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Abstract—For decades, page replacement in operating systems
has referred to the process of moving pages between main
memory and disk. During this time, most operating systems
used the Clock LRU algorithm for replacement. However, the
increased tiering of memory systems has led to the development
of new paging algorithms to manage data movement between
various memory technologies, algorithms that have often co-
opted methods from Clock LRU for page migration. At the same
time, the Linux kernel has adopted a new Multi-Generational
LRU (MG-LRU) algorithm for page replacement. As memory
footprints and hierarchies grow, it is important to understand
the key attributes of paging algorithms that determine their
performance on various workloads and system configurations.

This work presents the first characterization of multiple MG-
LRU configurations on various memory-intensive workloads for
SSD and ZRAM swap. Our experiments show that MG-LRU
exhibits high performance variation across otherwise identical
workload executions. We also show that the relative performance
of MG-LRU compared to Clock LRU is highly variable across
different configurations of the surrounding system. Finally, we
confirm that simple adjustments to MG-LRU parameters are
not a panacea to these issues. Broadly, our work illuminates the
complex relationship between workloads, system configurations,
and replacement policies and motivates further work to profile,
re-invent, and ultimately optimize memory management in com-
puter systems.

I. INTRODUCTION

Paging algorithms are as old as operating systems them-
selves. For decades, the most common paging algorithm in
commercial systems was a form of the Clock LRU approxima-
tion algorithm used by the Linux kernel [2], [10]. Traditionally,
paging has referred to the process of migrating memory pages
solely between DRAM and disk, and becomes relevant only
when the combined memory usage of running applications ap-
proaches or exceeds the system’s memory capacity. Recently,
however, the emergence of multi-tiered memory systems has
motivated the development of new policies orchestrating page
movement not just between DRAM and disk, but also between
various memory technologies [7], [23], [26], nodes [19], [22],
and accelerators [6], [11], [20]. This has sparked a renewed
academic interest in understanding the mechanisms used by
computer systems to profile, classify, and migrate pages based
on their access patterns.

While a number of page migration policies have been
proposed in academic literature, the Linux kernel has adopted

a new paging algorithm as well. This algorithm, known as
multi-generational LRU (MG-LRU), claims improvements in
both paging decision quality and profiling overheads over
the previous Clock algorithm [4], [14], [15]. At over one
billion users [3], MG-LRU has become the most prevalent
paging algorithm in commercial systems. Yet, while MG-
LRU leverages a number of new data structures, such as
bloom filters and PID controllers, to manage page tracking
and movement, no literature exists examining the contributions
of each design decision on paging performance. As memory
footprints continue to grow and memory hierarchies become
increasingly tiered, understanding these structures — and their
deeper insights into page access tracking — becomes crucial.

In this paper, we present the first characterization of MG-
LRU on a variety of memory-intensive applications. Our
evaluation uses benchmarks from three different domains: data
warehousing, graph processing, and key-value stores — mak-
ing them representative of common datacenter workloads. We
perform an extensive grid search of configurations, testing the
effects of tuning various MG-LRU parameters as well as how
the interact with different swap mediums. Our results show
that MG-LRU performance can be remarkably inconsistent
depending on the workload, memory usage-capacity ratio, and
swap medium. Specifically, we show the following:

• Under high memory pressure, while MG-LRU success-
fully improves average performance compared to Clock
LRU, it can significantly increase runtime variation in
some cases. These differences are attributable to a de-
crease in the average page faults per workload execution,
but a significant increase in their variance.

• We show that no single configuration of MG-LRU per-
forms best on every workload-system combination. In
some cases, the best-performing configuration in one
setting becomes the worst-performing in another.

• We find that with a faster swap medium, the number
of page faults per execution consistently increases. This
suggests that reducing overhead of page access tracking
relative to the cost of swapping is crucial for improving
the quality of replacement decisions.

Overall, this work is an early characterization that points
towards future areas of study and key issues that future



algorithms must consider. In particular, our work suggests that
there is no “one size fits all” paging algorithm that minimizes
both mean runtime and runtime variance for all workloads
and system configurations. Instead, further study is required
to identify all major sources of variance in the system, and to
develop new algorithms that are robust to varying workloads
and configurations.

II. BACKGROUND AND RELATED WORK

A. Page Access Tracking

Fundamentally, the goal of a replacement policy is to
determine whether any page is hot (likely to be accessed)
or cold (unlikely to be accessed). Hot pages will be kept
in main memory, while cold pages can be safely swapped
out. Replacement policies commonly exploit Accessed bits
stored in page table entries (PTEs) to distinguish hot and cold
pages. These bits are set whenever the PTE is the target of a
hardware page walk [27]. Current replacement policies track
access patterns by periodically scanning these bits in the page
table. When the system encounters a set accessed bit, it can
infer that the page was accessed relatively recently, guiding it
to increase its estimation of the page’s hotness. The accessed
bit is then reset to allow the hardware to provide information
on future accesses.

Some page migration policies have also used page poisoning
to obtain information on page accesses. This purposely marks
a page’s PTE as inaccessible (e.g., by marking it as not present
or reserved), triggering a fault on the next access to that
page [7], [13]. This method obtains precise information on
the accessed pages and their exact access time. However,
the cost of page faults to frequently accessed pages can
become prohibitively expensive. As such, most page poisoning
approaches combine it with sampling methods.

B. Clock-LRU

For decades, the Linux kernel used Clock-LRU as its page
replacement policy. This algorithm, also known as Clock,
LRU Second Chance, and 2Q, approximates LRU using two
queues: the active and inactive lists [2]. The goal of the
Clock algorithm is to ensure the active list contains the
working set of all running processes while the inactive list
contains candidates for page eviction/reclaim. This is done by
periodically scanning the accessed bits of pages at the bottom
of the active list. If a page has not been accessed, it is moved
to the inactive list. Otherwise, it is placed at the top of the
active list. At reclaim time, the kernel scans the accessed bits
of pages on the inactive list. If a page has been accessed, it is
moved to the active list. Otherwise, it is reclaimed or evicted
from memory.

C. Page Migration Policies

Emerging systems have begun using multiple memory tiers
to improve memory-intensive applications’ performance while
optimizing the total cost of ownership. This has motivated
research to uncover the best method for dynamically migrating
pages between tiers. By default, Linux uses AutoNUMA

for managing memory tiers [13] AutoNUMA aims to match
processes and the memory pages they access to the same
node. However, because it was not designed to support CPU-
less memory nodes, it lacks mechanisms to demote pages,
limiting its performance in contexts with memory tiering [21].
Thermostat [7] and MTM [26] sample access information
using page poisoning and access bit scans, respectively. Both
define a notion of page hotness based on access recency and
frequency, promoting or demoting pages based on (possibly
dynamic) hotness thresholds. TPP [23], on the other hand, is
directly built on top of the data structures used for Clock. It
adapts Clock for page migration by having evictions to target
lower memory tiers instead of disk. It then promotes accessed
pages depending on their presence in the active or inactive
list. These works indicate a large design space exists for page
migration algorithms. Yet, all approaches fundamentally rely
on classifying hotter and colder pages to guide migration
decisions.

III. MG-LRU OVERVIEW

MG-LRU claims to improve over Clock in both the accuracy
of replacement decisions and the efficiency of page access
tracking. It does so by introducing an alternate method for
tracking page accesses and using multiple generation lists to
classify page hotness.

A. Generations and Aging
MG-LRU replaces the active and inactive lists with multiple

generation lists. Broadly, as the kernel tracks page accesses,
idle pages will move towards older generations, while accessed
pages are moved to the youngest generation. This allows a
more precise classification of page hotness across a spectrum
of generations rather than simply active or inactive. In the-
ory, this scheme also results in fewer pages being accessed
after reaching the oldest generation, allowing page reclaim
to proceed more aggressively [15]. We examine the effect of
generation count in §V-B.

B. Page Access Tracking and Filtering
When Clock scans accessed bits, it iterates through the

physical frame numbers of pages in the active and inactive
lists. Each scan triggers a physical-to-virtual address trans-
lation to access the page’s PTE, which requires walking the
reverse map, a pointer-based data structure that is expensive
to access [15], [24]. To alleviate this, MG-LRU introduces
an aging thread that scans page tables linearly. Doing so
avoids the cost of physical-to-virtual translations and also takes
advantage of spatial locality in the page table itself. However,
naive linear scans of the page table are wasteful when there
are many mapped but unallocated regions in the virtual address
space. As such, MG-LRU uses a bloom filter to limit scanning
to regions of the page table that are likely to map frequently
accessed pages [4]. By default, MG-LRU adds a region of the
page table to the bloom filter if it contains at least one accessed
PTE per cache line. The bloom filter is then used to filter scans
of the next generation. We examine the effectiveness of this
data structure in §V-B.
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C. Eviction

In addition to the aging thread, MG-LRU maintains an
eviction thread that behaves similarly to Clock. At reclaim
time, the eviction thread scans the oldest generation for reclaim
candidates. Like Clock, the eviction thread walks the reverse
map before marking a page for eviction. If the page has
been accessed, it is promoted to the youngest generation
instead. Unlike Clock, the eviction thread will also scan the
surrounding PTEs of any accessed pages it detects through
the reverse map. This again takes advantage of spatial locality
to reduce the overhead of page table scans. It also creates
a feedback loop between the aging and eviction threads, as
regions scanned by the eviction thread may be added to the
bloom filter for later aging scans.

D. PID Control

MG-LRU makes an exception to its promotion and eviction
rules for pages accessed via file descriptors. Because such
pages are often accessed only once (e.g., reading input data
from a file), MG-LRU does not promote them to the youngest
generation. Instead, such pages are promoted by a single
“tier” within a given generation. This avoids cases where
such sparsely accessed pages are promoted above hot pages.
Still, it can degrade performance if file descriptor pages
are accessed frequently (e.g., when an application performs
significant buffered I/O). To manage this, MG-LRU tracks
how often pages in each tier are accessed soon after eviction,
or “refaulted.” If the refault rates in higher tiers — which
contain only pages behind file descriptors — are higher than
that of the lowest tier of a generation, MG-LRU will protect
higher tiers from eviction until the rates are balanced. This
process is managed by a proportional-integral-derivative (PID)
controller [4], [14]. Since our tested workloads do not perform
significant file descriptor accesses, we do not test the effects
of tuning the PID controller, leaving it instead for future work
with workloads affected by it.

IV. METHODOLOGY

To characterize MG-LRU, we use workloads from three
domains: data warehousing, graph processing, and in-memory
key-value stores. We select these domains to be representative
of common datacenter workloads. Specifically, we run TPC-
H [1] using Spark-SQL [8], PageRank from the GAP Bench-
mark Suite [9], and YCSB A, B, and C [12] using Mem-
cached [18]. All tested workloads have a memory footprint
between 12-16GB. Although Spark has mechanisms to spill
data to disk when its memory is oversubscribed, we configure
its memory limits to avoid spilling to match its evaluation
in memory tiering work [28]. To characterize performance
variation for TPC-H and PageRank, we run 25 executions of
both workloads in each tested system configuration. To avoid
confounding effects from memory fragmentation, we reboot
the system before each execution. For YCSB, we collect tail
latency statistics on 110 million requests after initially loading
11 million items to the cache.

We test Clock, MG-LRU, and variants of MG-LRU on the
Linux kernel version 6.8. We perform our experiments on a
machine using an Intel Core i7-8700 CPU at 3.2GHz with 6
cores and 12 threads. We run Spark and PageRank with 12
threads and Memcached with the default four threads. In our
experiments with SSD swap, we measure the latency of 4KB
reads and writes to be ∼ 7.5ms. We also perform experiments
with ZRAM swap, which reserves a section of memory to
store compressed data [5]. This allows a system to slightly
increase memory capacity at a lower cost than swapping to
disk. Because of its speed, ZRAM swap approximates the
effects of slower memory tiers, such as remote or disaggre-
gated memory [19], [22], [28]. We configure ZRAM to use
LZO-RLE compression and measure the 4KB read and write
latencies be 20µs and 35µs, respectively.

V. CHARACTERIZING MG-LRU

We begin our characterization by comparing MG-LRU with
its Clock-LRU predecessor on systems using SSD swap.

A. Revealing Performance Variation

Figure 1a shows the average total execution time of each
benchmark with both replacement policies. We see that under
high memory pressure, MG-LRU matches or outperforms
Clock on all benchmarks in average performance. Figure 1b
shows that this improvement arises from decreased swapping
when using MG-LRU. This indicates that, in general, multiple
generations and page table scanning successfully improve the
quality of page replacement decisions. However, this does not
reveal the whole story.

Although MG-LRU consistently improves average perfor-
mance, this is not the case for performance variation. Figure 2
shows the joint distributions of execution times and faults
across all trials of the TPC-H and PageRank workloads. For
TPC-H, we see that MG-LRU successfully reduces perfor-
mance variation compared to Clock. However, the execution
times still range from ∼700 seconds to over 2000 seconds,
nearly a 3× increase between the fastest and slowest execution.
This performance variation is seen again for PageRank, where
the factor between the fastest and slowest executions is nearly
2×. In contrast with the previous benchmark, on PageRank,
MG-LRU significantly increases performance variation over
Clock, which itself performs consistently. In fact, the variation
with MG-LRU is so high that, although MG-LRU reduces
average performance by over 15%, the worst-case execution
time is higher than that of Clock. This has large implications
on the use of MG-LRU in a datacenter environment, as
it is well-known that such stragglers are more critical to
performance than the nodes with the fastest executions [16],
[31].

Another striking difference between performance on TPC-
H and PageRank is the relationship between the number
of page faults and overall execution time. For TPC-H, we
see a nearly perfect linear relationship between faults and
execution time. In fact, for all experiments with this system
configuration, we see a coefficient of determination (r2) of
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(a) Execution Time (b) Faults

Fig. 1: Average execution time and total fault counts normalized to Clock-LRU. MG-LRU consistently improves
performance over Clock in this system configuration. Experiments use SSD swap and a 50% memory capacity-to-
footprint ratio. For YCSB workloads, we normalize the average request time over the workload’s execution.

(a) TPC-H (b) PageRank
Fig. 2: Joint distributions of execution time and faults. Both MG-LRU and Clock experience high performance variation
on TPC-H. However, Clock has a far tighter runtime distribution on PageRank.

over 0.98 for linear regression. Meanwhile, the opposite is true
for PageRank, where the number of faults appears to have no
correlation with overall runtime. Intuitively, this would call
into question whether the change in replacement policy is the
source of variance, as one would expect faults to dominate
runtime at high memory pressure. And yet, the difference
in distribution spread between MG-LRU and Clock clearly
indicates that MG-LRU is a major source of variance, even if it
is not through inconsistent fault rates. This leaves the scanning
method as the only other potential source of variation, which
we explore further in §V-D.

We also examine the effects of using MG-LRU on tail
latency. Again, while MG-LRU always achieves equal or
greater average throughput than Clock, its benefit becomes less
clear when considering tail performance. Figure 3 shows the
tail latencies of both read and write requests for the YCSB
A, B, and C workloads. Our results show that using MG-
LRU trades off higher read latencies for shorter write latencies.
For reads, both replacement policies perform similarly up to
the 99% latency, after which latencies grow much faster with
MG-LRU, approaching a 20-40% increase at the 99.99% tail.
Meanwhile, the opposite trend is true for write latencies, with
Clock experiencing 10-50% higher latencies after the 99%
tail. These trends suggest that deciding between MG-LRU
or Clock is not as simple as selecting the policy with the
best throughput. Instead, our results indicate that the choice of

replacement policy may depend heavily on the application’s
characteristics, whether it is read- or write-heavy, and what
tradeoff between throughput and tail latency is best for its end
goal.

B. Tuning MG-LRU Parameters

We now examine the effects of adjusting MG-LRU pa-
rameters on mean and tail performance. First, we adjust the
number of generations lists used to track pages in physical
memory. When investigating the motivation for why MG-
LRU uses only four generations by default, we found it was
simply to double the number of lists used by Clock1. Even
with this increase, we find many cases where MG-LRU is at
the maximum number of generations and, therefore, cannot
create a new youngest generation for the next aging scan.
This causes multiple consecutive scans to promote pages
all to the same generation, which reduces the precision to
which a page’s generation number implies its access recency.
Note that moving page metadata between generation lists is
an O(1) operation, so increasing the number of lists adds
negligible overhead. As such, we can safely increase the
maximum number of generation lists so that MG-LRU can
always increment the youngest generation after an aging scan.
We find that using 214 generations more than achieves this
condition for our workloads and system configurations without

1As noted by the developers in the source code.
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(a) Read Latencies (b) Write Latencies
Fig. 3: Tail latency distributions. MG-LRU significantly improves write tail latencies over Clock, but exhibits longer
read tail latencies. Since YCSB-C consists only of read requests, no write tail latencies are shown.

(a) Execution Time (b) Faults

Fig. 4: Mean execution time and faults of alternate MG-LRU configurations. Results vary significantly both by the
configuration and workload executed, making it unclear what the ”best” MG-LRU configuration is.

inducing perceivable overheads compared to lower generation
counts. We refer to this configuration of MG-LRU as Gen-14.

In our testing, increasing the generation count slightly im-
proves average performance across most benchmarks (Fig. 4a).
However, this improvement is inconsistent, with Gen-14 un-
derperforming on PageRank. Moreover, due to the high run-
time and fault variance exhibited by both policies, we find
no statistically significant differences in average performance
(p > 0.05). Broadly, this result is to be expected, as the
generation count does not change the core promotion and
eviction policies in MG-LRU. In both cases, accessed pages
are promoted to the head of the youngest generation list, while
non-accessed pages are eventually evicted from the tail of the
oldest generation list.

After adjusting the generation count, we identify the bloom
filter as the next parameter-tuning target. Since the bloom
filter identifies the sections of the page table scanned by the
aging thread, it is arguably the most important data structure
for determining MG-LRU performance. First, we test whether
the bloom filter is important for performance. We test three
methods for removing the impact of the bloom filter on
aging: scanning the entirety of the page table (Scan-All),
scanning none of the page table (Scan-None), and scanning
each section with a 50% probability (Scan-Rand). The first
two configurations effectively disable the bloom filter by not
filtering any sections and filtering all sections, respectively,
while the third attempts to reduce scanning overheads while
still probabilistically scanning the entire page table.

Figure 4 shows mean performance results with the same
capacity and swap configuration as §V-A, normalized to the
performance of the default MG-LRU configuration. It is im-

mediately clear that MG-LRU performance is also inconsistent
with respect to the choice of its parameters. Within TPC-H, an
enormous gap exists between Scan-None, which improves on
MG-LRU by over 20%, and Scan-All, which degrades mean
performance by over 60%. However, the opposite trend exists
for PageRank, albeit not as drastically. Scan-None slightly
degrades performance, while Scan-All — by far the worst
configuration on TPC-H — performs best. This indicates that
the relative ordering of MG-LRU parameter configurations is
also inconsistent across workloads.

All MG-LRU configurations perform similarly on YCSB
workloads. This is likely due to the highly skewed zipfian
access distribution used to generate requests [12]. It is known
that LRU is a suboptimal replacement policy for such distribu-
tions, with many software key-value cache applications using
a variant of the FIFO eviction policy [17], [29], [30]. Given
that MG-LRU attempts to approximate LRU, it is expected
that all of its variants are ultimately limited in effectiveness.

Figure 5 allows us to examine the behavior of each MG-
LRU configuration in more detail. As before, we see a strong
linear relationship between faults and execution time for TPC-
H. Interestingly, the slope of this relationship is the same for
all parameter configurations except Scan-All, which appears
to have a higher runtime cost per fault. We find this to result
from increased straggler threads. This occurs because Scan-
All scans many more sections of the page table compared
to other MG-LRU variants. Combined with how the aging
thread linearly scans the page table, this leads to the scanned
pages of each thread’s working memory being bimodally
distributed. That is, most threads have either had all of their
working memory recently scanned, or none of them. This leads
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(a) TPC-H (b) PageRank

Fig. 5: Joint execution time and fault distributions for TPC-H and PageRank using alternate MG-LRU configurations.
TPC-H continues to exhibit a strong linear relationship between runtime and the number of faults. Meanwhile, the
runtime of PageRank appears less correlated with the total fault count.

to inconsistencies in how thread-specific pages are evicted,
causing stragglers even when all threads execute the same
type of task. In contrast, all other tested MG-LRU variants
have mechanisms to have more consistent scanning behavior
across all threads, whether by the bloom filter (MG-LRU and
Gen-14), use of randomness (Scan-Rand), or not scanning at
all (Scan-None). Note that this highlights scanning overhead as
a critical factor for paging performance. Such inconsistencies
would become less likely to occur as scans become faster with
respect to the application.

Moving forward, Figure 5a shows how Scan-None performs
best on TPC-H — it has the lowest mean and spread of faults.
This seems unintuitive, as Scan-None only scans accessed
bits through the eviction thread. Thus, it is the most similar
to Clock among our tested configurations, yet it improves
performance on TPC-H instead of degrading it. However, the
critical difference between Scan-None and Clock is that Clock
walks the reverse map for every physical page individually,
incurring the cost of pointer chasing each time. Meanwhile,
when Scan-None finds an accessed page table entry through
the reverse map, it takes advantage of spatial locality by
also scanning the surrounding page table entries. This can
significantly reduce the cost of page table scans which, as
shown by Scan-All, is critical for TPC-H.

We see this locality benefiting on PageRank as well,
where Scan-None again outperforms Clock. In general, though,
PageRank seems much less sensitive to scanning overheads
than TPC-H. This is demonstrated by Scan-All, which is by far
the worst policy for TPC-H, but the best for PageRank. While
more study is ultimately needed, we suspect this results from
the different threading models in each workload. Since TPC-H
is executed using Spark-SQL, it is split into a number of highly
parallel stages with little synchronization overhead and mostly
balanced work per thread. Meanwhile, PageRank consists of
multiple iterations of parallelized sparse matrix multiplication.
This makes the work per thread vary with the degree of each
graph vertex. Thus, if the end of an iteration is spent waiting

for the processing of a single high-degree vertex, the overall
runtime can be affected more by a few critical faults rather
than the overall fault rate. Additionally, such scenarios would
experience less CPU contention, allowing expensive page table
scans to improve the accuracy of critical replacement decisions
while incurring little cost on overall runtime.

Overall, tuning MG-LRU parameters reveals a complex rela-
tionship that exists between the overhead of scanning accessed
bits, the quality of replacement decisions, and the sensitivity
of workloads to these factors. Our tested configurations show
that this relationship greatly affects the “optimal” parameters
for any given scenario. At a higher level, it is remarkable that
using these parameter configurations successfully improved
both mean performance and variation in any workload. Recall
that each of these configurations effectively removed the
bloom filter, a major data structure in MG-LRU’s design. In
the case of Scan-Rand, this data structure was replaced with
an entirely random method of scanning the page table. This
calls into question whether the bloom filter is a necessary data
structure for MG-LRU, which we discuss further in §VI-C. In
the following sections, we continue to explore the use of MG-
LRU in varying configurations of the surrounding system.

C. Trends Across Memory Capacities
So far, we have characterized MG-LRU in settings where

the available memory for each workload was only 50% of the
workload’s memory footprint. This represents heavy memory
pressure, which induces significant swapping and magnifies
the replacement policy’s performance. We now present results
for contexts with less stringent constraints, where 75% and
90% of the workload’s memory footprint can fit in main
memory.

Figure 6 shows mean performance results for all tested
replacement policies, normalized to that of MG-LRU with
default parameters. We find that each replacement policy per-
forms within a few percentage points of each other across all
workloads. This results from the number of faults decreasing
significantly, reducing their impact on overall runtime. We do
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(a) 75% Capacity-Footprint Ratio (b) 90% Capacity-Footprint Ratio

Fig. 6: Mean performance at varied capacity-footprint ratios. Performance is normalized to the mean performance
of MG-LRU using default parameters. Due to the reduced fault rates at higher memory capacities, total application
runtime is more balanced across all replacement policies.

(a) 75% Capacity-Footprint Ratio (b) 90% Capacity-Footprint Ratio

Fig. 7: Normalized fault distributions at different capacity-footprint ratios. Error bars show maximum, minimum, and
all quartiles. Faults are normalized to the mean number of faults when using MG-LRU with default parameters. While
runtime variation is lessened at higher memory capacities, variance in the number of faults significantly increases.

see a surprising result between MG-LRU and Clock. While
MG-LRU consistently outperformed Clock at a 50% capacity-
footprint ratio, we see cases where Clock shows improvements
over MG-LRU at higher memory capacity. Although these
improvements are relatively small (2-5%), they are statistically
significant in all cases (p < 0.01).

While the total runtime variation is relatively small in our
experiments, the variation in number of faults is not. Figure 7
shows the fault distributions for each policy on TPC-H and
PageRank. At a 75% capacity-footprint ratio, we see a large
range of faults for every MG-LRU configuration on PageRank.
In some cases, there are executions where the number of faults
is more than 6× the average. Yet, the interquartile range in
each of these cases is often negligible in comparison. This
indicates that the range results from a few outlier executions.
That being said, the presence of such outlier executions across
all MG-LRU configurations raises concerns that MG-LRU may
be vulnerable to such corner cases. Further study is required
to determine the cause of such corner cases and why they
do not occur for Clock, which has a comparatively tight fault
distribution on PageRank.

Regarding tail latencies, we see inconsistent trends across
varying memory capacities. Figure 8a shows a similar trend
seen in §V-A, where Clock exhibits lower read latencies than
MG-LRU. However, instead of increasing write latencies as
in §V-A, Clock also reduces these latencies at 75% capacity
(Fig. 8c). This trend becomes increasingly irregular at 90%
capacity, where comparisons of write latencies become work-
load dependent (Fig 8d). Meanwhile, the read latencies start
to converge with increasing memory capacity (Fig 8b), an

expected result.
Overall we see that just as MG-LRU’s relative performance

is inconsistent across workloads, it can also vary with memory
capacity and oversubscription ratio. More broadly, these results
introduce the concept that different replacement policies may
be best suited for specific memory capacities or oversub-
scription ratios. To our knowledge, this concept has yet to
be studied in detail in academic literature. Yet, as memory
capacities and footprints continue to grow, the effectiveness
of paging policies at scale will only increase in relevance.

D. Varying Swap Medium

For our final set of experiments, we investigate using ZRAM
as the swap medium instead of SSD. We configure ZRAM to
use the LZO-RLE compression and limit the uncompressed
memory capacity to 50% of the workload footprints. With
4KB read and write latencies in the tens of microseconds, our
ZRAM configuration is comparable to systems with remote or
network-disaggregated memory [19], [22], [28].

Figure 9 shows mean performance results. We once again
see performance trends that differ from previously tested
system configurations. While the performance across MG-
LRU parameters is consistent, Clock now matches MG-LRU
performance in all workloads except PageRank. Figure 10
shows that the fault distribution coincides perfectly with these
results. It is possible that on PageRank, the combination of
lower fault costs, a semi-irregular access pattern, and not
taking advantage of locality makes accessed bit scans too slow
when using Clock, leading to poor replacement decisions. In
contrast, TPC-H has more regular access patterns, allowing
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(a) Read Latencies (75%) (b) Read Latencies (90%)

(c) Write Latencies (75%) (d) Write Latencies (90%)

Fig. 8: Tail latency distributions at different memory capacities. Just as in experiments at 50% capacity, Clock exhibits
lower tail latencies for reads than MG-LRU. However, the write tail latencies are more unstable with changing memory
capacity. Because all variants of MG-LRU exhibit similar tail latencies, we only show results for the default parameters.

Fig. 9: Mean performance using ZRAM swap at a 50%
capacity-footprint ratio. With the exception of PageRank,
Clock and MG-LRU perform equally.

slower scans to still have effect, and YCSB consists of random
accesses, limiting the effectiveness of all policies.

To further examine the relationship between the cost of
swapping and the quality of replacement decisions, we plot
the change in runtime and faults when using ZRAM instead
of SSD swap (Fig. 11). As expected, fault rates do not increase
much with YCSB workloads due to their random access pat-
terns. For workloads B and C, we likely see slightly increased
fault rates because their proportion of write requests is much
lower than that of workload A [12]. As a result, A will exhibit
more synchronization overheads than B and C, reducing the
relative swap-induced overheads, which masks the effect of
swap costs on scanning and replacement decisions.

We see that for the workloads with more regular access
patterns, TPC-H and PageRank, the MG-LRU faults signif-
icantly more using ZRAM instead of SSD swap. This is
highlighted the most in PageRank, which runs over 5× faster
yet faults nearly 3× more with ZRAM swap. As mentioned

Fig. 10: Mean faults using ZRAM swap at a 50% capacity-
footprint ratio. As with mean runtime, Clock faults equally
as much as MG-LRU in all workloads except PageRank.

before, this indicates that as the cost of swapping decreases,
the page table scans do not progress quickly enough to
make accurate replacement decisions as the application runs.
This bears significance for emerging systems with remote or
tiered memory, as the page replacement and migration policies
will require faster methods of tracking access information to
maintain the same fault rates.

Lastly, we examine the effect of ZRAM swap on the tail
latency of YCSB workloads. Figure 12 shows our experiment
results. Since all MG-LRU variants exhibit similar tail laten-
cies, we show only the default parameter configuration. Across
all workloads, MG-LRU exhibits 2-5× longer 99.99% tail
latencies. This differs considerably from experiments using
SSD swap, where MG-LRU exhibited longer read tails, but
shorter write tails. With ZRAM swap, Clock exhibits slightly
higher 99% tails in some cases, but heavily outperforms
MG-LRU afterwards. Since Clock also matches MG-LRU
in throughput, another difference from SSD swap, our ex-
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(a) Runtime difference between SSD and ZRAM (b) Difference in faults between SSD and ZRAM

Fig. 11: Change in runtime and number of faults between ZRAM and SSD swap. Despite the significant decrease in
runtime when switching to ZRAM, the number of faults remains steady or increases significantly.

(a) Read Latencies

(b) Write Latencies

Fig. 12: Tail latency distributions using ZRAM swap.
Under this configuration, Clock strictly and significantly
outperforms MG-LRU in tail performance.

periments suggest that Clock is a strict improvement over
MG-LRU in this system configuration. Given that MG-LRU
heavily outperforms Clock in other system configurations and
workloads, such a result indicates that replacement policies
have very complex interactions with different workloads and
systems. This calls for deeper study of all aspects of replace-
ment policies, especially as memory footprints, capacities, and
hierarchies continue to grow.

VI. DISCUSSION AND FUTURE WORK

This work characterizes MG-LRU across a number of
workloads and system configurations. Doing so highlights a
number of tradeoffs to consider in the future characterization
and design of page replacement and migration policies.

A. MG-LRU and Clock

When comparing MG-LRU to its predecessor, Clock, we
find that MG-LRU is not necessarily an improvement. While
MG-LRU improves mean performance considerably in many
scenarios, in §V-A and §V-D, we show cases where MG-
LRU has considerably worse tail performance than Clock, with
MG-LRU performing strictly worse on YCSB with ZRAM
swap. Intuitively, one could expect MG-LRU to induce more
performance variation due to its use of a separate aging thread
to scan page tables. This thread introduces more sources of
CPU contention and scheduling variance, which circularly
affects the results of each page table scan. Additionally, MG-
LRU exploits page table locality in the eviction thread to
amortize the cost of reverse map walks. This reduces the
average overhead of page table scans. However, compared to
Clock, it can also cause the eviction thread to scan far more
accessed bits before reclaiming a page. Thus, in the tail case,
MG-LRU could experience a far slower rate of page reclaim
than Clock. In a state of high memory pressure or thrashing,
this could make reclaim too slow to make space for demand
faults from the application, forcing page faults to wait for disk
writes to complete before being serviced. Such a case could
occur if the oldest generation contains many accessed pages
from separate regions of the page table, a possible scenario
under YCSB’s random access distribution and an explanation
for MG-LRU’s increased tail latencies.

We leave a more detailed investigation of such cases for
future work. More broadly, our experiments indicate that
choosing whether to use MG-LRU or Clock, especially in a
datacenter environment, is not as simple as selecting the policy
with the best mean performance. Instead, one must deeply
understand the complexities of the executed workloads and
how they interact with the underlying system and replacement
policy. We hope to motivate research that develops a better
understanding from the paging algorithm’s point of view, thus
reducing the need for application-specific profiling.
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B. Scanning Overhead and Quality

Our experiments also reveal insights regarding the effect of
scanning overhead on the quality of replacement decisions.
This is exemplified in §V-D. We measure the latency of
swapping to ZRAM to be two orders of magnitude faster
than swapping to SSD. Yet, despite the far faster runtime that
results from this, there are cases where using ZRAM leads to
many times more faults than SSD. The key difference between
the two cases is that when using SSD swap, applications
spend more overall runtime waiting for faults, allowing page
table scans to progress further before the application continues
execution. This indicates that when LRU is a suitable replace-
ment policy for an application, an increase in the speed of
scans relative to the speed of the swap medium could directly
translate to improved replacement decisions and, ultimately,
faster execution. Such a result motivates further research into
more efficient scanning methods, possibly including hardware
support for setting and scanning accessed bits.

C. Use of Randomness

In examining alternate parameter configurations of MG-
LRU, we see unexpected results from Scan-Rand. Instead of
using the bloom filter to reduce wasteful page table scan-
ning, Scan-Rand removes this data structure entirely, iterating
over each region of the page table and scanning it with
a naively chosen 50% probability. Yet, we find that Scan-
Rand does not degrade performance compared to the default
MG-LRU configuration. In fact, it improves performance in
some cases. This raises questions about the bloom filter’s
utility and whether it is a useful data structure in MG-LRU.
Additionally, it motivates research into the potential benefits of
using randomness for replacement policies. It is well-known
that clever applications of randomness can provide cheap and
consistent outcomes for various algorithms [25] Further, many
page migration policies use random sampling approaches [7],
[26]. Given the complex interactions between page table scans
and replacement decisions, as well as their projected use in
large datacenters, the use of principled randomness could
provide an excellent tradeoff between the effectiveness and
scalability of scanning heuristics.

D. Future Characterization

While this work characterizes MG-LRU under a large space
of configurations, many important scenarios remain untested.
In particular, all of our workloads have a memory footprint
between 12-16GB. We have not tested more memory-intensive
workloads, in which scanning efficiently becomes an even
larger challenge as more pages reside in physical memory.
Additionally, all of our experiments run a single application
at a time, with a fresh reboot before each execution. While this
helps isolate variance that results from the replacement policy,
it does not test more realistic scenarios involving multiple
running applications and fragmentation from long-running
systems. Finally, we have not examined paging behavior under
multi-tenancy, which induces additional complications through

the presence of multiple containers or virtual machines. In-
tuitively, such settings would only increase variance due to
factors such as interactions between host and guest oper-
ating systems, inconsistency in physical memory contiguity,
application interleaving, and more. However, since paging
policies should be performant and robust under all conditions,
such additional characterizations are necessary as the field of
memory management progresses.

VII. CONCLUSION

We conduct extensive experiments on MG-LRU spanning
multiple workloads, parameter configurations, memory capac-
ities, and swap mediums. Our experiments show that MG-
LRU exhibits high variance across multiple axes. First, for a
given workload and system configuration, MG-LRU exhibits
high variation in total runtime and fault rates across otherwise
identical workload executions. Second, across different system
configurations, MG-LRU’s performance is inconsistent under
other parameter configurations and replacement policies. We
find that a different policy is best for each workload in each
tested system setup. Our results indicate that the quality of re-
placement decisions is a complex function of the method used
to scan accessed bits, scanning overhead, promotion/migration
policy, cost of swapping, memory footprint and working set
size, memory capacity, and workload behavior. As applications
become increasingly memory-hungry and memory hierarchies
become increasingly tiered, significant work will be necessary
to understand the nuances of page replacement and guide the
evolution of future memory management policies.
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