
POSTER: Exploiting Approximations for Energy/Quality
Tradeoffs in Service-Based Applications

Liu Liu†, Sibren Isaacman∗, Abhishek Bhattacharjee†, Ulrich Kremer†
† Rutgers University, NJ ∗ Loyola University Maryland, MD

1. INTRODUCTION
Approximations and redundancies allow mobile and dis-

tributed applications to produce answers or outcomes of
lesser quality at lower costs. This paper introducesRAPID1, a
new programming framework and methodology for service-
based applications with approximations and redundancies.
While traditional redundancy optimizations select among
service alternatives without changing user observable ap-
plication outcomes, approximations change application se-
mantics since they produce outcomes of reduced quality. As
a result, users have to be involved in the service selection
process. Previous work [1, 3, 5, 7] addresses this “quality
specification” challenge by requiring the user or application
programmer to provide quality functions for different as-
pects of the input/output behavior of an application. The
quality reduction of an application is defined as the sum
over all aspects’ weighted differences of the ideal output (no
approximations) quality and the approximate output quality.
Though RAPID uses a similar approach to quality specifi-
cation, it focuses on service qualities and their interactions.
This approach provides a more intuitive way for the user to
assess the benefits of approximations relative to resource or
cost savings.

To support service-based quality specification and search
space explorations, RAPID introduces a graph representation
that encodes an application’s services, their approximation
levels, and dependencies between them. Finding the best
service configuration under a given resource budget becomes
a constrained, dual-weight graph optimization problem. Ex-
isting strategies use applications mainly as black boxes, and
execute and measure applications under different approxi-
mation selections[1, 2, 3, 5, 7]. This training phase is done
off-line, i.e., before application deployment. Without knowl-
edge of the application structure and its dependence patterns,
search spaces are potentially large. As a result, off-line train-
ingwill be costly (e.g., in [6], the training time over 64 hours).
RAPID represents applications through a weighted graph and
derives a set of representative configurations that satisfies the
mean or max error of an energy cost model. When porting
application to another platform, only a short on-line training

1For Redundancy, Approximation, Preferences, Implementation,
Dependencies; the cornerstones of our approach.

phase is needed which runs a computed set of representative
configurations to determine node and edge cost (e.g.: energy)
weights on the new target platform. The explicit representa-
tion also enables easy exploration of an application’s service
selection space under different resource constraints and user
priorities.

2. THE RAPID FRAMEWORK
Observation 1: Optimization spaces are large. The best
possible application behavior may depend on input charac-
teristics, available redundancy and approximation levels, user
preferences (see below), energy and resource budgets, fail-
ure scenarios, and adverse environmental conditions. An ex-
haustive off-line training period could take weeks for certain
applications. However, RAPID uses an explicit graph rep-
resentation allowing programmers to express dependencies
without much effort. Experiments have shown that pruning
can reduce the search space size by up to 89%.
Observation 2: Quality is subjective. Quality is a concept
that is often difficult to formalize, and does not generalize
across different value/outcome domains. RAPID represents
quality indirectly through relative preferences among “user
critical” services, rather than through their actual quality
metrics, if such formal metrics exist at all. Relative prefer-
ences also encode individual user expectations, which may
vary significantly.

Framework Overview. Figure 1 shows the basic structure
of theRAPID framework. The application designer, or system
expert, determines the services used by the application and
the dependencies between them. The resulting system graph
is executed by an automatic tool to determine the energy
weights for all services and the energy needed for possible
service interactions. The user expresses relative priorities of
all the services that she considers important.

The application can be run within RAPID’s dynamic run-
time environment or can be evaluated using static analysis
tools.

RAPID’s key feature is its ability to balance and adjust
the quality and selection of approximate and redundant ser-
vices across the entire service web. Service reconfiguration
is needed as a response to changing quality requirements,
service availabilities (failures), or energy budgets.

1



Services	
  
Redundancy	
  levels	
  
Dependencies	
  

Mission	
  values	
  (service	
  priori5es)	
  
Energy	
  budget	
  &	
  mission	
  5me	
  
Environmental	
  configura5on	
  

Dual-­‐weighted	
  full	
  RSDG	
  
with	
  service	
  selec6on	
  

Dynamic	
  service	
  
selec6on	
  problem	
  
	
  	
  	
  	
  	
  -­‐	
  maximize	
  produc5vity	
  
	
  	
  	
  	
  	
  -­‐	
  minimize	
  energy	
  

Op5mal	
  and	
  heuris5c	
  	
  
solu5ons	
  

User	
  System	
  Expert	
  

System	
  RSDG	
  

Automa6c	
  Tool	
  
Power	
  dissipa5on	
  of	
  
	
  	
  	
  	
  	
  -­‐	
  service	
  levels	
  
	
  	
  	
  	
  	
  -­‐	
  communica5on	
  
	
  	
  	
  	
  	
  -­‐	
  transi5ons	
  	
  

System	
  RSDG	
  	
  
with	
  power	
  annota6ons	
  

Dual-­‐weighted	
  
Full	
  RSDG	
  	
  

Dynamic	
  reconfigura6on	
  
triggered	
  by	
  
	
  	
  	
  	
  	
  -­‐	
  failure	
  condi5ons	
  
	
  	
  	
  	
  	
  -­‐	
  changed	
  energy	
  budget	
  
	
  	
  	
  	
  	
  -­‐	
  environmental	
  events	
  
	
  	
  	
  	
  	
  -­‐	
  fixed	
  5me	
  interval	
  

s 4bs4a

5

 

S

SS1

S

2

3

4as s4b

10

5

energy cost

 

S

SS1

S

2

3

5
22

1515

2

215

3

812

4bs4as

10

5

energy cost
mission value

S

SS1

S3

2

5 6

23 5
22

1515

2

3

15

812

2

4bs4as

5

selection with:

mission value

energy cost

energy = 29
mission value = 7 S

S3

S 21 S

105 6

23 5
22

15

1515

2

2

3

812

Figure 1: Key Features of the RAPID Framework.

Redundancy Graph. TheRedundantServicesDependence
Graph (RSDG) is RAPID’s main representation for service-
based applications. The RSDG is a directed graph with node
and edge weights [4]. Nodes represent implementations of
a service or groups of service implementations. Edges rep-
resent data or resource dependencies between service imple-
mentations. Weights represent the energy cost and mission
value of a particular node or edge. RAPID determines en-
ergy weights by performing an automatic value propagation
strategy during an initial off-line training period followed by
online training on a small set of representative configurations.

Experimental Evaluation. To assess the practical, end-to-
end effectiveness of our energy-aware approximation man-
agement strategy, a prototype system was implemented and
evaluated. The evaluation uses three very different sample
applications: a mobile street navigation system (NavApp),
an autonomous service robot (Robot), and YouTubeApp, the
popular video player. None of the applications have a nu-
merical overall quality metric. Instead, each aspect relevant
to the user’s experience has an intuitive quality notion a user
can reason about. This includes the screen brightness, infor-
mation level, and desired localization precision in NavApp,
the appreciation for a particular brand of soda in Robot, or
the screen brightness and image quality in YouTubeApp. To
demonstrate the expressiveness, correctness, and overhead of
RAPID, we performed five experiments for each application:
Exp1) Normal execution without RAPID. Exp2) Execution
with RAPID. Exp3) RAPID execution with noise. Exp4)
RAPID execution with noise and different user preference.
Exp5) Execution under "Low-Power-Mode", where each ser-
vice is set to the lowest level. The experimental results for
NavApp are shown in Figure 2.

3. SUMMARY OF CONTRIBUTIONS
Experimental results using our three practical sample ap-

plications (NavApp, Robot, and YouTubeApp) show that the

Figure 2: NavApp configurations over time for different pri-
orities. Bar Height: Screen brightness level. Bar Color: Fre-
quency/Accuracy of location data pulling. Dot number: Map
type displayed on screen. Text above the end of each bar: “X”
- fails the mission (exceeds energy budget). “Arrives(x%)” -
completes the mission with x% of energy budget.

RAPID framework is effective and efficient. Optimal service
approximation levels can be computed quickly with little run-
time overhead (<1%), enabling fast reconfigurations. RAPID
is the first system that explicitly represents approximations,
redundancies, and their dependencies in a unified frame-
work, and optimizes the application behavior in response to
user preferences and energy budgets. Physical metrics of in-
terest in each application (e.g., screen brightness) improve by
>24%while using RAPID, compared to intelligent heuristics.
Finally, without RAPID, execution for our use cases termi-
nates after 70% of the total mission and underutilizes the
budget by 56% under a straightforward energy saving mode.
In contrast, RAPID always completes the mission and maxi-
mizes utility of the budget while never violating the budget
constraints even in a noisy environment.

4. REFERENCES
[1] Anne Farrell and Henry Hoffmann. MEANTIME: Achieving both

minimal energy and timeliness with approximate computing. In 2016
USENIX Annual Technical Conference, Denver, CO, June 2016.

[2] H. Hoffmann. JouleGuard: Energy guarantees for appoximate
applications. In SOSP ’15), October 2015.

[3] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,
Anant Agarwal, and Martin Rinard. Dynamic knobs for responsive
power-aware computing. In ASPLOS’11, March 2011.

[4] U. Kremer and L. Liu. A framework for exploiting redundancies in
service-based applications. Technical Report DCS-TR720, Department
of Computer Science, Rutgers University, October 2015.

[5] Jongse Park, Xin Zhang, Kangqi Ni, Hadi Esmaeilzadeh, and Mayur
Naik. Expax: A framework for automating approximate programming.
Technical report, Georgia Institute of Technology, 2014.

[6] Stelios Sidiroglou, Sasa Misailovic, Henry Hoffmann, and Martin
Rinard. Managing performance vs. accuracy trade-offs with loop
perforation. In ESEC/FSE’11, Szeged, Hungary, September 2011.

[7] Xin Sui, Andrew Lenharth, Donald S. Fussell, and Keshav Pingali.
Proactive control of approximate programs. In ASPLOS ’16, 2016.

2


