, each core inval-
idates the particular TLB entries from its recorded ecoTLB state which makes the TLB eventually
consistent.
Support for free operations with PCID. The key idea for free operations with ecoTLB is the
batched per-core version update which enables the delayed reuse of virtual and physical pages
and a lazy TLB shootdown. For free operations, a context switch is used as an epoch interval (e.g.,
up to 30ms). During every context switch, the states saved during the free operations are used to
perform the lazy TLB shootdown.
Support for page swapping operations. The key idea for page swapping with ecoTLB is the
delayed swap out operation of inactive pages, after an ecoTLB epoch. The current epoch interval
used for page swapping is the scheduler tick (e.g., 1ms). During an epoch, the TLB entries of
inactive pages are invalidated on all cores. Read or write accesses to inactive pages, during an

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



1:8 Steffen Maass, Mohan Kumar Kumar, Taesoo Kim, Tushar Krishna, and Abhishek Bhattacharjee

start end
0x01 0x0F

mm CPU list active
0x1234 0001 0001 True

❸

❶

0001 0000❷
0000 0000 False

CPU2, State1:

CPU5 CPU6 CPU7 CPU8

Proc 1
Idle Idle Idle

CPU1 CPU2 CPU3 CPU4

Proc 1
Idle Idle

Proc 1

❸❷ ❶

flags
0x1

PCID
123

version
5

⑤④ ⑤ ③ ⑤

Fig. 5. Executing a TLB shootdown using the ecoTLB states, 4 indicates a local TLB version of 4. Core 2

unmaps a page and sets up the ecoTLB state ( 1 ) to allow cores 1 ( 2 ) and 5 to clear/flush their local TLBs.

Core 5 is the last core and resets the active state ( 3 ). Cores 2 and 5 transition their local TLB version to 5 .

ecoTLB epoch, are tracked using the PTEs’ access bits, allowing ecoTLB to prevent swapping out
pages accessed during an epoch.

4 DESIGN

We describe the design of ecoTLB for x86-based Linux 4.14. We first introduce the additional fields
needed in ecoTLB states, and explain their usage to maintain the PCID version. We further explain
ecoTLB’s design for free and page swap operation.

4.1 Handling Free Operations with PCIDs

ecoTLB states. To maintain the per-process and per-core-PCID version, ecoTLB extends the
Latr states to store the per-process version corresponding to each TLB shootdown. The core
initiating the TLB shootdown adds a state entry that contains the per-process version. During the
ecoTLB state sweep, the version available in the state is used to update the per-core-PCID version.
Figure 3 shows ecoTLB’s extension to Latr states.
State sweep after an epoch. ecoTLB performs the state sweep only during the context switch,
instead of performing a state sweep during both context switch and scheduler ticks in Latr. If the
TLBs are lazily invalidated during a scheduler tick, the INVPCID instruction does not point to the
correct PCID. Though this can be solved by adding the PCID to ecoTLB states, invalidating the
TLB entries using the appropriate PCID, some x86 architectures (e.g., Ivy bridge) do not support
INVPCID. By performing the state sweep only during the context switch, ecoTLB invalidates the
TLB entries pertaining to a PCID before switching to another PCID.

The advantage of performing the state sweep during a context switch is two-fold: one is avoid-
ing the full TLB flushes on architectures that do not support INVPCID which potentially causes
more TLB misses; another is the applicability of this approach to tickless kernels (e.g., using
CONFIG_NO_HZ_FULL option in Linux) which do not have scheduler ticks.
Handling munmap() with PCIDs. For munmap() operations, ecoTLB performs lazy memory recla-

mation that frees the virtual and physical pages only at the end of phase 2. Lazy memory reclamation
ensures that the virtual and physical pages are not reused until the TLB entries are eventually
consistent. Using the lazy memory reclamation and the ecoTLB states, ecoTLB removes the syn-
chronous shootdown from the critical path of free operations that use PCIDs. Instead, on execution

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



ecoTLB: Eventually Consistent TLBs 1:9

❸

❶ ❷

User

Kernel

ProcessA

munmap()

Set Flush Bit

TLB
Shootdown

Return to
Userspace

Full TLB Flush
if Flush Bit set:

❹ ❺

User

Kernel

ProcessA

munmap()

TLB
Shootdown

Return to
Userspace

Linux ECOTLB

Add ECOTLB
state

PCIDK

PCIDA

PCIDK

PCIDA

❻ECOTLB state
Shootdown using

Fig. 6. The process of completing an munmap() call with KPTI enabled on a systemwithout support for INVPCID.

Linux can only handle this situation using a full TLB flush while ecoTLB can use its states to facilitate a

targeted shootdown (changes to Linux in gray).

of these operations, ecoTLB clears the PTEs, and simply saves the states, including the per-process
version, without sending an IPI immediately.

A detailed example of ecoTLB handling an munmap() operation is shown in Figure 1b and Figure 5.
Core 2 executes the munmap() system call resulting in a TLB invalidation on core 2, followed by
saving the ecoTLB state which includes the cores 1 and 5 in the CPU bitmask, the PCID, and the
per-process version. The saved per-process version is one greater than the per-CPU-PCID version
stored in each core. In addition, core 2 adds the virtual and physical pages to a lazy list, without
freeing them immediately. Due to the CPU bitmask, core 1 and 5 invalidate their local TLB entry
at the end of an epoch, during a context switch, and reset their respective CPU bitmask in the
ecoTLB state. However, if any of the core’s per-CPU-PCID versions deviate from the version in the
state entry by more than one, then the respective core flushes the TLB instead of performing a TLB
shootdown (e.g., core 5 has to increment from version core 3 to core 5). This mechanism, similar
to stock Linux, takes care of cores that deviate from the per-process version. In addition, core 1
and 5 update their respective per-CPU-PCID version with the per-process version stored in the
corresponding state entry.
Kernel page table isolation. With a separate address space between the kernel and the user
space in KPTI, ecoTLB provides a general solution that supports architectures that do not support
INVPCID (such as Ivy bridge). During an munmap() operation with KPTI, since the kernel is running
in a different address space, the kernel needs to use the INVPCID instruction to invalidate the user
space TLB entry. If the architecture does not support INVPCID the user space TLB entries are flushed
after a context switch to user space (by updating the CR3 register). With ecoTLB, even without
the INVPCID instruction, the full flushes can be avoided by using ecoTLB states. With ecoTLB,
the kernel only records ecoTLB states, and uses them to perform TLB shootdowns using INVLPG
during a context switch to user space. Since the TLB shootdown is performed after a context switch,
INVPCID is not mandatory for PCID support. We give an example of ecoTLB handling this situation
in Figure 6: Linux, due to missing INVPCID support, has to set up a bit to indicate flushing of the
TLB ( 1 ) which on return to user space ( 2 ) is executed for the user’s PCID𝐴 ( 3 ). ecoTLB avoids
the full TLB flush by setting up an ecoTLB state ( 4 ) instead of the Flush bit. While returning to
user space ( 5 ), ecoTLB uses the state to accomplish a targeted shootdown using INVLPG ( 6 ).

To perform TLB shootdowns after updating the CR3 register, ecoTLB currently maps the ecoTLB
states to both the kernel and user address space. With this design, the ecoTLB states expose a
range of virtual addresses that need to be flushed to the user space process. However, this can be

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



1:10 Steffen Maass, Mohan Kumar Kumar, Taesoo Kim, Tushar Krishna, and Abhishek Bhattacharjee

CPU5 CPU6 CPU7 CPU8

Proc 1 Idle Idle Idle

❸

CPU1 CPU2 CPU3 CPU4

Proc 1 Idle IdleProc 1

A B C P Q

RAM
Infinband

RAM

❶

❶Set access bit

Inactive Active

Epoch I

C AB P Q

Inactive Active

Swap pages 'B' & 'C'

❷Activate page 'A'

Access page 'A'

Epoch II

Fig. 7. Infiniswap with support for lazy swapping with ecoTLB. Access bits are used to move pages on access

( 1 ) to the active list ( 2 ). After the ecoTLB epoch is finished and all TLB invalidations have taken place, the

pages are swapped out to remote memory ( 3 ).

avoided by having a specific user space address that represents ecoTLB states, and copying the
process specific entries into these user ecoTLB states.
Correctness for free operations. We show the correctness of ecoTLB free operations during the
three phases ( described in §2.4). Accesses to unmapped memory on cores in phase one continue to
proceed using the TLB entry available in their cores. As the pages are not freed yet, which ensures
that the virtual address and physical page are not reused, reads and writes are allowed to proceed.
Accesses to unmapped memory on cores in phase two and three results in a page fault leading
to, e.g., a segmentation error, depending on the OS implementation. During phase three, before
freeing the pages, file backed dirty pages are written back, which accommodates the writes during
phase one.

4.2 Handling Page Swapping with Infiniswap

In addition to supporting free operations with PCIDs, ecoTLB’s design provides a lazy mechanism
for page swap operations. We discuss the ecoTLB mechanism for page swapping in this section.
The current page swap design in Linux includes a remote TLB shootdown (see Figure 2a), which
accounts for up to 18% of the overall time in the case of a page swap using Infiniswap. ecoTLB’s
mechanism for page swapping provides a lazy TLB shootdown approach, eliminating the expensive
TLB shootdown operation.
Lazy page swapping. The key part of ecoTLB’s design for background page swapping (e.g.,
kswapd in Linux), is to swap pages lazily after ecoTLB’s epoch of 1ms, after the inactive pages’
TLB entries are invalidated. ecoTLB maintains an invariant that the pages are swapped out, after
an ecoTLB epoch, only if their TLB entries are not present in any of the TLBs. The pages accessed
during the epoch, whose TLB entries are present in any of the TLBs, are not swapped out and
added to the active list.

ecoTLB extends Latr’s states to record the TLB shootdown states needed by a page swap. The
page swap background task instead of swapping out inactive pages immediately, adds the state to
the ecoTLB states. Due to the large inactive list, the added state indicates a full TLB flush on all

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



ecoTLB: Eventually Consistent TLBs 1:11

CPU cores, similar to the existing page swap mechanism (handled using IPIs). After an ecoTLB
epoch, when all cores have fully flushed their TLBs, the inactive pages are swapped out to remote
memory.

To swap out pages to remote memory after an epoch, ecoTLB has to ensure that the TLB entries
of inactive pages are not present in any cores. However, some cores could access the page in phase
two, which would set up the TLB entry again. ecoTLB tracks such inactive page accesses using the
access bit in the PTE. For tracking accesses to inactive pages, the background task, in addition to
adding the states, resets the access bit in the PTE for all the pages in the inactive list. The current
active page detection mechanism in Linux is best effort, which does not trigger a TLB shootdown
when resetting an access bit. After an ecoTLB epoch inactive pages that have their access bit set,
indicating that those pages were accessed during phase 2, are moved to the active list while other
pages are (potentially) swapped out. After a page is swapped with ecoTLB mechanism, none of the
TLBs contain an entry for the swapped page eliminating the need for a TLB shootdown.
Page swap policy change. ecoTLB’s lazy mechanism delays page swapping by an ecoTLB
epoch, providing an additional epoch to track page accesses. By tracking accesses during an epoch,
ecoTLB changes the existing page swapping policy by not swapping out pages accessed during an
ecoTLB epoch. Using its lazy swapping policy, ecoTLB improves, in addition to removing the TLB
shootdown overhead, the temporal locality of pages accessed during an epoch by not swapping
them out.
Correctness for page swapping. We show the correctness of ecoTLB’s page swapping operation
during the three phases. Page accesses for inactive pages during phase one and two proceed as
before, with the hardware setting the access bit when needed. In phase two, any page access to
an inactive page sets the access bit, as the TLB is flushed and the access bit is reset when setting
up the ecoTLB state. Correctness for page swapping is thus maintained by not swapping out any
pages with the access bit set, maintaining the invariant.

One potential race condition is in phase three: when pages are being swapped out, the access bit
could be set in parallel with the page being accessed, e.g., one core is performing swapping while
another core accesses the page resulting in the access bit set. ecoTLB avoids this race condition by
checking the access bit immediately after resetting the present flag in the PTE. If the access bit is
set, the page is moved back to the active list and is not swapped out.

5 IMPLEMENTATION

We implemented the ecoTLB prototype in about 1K lines of code by extending Linux 4.14 for
PCIDs and Linux 4.10 for page swapping. We used Linux 4.10 for page swapping as Infiniswap
was supported on Linux 4.10.
Free operation. The context_switch function is modified to perform the state sweep after the
user space context switch is performed. For KPTI, the function __native_flush_tlb_single is
modified to not update the flag user_pcid_flush_mask that indicates to flush the TLB during a
context switch.
Page Swapping. The function shrink_list is modified to not immediately trigger shrink_-
active_list. Instead, a new handler that adds an entry to the ecoTLB state for each inactive page
is invoked, while shrink_active_list is invoked later using the background thread. The new
handler, in addition to adding entries to the ecoTLB states, resets the access bit in the PTE for all
the pages in the inactive list. The logic to move a page from the inactive to the active list based on
the access bit is part of shrink_active_list.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



1:12 Steffen Maass, Mohan Kumar Kumar, Taesoo Kim, Tushar Krishna, and Abhishek Bhattacharjee

Machine Type Commodity data center [41] No INVPCID RDMA Large NUMA

Model E5-2630 v3 E5-2620 v2 E5-2658 v3 E7-8870 v2
Frequency 2.40GHz 2.10GHz 2.20GHz 2.30GHz
# Cores 16 12 12 120
Cores × Sockets 8 × 2 6 × 2 6 × 2 15 × 8
RAM 128GB 64GB 128GB 768GB
LLC 20MB× 2 15MB× 2 30MB× 2 30MB× 8
L1 D-TLB entries 64 64 64 64
L2 TLB entries 1024 512 1024 512
RDMA × × ✓ ×
INVPCID ✓ × ✓ ×

Table 2. The four machine configurations used to evaluate ecoTLB. We run ecoTLB on a commidity data

center machine, a previous-generation commodity data center machine without support for the INVPCID

instruction, an RDMA-enabled machine for supporting a setting of disaggregated memory, and a large,

120-core NUMA machine.

6 EVALUATION

We implement our proof-of-concept prototype of ecoTLB on top of Linux 4.14 for the free operations
and Linux 4.10 for the page swapping with Infiniswap. We use the respective versions of Linux as
the baseline for our evaluation and include ABIS [1] for a subset of experiments. ABIS is a recent
research prototype, based on Linux 4.5, which uses PCIDs and access bits to track the sharing of
pages between cores to avoid potentially unnecessary IPIs.

We evaluate ecoTLB, using the mentioned setup, to answer the following questions:
• What is the benefit of ecoTLB for microbenchmarks on a small and a large NUMA machine?
• What is ecoTLB’s impact on a real-world application, Apache, which generates a large
number of TLB shootdowns?

• What is ecoTLB’s benefit when running in an Infiniswap-enabled environment when swap-
ping pages via RDMA?

• What is the overhead of ecoTLB in terms of memory utilization and for applications with a
low number of TLB shootdowns?

6.1 Experiment Setup

We evaluate ecoTLB on four different machine setups, as shown in Table 2. The primary evaluation
target is the 2-socket, 16-core machine, a commodity data center configuration [41], while we also
show the impact of ecoTLB on a large NUMA machine with 8 sockets and 120 cores. Furthermore,
we show the effects of swapping with Infiniswap in an RDMA-enabled setup with a 2-socket,

12-core machine. Each benchmark is run five times and we report the average results.
The machines are configured without support for transparent huge pages, as this mechanism is

known to increase overheads and introduces additional variance to the benchmark results [33].
Furthermore, to reduce variance in the results, we run the benchmarks on the physical cores
only. We furthermore deactivate Linux’s automatic balancing of memory pages between NUMA
nodes, AutoNUMA, as it might introduces TLB shootdowns during the migration of a page [31].
We evaluate ecoTLB with PCID support using Linux 4.14, the first Linux version to add support
for PCIDs. Unless otherwise noted, we disable the new KPTI feature (see §2.1). For the case of
Infiniswap, we evaluate ecoTLB using Linux 4.10 due to Infiniswap’s build requirements. For
Infiniswap, we set up two machines with Infiniband (using the ConnectX3 adapter [39]), both
machines have 12 physical cores on two sockets. The main machine, hosting the applications, runs

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



ecoTLB: Eventually Consistent TLBs 1:13

ecoTLB while the remote machine, hosting the in-memory swapping device, runs an unmodified
Linux 4.10 kernel. We compare ecoTLB to Latr in Table 3 for a simple microbenchmark and note
that Latr is not included for other evaluations as it supports neither PCIDs nor swapping with
Infiniswap.
Machine types and linux kernel version.

The commodity data center machine type is used with Linux kernel version 4.14 for all experi-
ments that evaluate ecoTLB’s PCID approach. The Linux kernel version 4.14 is used for the PCID
experiments as PCIDs are supported in the Linux kernel only in the 4.14 version. The no INVPCID
machine type is used to demonstrate the impact on previous-generation commodity data center
machines which support PCIDs but not the newer INVPCID instruction, rendering context switches
more expensive. The Linux kernel version 4.14 is used with this machine type. The RDMA machine
type is used with Linux kernel version 4.10 for all experiments with Infiniswap. Infiniswap’s
kernel patch is ported to Linux kernel 4.10 to keep the kernel version consistent for all the ex-
periments, excluding the PCID experiments. The Large NUMA machine type is used with Linux
kernel version 4.10 for the memory unmap() experiments. This machine type is used to show the
scalability bottleneck of a synchronous TLB shootdown mechanism in current machines with an
increased number of sockets. The Commodity data center machine type is used with Linux kernel
version 4.10 for all experiments unless explicitly stated. The commodity data center machine type
is used to show the impact of a synchronous TLB shootdown mechanism in machines that are
widely deployed in existing data centers. As detailed above, excluding the experiments that evaluate
ecoTLB’s PCID approach, all other evaluations are done using the Linux kernel version 4.10.
Benchmarks. We evaluate ecoTLB on a set of microbenchmarks, as well as full-application
benchmarks. For evaluating the improvements realized with ecoTLBwhen using PCIDs, we use the
Apache web-serving benchmark to show the impact of frequent TLB shootdowns on end-to-end
throughput. We furthermore evaluate ecoTLB with Infiniswap using three applications to show
the impact of TLB shootdowns during swapping: We choose Memcached, a key-value store to
demonstrate the impact on tail-latency, Make as an example of a throughput-oriented application,
and Mosaic, a graph-processing engine, as an example of in-memory computing with low locality
and high throughput demands.

6.2 Microbenchmarks

We first evaluate ecoTLB’s impact on Linux with PCIDs using the commodity data center and
the large NUMA machine types. We devise a microbenchmark that simply mmaps a page, shares it
with the specified number of cores and subsequently munmaps the page again, resulting in a TLB
shootdown per munmap(). We run this microbenchmark on both the 2-socket, 16-core machine (the
commodity data center machine type) and the 8-socket, 120-core machine (the large NUMAmachine
type) and show the impact of the synchronous TLB shootdown with the PCID-based Linux design.
Small NUMA machine. For the case of the 2-socket, 16-core machine, the results are shown
in Figure 8 and demonstrate improvements for ecoTLB in the cost of an munmap() call by up to
49.6%. Furthermore, we show the cost of only the TLB shootdown to increase to more than 2 𝜇s
per munmap() call with 16 cores (for a proportion of 48.0%), while ecoTLB’s mechanism of saving
the states consistently takes less than 500 ns. In addition, Figure 8 shows the improvements of
ecoTLB over Latr for munmap() and TLB shootdown. We also compare these results to Latr and
its baseline, Linux 4.10, in Table 3 for the case of the 2-socket, 16-core machine and the 16-core data
point. These results show that ecoTLB performs slightly better compared to Latr (by 6.9%), while
Linux 4.14 (with its PCID-based design) outperforms Linux 4.10 by 37.7%. Both ecoTLB and Linux
4.14 profit from various optimizations in the path of the munmap() call between the two versions

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



1:14 Steffen Maass, Mohan Kumar Kumar, Taesoo Kim, Tushar Krishna, and Abhishek Bhattacharjee

0
1
2
3
4
5
6
7
8
9

2 4 6 8 10 12 14 16

Cost of munmap

2 4 6 8 10 12 14 16
0
1
2
3
4
5
6
7
8
9

Cost of TLB shootdown

La
te
nc
y
(𝜇
s)

Cores

Linux 4.14
ecoTLB

Linux 4.10
Latr

La
te
nc
y
(𝜇
s)

Cores

Fig. 8. The cost of an munmap() call for a single page with 1 to 16 cores in our microbenchmark, using the

commodity data center machine type. TLB shootdowns account for up to 48.0% of the total time and ecoTLB

is able to improve munmap() by up to 49.6%.

System munmap() Cost Cost of TLB Shootdown

Linux 4.10 8.12 𝜇s 5.81 𝜇s
Latr 2.74 𝜇s 0.43 𝜇s

Linux 4.14 5.06 𝜇s 2.43 𝜇s
ecoTLB 2.55 𝜇s 0.37 𝜇s

Table 3. Comparison of our microbenchmark at 16 cores for Linux 4.10, Latr, Linux 4.14, and ecoTLB with the

commodity data center machine type. Linux 4.14 improves its cost of munmap() and the TLB shootdown as a

result of improved idle-core tracking and a faster shootdown routine while ecoTLB still retains its advantage

over Linux 4.14.

while Linux 4.14 also improves the cost of a single TLB shootdown drastically by 58.2%. This is
attributed to both a shorter function that needs to be executed on the remote cores via the IPI
mechanism as well as a much improved tracking and handling of idle cores and their specific TLB
characteristics. With this, Linux 4.14 is able to remove more CPUs from the set of CPUs that need
to be involved in a single TLB shootdown, thus cutting the cost of the whole shootdown procedure.
In spite of these optimizations in Linux 4.14, the TLB shootdown still attributes to 48.3% of the
munmap() cost. We conclude that ecoTLB improves the munmap() cost by 49.6% compared to Linux
4.14 by removing the need for a synchronous TLB shootdown.
Large NUMAmachine. We also run this microbenchmark on our 8-socket, 120-core machine and
show the results in Figure 9. On this machine, ecoTLB shows a significant benefit of up to 59.1% (i.e.,
more than 88 𝜇s) per invocation of munmap(). For the lower 20 cores, ecoTLB shows a similar or at
times slightly slower behavior as Linux, however ecoTLB outperforms Linux consistently starting
at about 30 cores. We note that the PCID-based mechanism of Linux 4.14 does not scale to 120 cores
as the overhead of IPI operations as well as global atomic operations when accessing the global
version number for Linux result in a scalability bottleneck from about 30 cores. Eventually, the TLB
shootdown, using IPIs, inside the munmap() call takes up to 69.2% of the overall time of munmap().
ecoTLB on the other hand shows an initial increase in the cost of munmap() due to increased cost in
the cache coherency protocol but levels off at around 50 cores once the most-remote socket (which
is 2 hops away from the local socket) has been reached.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



ecoTLB: Eventually Consistent TLBs 1:15

0
20
40
60
80
100
120
140
160
180

20 40 60 80 100 120

Cost of munmap

20 40 60 80 100 120
0
20
40
60
80
100
120
140
160
180Cost of TLB Shootdown

La
te
nc
y
(𝜇
s)

Cores

Linux 4.14
ecoTLB

La
te
nc
y
(𝜇
s)

Cores

Fig. 9. The cost of munmap() for a single page when running on the large NUMA machine type (8 sockets, 120

cores) with Linux and ecoTLB. For Linux, the TLB shootdown accounts for up to 69.2% of the total time while

ecoTLB improves the cost of munmap() by up to 59.1%.

0k
10k
20k
30k
40k
50k
60k
70k
80k
90k

2 4 6 8 10 12

Apache Performance

Re
qu

es
ts
pe
rs

ec
on

d

Cores

Linux
ecoTLB

ABIS
Latr

Fig. 10. The requests per second when running Apache on the commodity data center machine type (2 sockets,

16 cores) with Linux, ABIS, Latr, and ecoTLB. ecoTLB outperforms Latr by up to 8.7% and Linux by 13.7%.

In addition, ecoTLB performs up to 48.2% better compared to ABIS, which is suffering from overhead to track

sharing of the pages.

6.3 Apache

We evaluate ecoTLB by running Apache, a web server, serving static webpages using the commodity

data center machine type. We compare the requests per second of Apache with Linux 4.14, ABIS [1],
Latr [31], and ecoTLB on the 2-socket, 16-core machine.2 We use the Wrk [24] HTTP request
generator, using four threads with 200 connections each for 30 seconds, to send requests to Apache,
which hosts a static 10 KB webpage. Apache and Wrk are run on the same machine to avoid the
network from becoming the bottleneck. We ensure that Wrk and Apache are each running on a
distinct set of cores, leaving up to 12 cores to Apache. We configure Apache without logging and
use the (default) mpm_event module to process incoming requests. This module spawns a small
number of processes which in turn spawn another set of threads (e.g., 30 threads) per process to
handle the incoming requests. In the process of handling a request, Apache mmaps the requested,
static file to process and sends a response before calling munmap to clear the mapping. This behavior
of frequent mapping and unmapping of a few pages across generates a large number of remote
TLB shootdowns due to the (potential) sharing of the mapped pages between multiple cores.

2Note that the machine configuration between this experiment and the one found in the Latr paper [31] differs

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



1:16 Steffen Maass, Mohan Kumar Kumar, Taesoo Kim, Tushar Krishna, and Abhishek Bhattacharjee

0

50

100

150

200

250

300

4 8 12

Tail Latency

90th

Number of Cores
4 8 12

95th

4 8 12

99th

4 8 12
0
20
40
60
80
100
120
140
160
180

Throughput
Ta

il
La
te
nc
y
(𝜇
s)

Linux
ecoTLB

Th
ro
ug

hp
ut

(M
B/
s)

Fig. 11. The impact of swapping using Infiniswap with Linux and ecoTLB for Memcached in terms of both

latency and throughput for a varying number of cores using the RDMA machine type. ecoTLB improves the

99th percentile tail latency by up to 70.8% and the throughput by up to 13.5% by reducing the impact of

synchronous TLB shootdowns.

The results of the Apache benchmark are shown in Figure 10, highlighting the improvements
possible with ecoTLB. When running on all 16 cores (12 cores for Apache and 4 for Wrk), ecoTLB
shows a 13.7% improvement over the baseline Linux 4.14 PCID-based design. Overall, compared
to Linux, ecoTLB consistently outperforms Linux by up to 15%. This is attributed to ecoTLB’s
efficient handling of TLB shootdowns compared to Linux and its synchronous, PCID-based design.
Compared to ABIS, ecoTLB performs up to 48.2% better (on 12 cores) while temporarily showing a
small overhead of up to 12.1%, as ABIS reduces the number of shootdowns needed as part of its
design. However, we show that, with higher core count, ABIS’s overhead to keep track of page
sharing using access bits becomes a scalability bottleneck. In addition, compared to Latr, ecoTLB
improves the performance of Apache by up to 8.7%.

6.4 Page Swapping

We evaluate ecoTLB’s benefits with page swapping using Infiniswap [28] that uses remote memory
as the swap device, using the RDMA machine type with 2 sockets and 12 cores. We constrain the
applications inside an lxc container and set the soft-memory limit of the container to about half of
the applications working set to induce swapping via kswapd. Overall, the TLB shootdown accounts
for up to 20% of the swapping time with Infiniswap when running Memcached with 5M keys
using a recently published workload (ETC) by Facebook [6]. This workload shows around 100,000
TLB shootdowns per second from background swapping, as the kernel has to ensure that dirty
pages are unmapped and not being written to on all cores before swapping them out.
Memcached. We use the mutilate tool [34] to send requests to Memcached [40], constraining
Memcached and mutilate to separate NUMA nodes to minimize interference effects. We show the
results with a differing number of cores when running Memcached with Infiniswap, on Linux
and ecoTLB, for both tail latency and throughput in Figure 11. We show the tail latency for the
90th, 95th and 99th percentile, using 4, 8, and 12 cores. ecoTLB shows benefits for all of these
percentiles, with a larger benefit being visible for higher percentiles (up to a reduction of 14.8%,
47.2%, and 70.8% for the 90th, 95th, and 99th percentile, respectively). ecoTLB helps in reducing
the tail latency for in-memory caches, which is a critical goal to many data-center applications [9].
ecoTLB also shows a larger benefit when Memcached is run on less cores (e.g., on four cores) as
Memcached doesn’t scale well when increasing the number of cores [52], thus allowing for more

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



ecoTLB: Eventually Consistent TLBs 1:17

0

5

10

15

20

25

30

35

12 24

Mosaic

12 24
0

50

100

150

200
Make

Co
m
pl
et
io
n
tim

e
(s
)

-17.2%

-9.5%

Co
m
pl
et
io
n
tim

e
(s
)

Linux
ecoTLB

-17.1%

-9.4%

Fig. 12. The impact of swapping using Infiniswap with Linux and ecoTLB forMosaic and Make using the

RDMA machine type. ecoTLB is able to improve the applications’ completion time by up to 17.2% as a result

of the lazy swapping approach.

idle CPUs when using more cores which in turn results in a lower tail latency. ecoTLB is also able
to improve the throughput of Memcached by up to 13.5% and 9.8% on average.

ecoTLB’s deferred TLB shootdown algorithm allows pages to move from the inactive list to the
active list (with the help of the active bits in the page table entry) during the epoch before the
TLB shootdown is completed on all cores (e.g., 1ms). For example, this swap policy change allows
ecoTLB to move around 180 pages per second from the inactive to the active list when running
Memcached on 12 cores, thus saving the overhead of having to swap out a page that actually would
have been used soon after and would need to be swapped in again.
Make and Mosaic. We demonstrate ecoTLB’s benefits when swapping with Infiniswap with
two more applications, building a Linux kernel with Make and running a graph processing engine
with Mosaic, focusing on the application’s completion time. In more detail, Make compiles the
Linux 4.10 kernel on a specified number of cores in a massively parallel fashion, loading the
source files into memory in the process. On the other hand, Mosaic [38] is a graph processing
engine, running in an in-memory mode, executing the pagerank algorithm algorithm on the twitter
graph [32]. Mosaic initially loads the graph into memory before executing 10 iterations of the
pagerank algorithm. We report the overall time taken for all 10 iterations.
For both applications, we run two configuration for both Linux and ecoTLB, using 12 and 24

cores. The results are given in Figure 12 and show that ecoTLB achieves a speedup of up to 17.2%
for Make and 17.1% forMosaic. ecoTLB shows a smaller benefit (of 9.5% and 9.4%, respectively)
for the 24 core configuration as the system has to use all physical and virtual cores for that
configuration which results in only marginal speedup, thereby reducing the impact of ecoTLB’s
improved handling of swapping via Infiniswap.

6.5 KPTI

We demonstrate the overhead imposed by the recent page table isolation (KPTI) mechanisms,
introduced as a mitigation against the meltdown [35] attack, for both ecoTLB and Linux when
running Apache. We run this benchmark on an Intel Sandy Bridge machine with 12 cores on 2
sockets which supports PCIDs but not the newer INVPCID instruction, using the no INVPCIDmachine
type with Linux kernel 4.14. This results in a complete TLB flush on any free operation, as the
kernel now operates using a different PCID as the application. Thus, clearing a single entry from
the application’s PCID space is not possible with the only fallback mechanism being a complete
flush of the applications’ PCID space.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



1:18 Steffen Maass, Mohan Kumar Kumar, Taesoo Kim, Tushar Krishna, and Abhishek Bhattacharjee

30k

35k

40k

45k

50k

55k

60k

65k

w
/K

PT
I

w
/o

KP
TI

Throughput

w
/K

PT
I

w
/o

KP
TI

0.0%

0.5%

1.0%

1.5%

2.0%
TLB Misses

Re
qu

es
ts
pe
rs

ec
on

d

Linux
ecoTLB

+5.8%
+7.0%

TL
B
M
is
se
s

-7.7%

-21.4%

Fig. 13. The overhead imposed on both Linux and ecoTLB by enabling KPTI using the no INVPCID machine

type (with support for PCIDs but without support for INVPCID) when running on all available cores. Even with

KPTI enabled, ecoTLB still outperforms Linux without KPTI enabled by 3.5%, highlighting ecoTLB’s ability to

reclaim some of the performance lost with KPTI enabled in scenarios with a large number of free operations.

We show the results of this experiment in Figure 13 which demonstrate that the KPTI mechanism
has a 4.5% overhead when running with KPTI enabled. ecoTLB also incurs an overhead of 4.2%when
running with KPTI enabled due to the additional overheads from KPTI like cache and TLB pollution
due to replicated page table hierarchies. However, ecoTLB is still able to improve the overall
performance of Apache, compared to Linux without the KPTI mechanism, by 3.5%, demonstrating
ecoTLB’s real-world benefits with the new KPTI mechanism. ecoTLB accomplishes this by using
its states to invalidate TLB entries during a context switch, after switching back to the application’s
PCID but before returning control back to the application. The benefits for ecoTLB with KPTI are
due to two reasons: First, ecoTLB removes the overhead of sending IPIs and second, ecoTLB avoids
flushing the complete TLB for the application’s PCID. The benefits of the second reason are also
seen when comparing the rate of TLB misses: ecoTLB is able to improve the rate of TLB misses
by 7.7% when KPTI is enabled and 21.4% when KPTI is disabled. The larger improvement for the
case of KPTI being disabled is attributed to the reduced cache and TLB pollution of the baseline
design without a separate kernel address space. Finally, with this experiments, we acknowledge
that ecoTLB improves the performance of KPTI, and does not completely solve the problem.

6.6 Overheads of ecoTLB

We evaluate the overhead of ecoTLB in terms of memory utilization and ecoTLB’s impact on
applications with few TLB shootdowns, using the commodity data center machine type.
Memory utilization. We perform a worst-case analysis in terms of memory utilization of
ecoTLB’s lazy memory reclamation based on the microbenchmarks presented. For one ecoTLB
epoch (e.g., the default time slice on 16 cores of Linux’s completely fair schedulers, CFS, is 30ms),
ecoTLB shows an overhead of up to 630MB of physical and virtual pages (for the case of 16 cores
and 512 pages per munmap() call). If fewer cores and pages are being used, the overheads ranges from
60MB (for 2 cores sharing a single page) to 45MB (for 16 cores sharing a single page). Using more
pages, the memory overhead stays bounded by 630MB, as the overhead of page table modifications
and related operations then dominate the cost of the TLB shootdown. Considering the large virtual
address space (248 bytes, with newer processors and 5-level page tables even 257 bytes [27]) and the
amount of RAM (64GB and more) available in current servers, the memory overhead is not high
(smaller than 0.97%) and is released back within a short interval (at most 30ms).

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



ecoTLB: Eventually Consistent TLBs 1:19

0.97

0.98

0.99

1.00

1.01

1.02

bl
ac
ks
ch
ol
es

bo
dy

tr
ac
k

ca
nn

ea
l

flu
id
an
im

at
e

ra
yt
ra
ce

st
re
am

cl
us
te
r 0

5

10

15

20

25

30
O
ve
rh
ea
d

TL
B
Sh

oo
td
ow

ns
pe
rs

ec
on

dNormalized application runtime
Shootdowns per second

Fig. 14. The overhead of running ecoTLB is less than 1%, using the commodity data center machine type

with 16 cores with a subset of PARSEC applications that show low number of TLB shootdowns due to added

operations during a context switch.

Application overhead. We show the overhead for ecoTLB on a subset of PARSEC applications
that perform very few TLB shootdowns in Figure 14. ecoTLB shows overheads of less than 1% as a
result of a larger number of context switches and thus a larger number of potential ecoTLB state
sweeps. However, ecoTLB also improves the performance of a subset of these applications as a
result of optimizing background system activity and allowing applications to benefit from faster
unmapping and freeing of memory.

7 DISCUSSION AND LIMITATIONS

ecoTLB supported operations. For free operations, such as munmap() and madvise()3, lazy
memory reclamation enables an eventual TLB shootdown. Similarly, an eventual TLB shootdown
is applicable to migration operations, such as page swapping using Infiniswap, where page table
entries can be unmapped lazily, enabling the eventual TLB shootdown. However, ecoTLB’s lazy
approach is not applicable to operations such as permission changes, ownership changes, and remap
(mremap()), where page table changes should be synchronously applied to the entire system. ecoTLB
supports common operations, such as free and page swap, and improves real-world applications
such as Apache, Memcached, and Make.
Free operation semantics. ecoTLB changes the semantics of free operations (munmap() and
madvise()) by not freeing the physical pages immediately. This changed behavior impacts applica-
tions that unmap a page to force a page fault (e.g., to detect use-after-frees). Nevertheless, these
semantics are mainly used for debugging purposes [21]. To allow such applications to function
correctly, ecoTLB could be selectively enabled by including a new flag in the API of free operations
(e.g., munmap()) for existing OSes.
Huge page support. ecoTLB currently does not support transparent huge pages (THPs). However,
ecoTLB’s states could be extended with an additional flag to support an eventual TLB shootdown
for THPs as well. In addition, Infiniswap already supports THPs as page swapping splits huge
pages into 4 KB pages, thus, as a result, ecoTLB supports swapping THPs as well.

8 RELATEDWORK

Hardware-based TLB shootdown. There have been a number of approaches to handle the
problem of TLB cache coherence at the hardware layer [7, 10, 12, 42, 43, 48, 49, 51, 60, 62]. Several

3for the case of MADV_DONTNEED and MADV_FREE.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



1:20 Steffen Maass, Mohan Kumar Kumar, Taesoo Kim, Tushar Krishna, and Abhishek Bhattacharjee

of these hardware-based approaches attempt to squeeze performance using non-traditional TLB
designs, such as multi-level TLB hierarchies. The alternate hardware designs may be possible
using multi-level TLB hierarchies, similar to the data caches, where it may be beneficial to back
latency-critical higher level L1/L2 TLBs with slower but considerably larger in-DRAM TLBs.

Hardware-based research approaches provide cache coherence to the TLB. UNITD [51], a scalable
hardware-based TLB coherence protocol, uses a bit on each TLB entry to store sharing information,
thereby eliminating the use of IPIs. However, UNITD still resorts to broadcasts for invalidating
shared mappings. Furthermore, UNITD adds a costly content-addressable memory (CAM) to each
TLB to perform reverse address translations when checking whether a page translation is present
in a specific TLB, thereby greatly increasing the TLB’s power consumption. HATRIC [62] is a
hardware mechanism similar to UNITD and piggybacks translation coherence information using
the existing cache coherence protocols.
DiDi [60] employs a shared second-level TLB directory to track which core caches which PTE.

This allows efficient TLB shootdowns, while DiDi also includes a dedicated per-core mechanism that
provides support for invalidating TLB entries on remote cores without interrupting the instruction
stream they execute, thereby eliminating costly IPIs. Similarly, other approaches provide microcode
optimizations to handle IPIs without remote core interventions [42]. Though these approaches
remove interrupts on remote cores, the wait time on the core initiating the TLB shootdown is not
removed. Finally, these approaches require intrusive changes to the micro-architecture, which adds
additional verification cost to ensure correctness.

Hardware-based approaches, however, are being adopted slowly by hardware vendors, likely due
to increased verification cost as well as the potential bugs they introduce in TLB cache coherence [3,
19, 22, 37, 50, 53, 59].
Software approaches. Similarly, there are a number of approaches in the operating system [1, 8,
11, 15, 17, 44, 54, 55, 57, 63] to optimize TLB shootdowns. Barrelfish [11], a research multi-kernel
OS, uses message passing instead of IPIs to shoot down remote TLB entries. Thus, it eliminates
the interrupt handling on remote cores. However, it still has to wait for the ACK from all remote
cores participating in the shootdown. We note that Barrelfish thereby still takes a synchronous
approach for TLB shootdowns. ABIS [1], a recent state-of-the-art research prototype based on
Linux, uses page table access bits to reduce the number of IPIs sent to remote cores by tracking
the set of CPUs sharing a page, which can be complementary to Latr. However, the operations
in ABIS to track page sharing introduce additional overheads. In addition, research approaches
propose further optimizations for the synchronous TLB shootdown mechanism in Linux kernel [2].
However, none of them eliminate the synchronous TLB shootdown overhead. The Corey OS [16]
avoids TLB shootdowns of private PTEs by requiring the user applications to explicitly define
shared and private pages. Finally, Latr [31] proposes a lazy mechanism to eliminate the overheads
due to a synchronous TLB shootdown. However, Latr’s design is not easily applicable to the
current setting of tagged TLBs with PCIDs. ecoTLB bridges this shortcoming while also providing
a solution for the emerging setting of next-generation data centers with swapping in disaggregated
memory using RDMA.
Other TLB-related optimizations. SLL TLBs introduced a shared last-level TLB [14, 36], and
showed the benefits of using such a TLB. However, their design still relies on IPI-based coherency
transactions which is an expensive operation (§2). In addition, research approaches showed that
TLB misses are predictable and that inter-core TLB cooperation and prefetching mechanisms can
be applied to improve TLB performance [46, 56, 61]. However, this implies that a TLB shootdown
must also invalidate mappings in the TLB prefetch buffers which incurs additional overhead to the

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.



ecoTLB: Eventually Consistent TLBs 1:21

expensive TLB shootdown operation. In addition, other approaches are aimed at mainly improving
TLB misses which is orthogonal to the TLB shootdown problem [13, 20, 29, 45].

9 CONCLUSION

We present ecoTLB, a software-based eventual TLB coherence scheme for improving the perfor-
mance of emerging, disaggregated data centers while being readily implementable in modern
OSes that use ASIDs, for free operations. We demonstrate that ecoTLB’s eventual TLB coherence
scheme plays an important role in emerging, disaggregated data centers: ecoTLB demonstrates the
overhead of the existing TLB coherence scheme with fast I/O devices using RDMA, and provides
an eventual coherence scheme for page swapping which can play a critical role in next-generation
data centers that use disaggregated memory. Additionally, ecoTLB’s TLB coherence scheme plays
a significant role to improve the performance of security features, such as kernel page table iso-
lation, in the Linux kernel. Finally, we show that ecoTLB reduces the cost of munmap() by up to
59.1% on multi-socket machines while improving the throughput and 99th percentile tail latency
of Memcached with Infiniswap by up to 13.5% and 70.8%, respectively, when they are run in a
prototype for future, disaggregated data centers.

10 ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful feedback. This research was supported, in part,
by the NSF awards 1253700, 1916817, 1337147, CNS-1749711, and ETRI IITP/KEIT[2014-3-00035].

REFERENCES

[1] N. Amit. Optimizing the TLB Shootdown Algorithm with Page Access Tracking. In Proceedings of the 2017 USENIX

Annual Technical Conference (ATC), pages 27–39, Santa Clara, CA, July 2017.
[2] N. Amit, A. Tai, and M. Wei. Don’t shoot down TLB shootdowns! In Proceedings of the 15th European Conference on

Computer Systems (EuroSys), pages 1–14, Heraklion, Greece, Apr. 2020.
[3] L. Anaczkowski. Linux VM workaround for Knights Landing A/D leak, 2016. https://lkml.org/lkml/2016/6/14/505.
[4] R. Arimilli, G. Guthrie, and K. Livingston. Multiprocessor system supporting multiple outstanding TLBI operations

per partition, Oct. 2004. URL https://www.google.com/patents/US20040215898. US Patent App. 10/425,425.
[5] ARM. ARM Compiler Reference Guide: TLBI, 2014. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.

dui0802b/TLBI_SYS.html.
[6] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload Analysis of a Large-scale Key-value Store. In

Proceedings of the 12th ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS),
pages 53–64, London, UK, June 2012.

[7] A. Awad, A. Basu, S. Blagodurov, Y. Solihin, and G. H. Loh. Avoiding TLB Shootdowns through Self-invalidating TLB
Entries. In Proceedings of the 26th International Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 273–287, Portland, OR, Sept. 2017.

[8] R. Balan and K. Gollhard. A Scalable Implementation of Virtual Memory HAT Layer for Shared Memory Multiprocessor
Machine. In Proceedings of the Summer 1992 USENIX Annual Technical Conference (ATC), pages 107–115, San Antonio,
TX, June 1992.

[9] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan. Attack of the Killer Microseconds. Communications of the

ACM, 60(4):48–54, Mar. 2017.
[10] T. Baruah, Y. Sun, A. T. Dinçer, S. A. Mojumder, J. L. Abellán, Y. Ukidave, A. Joshi, N. Rubin, J. Kim, and D. Kaeli.

Griffin: Hardware-Software Support for Efficient Page Migration in Multi-GPU Systems. In Proceedings of the 26th

IEEE Symposium on High Performance Computer Architecture (HPCA), pages 596–609, San Diego, CA, Feb. 2020.
[11] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The

Multikernel: A New OS Architecture for Scalable Multicore Systems. In Proceedings of the 22nd ACM Symposium on

Operating Systems Principles (SOSP), pages 29–44, Big Sky, MT, Oct. 2009.
[12] S. Bharadwaj, G. Cox, T. Krishna, and A. Bhattacharjee. Scalable Distributed Last-Level TLBs Using Low-Latency

Interconnects. In Proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 271–284, Fukuoka, Japan, Oct. 2018.

[13] A. Bhattacharjee. Translation-Triggered Prefetching. In Proceedings of the 22nd ACM International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 63–76, Xi’an, China, Apr.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.

https://lkml.org/lkml/2016/6/14/505
https://www.google.com/patents/US20040215898
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0802b/TLBI_SYS.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0802b/TLBI_SYS.html


1:22 Steffen Maass, Mohan Kumar Kumar, Taesoo Kim, Tushar Krishna, and Abhishek Bhattacharjee

2017.
[14] A. Bhattacharjee, D. Lustig, and M. Martonosi. Shared Last-Level TLBs for Chip Multiprocessors. In Proceedings of the

17th IEEE Symposium on High Performance Computer Architecture (HPCA), pages 62–73, San Antonio, TX, Feb. 2011.
[15] D. L. Black, R. F. Rashid, D. B. Golub, C. R. Hill, and R. V. Baron. Translation Lookaside Buffer Consistency: A Software

Approach. In Proceedings of the 3rd ACM International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 113–122, Boston, MA, Apr. 1989.
[16] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and

Z. Zhang. Corey: An Operating System for Many Cores. In Proceedings of the 8th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), pages 43–57, San Diego, CA, Dec. 2008.
[17] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. RadixVM: Scalable Address Spaces for Multithreaded Applications.

In Proceedings of the 8th European Conference on Computer Systems (EuroSys), pages 211–224, Prague, Czech Republic,
Apr. 2013.

[18] J. Corbet. The current state of kernel page-table isolation, 2017. https://lwn.net/Articles/741878/.
[19] C. Covington. arm64: Work around Falkor erratum 1003, 2016. https://lkml.org/lkml/2016/12/29/267.
[20] G. Cox and A. Bhattacharjee. Efficient Address Translation for Architectures with Multiple Page Sizes. In Proceedings

of the 22nd ACM International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 435–448, Xi’an, China, Apr. 2017.
[21] T. H. Dang, P. Maniatis, and D. Wagner. Oscar: A Practical Page-Permissions-Based Scheme for Thwarting Dangling

Pointers. In Proceedings of the 26th USENIX Security Symposium (Security), pages 815–832, Vancouver, BC, Aug. 2017.
[22] L. K. D. Database. CONFIG_ARM_ERRATA_720789, 2017. http://cateee.net/lkddb/web-lkddb/ARM_ERRATA_720789.

html.
[23] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Ratnasamy, and S. Shenker. Network

Requirements for Resource Disaggregation. In Proceedings of the 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI), pages 249–264, Savannah, GA, Nov. 2016.
[24] W. Glozer. wrk - a HTTP benchmarking tool, 2015. https://github.com/wg/wrk.
[25] Google. CPU Platforms, 2018. https://cloud.google.com/compute/docs/cpu-platforms.
[26] Intel. Multiprocessor Specification, 1997.
[27] Intel. 5-Level Paging and 5-Level EPT, 2017. https://software.intel.com/sites/default/files/managed/2b/80/5-level_

paging_white_paper.pdf.
[28] G. Juncheng, L. Youngmoon, Z. Yiwen, C. Mosharaf, and S. Kang. Efficient Memory Disaggregation with Infiniswap.

In Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI), Boston, MA,
Apr. 2017.

[29] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley, M. Nemirovsky, M. M. Swift, and O. S. Ünsal. Energy-
Efficient Address Translation. In Proceedings of the 22nd IEEE Symposium on High Performance Computer Architecture

(HPCA), pages 631–643, Barcelona, Spain, Mar. 2016.
[30] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar. Flash Storage Disaggregation. In Proceedings of the 11th

European Conference on Computer Systems (EuroSys), pages 29:1–29:15, London, UK, Apr. 2016.
[31] M. Kumar, S. Maass, S. Kashyap, J. Veselý, Z. Yan, T. Kim, A. Bhattacharjee, and T. Krishna. LATR: Lazy Translation

Coherence. In Proceedings of the 23rd ACM International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 651–664, Williamsburg, VA, Mar. 2018.
[32] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a Social Network or a News Media? In Proceedings of the 19th

International World Wide Web Conference (WWW), pages 591–600, Raleigh, NC, Apr. 2010.
[33] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel. Coordinated and Efficient Huge Page Management with Ingens.

In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages 705–721,
Savannah, GA, Nov. 2016.

[34] J. Leverich. Mutilate: High-performance memcached load generator, 2017. https://github.com/leverich/mutilate.
[35] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg.

Meltdown. ArXiv e-prints, Jan. 2018.
[36] D. Lustig, A. Bhattacharjee, and M. Martonosi. TLB Improvements for Chip Multiprocessors: Inter-Core Cooperative

Prefetchers and Shared Last-Level TLBs. ACM Transactions on Architecture and Code Optimization (TACO), 10(1):
2:1–2:38, Apr. 2013.

[37] D. Lustig, G. Sethi, M. Martonosi, and A. Bhattacharjee. COATCheck: Verifying Memory Ordering at the Hardware-OS
Interface. In Proceedings of the 21st ACM International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 233–247, Atlanta, GA, Apr. 2016.
[38] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim. Mosaic: Processing a Trillion-Edge Graph on a Single

Machine. In Proceedings of the 12th European Conference on Computer Systems (EuroSys), pages 527–543, Belgrade, SR,
Apr. 2017.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.

https://lwn.net/Articles/741878/
https://lkml.org/lkml/2016/12/29/267
http://cateee.net/lkddb/web-lkddb/ARM_ERRATA_720789.html
http://cateee.net/lkddb/web-lkddb/ARM_ERRATA_720789.html
https://github.com/wg/wrk
https://cloud.google.com/compute/docs/cpu-platforms
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://github.com/leverich/mutilate


ecoTLB: Eventually Consistent TLBs 1:23

[39] Mellanox. ConnectX-3 Single/Dual-Port Adapter with VPI, 2017. http://www.mellanox.com/page/products_dyn?
product_family=119&mtag=connectx_3_vpi.

[40] Memcached. A high-performance, distributed memory object caching system, 2017. http://memcached.org/.
[41] T. P. Morgan. AMDDisrupts The Two-Socket Server Status Quo, 2017. https://www.nextplatform.com/2017/05/17/amd-

disrupts-two-socket-server-status-quo/.
[42] M. Oskin and G. H. Loh. A Software-Managed Approach to Die-Stacked DRAM. In Proceedings of the 24th International

Conference on Parallel Architectures and Compilation Techniques (PACT), pages 188–200, San Francisco, CA, Sept. 2015.
[43] C. H. Park, S. Cha, B. Kim, Y. Kwon, D. Black-Schaffer, and J. Huh. Perforated Page: Supporting Fragmented Memory

Allocation for Large Pages. In Proceedings of the 47th ACM/IEEE International Symposium on Computer Architecture

(ISCA), pages 913–925, Valencia, Spain, May 2020.
[44] J. K. Peacock, S. Saxena, D. Thomas, F. Yang, and W. Yu. Experiences from Multithreading System V Release 4. In

Proceedings of the Symposium on Experiences with Distributed and Multiprocessor Systems, SEDMS III, pages 77–91, 1992.
[45] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee. CoLT: Coalesced Large-Reach TLBs. In Proceedings of the

45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 258–269, Vancouver, Canada,
Dec. 2012.

[46] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh. Increasing TLB Reach by Exploiting Clustering in Page Translations.
In Proceedings of the 20th IEEE Symposium on High Performance Computer Architecture (HPCA), pages 558–567, Orlando,
FL, Feb. 2014.

[47] B. Pham, D. Hower, A. Bhattacharjee, and T. Cain. TLB Shootdown Mitigation for Low-Power, Many-Core Servers
with L1 Virtual Caches. IEEE Computer Architecture Letters, PP(99), June 2017.

[48] B. Pichai, L. Hsu, and A. Bhattacharjee. Architectural Support for Address Translation on GPUs: Designing Memory
Management Units for CPU/GPUs with Unified Address Spaces. In Proceedings of the 19th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 743–758, Salt Lake City,
UT, Mar. 2014.

[49] J. Power, M. D. Hill, and D. A. Wood. Supporting x86-64 Address Translation for 100s of GPU Lanes. In Proceedings of

the 20th IEEE Symposium on High Performance Computer Architecture (HPCA), pages 568–578, Orlando, FL, Feb. 2014.
[50] B. F. Romanescu, A. R. Lebeck, and D. J. Sorin. Specifying and Dynamically Verifying Address Translation-aware

Memory Consistency. In Proceedings of the 15th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 323–334, Pittsburgh, PA, Mar. 2010.
[51] B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy. UNified Instruction/Translation/Data (UNITD) Coherence:

One Protocol to Rule Them All. In Proceedings of the 16th IEEE Symposium on High Performance Computer Architecture

(HPCA), pages 1–12, Bangalore, India, Jan. 2010.
[52] ScyllaDB. Memcached Benchmark, 2015. https://github.com/scylladb/seastar/wiki/Memcached-Benchmark.
[53] A. L. Shimpi. AMD’s B3 stepping Phenom previewed, TLB hardware fix tested., 2008. http://www.anandtech.com/

show/2477/2.
[54] P. Teller. Translation-Lookaside Buffer Consistency. Computer, 23(6):26–36, June 1990.
[55] P. J. Teller, R. Kenner, and M. Snir. TLB Consistency on Highly-Parallel Shared-Memory Multiprocessors. In Proceedings

of the 21st Annual Hawaii International Conference on System Sciences. Volume I: Architecture Track, volume 1, pages
184–193, 1988.

[56] S. R. Thomas Barr, Alan Cox. SpecTLB: a Mechanism for Speculative Address Translation. In Proceedings of the 38th

ACM/IEEE International Symposium on Computer Architecture (ISCA), pages 307–318, San Jose, California, USA, June
2011.

[57] M. Y. Thompson, J. Barton, T. Jermoluk, and J.Wagner. Translation Lookaside Buffer Synchronization in aMultiprocessor
System. In Proceedings of the Winter 1988 USENIX Annual Technical Conference (ATC), Dallas, TX, 1988.

[58] L. Torvalds. Linux Kernel, 2017. https://github.com/torvalds/linux.
[59] T. Valich. Intel explains the Core 2 CPU errata., 2007. http://www.theinquirer.net/inquirer/news/1031406/intel-explains-

core-cpu-errata.
[60] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez, A. Mendelson, N. Navarro, A. Cristal, and O. S. Ünsal.

DiDi: Mitigating the Performance Impact of TLB Shootdowns Using a Shared TLB Directory. In Proceedings of the 20th

International Conference on Parallel Architectures and Compilation Techniques (PACT), pages 340–349, Galveston Island,
TX, Oct. 2011.

[61] X. Wang, H. Liu, X. Liao, J. Chen, H. Jin, Y. Zhang, L. Zheng, B. He, and S. Jiang. Supporting Superpages and Lightweight
Page Migration in Hybrid Memory Systems. ACM Transactions on Architecture and Code Optimization (TACO), 16(2):
11:1–11:26, Apr. 2019.

[62] Z. Yan, J. Veselý, G. Cox, and A. Bhattacharjee. Hardware Translation Coherence for Virtualized Systems. In Proceedings

of the 44th ACM/IEEE International Symposium on Computer Architecture (ISCA), pages 430–443, Toronto, Canada, June
2017.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.

http://www.mellanox.com/page/products_dyn?product_family=119&mtag=connectx_3_vpi
http://www.mellanox.com/page/products_dyn?product_family=119&mtag=connectx_3_vpi
http://memcached.org/
https://www.nextplatform.com/2017/05/17/amd-disrupts-two-socket-server-status-quo/
https://www.nextplatform.com/2017/05/17/amd-disrupts-two-socket-server-status-quo/
https://github.com/scylladb/seastar/wiki/Memcached-Benchmark
http://www.anandtech.com/show/2477/2
http://www.anandtech.com/show/2477/2
https://github.com/torvalds/linux
http://www.theinquirer.net/inquirer/news/1031406/intel-explains-core-cpu-errata
http://www.theinquirer.net/inquirer/news/1031406/intel-explains-core-cpu-errata


1:24 Steffen Maass, Mohan Kumar Kumar, Taesoo Kim, Tushar Krishna, and Abhishek Bhattacharjee

[63] Z. Yan, D. Lustig, D. Nellans, andA. Bhattacharjee. Nimble PageManagement for TieredMemory Systems. In Proceedings
of the 24th ACM International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 331–345, Providence, RI, Apr. 2019.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: July 2020.


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Existing OS Design using PCIDs
	2.2 Page swapping
	2.3 Lazy TLB shootdown
	2.4 Challenges

	3 Overview
	4 Design
	4.1 Handling Free Operations with PCIDs
	4.2 Handling Page Swapping with Infiniswap

	5 Implementation
	6 Evaluation
	6.1 Experiment Setup
	6.2 Microbenchmarks
	6.3 Apache
	6.4 Page Swapping
	6.5 KPTI
	6.6 Overheads of ecoTLB

	7 Discussion and Limitations
	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References

