

Target Applications

- 1.Composed of sets of collaborating services (producer-consumer, resource sharing) 2.Each individual service may provide discrete
- levels of quality vs. energy (resource) tradeoffs. 3.Nothing is free! Want best overall application outcome within a given energy budget.

Networks in underdeveloped regions

RSDG Glider Multiple sensors and dependencies between services

RSDG NavApp Navigation application on Android that balances multiple services to meet the energy requirement.

Improving Energy-Bound Application Effectiveness through Redundancy and Approximation

Liu Liu¹, Timothy Yong¹, Jonathan Risinger¹, Sibren Isaacman², Abhishek Bhattacharjee¹, and Ulrich Kremer¹ Department of Computer Science

Service robots

Smart phones

5

3

- 3 types of redundancy:
- approximation
- implementation
- replication

energy consumption

RSDG service selection problem:

- Services with mission values are considered (user) critical

- For each critical service, select a AND dependencies single service level and implementation; \mathbf{S}_3 do the same for each service the selected service depends on (transitive dependent set) OR dependencies - Sum of mission values of critical services is maximal under given energy constrains; energy is minimized for this maximal mission value

Solution for energy = 40 and example mission values: 11

Solution for energy = 29 and example mission values: 7

Productivity Profile

Solution for energy = 31 and example mission values: 9

Solution for energy = 12 and example mission values: 5

¹ Rutgers University / ² Loyola University

Optimal solution balances service qualities across the entire application; Solution seems sometimes non-intuitive.

Solution is NP-complete; Proof: Reduction from 3SAT. Use 0-1 integer programming formulation and gurobi, cplex, or lp_solve

Simulations can provide feedback during tradeoff space exploration via the Productivity Profile:

Energy Cost vs. Overhead vs. Benefit

Energy Cost:

- traveling / driving : 5 Joules for 10 cm

Benefit

- mission values (preferred type of
- soft drinks) : Coke 5 vs. Pepsi 1

Overhead (path planning):

Static : Configure the system once for all at the beginning. Dynamic: Re-configure the system 1 time per pickup. Saved more than 45% energy by introducing less than 2.5%.

Conclusion:

A new framework that allows the programmer to easily describe an adaptive system that balances the services configurations across the entire system to produce highest productivity with lowest cost within user-specific budget.

Related Work:

- preference(priority) got ignored)
- program to manage performance."
- layer RSDG)
- **Future Work:**
- -more application examples

- -better execution model
- -reducing the RSDG overhead

Given 10 soda cans with Budget = 500J in 15 experiments.8 CansValue (~64%) more than heuristic

Benefit from RSDG

Soda cans

configuration

3000 (s)

2500

2000 i

Conclusion

Dynamic Knobs for Responsive Power-Aware Computing [ASPLOS-11]:

Improving performance and power savings by dynamically adjusting the parameters to "trade off the accuracy of computation in return for reductions in resources."

*problem: accuracy could not be a measurement for quality in most of the time. (Users'

JouleGuard: Energy Guarantees for Approximate Applications[SOSP-15]:

Maximizing accuracy within energy budget by "dividing the problem into two subproblems, configuring hardware system to be energy efficient and dynamically adjusting

*problem: ignored the dependencies.(smaller search space)

CAreDroid: Adaptation Framework for Android Context-Aware Applications[MobiCom-15]: Improving efficiency of context-aware applications by "monitoring the context of the physical environment and intercepts calls to sensitive methods".

*problem: not being able to handle dependencies other than physical context.(single

-better tools that support easier construction for RSDG -better tools for users to explore the tradeoff spaces

-optimization on 0-1 problem's constraints