
MultiScale: Memory System DVFS with Multiple
Memory Controllers

Qingyuan Deng David Meisner† Abhishek Bhattacharjee
Thomas F. Wenisch‡ Ricardo Bianchini

Rutgers University †Facebook Inc. ‡University of Michigan
{qdeng,abhib,ricardob}@cs.rutgers.edu meisner@fb.com twenisch@umich.edu

ABSTRACT
The fraction of server energy consumed by the memory
system has been increasing rapidly and is now on par with
that consumed by processors. Recent work demonstrates
that substantial memory energy can be saved with only
a small, tightly-controlled performance degradation using
memory Dynamic Frequency and Voltage Scaling (DVFS).
Prior studies consider only servers with a single memory
controller (MC); however, multicore server processors have
begun to incorporate multiple MCs. We propose MultiScale,
the first technique to coordinate DVFS across multiple MCs,
memory channels, and memory devices. Under operating
system control, MultiScale monitors application bandwidth
requirements across MCs. It then uses a heuristic algorithm
to select and apply a frequency combination that will
minimize the overall system energy within user-specified per-
application performance constraints. Our results demon-
strate that MultiScale reduces system energy consumption
significantly, compared to prior approaches, while respecting
the user-specified performance constraints.

Categories and Subject Descriptors
C.5 [Computer System Implementation]: Miscella-
neous

Keywords
Memory system, energy conservation, dynamic voltage and
frequency scaling

1. INTRODUCTION
Processors have historically dominated server power con-

sumption. However, main memory power has been growing
substantially as multicore servers require increasing memory
capacity and bandwidth [4, 18, 21, 31]. Today, main memory
accounts for roughly 40% of server energy [31], which is
comparable to or slightly higher than processor energy.

Most prior work on memory energy conservation creates
memory idleness through scheduling, batching, and layout
transformations, so that idle low-power modes can be
exploited [9, 11, 12, 14, 17, 26]. Techniques that reduce

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’12, July 30–August 1, 2012, Redondo Beach, CA, USA.
Copyright 2012 ACM 978-1-4503-1249-3/12/07 ...$10.00.

the number of DRAM chips accessed together [2, 33] or
change DRAM chip microarchitecture [7, 30] have also
been considered. Unfortunately, these prior techniques
either provide limited benefit for DDR* memories or require
changes to DIMMs (Dual In-line Memory Modules) and/or
DRAM chip microarchitecture.

In contrast, active low-power modes for main memory
have shown great promise in trading memory performance
for energy savings [8, 10]. In these techniques, the hardware
and the operating system (OS) collaborate to assess the
benefits of scaling the voltage and frequency of the MC, and
scaling the frequency of the memory channels and devices.
The ultimate goal is to provide maximal energy savings
under a user-specified performance degradation constraint.

These past memory DVFS proposals select a single perfor-
mance setting for the memory system and are thus ideal for
systems with a single MC. However, chip multiprocessors
(CMPs) are increasingly integrating multiple on-die MCs
[1, 3, 32]. Furthermore, recent work has demonstrated
the benefit of deliberately skewing traffic across multiple
MCs to preserve fair performance among applications judged
likely to interfere (i.e., by placing data such that memory-
intensive and non-memory intensive applications access dis-
joint MCs/channels) [25]. Such asymmetric traffic patterns
will call for correspondingly asymmetric DVFS control.

Recent hardware trends also suggest that traffic skew
across MCs will grow. For example, as servers increas-
ingly rely on multi-socket configurations, inter-socket MC
bandwidth requirements will vary significantly [31]. In ad-
dition, the advent of heterogeneous processors incorporating
sophisticated superscalar out-of-order cores with simpler in-
order cores (e.g., ARM’s big.LITTLE architecture [13]),
and graphics processing units (e.g., AMD’s Fusion and
Intel’s Sandybridge architectures [28]), will fundamentally
increase traffic skew across MCs. Therefore, it is critical to
explore novel multi-MC active low-power mode management
techniques. The straight-forward extension of prior work—
selecting the same frequency for all MCs based on their
average bandwidth requirement—will lead to sub-optimal
savings under skewed traffic.

Thus, this paper presents MultiScale, a set of software
policies and hardware mechanisms for coordinating DVFS
across multiple MCs, channels, and devices. Under OS
control, MultiScale monitors per-application traffic across
MCs and estimates their varying bandwidth and latency
requirements. It then uses a heuristic algorithm to quickly
select and apply an optimized MC frequency combination.
Like prior work on memory active low-power modes [10],
MultiScale’s goal is to minimize the overall system energy,
without degrading performance beyond a user-specified
limit. Unlike past work however, MultiScale is able to do
so effectively and consistently for multi-MC systems under
a variety of traffic skews.

We evaluate MultiScale using detailed simulation on a
diverse set of workload mixes constructed from the SPEC
benchmark suite [29]. We quantify MultiScale’s bene-
fits across a range of traffic-skew patterns, showcasing
its consistently higher energy efficiency versus past single
voltage/frequency approaches [10].

This work is the first to study techniques to apply
memory system active low-power modes to multiple MCs
in a coordinated manner. First, we develop a set of
low-overhead, yet effective software policies and hardware
mechanisms that monitor per-application, per-MC band-
width/latency requirements. Our readily-implementable
performance counters, allied with low-overhead OS support,
can be used to realize MultiScale’s performance and energy
models. Second, we quantify MultiScale’s ability to ex-
ploit user-defined per-application performance degradation
constraints across a range of traffic skew patterns. Our
results show that MultiScale’s ability to coordinate per-MC
DVFS based on the workloads’ dynamic memory bandwidth
requirements allows it to achieve up to 4.5× greater energy
savings than prior approaches. MultiScale is effective even
in situations when performance constraints are tight; for
example, when the allowable degradation is capped at just
1%, MultiScale can still achieve energy savings over 9%
whereas past work achieves savings of merely 2%.

2. BACKGROUND AND RELATED WORK
We summarize DRAM operation and architecture; more

details can be found in [23, 24]. In single-MC CMPs, a
single controller services memory requests to all addresses,
which are interleaved over one or more memory channels.
Each channel has its own data and address bus and can be
independently accessed. A channel connects to one or more
DIMMs, each of which usually includes 16 or 18 DRAM
chips. Each memory access targets a rank, a set of chips
that collectively respond to the access. Each rank comprises
multiple banks, each of which is a two-dimensional DRAM
cell array. A channel’s banks can be accessed in parallel,
though they share the channel’s address and data buses.

Several recent commercial processors integrate MCs on-
chip. For example, Nehalem [15] integrates four cores and
one MC with three channels to DDR3 memory. However,
MC complexity and resource contention limit the number
of channels a single controller can effectively manage. As
systems accommodate higher core counts, multiple on-chip
MCs will become the norm. For example, Power7 uses two
MCs connected to eight channels [31], whereas Tile64 uses
four MCs to service 64 cores [32].

2.1 Memory Power Management
Increasing memory capacity demands and growth in the

fraction of overall system power attributable to memory
[4, 6, 21, 31] have motivated studies of memory low-power
modes. Numerous studies investigated the use of idle low-
power modes (e.g., precharge powerdown, self-refresh) [9,
11, 12, 14, 17, 26]. However, past work has shown that
active low-power modes are generally more successful at
saving energy under performance constraints, while being
readily implementable [8, 10]. These techniques observe that
while server workloads are often highly sensitive to memory
access latency, only rarely do they demand peak memory
bandwidth [22]. In our prior work [10], we used this insight
to propose MemScale, an energy management technique for
the memory system. MemScale leverages dynamic profiling,
performance and power modeling, DVFS of the MC, and
DFS of the memory channels and DRAM devices to realize
significant energy savings under user-specified performance
degradation constraints.

App A performance

App B performance

MC 0 frequency

MC 1 frequency

Perf. target:
10% lower IPC

Perf. target:
10% lower IPC

Perf. target:
1% lower IPC

Perf. target:
1% lower IPC

Profiling

(a) MemScale (b) MultiScale

Time

Profiling

Figure 1: Because it independently manages each MC,
MultiScale can select a lower frequency for MC 0 and
thus save more energy than MemScale while remaining
within the prescribed performance bounds.

2.2 Cross-MC Traffic Skew
MemScale selects a single performance setting for the

memory system based on aggregate application require-
ments. As such, it is unable to exploit time-varying or
asymmetric traffic patterns across MCs in multiple-MC
systems. Figure 1 illustrates a scenario where two appli-
cations, A and B, run on a dual-MC system. Suppose the
memory allocation is skewed such that 80% of application
A’s accesses are directed to MC 1, whereas application B’s
accesses are predominantly to MC 0. Further, suppose that
application A is under a tight performance constraint, and
can tolerate only a 1% degradation, whereas application B
can tolerate up to 10% slowdown. Application A’s tight per-
formance constraint will require MC 1 at a high frequency.
However, there might be substantial opportunity to slow
MC 2 without violating the performance constraint of either
application. MemScale (Figure 1 left) selects only a single
frequency for both MCs, based on the tighter performance
constraint of application A, limiting energy savings. In
contrast, MultiScale (Figure 1 right) independently assesses
the bandwidth requirements of each MC and selects an
appropriate frequency/voltage to maximize energy savings
while respecting each applications’ degradation constraint.

While the OS maps virtual to physical addresses, the
interleaving of physical addresses has the greatest impact
on the traffic skew across MCs. Cache line and page
interleaving seek to distribute traffic evenly. While such
interleaving balances traffic across MCs, there are many
strong arguments and hardware/software trends pointing
toward addressing schemes that skew traffic across chan-
nels. For example, recent work by Muralidhara and co-
authors has demonstrated the benefit of deliberately skewing
traffic across multiple MCs to preserve fair performance
among applications judged likely to interfere [25]. Under
this scheme, data from memory-intensive and non-memory-
intensive applications are mapped to disjoint MCs/channels.
This isolates non-memory-intensive workloads from inter-
ference effects of intense memory traffic, while clever
scheduling techniques manage access among the memory-
intensive workloads. Similarly, Awasthi and co-authors
propose mechanisms to place data in multi-MC systems to
improve performance [3]. Their approach, which balances
the benefits of allocating application data to the MC closest
to the corresponding core against queuing delays, on-chip
latencies, and row buffer hit rates, often results in traffic
skew. Traffic skew is also common in heterogeneous plat-
forms with accelerators, such as graphics processing units
and sophisticated out-of-order cores coupled with simpler
in-order cores, which might impose differing bandwidth
requirements across MCs.

MultiScale adapts better than MemScale to traffic skew
across MCs. So, in characterizing MultiScale, we have
two primary goals: (1) We demonstrate its effectiveness
across a range of traffic patterns. To this end, we quantify

MultiScale’s operation across a spectrum of traffic skews.
(2) We aim to showcase MultiScale’s effectiveness at real-
izing energy savings even under the tightest performance
degradation constraints. To this end, we study the benefits
of MultiScale across a range of degradation constraints, as
small as 1% allowable slowdown.

3. MULTISCALE DESIGN
MultiScale seeks to maximize energy savings while adher-

ing to per-application user-specified performance degrada-
tion constraints. We now detail the hardware mechanisms
and software policies that make this possible.

3.1 Hardware and Software
Hardware mechanisms. For each MC, MemScale

adjusts its frequency and voltage and the frequency of its
associated memory channels and DIMMs; for expediency, we
shall refer to these operations collectively as “adjusting the
MC frequency”. The DIMM clocks lock to the bus frequency
(or a multiple thereof), while the MC frequency is fixed at
double the bus frequency. While MultiScale can readily
be applied to systems where each MC controls multiple
channels at different frequencies, assessing the hardware
overheads of such an approach is beyond the scope of this
work. We therefore treat each MC, together with all its
memory channels, as the unit for frequency selection. A
frequency change requires the system to briefly suspend
operation and reconfigure to run at the new target [10]. Our
experiments model the associated recalibration delays.

Similar to [10], MultiScale frequency scales the MCs,
buses, and DIMMs. Voltage scaling is restricted to the MCs,
and is set according to the selected frequencies.

Performance counter monitoring. Our management
policies require input from a set of performance counters
implemented on each core and on-chip MC. Specifically, we
require counters tracking the amount of work pending at
each MC’s memory banks and channels. Counters similar
to those we require already exist in most modern architec-
tures, and are accessible through the CPU’s performance-
monitoring interface. For further details on the exact
performance counters used, we refer the reader to [10] as
MultiScale uses identical counters.

Energy management policy. Our goal is to minimize
overall system energy consumption without degrading per-
formance beyond user-specified bounds. Therefore, as in
previous schemes [10, 20, 26], MultiScale exploits the notion
of performance slack: the difference between a baseline
execution and a target slowdown that the each application
may incur to save energy. Our control algorithm exploits
this allowable slack to reduce memory system performance
and save energy. The per-application performance target
is defined such that the application incurs no more than
a pre-selected maximum slowdown relative to its execution
without energy management (i.e., at maximum frequency).
Formally, the slack is the difference in time of the program’s
execution (TActual) from the target (TTarget).

Slack = TTarget − TActual

= TMaxFreq · (1 + γ) − TActual
(1)

where γ defines the target maximal execution time increase.
In exploiting this slack, MultiScale’s control algorithm

divides execution into fixed-sized epochs. We typically asso-
ciate an epoch with an OS time quantum. MultiScale splits
each epoch into four distinct phases. First, applications
are profiled by collecting statistics from the performance
counters. We find that profiling for 300 µs in an epoch of 5
ms suffices. Second, the OS uses the profiling information

to select new MC frequencies (as detailed in the next sub-
section). Third, each MC, its channels, and DRAM devices
are transitioned to their new frequency. Finally, the epoch
completes at this new frequency configuration. At the end
of the epoch, we again query the counters and estimate the
performance that would have been achieved had the memory
system operated at maximum frequency. The difference
between this estimate and the achieved performance is used
to update the slack and is carried forward to calculate the
target performance in the next epoch.

3.2 Performance and Energy Models
Performance model. Our control algorithm utilizes

a performance model extended from [10] to account for
per-MC frequencies and the traffic directed by each ap-
plication to each MC. The performance model predicts
the relationship between CPU cycles per instruction (CPI)
of an application, and the per-MC frequency. There are
three steps in our modeling approach. First, we estimate
the memory-boundedness of each running application, and
thus estimate the target access latency that satisfies the
performance target of each application. Second, we estimate
each MC’s contribution to this average latency (which
requires the MCs to be aware of the hardware thread that
issued each access). Finally, based on the first two steps, we
calculate per-MC frequencies. Next, we detail each step.

Step 1: Under our performance model, the runtime of a
program is defined as: ttotal = tCPU + tMem = ICPU ·
E[TPICPU] + IMem · E[LMem], where ICPU represents the
number of instructions, and Imem is the number of last-
level cache (LLC) misses stalling the pipeline. TPICPU

represents the average time that instructions spend on the
CPU (including L1 cache hits, L1 cache misses, and L2 cache
hits in a two-level cache hierarchy), and LMem is the average
memory latency of each application.

Since runtime is not known a priori, we model the rate
of progress of an application in terms of CPI. The average
CPI of a program is defined as: E[CPI] = (E[TPICPU] +α ·
E[LMem]) ·FCPU, where α is the fraction of instructions that
miss in the L2 cache and stall the pipeline, and FCPU is the
operating frequency of the core. The value of α can easily
be calculated as the ratio of instruction to LLC miss counts,
accessible through performance counters. Given a target
CPI, we can compute E[LMem] assuming other components
in the above equation are constant. By substituting α
into the equation and dividing by the frequency, we can
compute the target average per-application latency needed
to compute per-MC latency.

Step 2: Having calculated the target average memory
access latency per application, we now focus on the latency
breakdown per MC. To understand this, consider a simple
scenario where there are two applications, A and B, and
two MCs, MC 0 and MC 1. Suppose that for A, PercA0%
of total memory accesses go to channels under MC 0, while
PercA1% go to channels under MC 1. Further, assume that
PercB0% of accesses from B go to channels under MC 0, and
PercB1% of accesses go to channels under MC 1. We have:{

PercA0% + PercA1% = 100%

PercB0% + PercB1% = 100%
(2)

Assume that the average access latency to channels under
MC 0 is L0, and to channels under MC 1 is L1. Furthermore,
denote the average memory access latency of A and B is
E[LA] and E[LB], respectively. We then have:{

E[LA] = PercA0 · L0 + PercA1 · L1

E[LB] = PercB0 · L0 + PercB1 · L1
(3)

We can now use these equalities to calculate per-MC mem-
ory access latencies. Using the information from step (1) on
each application’s E[LMem], we can cap each application’s
latencies so as to ensure the correct performance targets.
Specifically, assuming that LTarget A and LTarget B are the
threshold latencies that guarantee the performance targets
of A and B, we have the following inequalities.{

E[LA] ≤ LTarget A

E[LB] ≤ LTarget B
(4)

Solving this system provides L0 and L1 values which can
then be used as input to our next step.

Although this simple example assumes two applications
and two MCs, this approach can be generalized to any
number of applications and MCs. In general, this entails
solving a linear programming (LP) problem where the
number of MCs is likely smaller than the number of running
applications. (MultiScale only needs to deal with the
applications running during the next epoch.) Standard LP
solvers can be used to calculate these latencies efficiently.
The overhead of this computation is negligible for realistic
numbers of MCs, since it only occurs once per epoch. For
our setup (4 MCs and 16 cores), the overhead is less than
50 µs on a Xeon 5520 machine.

Step 3: Having solved for L0 and L1 and the latencies
of all other MCs (which we collectively denote as LMem),
we model the relationship between channel frequency and
memory access latency. We take the approach of [10]:
E[LMem] = ξbank ·(SBank+ξbus · SBus), where ξbus represents
the average number of requests waiting for the bus and is
approximated by the counters capturing the queuing impact
of waiting for bus transfers; ξbank represents the average
number of requests waiting for the bank and is approximated
by the counters capturing per bank queuing; SBank is the
average time, excluding queueing delays, to access a bank
(including precharge, row access and column read, etc); and
SBus is the average data transfer (burst) time across the bus.
Since the values of SBank, ξbank, and ξbus can be obtained by
profiling performance counters, we can calculate SBus, which
is a function of the frequency. Finally, we can calculate the
target frequency from SBus.

Full-system energy model. Simply meeting the CPI
loss target for a given workload does not necessarily max-
imize energy efficiency. In other words, though additional
performance degradation may be allowed, it may save more
energy to run faster. To determine the best operating point,
we construct a model to predict full-system energy usage.
For memory frequency fMC 1,fMC 2, ..., fMC N, we define
the system energy ratio (SER) as:

SER(fmem) =
TfMem · (

∑
i PfMC i + PNonMem)

TBase · PBase
(5)

TfMem is the performance estimate for an epoch at frequency
fMC 1 through fMC N. Memory power is calculated with
the memory power model in [24], and PNonMem accounts
for all non-memory system components and is assumed to
be fixed. TBase and PBase are corresponding values at a
nominal frequency. At the end of each epoch’s profiling
phase, we calculate SER for all memory frequencies that
can meet the performance constraint given by the slack, and
select the frequency that minimizes the SER, from the range
calculated by the latency model as described earlier in this
section.

4. EVALUATION
In this section, we demonstrate the efficacy of MultiScale

over a range of traffic skews relative to MemScale.

Table 1: Workloads.
Name MPKI WPKI Applications (x4 each)
MIX1 2.93 2.56 applu hmmer gap gzip
MIX2 2.34 0.39 milc gobmk facerec perlbmk
MIX3 2.55 0.80 equake ammp sjeng crafty
MIX4 2.41 1.41 lucas vpr h264ref eon
MIX5 2.35 1.38 swim ammp twolf sixtrack
MIX6 2.91 1.57 libquantum twolf vpr sjeng
MIX7 3.12 1.48 mcf astar gzip sixtrack
MIX8 1.83 0.77 mgrid fma3d crafty eon

Table 2: Simulation parameters.
Feature Value

CPU cores 16 in-order, single thread, 4GHz
Single IALU IMul FALU FMulDiv

L1 I/D cache (per core) 64KB, 2-way, 1 CPU cycle hit
L2 cache (shared) 16MB, 16-way, 10 CPU cycle hit

Memory configuration 4 MCs, 1 channel/MC, 8 2GB DIMMs
tRCD/tRP/tCL 15ns, 15ns, 15ns

tFAW/tRTP/tRAS/tRRD 20/5/28/4 cycles
tXP/tXPDLL/Refresh 6ns/24ns/64ms
Row buffer read, write 250mA, 250mA
Activation-precharge 120 mA

Active standby 67 mA
Active powerdown 45 mA
Precharge standby 70 mA

Precharge powerdown 45 mA
Refresh 240 mA
VDD 1.575 V

4.1 Methodology
Simulator and workloads. Our evaluations are based

on a two-step simulation methodology. First, we use
M5 [5] to collect memory access traces (consisting of L1
cache misses and writebacks), and per-core activity traces.
Second, we feed these traces into a detailed simulator
modeling a 16-core CMP with a shared L2 cache (LLC), on-
chip MCs, memory channels, and DRAM devices. We also
feed core activity traces, with the run-time statistics from
the L2 module, into McPAT [19] to dynamically estimate
the CPU power. Overall, we simulate in detail all aspects
of core microarchitecture, caches, memory controller and
memory devices relevant to our study, including memory
device power and timing, and row buffer management.

Table 1 lists the main characteristics of our 8 workloads.
The workloads are formed by combining applications from
the SPEC 2000 and SPEC 2006 suites. We analyze the
best 100M-instruction simulation point for each applica-
tion (selected using Simpoints 3.0 [27]). The workload
terminates when the slowest application has executed 100M
instructions. We report the LLC misses per kilo instruction
(MPKI) and LLC writebacks per kilo instruction (WPKI)
of each workload in Table 1.

Simulation parameters. Table 2 details our baseline
memory system with 4 MCs, each connected to one DDR3
channel. Each channel is populated with two registered,
dual-ranked DIMMs with 18 DRAM chips each. We further
assume the 16 cores are interconnected using as 4x4 mesh
with the MCs on the corners. Every set of 4 cores has a local
MC, which is at the adjacent corner.

Table 2 also shows the timing and power parameters of
the DRAM chips, register, PLL, and MC [24], assuming
a frequency of 800 MHz. We also consider frequencies
of 733, 667, 600, 533, 467, 400, 333, 267, and 200 MHz.
Frequency transitions take 512 memory cycles plus 28ns [16].
MultiScale further assumes that the MC frequency is double
the channel frequency, which in turn is double the DRAM
device frequency. The voltage range of each MC is the same
as that of the cores (0.65V-1.2V). Each MC can be set at
a different voltage. Each MC’s power ranges from 2W to
4W, depending on the voltage, frequency, and utilization.
Based on these values, our memory system (including MCs)
accounts for 44% of the total system power on average.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

M
IX

1

M
IX

2

M
IX

3

M
IX

4

M
IX

5

M
IX

6

M
IX

7

M
IX

8

A
V

G

En
e

rg
y

Sa
vi

n
gs

 (
%

)

full	system	energy
memory	system	energy

0%

2%

4%

6%

8%

10%

12%

14%

M
IX

1

M
IX

2

M
IX

3

M
IX

4

M
IX

5

M
IX

6

M
IX

7

M
IX

8

A
V

G

P
er

f.
 D

eg
ra

d
at

io
n

 (
%

)

multiprogram average
worst program in mix

Perf. degradation bound

(a) (b)

Figure 2: (a) MultiScale’s energy savings assuming that
80% of an application’s pages are mapped to its local
MC and a 10% performance loss bound; (b) MultiScale’s
actual performance loss in this scenario.

Experiments. We compare MultiScale to MemScale for
different traffic distributions and performance degradation
bounds. We distribute traffic by controlling how many pages
of each application are allocated to its local MC. In our
experiments, we vary this from 100% (the extreme form of
channel partitioning proposed in [25]) to 80%, 60%, 40%,
25%, and 20%. Non-local MC pages are allocated randomly
across the remote MCs. Thus, the 25% case represents the
scenario in which each MC is responsible for (roughly) the
same number of pages.

For each of these cases, we investigate 1%, 3%, 5%, 7%,
and 10% allowable performance slowdowns.

4.2 Results
Figure 2(a) shows MultiScale’s memory and full-system

energy savings across the workload mixes, assuming max-
imum allowable performance degradations of 10%, and a
distribution where 80% of an application’s pages are allo-
cated to its local MC. The figure indicates that MultiScale
is successful in saving energy across all workload mixes under
skewed traffic. Although the exact savings vary across the
workloads, on average, MultiScale saves 13% of the baseline
full-system energy.

MultiScale’s energy savings do not come at the cost of
excessive performance degradation. Figure 2(b) shows the
average and worst-case performance degradation across all
applications in a workload. The results indicate that Multi-
Scale saves energy without exceeding the 10% performance
loss constraint across all workload mixes.

Figure 3 depicts the MultiScale and MemScale energy
savings across the entire spectrum of performance loss
bounds and page allocation schemes. The horizontal axis
plots the page allocation scheme, whereas the vertical axis
captures the full-system energy savings of each approach.
For every allocation scheme and approach, there are five
bars, each illustrating the full-system energy savings for a
different performance loss bound.

From this figure, we make the following observations.
First, MultiScale saves energy across every considered allo-
cation and performance bound scenario. The exact energy
savings depend upon the amount of traffic skew across MCs
and the performance bound. As expected, greater skew
and performance bounds allow MultiScale to save more
energy. For example, with 100% local page allocation and
10% performance bound, MultiScale saves over 14% of full-
system energy. In contrast, with 40% of pages allocated to
the local MC and a 5% bound, the energy savings are 8%.

Second, MultiScale conserves at least as much energy
as MemScale on every considered scenario. MultiScale’s
advantage increases with greater traffic skew across MCs.
This is expected since MultiScale is better able to detect
the traffic pressure on each MC and adjust each MC to

an appropriate frequency. Interestingly, Figure 3 also
shows that MultiScale outperforms MemScale substantially
when the performance bounds are low. For example, at
a 1% performance bound and 100% local MC allocation,
MultiScale can still achieve energy savings of over 9%,
whereas MemScale manages merely 2%. The reason is that
MultiScale provides finer-grained control of the required
memory system performance for a given slack; as such, it
is easier for MultiScale to exploit any available slack.

Finally, we consider the performance loss that MultiScale
and MemScale incur across the same spectrum of page
allocations and loss bounds. Figure 4 depicts these data,
showing the performance loss of the most degraded appli-
cation. The figure demonstrates that MultiScale degrades
the performance of the worst-hit application slightly more
than MemScale. These differences are most pronounced
(but still lower than 2%) with lower traffic skew and higher
performance bounds. In fact, MultiScale slightly violates
the bound in a few cases, but always by less than 0.23%.
These slight violations occur because MultiScale pushes
all applications to the edge of their performance bounds,
whereas MemScale pushes only the application that is most
sensitive to memory performance to its bound. Thus,
MultiScale is more prone to (slight) violations.

5. CONCLUSION
We proposed MultiScale, a set of hardware mechanisms

and software policies for using active low-power modes to
manage multiple MCs in a coordinated fashion and under
performance constraints. MultiScale yields greater energy
savings than the best previous approach, MemScale, by
gauging the traffic requirements of each MC and setting it
to the appropriate DVFS level. As our results demonstrate,
MultiScale is particularly effective in scenarios where traffic
is skewed across MCs and when the allowable performance
degradation is low. As such, MultiScale is an ideal energy
management approach for multi-MC systems with schedul-
ing and allocation policies that promote traffic skew.

6. ACKNOWLEDGEMENTS
This research was partially supported by Google and the

National Science Foundation under grants #CCF-0916539,
#CSR-0834403, and #CCF-0811320.

7. REFERENCES
[1] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and

M. Lipasti. Achieving Predictable Performance Through
Better Memory Controller Placement in Many-Core CMPs.
In ISCA, 2009.

[2] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi.
Multicore DIMM: An Energy Efficient Memory Module
with Independently Controlled DRAMs. In IEEE
Computer Architecture Letters, 2009.

[3] M. Awasthi, D. Nellans, K. Sudan, R. Balasubramonian,
and A. Davis. Handling the Problems and Opportunities
Posed by Multiple On-Chip Memory Controllers. In PACT,
2010.

[4] L. A. Barroso and U. Hölzle. The Datacenter as a
Computer: An Introduction to the Design of
Warehouse-Scale Machines. Synthesis Lectures on
Computer Architecture, Jan. 2009.

[5] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and
S. Reinhardt. The M5 Simulator: Modeling Networked
Systems. In IEEE Micro, 2006.

[6] S. Blagodurov, S. Zhuravlev, and A. Fedorova.
Contention-Aware Scheduling on Multicore Systems. In
ACM Trans. Comput. Syst., 2010.

[7] E. Cooper-Balis and B. Jacob. Fine-grained Activation for
Power Reduction in DRAM. In IEEE Micro, 2010.

0%

2%

4%

6%

8%

10%

12%

14%

16%

100% 80% 60% 40% 25% 20%

A
vg

.
sy

st
e

m
 e

n
e

rg
y

sa
vi

n
gs

Local page allocation ratio

10%-Bound
7%-Bound
5%-Bound
3%-Bound
1%-Bound

Mem Mul Mem Mul Mem Mul Mem Mul Mem Mul Mem Mul

(even allocation)

Figure 3: MultiScale’s energy savings versus MemScale across a spectrum of traffic skews and performance degradation
bounds. MultiScale consistently provides greater energy savings than MemScale.

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%

100% 80% 60% 40% 25% 20%

W
o

rs
t

p
e

rf
. d

e
gr

ad
at

io
n

10%-Bound
7%-Bound
5%-Bound
3%-Bound
1%-Bound

Mem Mul Mem Mul Mem Mul Mem Mul Mem Mul Mem Mul

(even allocation)Local page allocation ratio

Figure 4: MultiScale’s worst performance degradation versus MemScale across a spectrum of traffic skews and
performance degradation bounds. MultiScale leads to slightly higher degradations than MemScale.

[8] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and
O. Mutlu. Memory Power Management via Dynamic
Voltage/Frequency Scaling. In ICAC, 2011.

[9] V. Delaluz, M. Kandemir, N. Vijaykrishnan,
A. Sivasubramaniam, and M. J. Irwin. Hardware and
Software Techniques for Controlling DRAM Power Modes.
In IEEE Transactions on Computers, 2001.

[10] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and
R. Bianchini. MemScale: Active Low-Power Modes for
Main Memory. In ASPLOS, 2011.

[11] B. Diniz, D. Guedes, W. Meira Jr, and R. Bianchini.
Limiting the Power Consumption of Main Memory. In
ISCA, 2007.

[12] X. Fan, C. Ellis, and A. Lebeck. Memory Controller
Policies for DRAM Power Management. In ISLPED, 2001.

[13] P. Greenhalgh. big.LITTLE Processing with the
Cortex-A15 and Cortex-A7 Processors, 2011.

[14] H. Huang, K. Shin, C. Lefurgy, and T. Keller. Improving
Energy Efficiency by Making DRAM Less Randomly
Accessed. In ISLPED, 2005.

[15] Intel. Intel Xeon processor 5600 Series, 2010.
[16] JEDEC. DDR3 SDRAM Standard, 2009.
[17] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware

Page Allocation. In ASPLOS, 2000.
[18] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler,

and T. W. Keller. Energy Management for Commercial
Servers. IEEE Computer, 36(12), 2003.

[19] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and
N. Jouppi. McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore
Architectures. In Micro, 2009.

[20] X. Li, Z. Li, F. M. David, P. Zhou, Y. Zhou, S. V. Adve,
and S. Kumar. Performance-Directed Energy Management
for Main Memory and Disks. In ASPLOS, 2004.

[21] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.
Reinhardt, and T. F. Wenisch. Disaggregated Memory for
Expansion and Sharing in Blade Servers. In ISCA, 2009.

[22] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Webber,

and T. F. Wenisch. Power Management of Online
Data-Intensive Services. In ASPLOS, 2011.

[23] Micron. 1Gb: x4, x8, x16 DDR3 SDRAM, 2006.
[24] Micron. Calculating Memory System Power for DDR3, July

2007.
[25] S. P. Muralidhara, L. Subramanian, O. Mutlu,

M. Kandemir, and T. Moscibroda. Reducing Memory
Interference in Multicore Systems Via Application-Aware
Memory Channel Partitioning. In MICRO, 2011.

[26] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini.
DMA-Aware Memory Energy Management. In HPCA,
2006.

[27] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood,
and B. Calder. Using SimPoint for Accurate and Efficient
Simulation. In SIGMETRICS, 2003.

[28] S. Sawant, U. Desai, G. Shamanna, L. Sharma, M. Ranade,
A. Agarwal, S. Dakshinamurthy, and R. Narayanan. A
32nm Westmere-EX Xeon Enterprise Processor. In ISSCC,
2011.

[29] Standard Performance Evaluation Corporation. SPEC CPU
2006.

[30] A. N. Udipi, N. Muralimanohar, N. Chatterjee, Rajeev
Balasubramonian, A. Davis, and N. P. Jouppi. Rethinking
DRAM Design and Organization for Energy-Constrained
Multi-Cores. In ISCA, 2010.

[31] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. Rubio,
F. Rawson, and J. Carter. Architecting for Power
Management: The IBM POWER7 Approach. In HPCA,
2010.

[32] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. Brown, and
A. Agarwal. On-Chip Interconnection Architecture of the
Tile Processor. IEEE Micro, 2007.

[33] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and
Z. Zhu. Mini-Rank: Adaptive DRAM Architecture for
Improving Memory Power Efficiency. In Micro, 2008.

