Understanding Address Translation Scaling
Behaviours Using Hardware Performance Counters

Nick Lindsay
Department of Computer Science
Yale University
New Haven, USA
nick.lindsay @yale.edu

Abstract—Virtual memory researchers are combining bench-
mark programs with synthetic input generators when crafting
experiments. These generators are tuned to generate program
instances with memory footprints in the gigabyte to terabyte
range, with the intention that these instances will have consider-
able address translation overhead. Yet, the relationship between
workload, input, and address translation overhead is poorly
understood - complicating workload and input selection.

We characterize this relationship on real machines across
various workloads, input generators, and memory footprints
using measured performance counter data. We observe that
address translation overhead typically increases as the log of the
memory footprint, but there are exceptions - even for workloads
that are thought of as being ”address translation intensive”.

We measure and provide results for the memory footprint
scaling behavior of the program, translation lookaside buffers
(TLBs), memory management unit (MMUs) caches, and page
table walkers. We show that no individual factor is responsible
for degrading performance but rather the combination of all four
(and their interactions) gives rise to address translation-related
slowdown. We find evidence for the existence of a TLB filtering
effect: higher TLB hit rates can cause longer page table walks
because the TLB filters page-level access patterns from the MMU
caches and page table walker(s).

‘We propose a new metric of address translation pressure called
”walk cycles per instruction” that captures the effects of all the
components and interactions. We demonstrate that it strongly
reflects true address translation overhead.

Finally, we show that misspeculated and aborted page table
walks can constitute up to 57% of all initiated page table
walks and that the problem gets worse with increasing memory
footprint. Superpages can reduce the number of misspeculated
and aborted walks, suggesting that superpages have effects
beyond reducing TLB miss rate and shortening page table walks.

Index Terms—address translation, virtual memory, workload
characterization, performance counters

I. INTRODUCTION

Virtual memory is an abstraction that simplifies program-
ming. A key aspect of virtual memory is address translation
(AT) which is implemented in hardware in the memory man-
agement unit (MMU). In recent years, virtual memory has been
established as a significant performance overhead in modern
systems [8]]. As a result numerous optimizations have been

The authors acknowledge the support of the National Science Foundation
grant number 2112562, Intel, and Meta.

Abhishek Bhattacharjee
Department of Computer Science
Yale University
New Haven, USA
abhishek @cs.yale.edu

proposed [4], [7], [100, [14], [16], [17], [21], [24], [26], [27],
(2901, [30[, [32[I, [34], [35]l.

To evaluate the effect of optimizations, architects frequently
run studies (either real or simulated) with workloads that
are known, or suspected to be, address translation intensive.
Traditionally, architects have used the reference inputs pro-
vided with the benchmark suites to evaluate their designs [3]],
(6], [11]]. However, many of the reference input sizes fail to
generate large amounts of AT overhead, so architects generate
new workload inputs that push the memory footprints into the
giga- to tera-byte range.

Typically, one chooses an input size in a somewhat ad-
hoc manner whilst considering multiple factors such as TLB
miss rates [17] and the ease with which the corresponding
memory footprint can be accommodated in the simulator [22].
However, the precise relationship between the input size and
these various factors is not well understood. Understanding
this is important for simplifying the process of selecting
appropriate workloads for experiments in the virtual memory
research space. We thus devote this paper to teasing apart some
of these relationships.

We define address translation overhead as the difference in
runtime between one run of a program with address translation
versus a run of the same program on a hypothetical system
with no address translation cost. This is of interest to the
architect because a large overhead indicates a large scope for
potential performance improvement by optimizing the address
translation stack.

Address translation overhead can only be approximated on
real systems, so architects frequently use proxy metrics like
TLB miss rate to predict it. We propose a new proxy metric
called Walk Cycles Per Instruction (WCPI) which is defined
as the ratio of the cycles spent performing page table walks
against the number of instructions executed. This metric is
appealing because it allows attribution of address translation
pressure to individual sources as illustrated in Equation
Namely, WCPI can be expressed as the product of access
intensity, TLB miss rate, page walker cache efficiency, and
PTE lookup latency.

We use our definition of overhead and WCPI as a framework
to help answer the following questions:

1) Do larger memory footprints lead to greater overheads?

Walk cycles Accesses TLB misses PTW accesses Walk cycles

: = - X
Instruction Instruction Access PT walk PTW access
program TLB MMU cache cache hierarchy

Equation 1: Walk cycles per instruction equation. Brackets indicate the component that gives rise to each term.

2) How well does WCPI predict overhead?

3) At what memory footprints do different MMU compo-
nents become bottlenecks?

4) How frequent are aborted and wrong-path walks?

5) How effective are 2MB pages in reducing overhead?

We reach the following conclusions (paper section indicated):

o For many AT intensive workloads, overhead scales loga-
rithmically with memory footprint.

o Walk cycles per instruction is a good proxy for AT
overhead.

o There is an apparent filtering effect where higher TLB hit
rates can cause longer page table walks due to the MMU
caches seeing less of the true access sequence.

o Wrong path and aborted page table walks constitute a
significant fraction of all walks.

o The benefits of 2MB pages start to expire for workloads
with footprints over 100GBs - within the range of foot-
prints for modern-day workloads.

II. BACKGROUND AND PRIOR WORK
A. Address translation

Address translation is the process of converting
application-visible virtual addresses to hardware physical
addresses [9]], [[18]]. This process involves navigating an in-
memory data structure called the page table during a page
table walk. On x86-64 this structure is implemented as a 4-
or 5-level radix tree and is accessed in hardware by a page
table walker. Each node in the tree is called a page table
entry, or PTE for short. The address translation process must
be performed on every application memory access.

Since page table walks are so expensive, processors in-
clude specialized caches to avoid them. Translation lookaside
buffers (TLBs) cache the results of the most recent page table
walks, thus storing directly the mapping from virtual to phys-
ical addresses. Application accesses can often be translated
by the TLB alone, completely eliminating a page table walk
and hence injecting no additional memory accesses into the
program.

To improve performance on TLB misses, modern memory
management units (MMUs) incorporate MMU caches. On
Intel x86-64 processors, these structures are called paging
structure caches [2[]. Paging structure caches cache partial
page table walks [5], allowing page table walks to skip
accesses at or near the top of the radix tree.

Traditionally, address translation is performed on the gran-
ularity of 4KB pages. Contiguous blocks of aligned 4KB
application visible virtual addresses map to contiguous blocks
of aligned 4KB hardware visible physical addresses. However,

modern architectures also contain larger page sizes called
superpages. On x86-64 these are 2MB and 1GB in size.
Superpages have two benefits. First, they map a greater region
of an application’s virtual address space in a single PTE, in-
creasing the effective capacity of the TLB and hence reducing
the TLB miss rate. Second, they reduce the length of page
table walks since PTEs can be found higher up the radix tree.

B. Workload selection

Address translation overhead is typically only exposed by
programs with large working sets since translations for smaller
working sets can be (mostly) accommodated in the TLB. His-
torically, architects have selected programs from benchmark
suites like SPEC [3]] and PARSEC [11]]. However, often the
reference inputs for these workloads do not generate a great
deal of address translation pressure, so architects generate
synthetic inputs to drive up memory footprint in the hope of
increasing AT pressure [7], [14]], [16], [24], [26[, [27], [34],
[35] .

There has been work on creating input generators that
can replicate the characteristics of known but proprietary
inputs [15], [23[], [25], [28]. Our work is orthogonal to these
approaches and could be combined to create larger workload
instances with similar characteristics.

III. QUANTIFYING OVERHEAD

In this section we propose a definition for “address trans-
lation (AT) overhead” and discuss how to estimate it exper-
imentally (Section [[II-A). We justify our choice of baseline
(Section [[TI-B). We introduce Walk Cycles per Instruction as
a proxy for AT overhead (Section[II-C).

A. Addpress translation overhead

We define the ”address translation overhead” (AT overhead)
of a workload to be the improvement in runtime that would
be achieved in the absence of address translation (e.g. with
100% TLB hit rate and the absence of AT-related code). The
overhead represents the maximal improvement in runtime that
could be achieved if all address translation cost was removed.

We do not directly measure the AT overhead because it is
impractical to eliminate every single TLB miss and bypass ev-
ery line of AT-related code. Instead, we approximate the zero-
overhead scenario by backing the workload with superpages.
We run each workload with three page sizes: 4KB, 2MB, and
1GB[H We use hugetlbfs in combination with the glibc
malloc glibc.malloc.hugetlb tunable to instruct glibc

'tc—urand crashed for three input sizes when the page size was 1GB
and so we exclude the 1GB performance counter data for cc—urand at
those input sizes from our analysis.

to back all malloc’d memory with the chosen page size (we
do not change the page backing of non-heap segments.).

We select the smallest runtime from the 2MB and 1GB page
sizes as the baseline runtime fyggeline:

thaseline = Min(tomp, tigs)
We define address translation overhead as:
AT overhead = t4xB — tpaseline

Dividing this expression by tpuseiine yields the relative AT
overhead:

~ taxB — thasel
relative AT overhead = —&B — baseline

thaseline
B. Explanation of baseline

We use min(tomp,tigs) as the baseline because we find
that although performance with 1GB pages is usually better
or similar to that of 2MB pages, it can occasionally be worse.
In particular, this happens at small memory footprints (for
our workloads up to 20GB total memory usage) because
the memory allocator cannot back regions smaller than 1GB
in size with 1GB pages, causing these regions to instead
be backed by smaller pages. However, at smaller memory
footprints, 2MB pages eliminate most translation overhead,
so we would expect the difference between the true overhead
to be minor. At larger footprints, the performance with 1GB
pages is usually better or similar to the performance with 2MB
pages and so the 1GB runtime is selected.

C. Walk cycles per instruction

We present walk cycles per instruction (WCPI) as a measure
of pressure on the address translation stack. We define WCPI
as the ratio of total page walk cycles to total instructions
executed. Unlike AT overhead, it can be calculated from results
for a single run of an experiment.

Equation [I] expresses the relationship between WCPI and
other measures of AT pressure. Each component is labeled
by the component that gives rise to the term. Hence, the
WCPI equation is a useful reference for understanding the key
relationships between the various components of the address
translation stack: namely the TLB, MMU caches, and caching
of PTEs in the cache hierarchy.

Note that walk cycles per instruction is not the same as the
translation latency per instruction. This is because the system
we test (and most state-of-the-art processors) feature multiple
levels of TLBs with varying lookup latencies, so even the
latency of a TLB hit is variable - an effect not captured in
the WCPI equation. Unfortunately, the performance counters
on our system do not provide enough information to be
able to differentiate between L1 and L2 TLB hits for retired
instructions, which are of interest to us.

Despite this, we argue that the WCPI is sufficient for the
following reasons. Firstly, the latency difference between an
L1 and L2 TLB hit (8 cycles on our system [1]]) is much
smaller than the latency of a page table walk. Secondly, it is
easier to hide the latency of an L2 TLB hit than it is an L2

TABLE I
WORKLOADS
(ST = SINGLE-THREADED, MT = MULTITHREADED)

Suite Program Generators Type
gapbs [6] be, bfs, cc, pr, tc urand, kron graph processing (MT)
yesb [13] memcached uniform key-value store (MT)
spec2006 [3] mcf rand network simplex (ST)
parsec [11]] streamcluster rand clustering (MT)
TABLE 11
INPUT GENERATORS
Generator Descriptions
urand uniform random graph
kron scale-free graph
uniform 95% read, 5% write requests, uniform distribution.
67108864 records of 8KB
(mcf) rand N timetabled trips and N (N — 1) dead-head trips

(streamcluster) rand list of random vectors

miss followed by a page table walk, so we believe that L2 hits
will have a less significant impact on performance. Finally, we
show that WCPI is strongly correlated with AT overhead in
Section [V=BIl

IV. METHODOLOGY

We select a range of programs that are typically consid-
ered address translation intensive (Table [[). These include
graph processing, network simplex, key-value stores, and
clustering algorithms. We use the corresponding input gen-
erators listed in Table urand, kron, uniform, and
(streamcluster) rand are embedded in their bench-
mark suites. We wrote the rand generator for mcf ourselves.

We call the combination of program and input
generator a workload. We denote a workload as
program-inputgenerator, unless the program only
has one input generator (e.g. mcf and streamcluster), in
which case we may simply refer to it by its program name
(e.g. mcf). For each workload, we sweep the input sizes
to generate program instances with memory footprints in
the ~ 250MB to ~ 600GB range. For the remainder of
this paper, we refer to each input size by its corresponding
memory footprint in the 4KB configuration since this is a
more tangible quantity.

Table [III| describes the system we used in our experiments.
Our workloads can be long-running (up to 3 days), so we
run experiments in parallel across three identically configured
systems. To avoid potential sources of systematic error, we run
all input size sweeps for a particular workload on the same
machine.

We follow best practices to maximize performance and
reduce sources of noise in our experiments by: disabling simul-
taneous multithreading (SMT); disabling dynamic frequency
and voltage scaling (DFVS); limiting co-running applications
to OS services only; giving our workloads high scheduler pri-
ority; disabling address space layout randomization (ASLR);

TABLE III
SYSTEM

Description

2 sockets x 6¢ Intel Xeon E5-2680 v3 @ 2.5GHz

32KB LID, 256KB L2 cache per core

30MB shared L3 shared cache per socket

TLB-L1D: 64x4KB, 32x2MB, 4x1GB

TLB-L2: 1024 x shared 4KB/2MB pages

1 page table walker

DRAM 384GB ECC DDR4 @ 1600 MHz per socket (2)
OS Linux Kernel 6.5.0-25-generic

Component

CPU

and warming up file system caches with a 60 second dry run
of the experiment.

V. RESULTS AND ANALYSIS
A. Do larger footprints lead to greater overheads?

We would expect in general that workloads with larger
memory footprints would have greater AT overhead. We test
this hypothesis by plotting relative AT overhead against the
measured memory footprint in Figure [1]

Inter-workload. There is a positive correlation between
footprint and relative AT overhead. However, there is a large
degree of variation that arises because different workloads
have different access patterns and different levels of perfor-
mance sensitivity. We discuss this on a per-workload basis
next.

Intra-workload. When we consider each workload individ-
ually, we find that there is a strong correlation between mem-
ory footprint and AT overhead. For this discussion, we will use
cc—urand as an illustrative example (Figure [2). Visually, we
can see that there is a linear relationship between relative AT
overhead and the logarithm of the memory footprint. In other
words, it appears that:

relative AT overhead ~ S3,, log;,(m) + Bo

where M is the memory footprint and 5y, Bj; are constants.

At first, this may seem surprising - why should the overhead
grow with the log of the memory footprint? Our results agree
with earlier work [20] by Jurkiewicz and Mehlhorn, who
demonstrated that workloads with certain types of access pat-
terns have an additional log x asymptotic scaling component
due to the presence of virtual memory. This overhead arises
because the page table is implemented as a radix tree which
must be walked on a TLB miss. Whilst the TLB and MMU
caches can hide some of the overhead, they do not affect the
asymptotic behavior. What is perhaps surprising is that this
log scaling behavior is observed even though the page table
only has four levels (which we might otherwise consider to
be so few that the system is far from the asymptotic regime).

We calculate the scaling coefficients on a per-workload
basis by linear regression against log;, M and a constant. The
results are presented in Table

We find that for most workloads there is a strong linear
correlation as indicated by the high adjusted R2 values.
Additionally, we find that the average coefficient of the log M

Relative AT Overhead vs Memory Footprint

Workload

e bc-kron

bec-urand

bfs-kron

bfs-urand

cc-kron

cc-urand

mcf-rand

o memcached-uniform
pr-kron
pr-urand
streamcluster-rand
tc-kron
tc-urand

0.8 1

0.6 1

]
e ® o 0

0.4 1

Relative AT Overhead

0.2 1

L J
[]
D

0.0

10° 107 108
Footprint (KB)

Fig. 1. Relationship between relative AT overhead and memory footprint,
grouped by workload.

term is 0.13 for all workloads with a strong linear correlation
(where R? > 0.9). This means that an increase of 10x in the
memory footprint causes a 13% increase in AT overhead.

There are four exceptions to this trend: mcf-rand,
memcached-uniform, streamcluster-rand, and
tc—kron. We plot their trends in Figure [3| and discuss them
here.

With mcf-rand, the relationship is highly nonlinear. At
smaller footprints, AT overhead grows slowly, before explod-
ing at larger footprints. In fact, AT overhead grows fastest for
mcf-rand out of all the workloads.

memcached-uniform is a key-value caching workload
and exhibits complex scaling behavior because the key-value
cache hit rate varies with the memory footprint. At small
memory footprints, performance is insensitive to the page
size. Increasing the memory footprint ultimately does cause
an increase in overhead, albeit in a nonlinear fashion.

For streamcluster—-rand, there is a lot of variation.
There is no evidence of any clear pattern, which would suggest
the AT overhead is more strongly determined by factors other
than the memory footprint.

Finally for tc-kron the overhead increases but levels off.
We speculate that this is because the t ¢ algorithm contains an
optimization for handling scale-free graphs (like those gener-
ated by kron) [6]. This leads to an effective access pattern
that scales in a friendly manner from an address-translation
perspective. Despite overhead not strongly increasing with
footprint, the overhead is still large (up to ~ 15%) suggesting
that this workload could still benefit from address translation
performance improvements.

Conclusion: In general, the greater the memory footprint
the greater the relative AT overhead. However, there are
exceptions - even for workloads that are traditionally thought
of as being “address translation intensive”.

B. How well does WCPI predict overhead?

In this section we evaluate the suitability of using walk
cycles per instruction (WCPI) as a proxy for address transla-

cc-urand

0.5 1

0.4 7

0.3 4

0.24

Relative AT Overhead

0.1 4

0.0 T ;
10° 107 108
Memory Footprint (KB)

Fig. 2. Relative AT overhead vs memory footprint for cc-urand

TABLE IV
REGRESSION RESULTS FOR MODEL
RELATIVE AT OVERHEAD = (g + f1log;o M + €.

Coefficients Statistic
const logig M Adj. R?

Program Generator
bc kron -0.497 0.101 0.982
urand -0.830 0.153 0.959
bfs kron -0.471 0.097 0.986
urand -0.797 0.147 0.987
cc kron -0.442 0.093 0.974
urand -0.695 0.135 0.973
mcf rand -1.129 0.187 0.667
memcached uniform -1.381 0.207 0.580
pr kron -0.479 0.099 0.990
urand -0.739 0.139 0.956
streamcluster rand 1.215 -0.094 0.122
tc kron -0.089 0.030 0.627
urand -1.048 0.196 0.970

tion overhead. We compare WCPI against four other metrics:
TLB miss rate, TLB misses per instruction, the fraction of
clock cycles with an outstanding page table walk, and the
walk cycles per access.

We evaluate the relationship between the metric and relative
AT overhead with two statistics: the Pearson correlation
coefficient and the Spearman rank correlation.

The Pearson correlation coefficient describes the degree of
linear correlation between the metric and relative AT overhead.
The magnitude describes the extent of linear correlation and
the sign describes the direction. The maximum magnitude is
one and this indicates a perfect linear correlation. We include
the Pearson correlation coefficient because it helps us quantify
the degree of linearity between the AT pressure metric and
the overhead, which is useful if one wishes to model the
relationship.

The Spearman rank correlation coefficient is another mea-
sure of similarity that operates on the difference in ranking
order between the metric and relative AT overhead. That is, a
Spearman rank correlation close to 1 indicates that the order
of the workloads when ranked by the metric is similar to the
order when ranked by relative AT overhead. It is less strict

TABLE V
STRENGTH OF CORRELATIONS BETWEEN METRIC AND RELATIVE AT
OVERHEAD.

Correlation coefficient Pearson

AT pressure metric

Spearman’s rank

TLB misses per kilo access 0.452 0.582
TLB misses per kilo instruction 0.364 0.579
Walk cycle fraction 0.555 0.688
Walk cycles per access 0.462 0.769
Walk cycles per instruction 0.567 0.768

than the Pearson correlation in the sense that it measures how
“monotonic” the relationship between two variables is, instead
of the degree of linearity. We include this measure because it
reflects the approach one might take when picking workloads
(e.g. pick the ten workloads with the most AT pressure.) We
repeat this analysis both across all workloads (inter-workload),
and within a single workload whilst sweeping the input size
(intra-workload).

There are 4 (out of 132) workload-input size combinations
where the relative AT overhead was measured to be negativeﬂ
We consider these workload-input size combinations not to be
AT sensitive and exclude them from the regression analysis.
The results are not excluded from the rest of the paper.

Inter-workload. Table [V] shows the various correlation
coefficients between AT pressure and AT overhead when we
consider all workloads and memory footprints together. We
see that TLB misses per kilo instruction performs the worst
in both measures, whereas WCPI performs best in Pearson
correlation and a close second-best Spearman’s rank. Although
WCPI has a reasonable Pearson correlation coefficient, it is
still significantly less than one.

To understand this, we plot the relationship between WCPI
and AT overhead in Figure] The Pearson correlation coeffi-
cient is far from one due to multiple sources of nonlinearity.
Firstly, there are nonlinearities arising from different work-
loads having fundamentally different characteristics. But even
within a workload, there is nonlinearity, because overhead does
not necessarily scale linearly with walk cycles.

Intra-workload. We now consider the correlation be-
tween WCPI and overhead within a single workload. We
select bc—urand as a representative workload and plot the
overhead-WCPI relationship in Figure 5} We make the follow-
ing two observations:

Firstly, there is a monotonically increasing relationship
between WCPI and overhead. This aligns with our intuition
that the greater the walk cycles the greater the overhead. It
indicates that the increase in latency cannot be hidden by the
out-of-order processor and hence contributes to the critical
path of execution.

Secondly, the relationship is nonlinear, which we attribute
to the dynamics of the program changing as it scales. By
dynamics, we refer to the composition of the dynamic instruc-
tion stream (e.g. instruction types and dependencies). This can

2One input belongs to mcf and the other three belong to memcached.

mcf-rand memcached-uniform streamcluster-rand tc-kron
L] L

o - 069 b=l h-] 0200

g g gos{® g

£ £ 04/ 2 ° £ 0.175 4

g g g £ 0.1501

) S 021 S 6l [<he

< & g o| K 01251

(1] [0.0 14 1 [] [

2 =2 5 e ° 2 0.100

o £ 1 0.4 . Jo

g g 02 g & 0.0751

! ! | -0.4+ ‘ ‘ ! | | 0.050 +%, ‘ :
0.01 0.10 1.00 0.01 0.10 1.00 0.01 0.10 1.00 0.01 0.10 1.00

Footprint (KB) 1le8 Footprint (KB) le8

Footprint (KB) le8 Footprint (KB) le8

Fig. 3. Relative AT overhead vs memory footprint for workloads with weaker linear correlations.

Workload
e bc-kron
bc-urand
bfs-kron
bfs-urand
cc-kron
cc-urand
mcf-rand
memcached-uniform
pr-kron
pr-urand
streamcluster-rand
tc-kron
e tc-urand

0.8 1

0.6 1

e ® o o

0.4 1

Relative AT Overhead

0.2 1

0.0 == T

10°
Walk cycles per instruction

Fig. 4. Relationship between relative AT overhead and walk cycles per
instruction, grouped by workload. Workload-input size combinations with a
negative measured relative AT overhead are assumed to not be AT sensitive
and are excluded from the figure.

bc-urand
°558GB
0.5 - ®280GB
[]
T 041 140GB
W
£
2 o °®
3 0.3 35GE6B
hut
<< L]
17GB
g _ ®9GB
027 4GB
2 ®
268
014168
0.0 | | | |
0.0 0.5 1.0 15 2.0

Walk cycles per instruction

Fig. 5. Relationship between AT overhead and WCPI for bc-urand. Each
point is labeled by memory footprint.

change as the input size varies; for example, see the second
row of graphs in Figure [§] which illustrates how accesses per
instruction varies with memory footprint. As another example,
consider memcached, which is a key-value (KV) cache.
When the memory footprint is small, the KV cache hit rate
is small and most of the code handles cache misses. But as
we scale up the footprint, the code distribution changes so

that the hit path is exercised more frequently. The basic block
execution distribution can be very sensitive to input size; what
is more, different basic blocks may be able to hide memory
latency by different amounts. All of these factors introduce
nonlinearity.

The degree of monotonicity between WCPI and relative
AT overhead can be quantified by the Spearman rank cor-
relation coefficient. Seven workloads have a coefficient of
1.0 exactly; three workloads have a coefficent between 0.9
and 1.0; and three workloads have coefficients less than 0.9:
mcf-urand, streamcluster—-rand, and cc—-kron. We
examined those three mentioned workloads graphically and we
found that WCPI appeared almost totally uncorrelated with
relative AT overhead.

Conclusion: When comparing across all AT-sensitive work-
loads and input sizes, the strongest Pearson correlation and
near-strongest Spearman Rank correlation occurs between
walk cycles per instruction and relative AT overhead. For most
workloads, there is a non-decreasing monotonic relationship
between WCPI and relative AT overhead.

C. When do different MMU components become bottlenecks?

There are multiple components of the memory management
unit that contribute to AT pressure: the TLB, the MMU caches,
the page table walkers, and the cache hierarchy. Whilst we
expect pressure on each component to become worse with
memory footprint, it is less clear at what memory footprints
each of these components become bottlenecks. To understand
this better, we plot all components of the WCPI equation
(Equation [T) in Figure [§] Due to space limitations, we select
the following four workloads, although these illustrate effects
that we see replicated across the whole span of workloads:
bfs-urand, mcf-rand, pr-kron, and tc-kron. We
now discuss each WCPI equation component in turn.

Walk cycles per instruction. For three out of the four
workloads, WCPI increases monotonically with input size.
This is intuitively what we would expect for our workloads
since they are known to be translation-intensive. We can also
see that for the three workloads with this scaling behavior,
to a first-order approximation, the WCPI grows with the log
of the memory footprint - much like the overhead. The one
exception to this rule is t c—kron, whose WCPI remains both
low and relatively flat. We hypothesize that this is due to its
aforementioned graceful scaling behavior.

tc-kron

pr-kron

mcf-rand

bfs-urand

: : . . . : . : : . : : : : . : .
[o=] [f=] s ~ o o o=} o =t o~ [=] [Ts] o wn o wn o o W [=) T3] [=] (= [=] [=) [=) [=) (=]
g 2 2 g2 g2+ o o o o o ¥ 8 g g & 8 A — —~ =] s g ®© © ¥ o
o o o o o o
uorpnnsul 1ad sapho ey UOBRNISU! Jadsessaelenby S F S S S S Jlem 1d Jad sassande pmid ss3208 M Ld Jad Adusieq
ssadoe Jad sassiw gL
—— : T : T T : T T : : : : T T T
2L8©2g4L89 @ ¢ I 432 - 2 & g9 o 9 o 3 g g g] °
LonanIsu 1ad s515ka e uonannsul Jad sassadde tenbay S <] <] =] =] Jlem 1d Jod sassadde pld 553238 M1d 43d Aduaje]
hnasul 1PA2 HIBM ssadoe Jad sassiw g1
m N 4 2 9 ® © ¥ & 9 m 9 m g o wm o wn 9 2 2 = °
— — —
uonanuisu s2d s34 yjep uol UEOwE ‘_M_“_ wmemuumn..._vm :mwu S S < s ° em |4 Jad wmmmmuunm ° 559208 M1d 4ad foualen
NSl Inbay ssadoe Jad sassiw g1 Alem 1d M1d
: : T : T : T : T : T T T : : : T T : T T
(=] s} = m ™~ — o o (=) =] = ~ o == m (] — o o n o n o o o (=) o o o
S 6 86 6 & 8 8 4 68 © & © o S 8 2 2 g « i p = P g ® © ¥ N
S =1 [=] [=] [=]

uorjanuisul Jad saja42 yjem

uonanasul Jad sassadoe Jejnbay

ssadoe Jad sassiw gL

Jlem 1d Jod sassaide pid

ss@22e p1d Jad Asusien

0.10 1.00

Footprint (KB)

0.01

0.10 1.00

Footprint (KB)

0.01

1.00
Footprint (KB)

0.10

0.01

0.10 1.00

Footprint (KB)

0.01

le8

le8

le8

le8

Fig. 6. Component-wise breakdown of the scaling behavior of four workloads.

bc-urand streamcluster-rand mcf-rand

1.0 1.0 1.0
=2 2 2
5 0.8+ 5 0.8 5 0.8
@] [
8 e E
G 0.6 S 0.6 G 0.6
g £ g
S 041 _ g 041 , g 041 :
5 Retired 5 Retired 5 Retired
; 0.2 Wrong path ; 0.2 1 Wrong path ; 0.2 1 Wrong path
P Aborted P Aborted P Aborted

0.0 i ; 0.0 7 : T 0.0 7 ; .

0.01 0.10 1.00 0.01 0.10 1.00 0.01 0.10 1.00
Footprint (KB) le8 Footprint (KB) le8 Footprint (KB) le8

Fig. 7. Walk outcome distribution as a function of memory footprint. The vertical width of each band corresponds to the probability that any initiated walk

has that outcome.

To understand the trends in WCPI, we deep dive into the
scaling behavior of each of the individual components (and
their interactions).

Regular accesses per instruction. For bfs-urand,
mcf-rand and pr—kron, the accesses per instruction re-
mains stable which provides evidence that the program has
reached some limiting behavior in terms of instruction com-
position. However, this is not necessarily true in general.
The instruction mix for tc—kron changes across the whole
memory footprint range, which suggests that the dynamics of
tc-kron changes somewhat significantly with input size.

TLB misses per access. We originally hypothesized that
the TLB miss curve would be sigmoidal in nature. How-
ever, there is no real sigmoidal trend for the workloads and
memory footprint ranges we consider. Both bfs-urand and
pr—kron appear to have well-defined cliffs, which we would
expect to see when we have a big jump in working set size.
However, with mcf-rand the TLB miss rate increases with
no clear sign of leveling off - which suggests that mcf-rand
must be pushed past the 380GB footprint to saturate. mcf
is also noticeable for its very high TLB miss rates - at the
largest footprint we studied around 20% of accesses result in
TLB misses. tc—kron, again as the exception, actually has
a decreasing TLB miss rate.

Accesses per walk. The average number of accesses per
page table walk depends on two factors: MMU cache effec-
tiveness and aborted page table walks. We assume that the
trends we see here are due to MMU cache effectiveness; we
discuss aborted page table walks more in Section

In general, the number of accesses per page table walk lies
within 1 and 2, across all memory footprints. This indicates
that the page walk caches are generally doing a good job.

Out of all the metrics, the number of accesses per walk
is the most unpredictable. This is not surprising. The CPU
we used in our experiments likely has at least two levels of
page table walk caches [31]], each of different sizes; so when
the spatial-locality pattern of a workload changes the complex
interplay between the various MMU caches also changes.

We observe that a decrease in the number of accesses per
page table walk often occurs with an increase in the TLB
miss rate (all workloads except tc—kron). We propose this

TABLE VI
WALK OUTCOME METRIC FORMULAE

Walk outcome Formula

Initiated dtlb_load_misses.miss_causes_a_walk

+ dtlb_store_misses.miss_causes_a_walk
Completed dtlb_load_misses.walk_completed

+ dtlb_store_misses.walk_completed
Retired mem_uops_retired.stlb_miss_loads

+ mem_uops_retired.stlb_miss_stores
Aborted Initiated - Completed
Wrong path Completed - Retired

is analogous to the “filtering effect” that affects conventional
multi-level caches [[12], [19]], [33]. As the TLB miss rate in-
creases, the filtering effect of accesses is reduced. This enables
the MMU caches to ”see” more of the true virtual memory
access pattern leading to better MMU cache replacement and
hence fewer accesses per walk.

Latency per walk access. The latency per walk access is
a function of the hotness of PTEs in the cache hierarchy.

For most workloads, the latency per walk access increases
with memory footprint. This is consistent with what we would
expect, because at larger footprints there is greater cache
contention (both between PTEs and between PTEs and regular
data), and hence the PTEs would become colder in the cache
hierarchy.

We plot the PTEs access location distribution against mem-
ory footprint in Figure |8} We use pr—kron as an illustrative
example. At the smallest footprints, most of the PTEs are
found in the L1 and L2 caches. This jumps up to around
90% of accesses around 10° KB. This is accompanied by a
large increase in TLB miss rate, suggesting the PTEs become
hotter in the cache hierarchy because they are no longer filtered
by the TLB. Increasing the footprint further results in the
PTEs moving further away from the core, as indicated by the
increasing fraction that hits in the L3 cache and memory. A
small but non-negligible fraction are found in memory at the
largest memory footprints. Despite being a small fraction of
all accesses, this significantly drives up the average latency

r-kron
1.0 p

[k
vl
13
memory

I
£

108 107 108
Footprint (KB)

e
N

Page walker access location distribution

o
o

Fig. 8. Distribution of PTE access location as a function of input size for
pr-kron. The vertical width of each band is the probability that the page
table walker finds the PTE in that location.

because the latency of a memory access is so huge.

mcf-rand is an exception to “larger footprints means
colder PTEs”. The average latency per walk access decreases
with increasing memory footprints. We speculate this is be-
cause mcf has a high TLB miss rate that grows to ~ 18%.
Because of this, PTEs increasingly displace regular data in
the caches closer to the core, and hence the average access
latency decreases. In some sense, PTEs “outcompete” regular
data. We hypothesize that this does not occur with the other
workloads because their smaller TLB miss rates mean that
regular accesses continuously apply a force that pushes PTEs
toward memory.

Conclusion: As we hypothesized, there is no ~one-size-fits-
all” explanation for why address translation pressure increases
with footprint. It is the product of multiple interacting factors
including the TLB miss rate, page walk cache effectiveness,
and hotness of PTEs in the cache hierarchy. We speculate that
WCPI is the pressure metric most strongly correlated with AT
overhead because it implicitly captures all the individual terms
and their interactions.

D. How frequent are aborted and wrong-path walks?

All initiated pages table walks have one of three outcomes:
they can correspond to a retired instruction; they can complete
on a speculated wrong path (wrong path), or they can be
aborted before they are finished. Table [VI| shows how we
compute counts from performance counters.

We plot the outcomes of page table walks for 3 work-
loads in Figure [/| Most workloads have behavior similar to
bc-urand. At low footprints, the fraction of aborted/wrong-
path walks is small: around 10% combined. Surprisingly,
as the workload scales, the fraction of wrong-path walks
increases significantly - a behavior we see for most workloads.
At large footprints this can become dramatic: with bc—urand
almost 50% of all initiated walks are either wrong-path or
aborted.

For bc—-kron we collect additional performance counters
including branch mispredictions and machine clears. We were
unable to find any clear relationship between the branch

Wrong path walk fraction vs
machine clears per instruction

e 2MB

0.4+ 4KB

0.3+

0.2+

011gt4"

Fraction of wrong path walks

0.0

375 400 425 450 475 500
Machine clears per instruction le=5

Fig. 9. Wrong path walk fraction vs machine clears per instruction.

misprediction rate and the fraction of wrong path walks. We
plot the non-correct path walk fraction against the number of
machine clears per instruction in Figure 0] We see that gener-
ally, an increase in machine clears per instruction is associated
with an increase in the combined fraction of misspeculated
and wrong-path walks. Machine clears have multiple causes
including incorrect memory dependence prediction and mem-
ory ordering violations. More study is needed to understand
why these arise more with 4KB pages.

streamcluster and mcf are noticeable because they
exhibit a large fraction of wrong-path and aborted walks even
at smaller memory footprints. With streamcluster, the
problem becomes worse with input size (up to 57% wrong-
path or aborted walks); whereas for mc £ the fraction of wrong-
path and aborted walks reduces.

Conclusion: Aborted and wrong-path walks constitute a
significant fraction of all initiated page table walks. For most
workloads, the fraction increases with increasing input size.

E. How effective are 2MB pages?

2MB superpages have, until recently, been considered a
silver bullet for improving address translation performance.
However, recent work has identified that further improvement
is possible by using 1GB huge pages [29], implying that 2MB
pages are not optimal.

As a representative example, we plot key address translation
metrics with 2MB superpages for bc-urand in Figure [I0}
For comparison, we also include the metrics with 4KB pages
when possible.

Looking at the WCPI curve, we see that 2MB superpages
result in significantly less AT pressure, as expected. This is due
to both the TLB miss rate being lower and the average page
walk latency being shorter. However, observe at very large
footprints that the TLB miss rate starts rising dramatically
(around the same time that the WCPI starts increasing).
It seems likely that further increasing footprint will further
increase WCPL

The average walk latency appears somewhat flat with 2MB
superpages. The average walk latency is the product of the
number of accesses per walk and the average latency per

=
g0 2MB a — 2MB
5 @ 0.015
£ 15 4KB g 4KB
- Z o
E 5 & 0.010
5 o l0- g
8 3 4
%0.5_ £ 0.005 1
x q
200 = 0.000
001 010 1.00 7001 010 1.00

Footprint (KB) 1le8 Footprint (KB) le8

> 1.0
— 2MB =
e
= 150 1 4KB 2087
= o7
5 550,61
2 100 4 =]
= E=
u AN S~ 047 Retired
@ 451 E
E 50 1 CERYE Wrong path
s
= Aborted
0 . ‘ = 00k . !
0.01 010 1.00 0.01 010 1.00

Footprint (KB) le8 Footprint (KB) 1le8

Fig. 10. Key address translation metrics for bc-urand with 2MB pages. Comparison with 4KB pages included for all graphs except walk outcomes.

access, both of which are lower for 2MB superpages at
all but the lowest footprints (plots not shown due to space
constraints). However, we do not expect this trend to last:
a workload with a 4TB memory requirement would require
16MB of 2MB page table entries, a quantity likely large
enough to cause significant cache pressure (and hence make
PTEs colder in the cache hierarchy).

Finally, we plot how the walk outcome distribution changes
with memory footprint for 2MB pages. While wrong-path
and aborted walks are still significant at the largest footprints
(~ 20%), it remains much less than the 4KB case which we
showed in Figure[7] This suggests that huge pages have effects
beyond simply reducing walk latency and the TLB miss rate.

Conclusion: Although 2MB superpages significantly reduce
AT pressure, the trend in walk cycles per instruction at very
large memory footprints suggests that the magnitude of this
benefit does not continue to grow for ever larger memory
footprints. However, 2MB pages do reduce the number of
aborted and wrong-path page table walks.

VI. DISCUSSION

In this work we set out to understand the complex interplay
between program, input, address translation pressure, and ad-
dress translation overhead. In the process, we have made many
insights. We summarize them here and provide suggestions as
to how they might guide further research in address translation.

Overhead usually scales with the log of the memory
footprint The relative address translation overhead tends to
scale with the log of the memory footprint for our workloads.
This is consistent with earlier theoretical work which showed
that the radix tree data structure interacts with caches to
produce this behavior. Alternative page table data structures
that do not introduce a log M overhead are deserving of
further study.

Larger footprint does not always mean larger overhead.
Despite the general trend of workloads with larger memory
footprints having larger address translation overhead, this is
not always the case - even for workloads that are thought
of as being address translation intensive (e.g. tc—kron).
Practitioners should consider empirically verifying the scaling
behavior of their workload.

Walk cycles per instruction is a good proxy for AT over-
head. The best way to find the AT overhead for a workload
is by measuring it directly. Unfortunately, this involves re-
running the workload in a controlled environment, which is
not always possible (e.g. when gathering data from production
systems). We found that walk cycles per instruction (WCPI)
is a good proxy measure for AT overhead. Consequently, we
believe that using WCPI as a heuristic to guide huge page
allocation either in the compiler or operating system would
be worthy of further investigation.

Higher TLB hit rates can cause longer page table walks.
We see in our data that an increase in the TLB miss rate is
often accompanied by an increase in MMU cache effectiveness
and an increase in the hotness of PTEs in the cache hierarchy.
We hypothesize that this is analogous to the filtering effect
observed with multi-level caches, where exposing outer caches
to more of the underlying access pattern can improve hit rates
[12]], [19], [33]]. Further research to quantify and counter the
TLB filtering effect is warranted.

Aborted and wrong path walks are significant. Aborted
and wrong path page table walks constitute a significant frac-
tion of all page table walks, which gets worse with increasing
memory footprints. This constitutes a significant cost in terms
of energy, cache bandwidth, and cache footprint - especially
at larger memory footprints where the TLB miss rate is high.
We believe that further investigation into the causes of aborted
and wrong path walks is required.

Superpages do not solve everything Although superpages
do lead to large reductions in address translation pressure, they
do not make it go away completely - especially for larger mem-
ory footprints. As footprints continue to grow, it appears likely
that we will encounter the same problems that we currently
seeing with 4KB pages. Practioners should investigate the
effectiveness of their optimizations with superpages enabled
- especially for terabyte-scale applications.

ACKNOWLEDGMENT

The authors acknowledge the support of the National Sci-
ence Foundation grant number 2112562, Intel, and Meta. We
appreciate the anonymous reviewers and shepard for their
comments and guidance on our paper. We thank Andrew Milas
for his insightful observations.

[1

[2

[R

[3]
[4]

[5]

[6]

[7]
[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

“Intel haswell (7cpu),” https://www.7-cpu.com/cpu/Haswell.html, [Ac-
cessed 02-06-2024].

“Intel® 64 and IA-32 Architectures Software Developer Manuals —
intel.com,” https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-sdm.html, [Accessed 03-06-2024].
“Spec cpu2006,” https://www.spec.org/cpu2006/,
2024].

S. Ainsworth and T. M. Jones, “Compendia: Reducing virtual-memory
costs via selective densification,” ISMM 2021 - Proceedings of the 2021
ACM SIGPLAN International Symposium on Memory Management, co-
located with PLDI 2021, pp. 52-65, 2021.

T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching:
skip, don’t walk (the page table),” SIGARCH Comput. Archit.
News, vol. 38, no. 3, p. 48-59, jun 2010. [Online]. Available:
https://doi.org/10.1145/1816038.1815970

S. Beamer, K. Asanovié, and D. Patterson, “The GAP Benchmark Suite,”
pp. 1-16, 2015. [Online]. Available: http://arxiv.org/abs/1508.03619

A. Bhattacharjee, “Translation-Triggered Prefetching.”

——, “Expert Opinion The Challenges Facing Virtual Memory Today,”
2017. [Online]. Available: www.computer.org/micro

A. Bhattacharjee and D. Lustig, “Architectural and Operating System
Support for Virtual Memory,” Synthesis Lectures on Computer Archi-
tecture, pp. 1-156, 2018.

A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared last-level TLBs
for chip multiprocessors,” Proceedings - International Symposium on
High-Performance Computer Architecture, pp. 62-73, 2011.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” Parallel Archi-
tectures and Compilation Techniques - Conference Proceedings, PACT,
pp. 72-81, 2008.

M. Chaudhuri, J. Gaur, N. Bashyam, S. Subramoney, and J. Nuzman,
“Introducing hierarchy-awareness in replacement and bypass algorithms
for last-level caches,” Parallel Architectures and Compilation Techniques
- Conference Proceedings, PACT, pp. 293-304, 2012.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” pp. 143-154.

K. Gosakan, W. Kuszmaul, I. N. Mubarek, G. Tagliavini, E. West, M. A.
Bender, A. Conway, M. Farach-colton, R. Johnson, and D. E. Porter,
“Mosaic Pages : Big TLB Reach with Small Pages,” pp. 433—448.

J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger,
“Quickly Generating Billion-Record Synthetic Databases,” ACM SIG-
MOD Record, vol. 23, no. 2, pp. 243-252, 1994.

S. Gupta, A. Bhattacharyya, Y. Oh, A. Bhattacharjee, B. Falsafi, and
M. Payer, “Rebooting virtual memory with Midgard,” Proceedings -
International Symposium on Computer Architecture, vol. 2021-June, pp.
512-525, 2021.

F. Guvenilir and Y. N. Patt, “Tailored Page Sizes,” Proceedings -
International Symposium on Computer Architecture, vol. 2020-May, pp.
900-912, 2020.

J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quan-
titative Approach, 5th Edition. Morgan Kaufmann, 2012.

A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely, and J. Emer, “Achiev-
ing non-inclusive cache performance with inclusive caches: Temporal
Locality Aware (TLA) cache management policies,” Proceedings of
the Annual International Symposium on Microarchitecture, MICRO, pp.
151-162, 2010.

T. Jurkiewicz and K. Mehlhorn, “On a model of virtual address trans-
lation,” ACM Journal of Experimental Algorithmics, vol. 19, no. 1, pp.
1-29, 2015.

K. Kanellopoulos, H. C. Nam, F. N. Bostanci, R. Bera, M. Sadrosadati,
R. Kumar, D.-B. Bartolini, and O. Mutlu, “Victima: Drastically
Increasing Address Translation Reach by Leveraging Underutilized
Cache Resources,” pp. 1-18, 2023. [Online]. Available: http://arxiv.org/
abs/2310.04158%0Ahttp://dx.doi.org/10.1145/3613424.3614276

K. Kanellopoulos, K. Sgouras, and O. Mutlu, “Virtuoso: An
Open-Source, Comprehensive and Modular Simulation Framework
for Virtual Memory Research,” 2024. [Online]. Available: http:
/larxiv.org/abs/2403.04635

H. R. Lee and D. Sanchez, “Datamime: Generating Representative
Benchmarks by Automatically Synthesizing Datasets,” Proceedings of
the Annual International Symposium on Microarchitecture, MICRO, vol.
2022-Octob, pp. 1144-1159, 2022.

[Accessed 02-06-

[24]

[25]

[26]

(27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched
address translation,” Proceedings of the Annual International Symposium
on Microarchitecture, MICRO, pp. 1023-1036, 2019.

Z. Ming, C. Luo, W. Gao, R. Han, Q. Yang, L. Wang, and J. Zhan,
“BDGS: A scalable big data generator suite in big data benchmarking,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8585,
pp. 138-154, 2014.

C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-Schaffer, “Every
walk’s a hit: making page walks single-access cache hits,” pp. 128-141,
2022.

H. Qu and Z. Yu, “WASP: Workload-Aware Self-Replicating Page-
Tables for NUMA Servers,” International Conference on Architectural
Support for Programming Languages and Operating Systems - ASPLOS,
vol. 2, pp. 1233-1249, 2024.

T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch, “A data generator
for cloud-scale benchmarking,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 6417 LNCS, pp. 41-56, 2011.
V.S.S.Ram, A. Panwar, and A. Basu, “Trident: Harnessing architectural
resources for all page sizes in x86 processors,” Proceedings of the
Annual International Symposium on Microarchitecture, MICRO, pp.
1106-1120, 2021.

D. Skarlatos, A. Kokolis, T. Xu, and J. Torrellas, “Elastic cuckoo
page tables: Rethinking virtual memory translation for parallelism,”
International Conference on Architectural Support for Programming
Languages and Operating Systems - ASPLOS, pp. 1093-1108, 2020.
S. Van Schaik, K. Razavi, B. Gras, H. Bos, and C. Giuffrida, “RevAnC:
A framework for reverse engineering hardware page table caches,”
Proceedings of the Proceedings of the 10th European Workshop on
Systems Security, EuroSec 2017, co-located with European Conference
on Computer Systems, EuroSys 2017, 2017.

G. Vavouliotis, L. Alvarez, V. Karakostas, K. Nikas, N. Koziris, D. A.
Jimenez, and M. Casas, “Exploiting page table locality for agile TLB
prefetching,” Proceedings - International Symposium on Computer Ar-
chitecture, vol. 2021-June, pp. 85-98, 2021.

D. A. Weikle, S. A. McKee, and W. A. Wulf, “Caches as filters: A new
approach to cache analysis,” IEEE International Workshop on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
- Proceedings, pp. 2-12, 1998.

Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Translation ranger:
Operating system support for contiguity-aware TLBs,” Proceedings -
International Symposium on Computer Architecture, pp. 698-710, 2019.
J. Zhang, W. Jia, S. Chai, P. Liu, J. Kim, and T. Xu, “Direct Memory
Translation for Virtualized Clouds,” International Conference on Archi-
tectural Support for Programming Languages and Operating Systems -
ASPLOS, vol. 2, pp. 287-304, 2024.

https://www.7-cpu.com/cpu/Haswell.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.spec.org/cpu2006/
https://doi.org/10.1145/1816038.1815970
http://arxiv.org/abs/1508.03619
www.computer.org/micro
http://arxiv.org/abs/2310.04158%0Ahttp://dx.doi.org/10.1145/3613424.3614276
http://arxiv.org/abs/2310.04158%0Ahttp://dx.doi.org/10.1145/3613424.3614276
http://arxiv.org/abs/2403.04635
http://arxiv.org/abs/2403.04635

	Introduction
	Background and Prior Work
	Address translation
	Workload selection

	Quantifying overhead
	Address translation overhead
	Explanation of baseline
	Walk cycles per instruction

	Methodology
	Results and analysis
	Do larger footprints lead to greater overheads?
	How well does WCPI predict overhead?
	When do different MMU components become bottlenecks?
	How frequent are aborted and wrong-path walks?
	How effective are 2MB pages?

	Discussion
	References

