
CoScale: Coordinating CPU and Memory System DVFS in Server Systems

Qingyuan Deng David Meisner† Abhishek Bhattacharjee
Thomas F. Wenisch‡ Ricardo Bianchini

Rutgers University †Facebook Inc. ‡University of Michigan
{qdeng,abhib,ricardob}@cs.rutgers.edu meisner@fb.com twenisch@umich.edu

Abstract

Recent work has introduced memory system dynamic voltage and
frequency scaling (DVFS), and has suggested that balanced scal-
ing of both CPU and the memory system is the most promising ap-
proach for conserving energy in server systems. In this paper, we
first demonstrate that CPU and memory system DVFS often conflict
when performed independently by separate controllers. In response,
we propose CoScale, the first method for effectively coordinating
these mechanisms under performance constraints. CoScale relies on
execution profiling of each core via (existing and new) performance
counters, and models of core and memory performance and power
consumption. CoScale explores the set of possible frequency settings
in such a way that it efficiently minimizes the full-system energy con-
sumption within the performance bound. Our results demonstrate
that, by effectively coordinating CPU and memory power manage-
ment, CoScale conserves a significant amount of system energy com-
pared to existing approaches, while consistently remaining within the
prescribed performance bounds. The results also show that CoScale
conserves almost as much system energy as an offline, idealized
approach.

1. Introduction

The processor has historically consumed the bulk of system power
in servers, leading to a rich array of processor power management
techniques, e.g. [16, 20, 37]. However, due to their success, and be-
cause of increasing memory capacity and bandwidth requirements in
multicore servers, main memory energy consumption is increasing as
a fraction of the total server energy [2, 24, 29, 39]. In response, many
active and idle power management techniques have been proposed
for main memory as well, e.g. [8, 10, 11, 12, 22, 34]. In light of
these trends, servers are likely to provide separate power manage-
ment capabilities for individual system components, with distinct
control policies and actuation mechanisms. Our ability to maximize
energy efficiency will hinge on the coordinated use of these various
capabilities [31].

Prior work on the coordination of CPU power and thermal manage-
ment across servers, blades, and racks has demonstrated the difficulty
of coordinated management and the potential pitfalls of independent
control [36]. Existing studies seeking to coordinate CPU DVFS and
memory low-power modes have focused on idle low-power memory
states [6, 13, 27]. While effective, these works ignore the possibility
of using DVFS for the memory subsystem, which has recently been
shown to provide greater energy savings [10]. As such, the coor-
dination of active low-power modes for processors and memory in
tandem remains an open problem.

In this paper, we propose CoScale, the first method for effectively
coordinating CPU and memory subsystem DVFS under performance
constraints. As we show, simply supporting separate processor and

memory energy management techniques is insufficient, as indepen-
dent control policies often conflict, leading to oscillations, unstable
behavior, or sub-optimal power/performance trade-offs.

To see an example of such behavior, consider a scenario in which
a chip multiprocessor’s cores are stalled waiting for memory a signif-
icant fraction of the time. In this situation, the CPU power manager
might predict that lowering voltage/frequency will improve energy
efficiency while still keeping performance within a pre-selected per-
formance degradation bound and effect the change. The lower core
frequency would reduce traffic to the memory subsystem, which in
turn could cause its (independent) power manager to lower the mem-
ory frequency. After this latter frequency change, the performance
of the server as a whole may dip below the CPU power manager’s
projections, potentially violating the target performance bound. So,
at its next opportunity, the CPU manager might start increasing the
core frequency, inducing a similar response from the memory sub-
system manager. Such oscillations waste energy. These unintended
behaviors suggest that it is essential to coordinate power-performance
management techniques across system components to ensure that the
system is balanced to yield maximal energy savings.

To accomplish this coordinated control, we rely on execution
profiling of core and memory access performance, using existing and
new performance counters. Through counter readings and analytic
models of core and memory performance and power consumption,
we assess opportunities for per-core voltage and frequency scaling in
a chip multiprocessor (CMP), voltage and frequency scaling of the
on-chip memory controller (MC), and frequency scaling of memory
channels and DRAM devices.

The fundamental innovation of CoScale is the way it efficiently
searches the space of per-core and memory frequency settings (we
set voltages according to the selected frequencies) in software. Es-
sentially, our epoch-based policy estimates, via our performance
counters and online models, the energy and performance cost/benefit
of altering each component’s (or set of components’) DVFS state
by one step, and iterates to greedily select a new frequency com-
bination for cores and memory. The selected combination trades
off core and memory scaling to minimize full-system energy while
respecting a user-defined performance degradation bound. CoScale
is implemented in the operating system (OS), so an epoch typically
corresponds to an OS time quantum.

For comparison, we demonstrate the limitations of fully uncoor-
dinated and semi-coordinated control (i.e., independent controllers
that share a common estimate of target and achieved performance)
of processor and memory DVFS. These strategies either violate the
performance bound or oscillate wildly before settling into local min-
ima. CoScale circumvents these problems by assessing processor and
memory performance in tandem. In fact, CoScale provides energy
savings close to an offline scheme that considers an exponential space
of possible frequency combinations. We also quantify the benefits of
CoScale versus CPU-only and memory-only DVFS policies.

Our results show that CoScale provides up to 24% full-system
energy savings (16% on average) over a baseline scheme without
DVFS, while staying within a 10% allowable performance degrada-
tion. Furthermore, we study CoScale’s sensitivity to several param-
eters, including its effectiveness across performance bounds of 1%,
5%, 15%, and 20%. Our results demonstrate that CoScale meets the
performance constraint while still saving energy in all cases.

2. Motivation and Related Work

Despite the advances in CPU power management, current servers
remain non-energy-proportional, consuming a substantial fraction of
peak power when completely idle [1]. To improve proportionality,
researchers have recently proposed active low-power modes for main
memory [7, 10]. CoScale takes a significant step in realizing effective
server-wide power-performance tradeoffs using active low-power
modes for both cores and memory. Next, we summarize some of the
work on CPU and memory power management.

2.1. CPU Power Management

A large body of work has addressed the power consumption of CPUs.
For example, studies have quantified the benefits of detecting periods
of server idleness and rapidly transitioning cores into idle low-power
states [30]. However, such states do not work well under moderate
or high utilization. In contrast, processor active low-power modes
provide better power-performance characteristics across a wide range
of utilizations. Here, DVFS provides substantial power savings for
small changes in voltage and frequency, in exchange for moderate
performance loss. Processor DVFS is a well-studied technique [16,
20, 37] that is effective for a variety of workloads.

Processor DVFS techniques typically either rely on modeling or
measurements (and feedback) to determine the next frequency to use.
Invariably, these techniques assume that the memory subsystem will
behave the same, regardless of the particular frequency chosen for
the processor(s).

2.2. Memory Power Management

While CPUs have long been a focus of power optimizations, memory
power management is now seeing renewed interest, e.g. [7, 9, 10,
38, 41]. As with processors, idle low-power states (e.g., precharge
powerdown, self-refresh) have been extensively studied, e.g. [11,
22, 27, 28, 34]. However, past work has shown that active low-
power modes are more successful at garnering energy savings for
server workloads [9, 10, 31]. In particular, the memory bus is often
underutilized for long periods, providing ample opportunities for
memory power management.

To harness these opportunities, we recently proposed MemScale, a
technique that leverages dynamic profiling, performance and power
modeling, DVFS of the MC, and DFS of the memory channels and
DRAM devices [10]. David et al. also studied memory DVFS [7]. In
both these works, memory system scaling was done in the absence of
core power management.

2.3. Integrated Approaches and CoScale

Researchers have only rarely considered coordinating management
across components [6, 5, 13, 28, 36]. Raghavendra et al. considered
how best to coordinate managers that operate at different granularities,
but focused solely on processor power [36]. Much as we find, they
showed that uncoordinated approaches can lead to destructive and
unpredictable interactions among the managers’ actions.

A few works have considered coordinated processor and memory
power management for energy conservation [13, 27]. However, un-
like these works, which assume only idle low-power states for mem-
ory, we concentrate on the more effective active low-power modes
for memory (and processors). This difference is significant for two
reasons: (1) Although the memory technology in these earlier studies
(RDRAM) allowed per-memory-chip power management, modern
technologies only allow management at a coarse grain (e.g., multi-
chip memory ranks), complicating the use of idle low-power states;
and (2) active memory low-power modes interact differently with the
cores than idle memory low-power states. Moreover, these earlier
works focused on single-core CPUs, which are easier to manage
than CMPs. In a different vein, Chen et al. considered coordinated
management of the processor and the memory for capping power
consumption (rather than conserving energy), again assuming only
idle low-power states [6]. Also assuming a power cap, Felter et
al. proposed coordinated power shifting between the CPU and the
memory by using a traffic throttling mechanism [14]. CoScale can
be readily extended to cap power with appropriate changes to its
decision algorithm and epoch length.

Perhaps the most similar work to CoScale is that of Li et al. [27],
which also seeks to conserve CPU and memory energy subject to
a performance bound. Their study investigates the combination of
CPU microarchitectural adaptations (but could easily be extended to
CPU DVFS) and memory idle low-power states, adapting the delay
threshold before a memory device is transitioned to sleep. However,
the study considers only a single-core CPU and a memory system
with few low-power states. As such, their design is able to em-
ploy a policy that experimentally profiles each processor low-power
configuration. The policy then profiles different combinations of
processor and memory idle threshold configurations. It uses phase
detection techniques and a history-based predictor to select the best
state combination based on past measurements. Such a profiling-
based approach is not viable for a large multicore with per-core and
memory DVFS settings, due to the combinatorial explosion of possi-
ble states. Moreover, it is unclear how to extend their phase-based
prediction for multi-programmed workloads; a proper configuration
must be learned for each phase combination across all programs that
may execute concurrently. CoScale’s most fundamental advance is
that it can optimize over a far larger combinatorial space. The large
space is tractable because CoScale profiles performance at current
settings and then uses simple models to predict power/performance
at other settings.

3. CoScale

CoScale leverages three key mechanisms: core and memory subsys-
tem DVFS, and a performance management scheme that keeps track
of how much energy conservation has slowed down applications.
Core DVFS. We assume that each core can be voltage and frequency
scaled independently of the other cores, as in [21, 40]. We also
assume the shared L2 cache sits in a separate voltage domain that does
not scale. A core DVFS transition takes a few 10’s of microseconds.
Memory DVFS. Our memory DVFS method is based on MemScale
[10], which dynamically adjusts MC, bus, and DIMM frequencies.
Although it adjusts these frequencies together, we shall simply refer
to adjusting the bus frequency. The DIMM clocks lock to the bus
frequency (or a multiple thereof), while the MC frequency is fixed at
double the bus frequency. Furthermore, MemScale adjusts the voltage

Actual performance

CPU frequency

Memory frequency

Actual performance

Perf. Target

Perf. Target

Profiling
Se

m
i-

co
o

rd
in

at
ed

C
o

Sc
al

e

Time

Profiling

CPU frequency

Memory frequency

Figure 1: CoScale operation: Semi-coordinated oscillates, whereas CoScale
scales frequencies more accurately.

of the MC (independently of core/cache voltage) and PLL/register in
the DIMMs, based on the memory subsystem frequency.

Memory mode transition time is dominated by frequency re-
calibration of the memory channels and DIMMs. The DIMM op-
erating frequency may be reset while in the precharge powerdown
or self-refresh state. We use precharge powerdown because its over-
head is significantly lower than that of self-refresh. Most of the
re-calibration latency is due to the DLL synchronization time, tDLLK
[32]—approximately 500 memory cycles.
Performance management. Similar to the approach initially pro-
posed in [28] and later explored in [9, 10, 11, 34], our policy is based
on the notion of program slack: the difference between a baseline ex-
ecution and a target latency penalty that a system operator is willing
to incur on a program to save energy. The basic idea is that energy
management often necessitates running the target program with re-
duced core or memory subsystem performance. To constrain the
impact of this performance loss, CoScale dictates that each executing
program incurs no more than a pre-selected maximum slowdown
γ , relative to its execution without energy management (TMaxFreq).
Thus, Slack = TMaxFreq(1+ γ)−TActual .
Overall operation. CoScale uses fixed-size epochs, typically match-
ing an OS time quantum. Each epoch consists of a system profiling
phase followed by the selection of core and memory subsystem fre-
quencies that (1) minimize full system energy, while (2) maintaining
performance within the target given by the accumulated slack from
prior epochs.

In the system profiling phase, performance counters are read to
construct application performance and energy estimates. By default,
we profile for 300 µs, which we find to be sufficient to predict the
resource requirements for the remainder of the epoch. Our default
epoch length is 5 ms.

Based on the profiling phase, the OS selects and transitions to new
core and/or memory bus frequencies using the algorithm described
below. During a core transition, that core does not execute instruc-
tions; other cores can operate normally. To adjust the memory bus
frequency, all memory accesses are temporarily halted, and PLLs and
DLLs are resynchronized. Since the core and memory subsystem
transition overheads are small (tens of microseconds) compared to
our epoch size (milliseconds), the penalty is negligible.

The epoch executes to completion with the new voltages and fre-
quencies. At the end of the epoch, CoScale again estimates the
accumulated slack, by querying the performance counters and esti-

mating what performance would have been achieved had the cores
and the memory subsystem operated at maximum frequency. These
estimates are then compared to achieved performance, with the dif-
ference used to update the accumulated slack and carried forward to
calculate the target performance in the next epoch.
CoScale example. Figure 1 depicts an example of CoScale’s behav-
ior (bottom), compared to a policy that does not fully coordinate
the processor and memory frequency selections (top). We refer to
the latter policy as semi-coordinated, as it maintains a single perfor-
mance slack (a mild form of coordination) that is shared by separate
CPU and memory power state managers. As the figure illustrates,
under semi-coordinated control, the CPU manager and the memory
manager independently decide to scale down when they observe per-
formance slack (performance above target). Unfortunately, because
they are unaware of the cumulative effect of their decisions, they
over-correct by scaling frequency too far down. For the same reason,
in the following epoch, they over-react again by scaling frequency
too far up. Such over-reactions continue in an oscillating manner.
With CoScale, by modeling the joint effect of CPU and memory
scaling, the appropriate frequency combination can be chosen to
meet the precise performance target. Our control policy avoids both
over-correction and oscillation.

3.1. CoScale’s Frequency Selection Algorithm
When choosing a frequency for each core and a frequency for the
memory bus, we have two goals. First, we wish to select a fre-
quency combination that maximizes full-system energy savings. The
energy-minimal combination is not necessarily that with the lowest
frequencies; lowering frequency can increase energy consumption
if the slowdown is too high. Our models explicitly account for the
system-vs.-component energy balance. Fortunately, the cores and
memory subsystem consume a large fraction of total system power,
allowing CoScale to aggressively consume the performance slack.
Second, we seek to observe the bound on allowable cycles per in-
struction (CPI) degradation for each running program.

Dynamically selecting the optimal frequency settings is challeng-
ing, since there are M×CN possibilities, where M is the number of
memory frequencies, C is the number of possible core frequencies,
and N is the number of cores. M and C are typically on the order of
10, whereas N is in the range of 8-16 now but is growing fast. Thus,
CoScale uses the greedy heuristic policy described in Figure 2.

Our gradient-descent heuristic iteratively estimates, via our online
models, the marginal benefit (measured as ∆power/∆per f ormance)
of altering either the frequency of the memory subsystem or that of
various groups of cores by one step (we discuss core grouping in de-
tail below). Initially, the algorithm estimates performance assuming
all cores and memory are set to their highest possible frequencies
(line 1 in the figure). It then iteratively considers frequency reduc-
tions, as long as some frequency can still be lowered without violating
the performance slack (loop starting in line 2). When presented with
a choice between next scaling down memory or a group of cores,
the heuristic greedily selects the choice that will produce the highest
marginal benefit (lines 3-12). If only memory or only cores can be
scaled down, the available option is taken (line 13-19). Still in the
main loop, the algorithm computes and records the full-system energy
ratio (SER, Section 3.3) for the considered frequency configuration.
When no more frequency reductions can be tried without violating
the slack, the algorithm selects the configuration yielding the smallest
SER (i.e., the best full-system energy savings) (line 21) and directs
the hardware to transition frequencies (line 22).

1. Estimate performance with each core and the memory subsystem at their highest frequencies
2. While any component can be scaled down further without slack violation
3. If both memory and at least one core can still scale down by 1 step
4. If the memory frequency has changed since we last computed marginal_memory
5. Compute marginal utility of lowering memory frequency as marginal_memory
6. If any core frequency has changed since we last computed marginal_cores
7. Compute marginal utility of lowering the frequency of core groups (per algorithm in Figure 3)
8. Select the core group (group_best) with the largest utility (marginal_cores)
9. If marginal_memory is greater than marginal_cores
10. Scale down memory by 1 step
11. Else
12. Scale down cores in group_best by 1 step each
13. Else if only memory can scale down
14. Scale down memory by 1 step
15. Else if only core groups can scale down
16. If any core frequency has changed since we last computed marginal_cores
17. Compute marginal utility of lowering the frequency of core groups (per algorithm in Figure 3)
18. Select the core group (group_best) with largest marginal utility (marginal_cores)
19. Scale down cores in group_best by 1 step each
20. Compute and record the SER for the current combination of core and memory frequencies
21. Select the core and memory frequency combination with the smallest SER
22. Transition hardware to the new frequency combination

Figure 2: CoScale’s greedy gradient-descent frequency selection algorithm.

1. Scan the previous list of cores, removing any that may not scale down further or whose frequency has changed
2. Re-insert cores with changed frequency, maintaining an ascending sort order by delta performance
3. For group i from 1 to number of cores on the list
4. Let delta power of the i-th group be equal to the sum of delta power from first to the i-th core
5. Let delta performance be equal to delta performance of the i-th core
6. Let marginal utility of i-th group be equal to delta power over delta performance just calculated
7. Set the group with the largest marginal utility as the best group (group_best) and its utility as marginal_cores

Figure 3: Sub-algorithm to consider core frequency changes by group.

Changing the frequency of the memory subsystem impacts the
performance of all cores. Thus, when we compute the ∆per f ormance
of lowering memory frequency, we choose the highest performance
loss of any core. Similarly, when computing the ∆per f ormance of
lowering the frequencies of a group of cores, we consider the worst
performance loss in the group. The ∆power in these cases is the
power reduction that can be achieved by lowering the frequency of
each core in the group.

An important aspect of the CoScale heuristic is that it considers
lowering the frequency of cores in groups of 1, 2, 3, ..., N cores (lines
1-6 in Figure 3). The group formation algorithm maintains a list
of cores that are eligible to scale down in frequency (i.e., they can
be scaled down without slack violation), sorted in ascending order
of ∆per f ormance. To avoid a potentially expensive sort operation
on each invocation, the algorithm updates the existing sorted list by
removing and then re-inserting only those cores whose frequency has
changed (lines 1-2). N possible core groups are considered, forming
groups greedily by first selecting the core that incurs the smallest
delta performance from scaling (i.e., just the head of the list), then
considering this core and the second core, then the third, and so on.
This greedy group formation avoids combinatorial state space explo-
sion, but, as we will show, it performs similarly to an offline method
that considers all combinations. Considering transitions by group is
needed to prevent CoScale from always lowering memory frequency
first, because the memory subsystem at first tends to provide greater
benefit than scaling any one core in isolation. Failing to consider
group transitions may cause the heuristic to get stuck in local minima.

Our algorithm is run at the end of the profiling phase of each epoch
(5ms by default). Because of core grouping, the complexity of our
heuristic is O(M+C×N2), which is exponentially better than that
of the brute-force approach. Given our default simulation settings for
M (10), C (10), and N (16), searching once per epoch has negligible

overhead. Specifically, in all our experiments, searching takes less
than 5 microseconds on a 2.4GHz Xeon machine. Our projections
for larger core counts suggest that the algorithm could take 83 and
360 microseconds for 64 and 128 cores, respectively, in the worst
case (4 microseconds in the best case). If one finds it necessary to
hide these higher overheads, one can either increase the epoch length
or dedicate a spare core to the algorithm.

3.2. Comparison with Other Policies

The key aspect of CoScale is the efficient way in which it searches
the space of possible CPU and memory frequency settings. For com-
parison, we study five alternatives. The first, called “MemScale”,
represents the scenario in which the system uses only memory sub-
system DVFS. The second alternative, called “CPUOnly”, represents
the scenario with CPU DVFS only. To be optimistic about this alter-
native, we assume that it considers all possible combinations of core
frequencies and selects the best. In both MemScale and CPUOnly,
the performance-aware energy management policy assumes that the
behavior of the components that are not being managed will stay the
same in the next epoch as in the profiling phase.

The third alternative, called “Uncoordinated”, applies both Mem-
Scale and CPU DVFS, but in a completely independent fashion. In
determining the performance slack available to it, the CPU power
manager assumes that the memory subsystem will remain at the
same frequency as in the previous epoch, and that it has accumulated
no CPI degradation; the memory power manager makes the same
assumptions about the cores. Hence, each manager believes that
it alone influences the slack in each epoch, which is not the case.
The fourth alternative, called “Semi-coordinated”, increases the level
of coordination slightly by allowing the CPU and memory power
managers to share the same overall slack, i.e. each manager is aware
of the past CPI degradation produced by the other. However, each

Core 0
Frequency

M
em

or
y

Fr
eq

ue
nc

y

Core
 1

Fre
quencyU

nc
oo

rd
in

at
ed

Core 0
Frequency

M
em

or
y

Fr
eq

ue
nc

y

Core
 1

Fre
quency

O
f

in
e

Core 0
Frequency

M
em

or
y

Fr
eq

ue
nc

y

Core
 1

Fre
quency

C
oS

ca
le

Core 0
Frequency

M
em

or
y

Fr
eq

ue
nc

y

Core
 1

Fre
quency

Core 0
Frequency

M
em

or
y

Fr
eq

ue
nc

y

Core
 1

Fre
quency

Core 0
Frequency

M
em

or
y

Fr
eq

ue
nc

y

Core
 1

Fre
quency

Core 0
Frequency

M
em

or
y

Fr
eq

ue
nc

y

Core
 1

Fre
quency

Se
m

i-c
oo

rd
in

at
ed

Core 0
Frequency

M
em

or
y

Fr
eq

ue
nc

y

Core
 1

Fre
quency

Core 0
Frequency

M
em

or
y

Fr
eq

ue
nc

y
Core

 1

Fre
quency

Core 0
Frequency

M
em

or
y

Fr
eq

ue
nc

y

Core
 1

Fre
quency

One epochOne epochEpoch 1

Epoch 1 Epoch 2 Epoch 3

Epoch 1 Epoch 2 Epoch 3

Epoch 1: step 1 Epoch 1: step 2 Epoch 1: step 3

Figure 4: Search differences: CoScale searches the parameter space efficiently. Uncoordinated violates the performance bound and Semi-coordinated gets
stuck in local minima.

manager still tries to consume the entire slack independently in each
epoch (i.e., the two managers account for one another’s past actions,
but do not coordinate their estimate of future performance).

Finally, the fifth alternative, called “Offline”, relies on a perfect
offline performance trace for every epoch, and then selects the best fre-
quency for each epoch by considering all possible core and memory
frequency settings. As the number of possible settings is exponential,
Offline is impractical and is studied simply as an upper bound on how
well CoScale can do. However, Offline is not necessarily optimal,
since it uses the same epoch-by-epoch greedy decision-making as
CoScale (i.e., a hypothetical oracle might choose to accumulate slack
in order to spend it in later epochs).

Figure 4 visualizes the difference between CoScale and other
policies in terms of their search behaviors. For clarity, the figure
considers only two cores (X and Y axes) and the memory (Z axis),
forming a 3-D frequency space. The origin point is the highest
frequency of each dimension; more distant points represent lower
per-component frequencies. CPUOnly and MemScale search subsets
of these three dimensions, so we do not illustrate them.

We can see from the figure that the Offline policy (top illustration)
examines the entire space, thus always finding the best configuration.
Under the Uncoordinated policy (second row), the CPU power man-
ager tries to consume as much of the slack as possible with cores 0
and 1, while the memory power manager gets to consume the same
slack. This repeats every epoch. Semi-coordinated (third row) be-
haves similarly in the first epoch. However, in the second epoch, to

correct for the overshoot in the first epoch, each manager is restricted
to a smaller search space. This restriction leads to over-correction in
the third epoch, resulting in a much larger search space. The result-
ing oscillation may continue across many epochs. Finally, CoScale
(bottom row) starts from the origin and greedily considers steps of
memory frequency or (groups of) core frequency, selecting the move
with the maximal marginal energy/performance benefit. From the
figure, we can see that in step 1, CoScale scaled core 0 down by one
frequency level; then it scaled the memory frequency down in step 2;
and finally scaled core 1 down by two frequency levels in step 3. The
search then terminates, because the performance model predicts that
any further moves will violate the performance bound of at least one
application. CoScale’s greedy walk is shorter and produces better
results than the other practical approaches.

Although CoScale provides no formal guarantees precluding os-
cillating behavior, this behavior is unlikely and occurs only when
the profiling phases are consistently poor predictions of the rest of
the epochs, or the performance models are inaccurate. On the other
hand, the Semi-coordinated and Uncoordinated policies exhibit poor
behavior due to their design limitations.

3.3. Implementation

We now describe the performance counters and performance/power
models used by CoScale.
Performance counters. CoScale extends the performance modeling
framework of MemScale [10] with additional performance counters

that allow it to estimate core power (in addition to memory power)
and assess the degree to which a workload is instruction throughput
vs. memory bound.
• Instruction counts – For each core, CoScale requires counters for

Total Instructions Committed (TIC), Total L1 Miss Stalls (TMS),
Total L2 Accesses (TLA), Total L2 Misses (TLM), and Total L2
Miss Stalls (TLS). CoScale uses these counters to estimate the
fraction of CPI attributable to the core and memory, respectively.
These counters allow the model to handle many core types (in-
order, out-of-order, with or without prefetching), whereas Mem-
Scale’s model (which required only TIC and TMS) supports only
in-order cores without prefetching.

• Memory subsystem performance – CoScale reuses the same
seven memory performance counters introduced by MemScale,
which track memory queuing statistics and row buffer performance.
We refer readers to [10] for details.

• Power modeling – To estimate core power, CoScale needs the L1
and L2 counters mentioned above and per-core sets of four Core
Activity Counters (CAC) that track committed ALU instructions,
FPU instructions, branch instructions, and load/store instructions.
We reuse the memory power model from MemScale, which re-
quires two counters per channel to track active vs. idle cycles and
the number of page open/close events (details in [10]).
In total, CoScale requires eight additional counters per core beyond

the requirements of MemScale (which requires two per core and nine
per memory channel, all but five of which already exist in current
Intel processors).
Performance model. Our model builds upon that proposed in [10],
with two key enhancements: (1) we extend it to account for vary-
ing CPU frequencies, and (2) we generalize it to apply to cores
with memory-level-parallelism (e.g., out-of-order cores or cores with
prefetchers).

The performance model predicts the relationship between CPI,
core frequency, and memory frequency, allowing it to determine the
runtime and power/energy implications of changing core and memory
performance. Given this model, the OS can set the frequencies to
both maximize energy-efficiency and stay within the predefined limit
for CPI loss.

CoScale models the rate of progress of an application in terms of
CPI. The average CPI of a program is defined as:

E[CPI] = (E[T PICPU]+α ·E[T PIL2]+β ·E[T PIMem]) ·FCPU (1)

where E[T PICPU] represents the average time that instructions spend
on the CPU (including L1 cache hits), α is the fraction of instructions
that access the L2 cache and stall the pipeline, E[T PIL2] is the average
time that an L1-missing instruction spends accessing the L2 cache
while the pipeline is stalled, β is the fraction of instructions that miss
the L2 cache and stall the pipeline, E[T PIMem] is the average time
that an L2-missing instruction spends in memory while the pipeline
is stalled, and FCPU is the operating frequency of the core. The value
of α can be calculated as the ratio of TMS and TIC, whereas β is the
ratio of TLS and TIC.

The expected CPU time of each instruction (E[T PICPU]) depends
on core frequency, but is insensitive to memory frequency. Since
we keep the frequency (and supply voltage) of the L2 cache fixed,
the expected time per L2 access that stalls the pipeline (E[T PIL2])
does not change with either core or memory frequency (we neglect
the secondary effect of small variations in L1 snoop time). The
expected time per L2 miss that stalls the pipeline (E[T PIMem]) varies

with memory frequency. We decompose the latter time as in [10]:
E[T PIMem] = ξbank ·(SBank +ξbus · SBus), where ξbus represents the
average number of requests waiting for the bus; ξbank are requests
waiting for the bank; SBank is the average time, excluding queueing
delays, to access a bank (including precharge, row access and column
read, etc); and SBus is the average data transfer (burst) time.

The above counters and model assume single-threaded applica-
tions, each running on a different core. To tackle multi-threaded
applications, CoScale would require additional counters and a more
sophisticated performance model (one that captures inter-thread in-
teractions). To deal with context switching, CoScale can maintain
the performance slack independently for each software thread.
Full-system energy model. Meeting the CPI loss target for a given
workload does not necessarily maximize energy-efficiency. In other
words, though additional performance degradation may be allowed, it
may save more energy to run faster. To determine the best operating
point, we construct a model to predict full-system energy usage as a
function of the frequencies of the cores and memory subsystem.

For frequency f i
core for core i and memory frequency fmem, we

define the system energy ratio (SER) as:

SER(f 1
core, ..., f n

core, fmem) =
Tf 1

core,..., f n
core, fMem

·Pf 1
core,..., f n

core, fMem

TBase ·PBase
(2)

Here, TBase and PBase are time and average power at a nominal fre-
quency (e.g., the maximum frequencies). Tf 1

core,..., f n
core,Mem is the time

estimate for an epoch at frequencies f 1
core, ..., f n

core for the n cores
and frequency fMem for the memory subsystem. This time estimate
corresponds to the core with the highest CPI degradation compared
to running at maximum frequency.

Pf 1
core,..., f n

core, fMem
= PNonCoreL2OrMem +PL2+

PMem(fMem)+
n

∑
i=1

Pi
Core(f i

core).
(3)

In this formula, PNonCoreL2OrMem accounts for all system components
other than the cores, the shared L2 cache, and the memory subsystem,
and is assumed to be fixed. PL2 is the average power of the L2 cache
and is computed from its leakage and number of accesses during the
epoch. PMem(f) is the average power of L2 misses and is calculated
according to the model for memory power in [33]. We find that
this average power does not vary significantly with core frequency
(roughly 1-2% in our simulations); workload and memory bus fre-
quency have a stronger impact. Thus, our power model assumes that
core frequency does not affect memory power. Pi

Core(f) is calculated
based on the cores’ activity factors using the same approach as prior
work [3, 18]. We also find that the power of the cores is essentially
insensitive to the memory frequency.

3.4. Hardware and Software Costs

We now consider CoScale’s implementation cost. Core DVFS is
widely available in commodity hardware, although each voltage
domain may currently contain several cores. Though CPUs with
multiple frequency domains are common, there have historically
been few voltage domains; however, research has shown this is likely
to change soon [21, 40].

Our design also may require enhancements to performance coun-
ters in some processors. Most processors already expose a set of
counters to observe processing, caching and memory-related per-
formance behaviors (e.g., row buffer hits/misses, row pre-charges).

Table 1: Workload descriptions.
Name MPKI WPKI Applications (x4 each)
ILP1 0.37 0.06 vortex gcc sixtrack mesa
ILP3 0.27 0.07 sixtrack mesa perlbmk crafty
ILP2 0.16 0.03 perlbmk crafty gzip eon
ILP4 0.25 0.04 vortex mesa perlbmk crafty
MID1 1.76 0.74 ammp gap wupwise vpr
MID3 1.00 0.60 apsi bzip2 ammp gap
MID2 2.61 0.89 astar parser twolf facerec
MID4 2.13 0.90 wupwise vpr astar parser
MEM1 18.2 7.92 swim applu galgel equake
MEM3 7.93 2.55 fma3d mgrid galgel equake
MEM2 7.75 2.53 art milc mgrid fma3d
MEM4 15.07 7.31 swim applu sphinx3 lucas
MIX1 2.93 2.56 applu hmmer gap gzip
MIX3 2.55 0.80 equake ammp sjeng crafty
MIX2 2.34 0.39 milc gobmk facerec perlbmk
MIX4 2.35 1.38 swim ammp twolf sixtrack

In fact, the latest Intel architecture exposes many MC counters for
queues [25]. However, the existing counters may not conform pre-
cisely to the specifications required for our models.

When CoScale adjusts the frequency of a component, the com-
ponent briefly suspends operation. However, as our policy operates
at the granularity of multiple milliseconds, and transition latencies
are in the tens of microseconds, the overheads are negligible. As
mentioned above, the execution time of the search algorithm is not a
major concern.

Existing DIMMs support multiple frequencies and can switch
among them by transitioning to powerdown or self-refresh states
[19], although this capability is typically not used by current servers.
Integrated CMOS MCs can leverage existing DVFS technology. One
needed change is for the MC to have separate voltage and frequency
control from other processor components. In recent Intel architec-
tures, this would require separating last-level cache and MC voltage
control [17]. Although changing the voltage of DIMMs and DRAM
peripheral circuitry is possible [23], there are no commercial devices
with this capability.

4. Evaluation

We now present our methodology and results.

4.1. Methodology

Workloads. Table 1 describes the workload mixes we use. We
construct the workloads by combining applications from the SPEC
2000 and SPEC 2006 suites. We use workloads exhibiting a range
of compute and memory behavior, and group them into the same
mixes as [10, 41]. The workload classes are: memory-intensive
(MEM), compute-intensive (ILP), compute-memory balanced (MID),
and mixed (MIX, one or two applications from each other class). The
rightmost column of Table 1 lists the application composition of each
workload; four copies of each application are executed to occupy all
16 cores.

We run the best 100M-instruction simulation point for each appli-
cation (selected using Simpoints 3.0 [35]). A workload terminates
when its slowest application has run 100M instructions. Table 1
lists the LLC misses per kilo-instruction (MPKI) and writebacks per
kilo-instruction (WPKI). In terms of the workloads’ running times,
the memory-intensive workloads tend to run more slowly than the
CPU-intensive ones. On average, the numbers of epochs are: 46 for
MEM workloads, 32 for MIX, 15 for MID, and 10 for ILP.
Simulation infrastructure. Our evaluation uses a two-step simula-
tion methodology. In the first step, we use M5 [4] to collect memory

Table 2: Main system settings.
Feature Value

CPU cores 16 in-order, single thread, 4GHz
Single IALU IMul FpALU FpMulDiv

L1 I/D cache (per core) 32KB, 4-way, 1 CPU cycle hit
L2 cache (shared) 16MB, 16-way, 30 CPU cycle hit
Cache block size 64 bytes

Memory configuration 4 DDR3 channels, 8 2GB ECC DIMMs

Time

tRCD, tRP, tCL 15ns, 15ns, 15ns
tFAW 20 cycles
tRTP 5 cycles
tRAS 28 cycles
tRRD 4 cycles

Refresh period 64ms

Current

Row buffer read, write 250 mA, 250 mA
Activation-precharge 120 mA

Active standby 67 mA
Active powerdown 45 mA
Precharge standby 70 mA

Precharge powerdown 45 mA
Refresh 240 mA

access traces (consisting of L1 cache misses and writebacks), and per-
core activity counter traces. In the second step, we feed the memory
traces into our detailed LLC/memory simulator of a 16-core CMP
with a shared L2 cache (LLC), on-chip MC, memory channels, and
DRAM devices. We also feed core activity traces, along with the
run-time statistics from the L2 module, into McPAT [26] to dynami-
cally estimate the CPU power. Overall, our infrastructure simulates
in detail the aspects of cores, caches, MC, and memory devices that
are relevant to our study, including memory device power and timing,
and row buffer management.

Table 2 lists our default simulation settings. We simulate in-order
cores with the Alpha ISA. Each core is allowed one outstanding LLC
miss at a time. Like [10], we compensate for the lower memory traffic
of these assumptions by simulating prefetching in Section 4.2.4. In
the same section, we investigate an optimistic out-of-order design.

Table 2 also details the memory subsystem we simulate: 4 DDR3
channels, each of which populated with two registered, dual-ranked
DIMMs with 18 DRAM chips each. Each DIMM also has a PLL
device and 8 banks. Timing and power parameters are taken from
Micron datasheets for 800 MHz devices [32].

Our simulated MC exploits bank interleaving and uses closed-
page row buffer management, which outperforms open-page policies
for multi-core CPUs [38]. Memory read requests (cache misses) are
scheduled using FCFS, with reads given priority over writebacks until
the writeback queue is half-full. More sophisticated memory schedul-
ing is unnecessary for our single-issue workloads, as opportunities to
increase bank hit rate via scheduling are rare.

We assume per-core DVFS, with 10 equally-spaced frequencies in
the range 2.2-4.0 GHz. We assume a voltage range matching Intel’s
Sandybridge, from 0.65 V to 1.2 V, with voltage and frequency
scaling proportionally, which matches the behavior we measured on
an i7 CPU. We assume uncore components, such as the shared LLC,
are always clocked at the nominal frequency and voltage.

As in [10], we scale MC frequency and voltage, but only frequency
for the memory bus and DRAM chips. The on-chip 4-channel MC
has the same voltage range as the cores, and its frequency is always
double that of the memory bus. We assume that the memory bus
and DRAM chips may be frequency-scaled from 800 MHz to 200
MHz, with steps of 66 MHz. We determine power at each frequency
using Micron’s calculator [32]. Transitions between bus frequencies
are assumed to take 512 memory cycles plus 28 ns, which accounts
for a DRAM state transition to fast-exit precharge powerdown and

-10%

0%

10%

20%

30%

40%

50%

60%

M
EM

1

M
EM

2

M
EM

3

M
EM

4

M
ID
1

M
ID
2

M
ID
3

M
ID
4

IL
P
1

IL
P
2

IL
P
3

IL
P
4

M
IX
1

M
IX
2

M
IX
3

M
IX
4

A
V
G

En
e

rg
y

Sa
vi

n
gs

 (
%

)
Full	system	energy Memory	energy CPU	energy

Figure 5: CoScale energy savings. CoScale conserves up to 24% of the
full-system energy.

0%

2%

4%

6%

8%

10%

12%

M
EM

1
M

EM
2

M
EM

3

M
EM

4
M

ID
1

M
ID

2
M

ID
3

M
ID

4

IL
P

1
IL

P
2

IL
P

3
IL

P
4

M
IX

1

M
IX

2
M

IX
3

M
IX

4
A

V
G

P
e

rf
. D

e
gr

ad
at

io
n

 (
%

)

Multiprogram average Worst program in mix

Perf. degradation bound

Figure 6: CoScale performance. CoScale never violates the 10% perfor-
mance bound.

DLL re-locking [19, 10]. Some components’ power draws also vary
with utilization. Specifically, register and MC power scale linearly
with utilization, whereas PLL power scales only with frequency and
voltage. As a function of utilization, the PLL/register power ranges
from 0.1 W to 0.5 W [10, 15, 17], whereas the MC power ranges
from 4.5 W to 15 W.

We do not model power for non-CPU, non-memory system compo-
nents in detail; rather, we assume these components contribute a fixed
10% of the total system power in the absence of energy management
(we show the impact of varying this percentage in Section 4.2.4).

Under our baseline assumptions, at maximum frequencies, the
CPU accounts for roughly 60%, the memory subsystem 30%, and
other components 10% of system power.

4.2. Results
4.2.1. Energy and Performance We first evaluate CoScale with a
maximum allowable performance degradation of 10%. We consider
lower performance bounds in Section 4.2.4.

Figure 5 shows the full-system, memory, and CPU energy savings
CoScale achieves for each workload, compared to a baseline without
energy management (i.e., maximum frequencies). The memory en-
ergy savings range from -0.5% to 57% and the CPU energy savings
range from 16% to 40%. As one would expect, the ILP workloads
achieve the highest memory and lowest CPU energy savings, but still
save at least 21% system energy.

The memory energy savings in the MID and MIX workloads
are lower but still significant, whereas the CPU energy savings are
somewhat higher (system energy savings of at least 13% for both
workload classes). Note that CoScale is successful at picking the right
energy saving “knob” in the MIX workloads. Specifically, it more
aggressively conserves memory energy in MIX3, whereas it more
aggressively conserves CPU energy in MIX1, MIX2, and MIX4.

The MEM workloads achieve the smallest memory and largest
CPU energy savings (system energy savings of at least 12%), since
their greater memory channel traffic reduces the opportunities for
memory subsystem DVFS.

Figure 6 shows the average and maximum percent performance
losses relative to the maximum-frequency baseline. The figure shows
that CoScale never violates the performance bound. Moreover,
CoScale translates nearly all the performance slack into energy sav-
ings, with an average performance loss of 9.6%, quite near the 10%
target.

In summary, CoScale conserves between 13% and 24% full-system
energy for a wide range of workloads, always within the user-defined
performance bounds.

4.2.2. Dynamic Behavior To provide greater insight, we study an
example of the dynamic behavior of CoScale in detail. Figure 7
plots the memory subsystem and core frequency (for milc in MIX2)
selected by CoScale over time. For comparison, we also show the
behavior of the Uncoordinated and Semi-coordinated policies.

Figure 7(a) shows that, in epoch two, CoScale reduces the core and
memory frequencies to consume the available slack. In this phase,
milc has low memory traffic needs, but the other applications in the
mix preclude lowering the memory frequency further. Near epoch
10, another application’s traffic spike results in a memory frequency
increase, allowing a reduction of core frequency for milc. Near epoch
14, milc undergoes a phase change and becomes more memory-bound.

2

2.5

3

3.5

4

4.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25

C
o

re
 f

re
q

u
e

n
cy

 (
G

H
z)

M
e

m
. f

re
q

u
e

n
cy

 (
G

H
z)

(a) CoScale

memory frequency core frequency

2

2.5

3

3.5

4

4.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25

C
o

re
 f

re
q

u
e

n
cy

 (
G

H
z)

M
e

m
. f

re
q

u
e

n
cy

 (
G

H
z)

(c) Semi-Coordinated

2

2.5

3

3.5

4

4.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25

C
o

re
 f

re
q

u
e

n
cy

 (
G

H
z)

M
e

m
. f

re
q

u
e

n
cy

 (
G

H
z)

(b) Uncoordinated

Figure 7: Timeline of the milc application in MIX2. Milc exhibits three
phases. CoScale adjusts core and memory subsystem frequency
precisely and rapidly in response to the phase changes. The other
techniques do not.

-10%

0%

10%

20%

30%

En
e

rg
y

Sa
vi

n
gs

 (
%

)
Full system energy Memory system energy CPU energy

Figure 8: Energy savings. CoScale provides greater full-system energy
savings than the practical policies.

0%

5%

10%

15%

20%

P
e

rf
. D

e
gr

ad
at

io
n

s
(%

)

Multiprogram Average Worst in Mix

Perf.	degradation bound

Figure 9: Performance. Uncoordinated is incapable of limiting perfor-
mance degradation.

0%

10%

20%

30%

En
er

gy
 S

av
in

gs
 (

%
)

1% Bound 5% Bound
10% Bound 15% Bound
20% Bound

Figure 10: Impact of perfor-
mance bound. Higher
bound allows more sav-
ings without violations.

0%

5%

10%

15%

20%

En
er

gy
 S

av
in

gs
 (

%
)

5% Other 10% Other

15% Other 20% Other

Figure 11: Impact of rest-of-
system power. Savings
still high for higher
rest-of-system power.

As a result, CoScale increases the memory frequency, while reducing
the core frequency.

Figure 7(b) shows a similar timeline for Uncoordinated. On the
whole, the frequency transitions follow the same trend as in CoScale.
However, both frequencies are markedly lower. Because there is no
coordination, both CPU and memory power managers try to consume
the same slack. These lower frequencies result in a longer running
time (23 vs 25 epochs), violating the performance bound.

Figure 7(c) plots the timeline for Semi-coordinated. Initially, it
incurs frequency oscillations until the traffic spike at epoch 10 causes
memory frequency to become pegged at 800MHz. At that point, the
CPU frequency for milc is also lowered considerably to consume
all remaining slack. Unlike Uncoordinated, Semi-coordinated is
successful in meeting the performance bound as slack estimation
is coordinated among controllers. However, both the oscillations
and the local minima selected after epoch 12 result in lower energy
savings relative to CoScale. Altering the CPU and memory power
managers to make their decisions half an epoch out of phase reduces
oscillation, but the system gets stuck at local minima even sooner
(around the 7th epoch). Making decisions an entire epoch out of
phase produces similar behavior.

4.2.3. Energy and Performance Comparison Figure 8 contrasts av-
erage energy savings and Figure 9 contrasts average and worst-case
performance degradation across polices. These results demonstrate
that MemScale and CPUOnly are of limited use. Although they save
considerable energy in the component they manage (MemScale con-
serves 30% memory energy, whereas CPUOnly conserves 26% CPU
energy), gains are partially offset by higher energy consumption in the
other component (longer runtime leads to higher background/leakage
energy for the unmanaged component). These schemes save at most
10% full-system energy.

Uncoordinated conserves substantial memory and CPU energy,
achieving the highest full-system energy savings of any scheme. Un-
fortunately, it is incapable of keeping the performance loss under the
pre-defined 10% bound. In some cases, the performance degradation
reaches 19%, nearly twice the bound. On the other hand, Semi-
coordinated bounds performance well because the managers share
the slack estimate. However, because of frequent oscillations and
settling at sub-optimal local minima, Semi-coordinated consumes up
to 8% more system energy (2.6% on average) than CoScale. Reduc-
ing oscillations by having the power managers make decisions out of
phase does not improve results (0.3% lower savings with the same
performance).

CoScale is more stable and effective than the other practical poli-
cies at conserving both memory and CPU energy, while staying
within the performance bound. CoScale does almost as well as Of-
fline. These results show that our heuristic for selecting frequencies
is almost as effective as considering an exponential number of possi-
bilities with prior knowledge of each workload’s behavior.

4.2.4. Sensitivity Analysis To illustrate CoScale’s behavior across
different system and policy settings, we report on several sensitivity
studies. In every case, we vary a single parameter at a time, leaving
the others at their default values. Given the large number of potential
experiments, we usually present results only for the MID workloads,
which are sensitive to both memory and core performance.
Acceptable performance loss. In Figure 10, we vary the maximum
allowable performance degradation, showing energy savings. Recall
that our other experiments use a bound of 10%. As one would expect,
1% and 5% bounds produce lower energy savings, averaging 4%
and 9%, respectively. Allowing 15% and 20% degradations saves
more energy. In all cases, CoScale meets the configured bound, and
provides greater percent energy savings than performance loss, even
for tight performance bounds.
Rest-of-the-system power consumption. Figure 11 illustrates the
effect of doubling and halving our assumption for non-memory, non-
core power. When this power is doubled, CoScale still achieves 14%
average full-system energy savings, whereas the savings increase
to 17% when it is halved. In all cases performance remains within
bounds (not shown).
Ratio of memory subsystem and CPU power. We also consider
the effect of varying the ratio of memory subsystem to CPU power.
Recall that, under our baseline power assumptions, CPU accounts
for 60%, while memory accounts for 30% of total power at peak
frequency (a CPU:Mem ration of 2:1). In Figure 12, we consider

0%

5%

10%

15%

20%

25%

En
er

gy
 S

av
in

gs
 (

%
)

CPU:Mem-2:1
CPU:Mem-1:1
CPU:Mem-1:2

Figure 12: Impact of CPU:mem
power, MID. Savings in-
crease as memory power
increases.

0%

5%

10%

15%

En
er

gy
 S

av
in

gs
 (

%
)

CPU:Mem-2:1
CPU:Mem-1:1
CPU:Mem-1:2

Figure 13: Impact of CPU:mem
power, MEM. Savings
decrease as memory
power increases.

0%

5%

10%

15%

20%

En
er

gy
 S

av
in

gs
 (

%
)

Half CPU Vol. Range

Full CPU Vol. Range

Figure 14: Impact of CPU volt-
age range. Smaller volt-
age ranges reduce en-
ergy savings.

0%

5%

10%

15%

20%

En
er

gy
 S

av
in

gs
 (

%
)

4 Freqs 7 Freqs

10 Freqs

Figure 15: Impact of number of
frequencies. Savings de-
crease little when fewer
steps are avalaible.

1:1 and 1:2 ratios. CoScale achieves greater energy savings when
the fraction of memory power is higher for the MID workloads.
Interestingly, this trend is reversed for our MEM workloads (Figure
13), as most savings come from scaling the CPU.

CPU voltage range. We next consider the impact of a narrower
CPU (and MC) voltage range, which reduces CoScale’s ability to
conserve core energy. Figure 14 shows results for a half-width range
(0.95 1.2v) relative to our default assumption (0.65 1.2v). When
the marginal utility of lowering CPU frequency decreases, CoScale
scales the memory subsystem more aggressively and still achieves
11% full-system energy savings on average.

Number of available frequencies. By default, we assume 10 fre-
quencies for both the CPU and the memory subsystem. Figure 15
shows results for 4 and 7 frequencies as well. As expected, the en-
ergy savings decrease as the granularity becomes coarser. However,
CoScale adapts well, conserving only slightly less energy with fewer
frequencies. With 4 frequencies the maximum performance loss
is slightly lower than 10%, because the coarser granularity limits
CoScale’s ability to consume the slack precisely.

Prefetching. Next, we consider the impact of the increase in memory
traffic that arises from prefetching. We implement a simple next-line
prefetcher. This prefetcher is effective for these workloads, always
decreasing the LLC miss rate. However, the prefetcher is not perfect;
its accuracy ranges from 52% to 98% across our workloads. On
average, it improves performance by almost 20% on MEM workloads,
8% on MIX, 4% on MID, and 1% for ILP. At the same time, it
increases the memory traffic more than 33% on MEM, 20% on MID,
33% on MIX, and 13% on ILP. As one might expect, the higher
memory traffic and instruction throughput result in higher memory
and CPU power.

Figure 16 shows the full-system energy per instruction
of three designs (Base+prefetching, Base+CoScale, and

0%

20%

40%

60%

80%

100%

120%

MEM MID ILP MIX

En
e

rg
y

p
e

r
in

st
r.

 (
N

o
rm

.)

Base Base+Pref.

Base+CoScale Base+Pref.+CoScale

Figure 16: Impact of prefetching. CoScale works well with and without
prefetching.

Base+prefetching+CoScale) normalized to our baseline (Base). We
can see that the energy consumptions of Base+prefetching and
Base are almost the same, except for the MEM workloads, since
higher power and better performance roughly balance from an
energy-efficiency perspective. Again except for MEM, the energy
consumptions of Base+CoScale and Base+prefetching+CoScale
are almost exactly the same, since average memory frequency
is lower but CPU frequency is higher. For the MEM workloads,
the performance improvement due to prefetching dominates the
average power increase, so the average energy of Base+prefetching
is 7% lower than Base. In addition, Base+prefetching+CoScale
achieves 17% energy savings, compared to 12% from Base+CoScale.
These results show that CoScale works well both with and without
prefetching.
Out-of-Order. Although our trace-based methodology does not
allow detailed out-of-order (OoO) modeling, we can approximate
the latency hiding and additional memory pressure of OoO by em-
ulating an instruction window during trace replay. We make the
simplifying assumption that all memory operations within any 128-
instruction window are independent, thereby modeling an upper
bound on memory-level parallelism (MLP). Note that we still model a
single-issue pipeline, hence, our instruction window creates MLP, but
has no impact on instruction-level parallelism. Figure 17 compares
the average CPI of the in-order and OoO designs, with and without
CoScale, normalized to the in-order result. At one extreme, OoO
drastically improves MEM, as memory stalls can frequently over-
lap. At the other extreme, ILP gains no benefit, since the infrequent
L2 misses do not overlap frequently enough to impact performance.
Note that, in the OoO+CoScale cases, performance remains within
10% of the OoO case; that is, CoScale is still maintaining the target
degradation bound. Although we do not show these results in the
figure, similar to the in-order case, Semi-coordinated on OoO meets
the performance requirement, whereas Uncoordinated on OoO does
not – Uncoordinated on OoO degrades performance by up to 16%,
on a 10% performance loss bound.

Figure 18 shows average energy per instruction normalized to In-
order. As we do not model any power overhead for OoO hardware
structures (only the effects of higher instruction throughput and mem-
ory traffic), OoO always breaks even (ILP and MIX) or improves
(MEM and MID) energy efficiency over In-order. Across the work-
loads, CoScale provides similar percent energy-efficiency gains for
OoO as for In-order. The MEM case is the most interesting, as OoO
has the largest impact on this workload. OoO increases memory bus
utilization substantially (35% on average and up to 50%) and also
results in far more queueing in the memory system (43% on average).
The increased memory traffic balances with a reduced sensitivity

0%

20%

40%

60%

80%

100%

120%

MEM MID ILP MIX

A
ve

ra
ge

 C
P

I (
N

o
rm

.)
In-order OoO

In-order+CoScale OoO+CoScale

Figure 17: In-order vs OoO: performance. CoScale is within the perfor-
mance bound in both in-order and OoO.

0%

20%

40%

60%

80%

100%

120%

MEM MID ILP MIX

En
e

rg
y

p
e

r
in

st
r.

 (
N

o
rm

.)

In-order OoO

In-order+CoScale OoO+CoScale

Figure 18: In-order vs OoO: energy. CoScale saves similar percent of
energy in in-order and OoO.

to memory latency, and CoScale selects roughly the same memory
frequencies under In-order and OoO. Interestingly, because of la-
tency hiding, the MEM workload is more CPU-bound under OoO,
and CoScale selects a slightly higher CPU frequency (5% higher on
average). Again, we do not show results for Semi-coordinated and
Uncoordinated on OoO in the figure, but their results are similar to
those on an in-order design. Semi-coordinated on OoO causes fre-
quency oscillation and leads to higher (up to 8%, and 4% on average)
energy consumption than CoScale. Uncoordinated on OoO saves a
little more energy (1% on average) than CoScale, but it violates the
performance target significantly as mentioned above.
Summary. These sensitivity studies demonstrate that CoScale’s
performance modeling and control frameworks are robust—across
the parameter space, CoScale always meets the target performance
bound, while energy savings vary in line with expectations. Although
the results in this subsection focused mostly on the MID workloads,
we observed similar trends with the other workloads as well.

5. Conclusion

We proposed CoScale, a hardware-software approach for managing
CPU and memory subsystem energy (via DVFS) in a coordinated
fashion, under performance constraints. Our evaluation showed that
CoScale conserves significant CPU, memory, and full-system energy,
while staying within the performance bounds; that it is superior to
four competing energy management techniques; and that it is robust
over a wide parameter space. We conclude that CoScale’s potential
benefits far outweigh its small hardware costs.

Acknowledgements

This research was partially supported by Google and the National
Science Foundation under grants #CCF-0916539, #CSR-0834403,
and #CCF-0811320.

References
[1] L. A. Barroso and U. Hölzle. The Case for Energy-Proportional Com-

puting. IEEE Computer, 40(12):33–37, 2007.
[2] L. A. Barroso and U. Hölzle. The Datacenter as a Computer: An

Introduction to the Design of Warehouse-Scale Machines. Synthesis
Lectures on Computer Architecture, 2009.

[3] F. Bellosa. The Benefits of Event-Driven Energy Accounting in Power-
Sensitive Systems. In SIGOPS European Workshop ’00, 2000.

[4] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, G. Saidi, and S. Reinhardt.
The M5 Simulator: Modeling Networked Systems. IEEE Micro, 26(4),
July 2006.

[5] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated management
of multiple interacting resources in chip multiprocessors: A machine
learning approach. In MICRO, 2008.

[6] M. Chen, X. Wang, and X. Li. Coordinating Processor and Main
Memory for Efficient Server Power Control. In ICS, 2011.

[7] H. David, C. Fallin, E. Gorbatov, U. Hanebutte, and O. Mutlu. Memory
Power Management via Dynamic Voltage/Frequency Scaling. In ICAC,
2011.

[8] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and
M. J. Irwin. Hardware and Software Techniques for Controlling DRAM
Power Modes. IEEE Transactions on Computers, 50(11), 2001.

[9] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini.
MultiScale: Memory System DVFS with Multiple Memory Controllers.
In ISLPED, 2012.

[10] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini.
MemScale: Active Low-Power Modes for Main Memory. In ASPLOS,
2011.

[11] B. Diniz, D. Guedes, W. M. Jr, and R. Bianchini. Limiting the Power
Consumption of Main Memory. ISCA ’07: International Symposium on
Computer Architecture, 2007.

[12] X. Fan, C. Ellis, and A. Lebeck. Memory Controller Policies for DRAM
Power Management. In ISLPED, 2001.

[13] X. Fan, C. S. Ellis, and A. R. Lebeck. The Synergy between Power-
aware Memory Systems and Processor Voltage Scaling. In PACS, 2003.

[14] W. Felter, K. Rajamani, T. Keller, and C. Rusu. A Performance-
Conserving Approach for Reducing Peak Power Consumption in Server
Systems. In ICS, 2005.

[15] E. Gorbatov, 2010. Personal communication.
[16] S. Herbert and D. Marculescu. Analysis of Dynamic Voltage/Frequency

Scaling in Chip-Multiprocessors. In ISLPED, 2007.
[17] Intel. Intel R© Xeon R© Processor 5600 Series, 2010.
[18] C. Isci and M. Martonosi. Runtime Power Monitoring in High-End

Processors: Methodology and Empirical Data. In MICRO, 2003.
[19] JEDEC. DDR3 SDRAM Standard, 2009.
[20] S. Kaxiras and M. Martonosi. Computer Architecture Techniques for

Power-Efficiency. Synthesis Lectures on Computer Architecture, 2009.
[21] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks. System Level Analysis

of Fast, Per-Core DVFS Using On-Chip Switching Regulators. In HPCA,
2008.

[22] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware Page
Allocation. In ASPLOS, 2000.

[23] H.-W. Lee, K.-H. Kim, Y.-K. Choi, J.-H. Shon, N.-K. Park, K.-W. Kim,
C. Kim, Y.-J. Choi, and B.-T. Chung. A 1.6V 1.4 Gb/s/pin Consumer
DRAM with Self-Dynamic Voltage-Scaling Technique in 44nm CMOS
Technology. In ISSCC, 2011.

[24] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W.
Keller. Energy Management for Commercial Servers. IEEE Computer,
36(12), December 2003.

[25] D. Levinthal. Performance Analysis Guide for Intel R© Core TM i7
Processor and Intel R© Xeon TM 5500 processors, 2009.

[26] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi. Mc-
PAT: An Integrated Power, Area, and Timing Modeling Framework for
Multicore and Manycore Architectures. In MICRO, 2009.

[27] X. Li, R. Gupta, S. Adve, and Y. Zhou. Cross-component energy
management: Joint adaptation of processor and memory. In ACM Trans.
Archit. Code Optim., 2007.

[28] X. Li, Z. Li, F. M. David, P. Zhou, Y. Zhou, S. V. Adve, and S. Kumar.
Performance-directed energy management for main memory and disks.
In ASPLOS, 2004.

[29] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch. Disaggregated Memory for Expansion and Sharing in Blade

Servers. In ISCA, 2009.
[30] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Eliminating

Server Idle Power. In ASPLOS, 2009.
[31] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch.

Power Management of Online Data-Intensive Services. In ISCA, 2011.
[32] Micron. 1Gb: x4, x8, x16 DDR3 SDRAM, 2006.
[33] Micron. Calculating Memory System Power for DDR3, July 2007.
[34] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini. DMA-Aware Memory

Energy Management. In HPCA, 2006.
[35] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder.

Using SimPoint for Accurate and Efficient Simulation Erez Perelman.
In SIGMETRICS, 2003.

[36] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No
"Power" Struggles: Coordinated Multi-level Power Management for the
Data Center. In ASPLOS, 2011.

[37] D. Snowdon, S. Ruocco, and G. Heiser. Power Management and Dy-
namic Voltage Scaling: Myths and Facts. In Power Aware Real-time
Computing, 2005.

[38] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian,
and A. Davis. Micro-Pages: Increasing DRAM Efficiency with Locality-
Aware Data Placement. In ASPLOS, 2010.

[39] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. Rubio, F. Rawson, and
J. Carter. Architecting for Power Management: The IBM POWER7
Approach. In HPCA, 2010.

[40] G. Yan, Y. Li, Y. Han, X. Li, M. Guo, and X. Liang. AgileRegulator: A
Hybrid Voltage Regulator Scheme Redeeming Dark Silicon for Power
Efficiency in a Multicore Architecture. In HPCA, 2012.

[41] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. Decoupled DIMM: Building
High-Bandwidth Memory System Using Low-Speed DRAM Devices.
In ISCA, 2009.

