
AstriFlash: An Online Flash-Based Memory Hierarchy
Siddharth Gupta
EcoCloud, EPFL

Yunho Oh
EcoCloud, EPFL

Lei Yan
EcoCloud, EPFL

Mark Sutherland
EcoCloud, EPFL

Abhishek Bhattacharjee
Yale University

Babak Falsafi
EcoCloud, EPFL

Peter Hsu
Barcelona Supercomputing Center

ABSTRACT
Modern datacenters primarily host datasets in DRAM to offer large-
scale online services with tight tail latency requirements. Unfortu-
nately, DRAM is expensive and has slowed down in density scaling,
forcing datacenter operators to consider denser storage technolo-
gies. While modern flash-based storage exhibits raw access latency
in the `𝑠 scale which is well within the tail latency requirements
of many online services, traditional OS abstractions and their im-
plementation for paging from storage incur prohibitive overheads
precluding flash’s use in online services. In this paper, we intro-
duce AstriFlash, a hardware/software co-design to integrate flash
into the online memory hierarchy with a DRAM cache. Our eval-
uation with cycle-accurate full-system simulation shows that As-
triFlash achieves 95% of DRAM-only system’s throughput while
maintaining 99-percentile tail latency with only 16% degradation,
and reducing the overall memory cost by 20x.

1 INTRODUCTION
A critical challenge in modern datacenters is to manage the growing
size of datasets given a budget constraint [9, 14]. To offer large-
scale online services with high throughput and tight tail latency
requirements, modern datacenters primarily host data in memory
[5, 11, 29], requiring TBs of DRAM per server [20, 37]. Unfortu-
nately, DRAM not only accounts for a substantial fraction of overall
server cost, but it has also slowed down in capacity scaling [5] in
recent years. DRAM cost and scaling challenges force datacenter
operators to consider denser technologies to host online services.

NAND flash promises a two orders-of-magnitude cost per bit
improvement compared to DRAM [16, 30]. Unfortunately, the cur-
rent integration of flash into the memory hierarchy has prohibitive
performance bottlenecks for online services. To begin with, raw
flash access latencies are three orders of magnitude longer than
DRAM, potentially allowing only services that can tolerate `𝑠-scale
latencies. More importantly, the Operating System (OS) abstrac-
tions for demand paging from storage devices not only exacerbate
the incurred latency but also fundamentally limit the frequency
of paging. We argue that such abstractions were built for𝑚𝑠-scale
device access latencies in the 80’s, where the software overhead
was negligible. With modern device technologies and workload
characteristics, storage access frequency is high enough that the
OS abstractions quickly become a performance bottleneck [6].

We make several observations that together build a case for a
careful integration of flash into a server node to host online ser-
vices. First, many modern services have end-to-end tail latency

constraints in the𝑚𝑠 scale [8] and thus can absorb raw access la-
tencies at the `𝑠 scale on the server side [7, 12]. Second, object
popularity and request distribution for services are often highly
skewed [41–43], allowing most data to be served directly out of a
DRAM cache layer, thereby capping bandwidth demands on flash ac-
cess. Third, online services can maintain response time for requests
by overlapping asynchronous flash accesses to reduce queuing,
which dominates the overall response time. Lastly, we can remove
the traditional page fault overheads by accelerating the paging
mechanism at the DRAM side in a centralized manner. Therefore, a
platform can host services directly in flash if the hardware/software
overheads do not dominate the flash access latency.

In this paper, we introduce AstriFlash, a hardware/software co-
designed memory hierarchy, which can host online services directly
in flash. AstriFlash maps the entire flash space into the user address
space coupled with a hybrid DRAM cache to eliminate the legacy OS
and CPU overheads for paging and address translation. AstriFlash
uses DRAM as a transparent hardware-managed cache to serve
CPU requests at high bandwidth while filtering accesses to flash.
We propose an accelerated DRAM miss handler path, including
microarchitectural support for DRAM miss notification, that elimi-
nates legacy OS demand paging overheads. We design AstriFlash
so that it achieves iso-DRAM throughput and maintains server-side
tail latency constraints while reducing the overall memory cost by
20x. While we present AstriFlash with flash as the backend, the
proposed architecture and mechanisms are readily applicable to
other emerging memory technologies with `𝑠-scale access latencies
with varying cost and tail latency tradeoffs.

2 BACKGROUND AND MOTIVATION
In this section, wemake the case that tighter integration of flash into
the memory hierarchy would enable a significant reduction in cost
while maintaining DRAM-like performance. We first introduce how
to determine the sizes of DRAM and flash, based on analyzing data
locality exhibited by server workloads. Then we explain traditional
OS abstractions for utilizing flash devices and how they affect the
performance in online services.

2.1 Tighter integration of flash
NAND flash is a technology that offers up to 50x cost improvement
[16, 30] but incurs three orders-of-magnitude higher access latency
(e.g., 50 `𝑠) over DRAM [45]. While online services with `𝑠-scale tail
latency constraints may not be able to tolerate flash accesses [31],
carefully architected services with𝑚𝑠-scale tail latency constraints



SPMA’20, April 27, 2020, Heraklion, Greece Siddharth Gupta, Yunho Oh, Lei Yan, Mark Sutherland, Abhishek Bhattacharjee, Babak Falsafi, and Peter Hsu

0

30

60

90

120

150

0 2 4 6 8 10

Fl
as

h 
Ba

nd
w

id
th

 (G
Bp

s)

DRAM capacity normalized to dataset (%)

0

3

6

9

12

15

M
iss

 R
at

e 
(%

)

Max. PCIe Gen5 Bandwidth

= Knee PointUpper Bound

Lower Bound

Max. PCIe Gen4 Bandwidth

Figure 1: Miss rate and flash bandwidth vs DRAM cache size.

can absorb them [7, 23]. Traditionally, flash has been treated as
a storage device, called Solid State Drive (SSD), with legacy I/O
interfaces and OS abstractions.

2.1.1 Traditional storage systems. Memory hierarchies are designed
using the principles of caching to exploit locality present in data
accesses. Faster devices are used as a cache to host frequently ac-
cessed data while backing slower devices serve data in case of a
cache miss [26]. As the on-chip cache subsystem uses synchronous
cache accesses to get data, the OoO cores are designed accordingly
to hide latencies of up to round-trip DRAM accesses.

Integrating flash devices in the memory hierarchy requires the
abstraction of asynchronous accesses. As the core should not stall
while waiting for long latency accesses, SSDs are accessed in the
background to overlap data access with useful work. Traditional
systems use SSDs as a logical extension of memory — e.g., through
demand paging interface, while DRAM acts as a software-managed
cache for SSDs. The OS provides the abstraction of asynchronous
accesses where it allows the core to context switch to another
process, therefore overlapping SSD access with useful work [27].

2.1.2 DRAM cache sizing. In datacenter workloads, a small fraction
of the dataset exhibits a high degree of temporal data locality [41,
42]. Such an access pattern can be exploited by hosting the hot
fraction of the dataset in DRAM, while the backing SSD contains
the whole dataset [41, 42]. Each DRAM miss requires fetching the
corresponding page from the SSD.

𝐵𝑊𝐹𝑙𝑎𝑠ℎ = 𝐵𝑊𝐷𝑅𝐴𝑀 × 𝑃𝑎𝑔𝑒𝑆𝑖𝑧𝑒

𝐶𝑎𝑐ℎ𝑒𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒
×𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑒 (1)

Based on previous studies [41, 43], we examine the miss ratio while
varying the DRAM-to-flash capacity ratio for workloads in the
CloudSuite benchmark suite [15]. To determine the required DRAM
size, we studied the tradeoff between the DRAM capacity and the
flash bandwidth required to refill the DRAM. We calculate the
required flash bandwidth using Eq. 1 with 0.5 GBps as average
DRAM bandwidth [42], 4KB as page size and 64B as cache block

size. Figure 1 shows the representative average cache miss ratio
alongwith the lower and upper bound, while also depicting the flash
bandwidth required for various DRAM capacities. Similar to the
previous studies [41, 43], the miss rates flatten around 2% to 4% of
DRAM capacity, which requires 40-100 GBps of flash bandwidth for
a 64 core setup [2, 17]. As specifications for PCIe Gen5 [34] report
up to 128 GBps of bandwidth, we can easily meet these bandwidth
requirements for high core counts. In case of bandwidth constrained
servers, we can use a bigger DRAM cache which correspondingly
reduces the flash bandwidth requirements.

For our study, we consider the DRAM capacity of 3%, which
requires 0.9 GBps of flash bandwidth per core, and 57.6 GBps ag-
gregate bandwidth for 64 cores. Overall, we assume a system with
1 TB dataset per server hosted in SSD with a 3% DRAM cache
capacity (i.e., 32 GB). As SSD is up to 50x cheaper than DRAM
[16, 30], such an arrangement can reduce the memory cost by 20x
compared to 1 TB DRAM system [37]. We can already implement
such a flash-based memory hierarchy with existing OS abstractions
and hardware mechanisms. However, based on the calculated miss
rates and bandwidth requirements, as each core has a DRAM miss
every 5-25 `𝑠 , the OS abstractions themselves become a critical
performance bottleneck.

2.2 Demand Paging vs Explicit IO
There are two main techniques with which systems utilize the
storage devices (SSD in our case), demand paging and explicit IO. In
demand paging, the application does not directly interact with the
SSD, but instead uses the abstraction of virtual memory. All pages
in use by the application are mapped into its Virtual Address (VA)
space, while only a subset of them might be present in the Physical
Address (PA) space i.e. DRAM. When the application accesses a
page that is not present in DRAM, the OS fetches the required page
from SSD and maps it to the correct VA. Instead, in explicit IO, the
application manages the transfer of data between SSD and DRAM
using system calls or user-space IO [18, 24, 39]. Thus, whenever the
application requires a page from SSD, it issues an explicit request
to read the corresponding page from the SSD into a memory pool
managed by the application itself.

The key difference between these two techniques is the use of
virtual memory. In demand paging, the application is oblivious to
the actual physical device each page resides in. It also uses the same
VA for each page throughout the execution which provides ease
of programmability, for e.g. it allows pointers to other pages in
the same VA space. In contrast, explicit IO requires the applica-
tion to track pages present in both DRAM and SSD at any point
in time, which is done through complex indexing structures [24].
The DRAM capacity is exposed to the application as the memory
pool is of a limited size. Thus, the pages present in DRAM cannot
generally maintain the same VA throughout the execution, which
also prevents them from using direct VA pointers. Therefore, in this
paper, we focus only on the demand paging technique. However, it
is possible to extend AstriFlash to provide explicit IO as well. The
DRAM can be divided into two parts: one of which is controlled by
the hardware as a cache, while the other can be used as a normal
DRAM space controlled by the software [38], which can thus be
used for explicit IO.



AstriFlash: An Online Flash-Based Memory Hierarchy SPMA’20, April 27, 2020, Heraklion, Greece

2.3 Bottlenecks in traditional OS abstractions
The flash-based memory hierarchy relies on OS support to use
SSD as a logical extension of DRAM. With the virtual memory
abstraction, the OS uses DRAM through a physical address space
and uses page tables to map the process-specific virtual pages to
DRAM, while marking the pages present in the SSD as swapped-
out. On accessing a virtual address, if the requested address is not
mapped to DRAM, the control goes to the OS which then fetches
the required page from SSD using the abstraction of a page fault.

2.3.1 IO access scheduling. Each page fault requires accessing a
page from SSD, for which the OS schedules an IO request based
on the SSD protocol, such as NVMe [13]. Checking the page cache,
traversing the overall OS storage stack, and NVMe driver accumu-
lates overhead of up to 10 `𝑠 . Recent software solutions include
lean software stacks [18, 39], while hardware proposals focus on
reducing this overhead by memory mapping the SSD in the user
address space, thus allowing the user to directly access SSDs using
normal loads and stores [1, 4].

2.3.2 Page migration and eviction. Because SSD accesses have
1000x longer latency than DRAM access, frequently accessed pages
should be migrated and kept in DRAM for fast access. Migrating a
page to DRAM also requires evicting another page to make space,
which is done through complex page selection policies in the OS
with `𝑠-scale overhead. Apart from that, each page migration re-
quires modifying the virtual-to-physical address mappings in the
page tables. Keeping the TLBs coherent with the page tables re-
quires a global TLB shootdown, which removes the modified entries
from all the TLBs. As this TLB shootdown operation is a broadcast,
it does not scale with the number of cores and incurs high overhead.
Previous studies report that TLB shootdown latencies can be over
10 `𝑠 [25] and try to reduce the overall TLB shootdown frequency
by batching multiple page faults together [1, 25]. However, in case
of frequent SSD accesses, the number of overall shootdowns grows
with the core count, therefore accumulating high overhead.

2.3.3 Asynchronous SSD acceses. OoO pipelines cannot hide SSD
accesses as each access takes around 50 `𝑠 . Therefore, to overlap the
wait for SSD response with useful work, the OS provides the abstrac-
tion of asynchronous SSD accesses along with context switches. On
a long latency IO access, the OS performs a context switch, schedul-
ing another independent process/thread which can perform useful
work, thus maintaining high system throughput. Previous studies
have quantified the overhead of context switches to be around 5
`𝑠 [10, 40]. As previous flash-based memory systems [1, 4] do not
focus on maintaining the asynchronous access abstractions, they
have 5-10x performance difference from DRAM-only systems.

The traditional OS abstractions were initially built for dealing
with𝑚𝑠-scale IO access (e.g., disks). As the IO devices were much
slower than the CPU and accesses were infrequent, the `𝑠-scale
software overheads were negligible. But as modern storage devices,
such as SSDs, exhibit `𝑠-scale access latencies, the software over-
head from traditional abstractions becomes a critical performance
bottleneck [6].

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

N
or

m
al

ize
d 

99
-p

er
ce

nt
ile

 la
te

nc
y

Throughput normalized to DRAM-only system

DRAM-only AstriFlash Model OS-Swap SSD-Sync

SLO >
40x Avg. service time

Figure 2: 99-percentile latencynormalized to average service
time of DRAM-only system in a single server.

3 ASTRIFLASH
In this section, we first describe the key insights underlying the
AstriFlash architecture and the throughput vs. tail latency tradeoffs
in DRAM-only and AstriFlash systems. We then present a high-
level overview of the key mechanisms we propose to achieve the
desired throughput and tail latency.

3.1 Key insights
AstriFlash is designed based on following two key insights: 1) over-
lapping multiple SSD accesses with lightweight thread switches
enables maintaining tail latency constraints, and 2) eliminating
overheads in conventional OS abstractions for paging and acceler-
ating a DRAM miss handler path helps maximize throughput.

The first insight is based on the queuing characteristics at the
tail of the response distribution in online services with𝑚𝑠-scale
tail latency [7, 22]. The overall response time of these requests
is dominated by queuing time. Assuming a single server queuing
model (in a DRAM-only system), these requests wait in queue for
older requests to finish and free up resources. In a system with
asynchronous SSD accesses and lightweight thread switching, one
should be able to architect the online services to behave like a
multi-server queuing model, thereby replacing the wait for older
requests with the wait for an SSD response and enabling the online
service to absorb SSD accesses while maintaining the same overall
response latency.

The second insight is that conventional OS abstractions for pag-
ing not only incur high overhead, they are fundamentally not scal-
able in systems with high paging frequency (e.g., multi-core CPUs
with multiple threads/core), thereby limiting throughput. These
overheads both slow down paging and limit scalability because of
synchronization in either software (i.e., accesses from multiple OS
threads to shared data structures and page tables) or in hardware
(i.e., broadcast-based TLB shootdown). Mapping the SSD into user
address space and encapsulating the paging activity in an acceler-
ated miss handler path between a DRAM cache and SSD enables
removing page fault overheads and maximizing throughput.

Fig. 2 captures the analytical throughput and latency character-
istics of AstriFlash, along with DRAM-only system, traditional OS



SPMA’20, April 27, 2020, Heraklion, Greece Siddharth Gupta, Yunho Oh, Lei Yan, Mark Sutherland, Abhishek Bhattacharjee, Babak Falsafi, and Peter Hsu

Core

DRAM

SSD

P0 P1 P2 P3

Context Switch

Page Migration 
through OS

(a) OS-Swap.

Core

DRAMSSD

Page Migration 
OS + HW Support

P0 P1 P2 P3

Context Switch

(b) SSD-Sync.

Core

DRAM
Cache

SSD

F

B

1

2

3

4

5

6

1 Access DRAM cache: Miss!

2 Notify backside controller of miss

3 Send page request to SSD

4 Send miss signal to core

5 Switch to another thread

6 Receive page from SSD

F Frontside controller

B Backside controller

(c) AstriFlash.

Figure 3: Comparison of hybrid memory system structures.

swap-based hierarchy (OS-Swap) and synchronous SSD accesses
(SSD-Sync). On one hand, the ideal DRAM-only and SSD-Sync sys-
tems represent an M/M/1 queuing model as all the requests execute
in a run-to-completion mode. On the other hand, OS-Swap and
AstriFlash can be modeled as an M/M/k queuing system where k
requests are required to overlap the SSD accesses. SSD-Sync has the
worst performance, as each SSD access is synchronous and accompa-
nied by 50 `𝑠 ofwait time. ThoughOS-Swap performs asynchronous
SSD accesses, it suffers from page fault handling/context-switch
overheads (10 `𝑠), therefore causing 50% throughput degradation.
As AstriFlash claims very little overhead per DRAM miss to switch
to another job, the overall throughput and tail latency approach
that of a DRAM-only system. However, our analysis indicates that
only services with SLOs of greater than 40x service time will be
able to absorb SSD accesses and thus benefit from AstriFlash. Over-
all, AstriFlash does not violate SLO for classes of online services
with𝑚𝑠-scale tail latency requirements while achieving iso-DRAM
throughput through lightweight user-level switching.

3.2 Design overview
Fig. 3a, Fig. 3b, and Fig. 3c depict the OS-Swap, SSD-Sync, and Astri-
Flash configurations respectively. AstriFlash maps the entire flash
space into the user address space and uses DRAM as a transparent
hardware-managed cache. The AstriFlash memory hierarchy ac-
cesses SSDs like a memory device instead of traditional OS-level
paging, thus eliminating the OS-side overhead for page fault han-
dling, I/O scheduling, page table modifications, and TLB shoot-
downs. AstriFlash employs a page-based DRAM cache [21] as it
outperforms block-based caches [28, 33] in case of server work-
loads because of spatial locality advantages. Moreover, a page-based
cache matches the SSD interface because the minimum page size of
DRAM and SSD are the same (4KB in x86-64 architecture). Based
on the analysis in Sec. 2.1, DRAM cache is 3% of the SSD size.

The key design contribution for AstriFlash is a fast ‘switch-on-
miss’ architecture, which switches user-level threads on a DRAM
cache miss to efficiently hide the SSD access latency and achieve
iso-DRAM throughput. Previously proposed horizontally-tiered

memory systems [1, 43] expose the SSD access latency to the cores,
forcing them to wait for SSD response, thus losing throughput.

Modern OoO cores are provisioned to hide synchronous DRAM
accesses in case on-chip caches don’t have the required data. On
the other extreme, accesses to storage devices are traditionally slow
enough to let the software take control and set up data access along
with a context switch. However, in the case of AstriFlash, we face
`𝑠-scale stalls, which cannot be handled efficiently either in hard-
ware or software [6]. The proposed switch-on-miss architecture is
a fundamental change in instruction execution semantics because
the traditional cores and memory hierarchy are designed for syn-
chronous accesses, which means all loads successfully launched by
the cores are guaranteed to finish.

The proposed switch-on-miss architecture incorporates hardware-
supported asynchronous SSD accesses and fast hardware-triggered
user-level thread switches. As typical datacenter workloads will
incur more DRAM misses while a page is accessed from SSD, user-
level threads provide a cost-effective way to manage multiple exe-
cution contexts along with quick switching to efficiently overlap
the SSD accesses. Thus, user-level threads far outweigh using hard-
ware threads which are limited in number and do not provide the
required number of contexts for our scenario. Therefore, an appli-
cation that does not utilize user-level threads will be limited by the
parallelism provided by the hardware threads, and will typically
have to wait for the SSD accesses to complete synchronously.

To support such mechanisms, AstriFlash includes a new pair of
frontside/backside DRAM cache controllers, as shown in Fig. 3c.
The frontside controller is responsible for handling the core-side
interactions, detecting a DRAM cache hit or miss, and sending a
DRAM cache miss signal to cores. The backside controller is respon-
sible for managing the DRAM cache miss handling information and
handling SSD page access requests/responses.

3.3 Switch-on-miss architecture
AstriFlash requires the workloads to use a user-level thread library
[3, 32] with which they can switch between threads with low over-
head. The user-level threads also abstract away the asynchronous in-
terface provided by AstriFlash hardware and provide the traditional



AstriFlash: An Online Flash-Based Memory Hierarchy SPMA’20, April 27, 2020, Heraklion, Greece

abstraction of sequential execution to programmers. On a DRAM
cache miss, while fetching the data from SSD, AstriFlash halts the
current memory instruction and requests a thread switch from the
user-level thread library. When the original thread is rescheduled,
it resumes from the memory instruction which caused the DRAM
miss. Because of the SSD access which completed asynchronously,
the thread can access the required data directly from the DRAM
cache. This model allows the applications to be easily ported to the
AstriFlash infrastructure using the traditional notion of threads.
To implement the described switch-on-miss architecture, we pro-
pose a hardware-software co-designed user-level handler which
is triggered by the hardware on each DRAM miss, and performs
backup and restore of thread contexts, thus allowing switching
between threads. The workload needs to provide the address of
this user-supplied handler in additional specialized registers for the
hardware to trigger the handler on DRAM misses.

We also propose an AstriFlash-specific priority scheduling mech-
anism to maintain the service latency of each request. We design
the scheduler to optimize for the service latency distribution of the
jobs so that it is similar to the ideal distribution of the SSD-Sync
(Fig. 3b), where the core waits for the SSD to respond. On a DRAM
miss, AstriFlash prioritizes new jobs over pending jobs so that it
can overlap the latency of fetching the page from SSD with useful
work from the new jobs. However, in a skewed distribution, it is
possible to have a consecutive series of jobs that do not face any
DRAM miss, causing the priority scheduler to starve the pending
queue. We use aging techniques to solve such starvation problems,
in which case the jobs that have been waiting for longer than the
SSD response latency are promoted to a higher priority than the
new jobs. This allows the AstriFlash scheduler to maintain service
latencies similar to the SSD-Sync configuration. Overall, the pro-
posed switch-on-miss architecture enables thread switching within
100 ns, which is 10x faster than current OS-level switches.

3.4 Implementation Highlights
In this subsection, we briefly describe some of the implementation
details of AstriFlash.

3.4.1 Address Space. In AstriFlash, the SSD is exposed as amemory
device to the CPU using the PCIe base address registers [1] which
can be setup during boot time. Thus, the OS can see the SSD as
a physical address space, and thus can map the required virtual
address pages. In this manner, the SSD acts as the lowest level in
the memory hierarchy.

3.4.2 Partitioned DRAMCache. In AstriFlash, as the DRAM is used
as a hardware-managed cache, the software does not control the
contents in the cache. In some cases, critical OS metadata might be
evicted from the DRAM cache, and thus has to fetched from the
SSD, slowing down the OS. For e.g., the page tables containing the
mapping for a cold page might also reside in SSD, thus requiring a
page table walk out of SSD (multiple pages) before the page itself
can be retrieved. To prevent such situations, we propose to have
a small DRAM partition (2-4 GB) separate from the DRAM cache
[38], which exposes its own physical address space and thus can
be directly managed by the OS. This DRAM partition can be used

to keep critical OS data-structures like page-tables, thus always
guaranteeing fast access.

3.4.3 Miss Handling. Traditionally, on-chip caches manage misses
with CAM-based structures called Miss Status Handling Registers
(MSHRs), which are used to track outstanding misses, and prevent
duplicate requests for the same blocks. As these MSHRs have sub-
stantial hardware overhead, the on-chip caches have only 10s of
MSHRs. However, in AstriFlash, as each miss lasts for 50 `𝑠 , there
can be 100s of misses happening in parallel, which makes it too
expensive to implement enough MSHRs. Instead, AstriFlash man-
ages the miss handling information in a specialized DRAM row
called Miss Status Row (MSR). The MSR is a set-associative struc-
ture which can easily track 100s of outstanding misses, and poses
negligible latency compared to the SSD response time.

3.4.4 DRAM Cache Miss Notifications. Once a miss has been de-
tected on the DRAM cache side, the core has to be notified of the
miss so that it can switch threads while the requested page is fetched
from the SSD. This also requires deallocating all the hardware re-
sources allocated to the corresponding memory access in order
to prevent stalls. E.g., if all MSHRs are full of memory requests
that miss in the DRAM cache, all the on-chip caches will eventually
block. Such a mechanism is similar to the existing DRAM ECC error
interface. When a non-correctable error occurs, the DRAM con-
troller generates an exception to inform the software of the error.
Such errors also require removing all traces of the request from the
cache hierarchy [19, 36]. AstriFlash piggybacks the miss signaling
on the same mechanism, which frees up the allocated MSHRs at
each cache level and sends the miss signal up the hierarchy towards
the requesting core.

3.4.5 Forward progress guarantees. While AstriFlash supports an
efficient switch-on-miss mechanism, executions of multiple threads
may cause a livelock problem. When rescheduling a switched-out
thread, the requested page might have already been evicted be-
cause of DRAM cache contention between multiple threads, pre-
venting the current thread from progressing. To handle such cases,
AstriFlash includes a microarchitectural mechanism to guarantee
forward progress of threads once they are rescheduled. When a
thread is rescheduled, the user-level scheduler restores the PC to
the instruction on which the DRAM miss was detected. AstriFlash
maintains a forward progress bit indicating if the previous DRAM
miss instruction has been successfully committed or not. If this bit
is set, a new miss signal cannot cause a thread switch on the same
instruction where the DRAM miss was detected previously. There-
fore, this instruction blocks the core until it receives the requested
data from the memory hierarchy, after which it retires and sets the
forward progress bit to zero.

4 EVALUATION
4.1 Methodology
We use a benchmark suite that contains small programs to capture
data structure access patterns along with high-level database opera-
tions such as TATP and TPCC. As we assume one TB dataset for 64
cores, each benchmark creates a dataset of 16GB for one core. We
model the requests with an analytical Ziphian distribution chosen



SPMA’20, April 27, 2020, Heraklion, Greece Siddharth Gupta, Yunho Oh, Lei Yan, Mark Sutherland, Abhishek Bhattacharjee, Babak Falsafi, and Peter Hsu

such that the benchmarks trigger a DRAM miss every 5-25 `𝑠 on
average.

We evaluate AstriFlash using QFlex, a cycle-accurate full-system
simulator based on Flexus [44]. We assume an ARM Cortex-A57
core with a 2MB LLC. We scale down our 64-core requirements
to one core for evaluation, and therefore model a DDR4 DRAM of
512MB in size, while the SSD [35] stores the 16GB dataset. Both
DRAM and SSD use the traditional page size of 4KB.

4.2 Experimental Results
Throughput: In our evaluation, AstriFlash achieves up to 95% of
DRAM-only system’s throughput. The 3-5% throughput difference
is because of the DRAM response wait, pipeline flush for every
DRAMmiss, and the scheduler overhead for switching threads. The
OS-Swap configuration that we explained in Section 3 achieves 55%
of the DRAM-only system’s throughput as it has high overheads of
page fault with each DRAM miss.
Service latency: AstriFlash achieves similar service latency distri-
bution as the SSD-Sync (Sec. 3) because of our optimized priority-
based scheduling policy. We also observe that AstriFlash with the
priority scheduling (Sec. 3.2) exhibits 5x shorter service latency
than AstriFlash without the scheduling mechanism as the sched-
uler keeps on executing new jobs even if the requested page has
arrived for the pending job.
Tail latency: We study the latency distribution in detail for the
TATP workload as it closely represents the short database opera-
tions present in modern datacenter workloads. AstriFlash has 16%
degradation in 99-percentile latency compared to the DRAM-only
system. The tail latency is worse because each DRAM miss in Astri-
Flash causes a ROB flush, and the following thread switch destroys
the on-chip cache locality, thus incurring more on-chip misses.
However, AstriFlash achieves a similar overall response latency
distribution compared to the DRAM-only distribution. Even though
the service latency is higher as it includes the SSD response time,
the queueing latency becomes significantly lower.

5 CONCLUSION
In this paper, we propose AstriFlash, which is a new online flash-
based memory hierarchy. AstriFlash eliminates the page fault over-
head by employing a hardware/software co-designed switch-on-
miss architecture. Our results show that AstriFlash serves data out
of flash directly with 95% of the DRAM-only system’s throughput
while maintaining 99-percentile tail latency with only 16% degrada-
tion. Overall, AstriFlash reduces the memory cost by 20x, therefore
providing a potential solution for future TB-scale memory systems.

REFERENCES
[1] Ahmed H. M. O. Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian Huang,

Nam Sung Kim, Jinjun Xiong, and Wen-Mei W. Hwu. 2019. FlatFlash: Exploiting
the Byte-Accessibility of SSDs within a Unified Memory-Storage Hierarchy..
In Proceedings of the 24th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XXIV), 971–985.

[2] AMD. 2019. AMD EPYC 7742. https://www.amd.com/en/products/cpu/amd-
epyc-7742

[3] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy.
1991. Scheduler Activations: Effective Kernel Support for the User-Level Man-
agement of Parallelism.. In Proceedings of the 13th ACM Symposium on Operating
Systems Principles (SOSP), 95–109.

[4] Duck-Ho Bae, Insoon Jo, Youra Choi, Joo Young Hwang, Sangyeun Cho, Daniel
D. G. Lee, and Jaeheon Jeong. 2018. 2B-SSD: The Case for Dual, Byte- and

Block-Addressable Solid-State Drives.. In Proceedings of the 45th International
Symposium on Computer Architecture (ISCA), 425–438.

[5] Luiz André Barroso and Urs Hölzle. 2009. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines.

[6] Luiz André Barroso, Mike Marty, David A. Patterson, and Parthasarathy Ran-
ganathan. 2017. Attack of the killer microseconds. Commun. ACM 60, 4 (2017),
48–54.

[7] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. 2014. IX: A Protected Dataplane Operating System for
High Throughput and Low Latency.. In Proceedings of the 11th Symposium on
Operating System Design and Implementation (OSDI), 49–65.

[8] Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019. PARTIES: QoS-
Aware Resource Partitioning for Multiple Interactive Services.. In Proceedings
of the 24th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XXIV), 107–120.

[9] Data Center Knowledge. 2017. Google Data Center FAQ. http://www.
datacenterknowledge.com/archives/2017/03/16/google-data-center-faq/

[10] Francis M. David, Jeffrey C. Carlyle, and Roy H. Campbell. 2007. Context switch
overheads for Linux on ARM platforms.. In Experimental Computer Science, 3.

[11] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74–80.

[12] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong,
Kim M. Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. 2018. Reducing
DRAM footprint with NVM in facebook.. In Proceedings of the 2018 EuroSys
Conference, 42:1–42:13.

[13] NVM Express. 2019. NVM Express Base Specification v1.4.
[14] Facebook. 2018. Facebook company info. https://newsroom.fb.com/company-

info/
[15] Michael Ferdman, Almutaz Adileh, Yusuf Onur Koçberber, Stavros Volos, Moham-

mad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerging scale-
out workloads on modern hardware.. In Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XVII), 37–48.

[16] Gina Roos. 2018. DRAM and NAND Flash Prices Will Dive in Q1 2019. https:
//epsnews.com/2018/12/17/dram-nand-prices-dive/

[17] Intel. 2019. Intel® Xeon® Platinum 9282 Processor Delivers Leadership Perfor-
mance . https://www.intel.com/content/dam/www/public/us/en/documents/
technology-briefs/performance-for-hpc-platforms-brief.pdf

[18] IO_URING. 2020. Efficient IO with io_uring. https://kernel.dk/io_uring.pdf
[19] Bruce L. Jacob, Spencer W. Ng, and David T. Wang. 2008. Memory Systems: Cache,

DRAM, Disk.
[20] Jeff Barr, AWS. 2019. EC2 High Memory Update – New 18 TB and 24 TB In-

stances. https://aws.amazon.com/blogs/aws/ec2-high-memory-update-new-18-
tb-and-24-tb-instances/

[21] Djordje Jevdjic, Gabriel H. Loh, Cansu Kaynak, and Babak Falsafi. 2014. Unison
Cache: A Scalable and Effective Die-Stacked DRAM Cache.. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
25–37.

[22] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. 2016. NVMeDirect: A User-
space I/O Framework for Application-specific Optimization on NVMe SSDs.. In
8th USENIX Workshop on Hot Topics in Storage and File Systems, 2016.

[23] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex: Remote Flash ≈
Local Flash.. In Proceedings of the 22nd International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXII), 345–
359.

[24] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. 2019. Reaping the
performance of fast NVM storage with uDepot.. In Proceedings of the 17th USENIX
Conference on File and Storage Technologie (FAST), 1–15.

[25] Mohan Kumar, Steffen Maass, Sanidhya Kashyap, Ján Veselý, Zi Yan, Taesoo
Kim, Abhishek Bhattacharjee, and Tushar Krishna. 2018. LATR: Lazy Translation
Coherence.. In Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXIII), 651–
664.

[26] Butler W. Lampson. 1983. Hints for Computer System Design.. In Proceedings of
the 9th ACM Symposium on Operating Systems Principles (SOSP), 33–48.

[27] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W. Lee, and Jinkyu
Jeong. 2019. Asynchronous I/O Stack: A Low-latency Kernel I/O Stack for Ultra-
Low Latency SSDs.. In Proceedings of the 2019 USENIXAnnual Technical Conference
(ATC), 603–616.

[28] Gabriel H. Loh and Mark D. Hill. 2011. Efficiently enabling conventional block
sizes for very large die-stacked DRAM caches.. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 454–464.

[29] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and
Boris Grot. 2014. Scale-out NUMA.. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XIX), 3–18.

https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.amd.com/en/products/cpu/amd-epyc-7742
http://www.datacenterknowledge.com/archives/2017/03/16/google-data-center-faq/
http://www.datacenterknowledge.com/archives/2017/03/16/google-data-center-faq/
https://newsroom.fb.com/company-info/
https://newsroom.fb.com/company-info/
https://epsnews.com/2018/12/17/dram-nand-prices-dive/
https://epsnews.com/2018/12/17/dram-nand-prices-dive/
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/performance-for-hpc-platforms-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/performance-for-hpc-platforms-brief.pdf
https://kernel.dk/io_uring.pdf
https://aws.amazon.com/blogs/aws/ec2-high-memory-update-new-18-tb-and-24-tb-instances/
https://aws.amazon.com/blogs/aws/ec2-high-memory-update-new-18-tb-and-24-tb-instances/


AstriFlash: An Online Flash-Based Memory Hierarchy SPMA’20, April 27, 2020, Heraklion, Greece

[30] Petros Koutoupis. 2019. Data in a Flash, Part IV: the Future of Memory Technolo-
gies. https://www.linuxjournal.com/content/data-flash-part-iv-future-memory-
technologies

[31] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving
Low Tail Latency for Microsecond-scale Networked Tasks.. In Proceedings of the
26th ACM Symposium on Operating Systems Principles (SOSP), 325–341.

[32] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John K. Ousterhout. 2018.
Arachne: Core-Aware Thread Management.. In Proceedings of the 13th Symposium
on Operating System Design and Implementation (OSDI), 145–160.

[33] Moinuddin K. Qureshi and Gabriel H. Loh. 2012. Fundamental Latency Trade-off
in Architecting DRAM Caches: Outperforming Impractical SRAM-Tags with
a Simple and Practical Design.. In Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 235–246.

[34] CSG Rick Eads. 2019. PCI Express Gen 5 Specification and latest information of
Gen 4 testing. https://www.keysight.com/upload/cmc_upload/All/PCI-Express5-
Specification-and-latest-information-of-Gen4-testing.pdf

[35] Samsung. 2017. Optimizing Data Center Systems and Applications for Samsung
SSDs. https://samsungsemiconductor-us.com/labs/pdfs/Samsung_Whitepaper_
Ecosystem_v3.pdf

[36] SiFive. 2018. Manual. https://sifive.cdn.prismic.io/sifive%2Fac48c4fd-af85-46be-
9dd9-22aa34ba6977_u54mc-core-complex-manual-v19.05.pdf

[37] Snehanshu Shah, Google Cloud. 2019. Announcing the general availabil-
ity of 6 and 12 TB VMs for SAP HANA instances on Google Cloud Plat-
form. https://cloud.google.com/blog/products/sap-google-cloud/announcing-
the-general-availability-of-6-and-12tb-vms-for-sap-hana-instances-on-gcp

[38] Avinash Sodani, Roger Gramunt, Jesús Corbal, Ho-Seop Kim, Krishna Vinod,
Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu. 2016.
Knights Landing: Second-Generation Intel Xeon Phi Product. IEEE Micro 36, 2
(2016), 34–46.

[39] SPDK. 2020. Storage Performance Development Kit. https://spdk.io/
[40] Dan Tsafrir. 2007. The context-switch overhead inflicted by hardware interrupts

(and the enigma of do-nothing loops).. In Experimental Computer Science, 4.
[41] Dmitrii Ustiugov, Alexandros Daglis, Javier Picorel, Mark Sutherland, Edouard

Bugnion, Babak Falsafi, and Dionisios N. Pnevmatikatos. 2018. Design guide-
lines for high-performance SCM hierarchies.. In Proceedings of the International
Symposium on Memory Systems (MemSys) 2018, 3–16.

[42] Stavros Volos, Djordje Jevdjic, Babak Falsafi, and Boris Grot. 2017. Fat Caches
for Scale-Out Servers. IEEE Micro 37, 2 (2017), 90–103.

[43] Frederick A.Ware, Javier Bueno, Liji Gopalakrishnan, Brent Haukness, Chris Hay-
wood, Toni Juan, Eric Linstadt, Sally A. McKee, Steven C.Woo, Kenneth L. Wright,
Craig Hampel, and Gary Bronner. 2018. Architecting a hardware-managed hy-
brid DIMM optimized for cost/performance.. In Proceedings of the International
Symposium on Memory Systems (MemSys) 2018, 327–340.

[44] Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anastassia Aila-
maki, Babak Falsafi, and James C. Hoe. 2006. SimFlex: Statistical Sampling of
Computer System Simulation. IEEE Micro 26, 4 (2006), 18–31.

[45] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sun-
dararaman, Andrew A. Chien, and Haryadi S. Gunawi. 2017. Tiny-Tail Flash:
Near-Perfect Elimination of Garbage Collection Tail Latencies in NAND SSDs.. In
Proceedings of the 15th USENIX Conference on File and Storage Technologie (FAST),
15–28.

https://www.linuxjournal.com/content/data-flash-part-iv-future-memory-technologies
https://www.linuxjournal.com/content/data-flash-part-iv-future-memory-technologies
https://www.keysight.com/upload/cmc_upload/All/PCI-Express5-Specification-and-latest-information-of-Gen4-testing.pdf
https://www.keysight.com/upload/cmc_upload/All/PCI-Express5-Specification-and-latest-information-of-Gen4-testing.pdf
https://samsungsemiconductor-us.com/labs/pdfs/Samsung_Whitepaper_Ecosystem_v3.pdf
https://samsungsemiconductor-us.com/labs/pdfs/Samsung_Whitepaper_Ecosystem_v3.pdf
https://sifive.cdn.prismic.io/sifive%2Fac48c4fd-af85-46be-9dd9-22aa34ba6977_u54mc-core-complex-manual-v19.05.pdf
https://sifive.cdn.prismic.io/sifive%2Fac48c4fd-af85-46be-9dd9-22aa34ba6977_u54mc-core-complex-manual-v19.05.pdf
https://cloud.google.com/blog/products/sap-google-cloud/announcing-the-general-availability-of-6-and-12tb-vms-for-sap-hana-instances-on-gcp
https://cloud.google.com/blog/products/sap-google-cloud/announcing-the-general-availability-of-6-and-12tb-vms-for-sap-hana-instances-on-gcp
https://spdk.io/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Tighter integration of flash
	2.2 Demand Paging vs Explicit IO
	2.3 Bottlenecks in traditional OS abstractions

	3 AstriFlash
	3.1 Key insights
	3.2 Design overview
	3.3 Switch-on-miss architecture
	3.4 Implementation Highlights

	4 Evaluation
	4.1 Methodology
	4.2 Experimental Results

	5 Conclusion
	References

