
AstriFlash
A Flash-Based System for Online Services

Siddharth Gupta
EcoCloud, EPFL

siddharth.gupta@epfl.ch

Yunho Oh
Korea University

yunho oh@korea.ac.kr

Lei Yan
EcoCloud, EPFL

l.yan@epfl.ch

Mark Sutherland
EcoCloud, EPFL

mark.sutherland@alumni.epfl.ch

Abhishek Bhattacharjee
Yale University

abhishek@cs.yale.edu

Babak Falsafi
EcoCloud, EPFL

babak.falsafi@epfl.ch

Peter Hsu
Peter Hsu & Associates

peter.hsu@phaa.eu

Abstract—Modern datacenters host datasets in DRAM to offer
large-scale online services with tight tail-latency requirements.
Unfortunately, as DRAM is expensive and increasingly difficult to
scale, datacenter operators are forced to consider denser storage
technologies. While modern flash-based storage exhibits µs-scale
access latency, which is well within the tail-latency constraints
of many online services, traditional demand paging abstraction
used to manage memory and storage incurs high overheads
and prohibits flash usage in online services. We introduce
AstriFlash, a hardware-software co-design that tightly integrates
flash and DRAM with ns-scale overheads. Our evaluation of server
workloads with cycle-accurate full-system simulation shows that
AstriFlash achieves 95% of a DRAM-only system’s throughput
while maintaining the required 99th-percentile tail latency and
reducing the memory cost by 20x.

I. INTRODUCTION

As billions of online users generate data daily, computer
system designers struggle to architect datacenters that can
manage ever-increasing datasets in a high-performance and
cost-effective manner [11]. To provide online services with
high throughput and low tail latency, modern datacenters host
the majority of data in memory [21], [56], [58] using TBs of
DRAM per server [10], [66]. Unfortunately, DRAM accounts
for a significant fraction of the overall server cost [7] and is
not scaling in capacity [11], [48], [52], [64]. Thus, datacenter
operators are forced to consider denser technologies to host
online services [22].

NAND flash is a suitable alternative as it enjoys 50x price
($/GB) improvement over DRAM [6], [34], but with 1000x
higher latency [37], [44], [67], [80]. We believe that tighter
integration of flash with DRAM might be a potential solution
for two reasons. First, many modern online services have ms-
scale end-to-end tail-latency constraints [18], [23], which allows
them to absorb few µs-scale flash accesses [14], [18], [22], [41],
[42], [44]. Second, object popularity and request distributions
for datacenter workloads are inherently skewed [64], [73], [75],
[76], thus allowing hosting the hot fraction of the dataset in
DRAM that serves most requests and filters the bandwidth
required from the backing flash. The above observations should
permit the design of a cost-effective two-tier hierarchy where

a capacity-constrained DRAM caches the hot fraction of the
dataset stored in a capacity-scaled flash layer.

The central obstacle to such a design today is the reliance
on the traditional OS abstraction of demand paging for moving
data between memory and flash. While paging was originally
introduced for devices with ms-scale access latencies (e.g.,
disks), modern flash-based devices provide ∼50 µs access
latency. As a consequence, archaic OS paging mechanisms
incur performance overheads unsuitable for the tight tail-
latency constraints of online services [12], [19], [49], [50],
[53]. Previous proposals combat the performance overheads
by either accelerating paging [49], [50] or providing direct
access to flash [1], [9], but still have a significant performance
degradation compared to DRAM-only systems, or bypass
paging and virtual memory altogether [41], [44], [65].

We propose AstriFlash, a hardware-software co-designed
system that tightly integrates flash and DRAM to achieve
DRAM-like performance with capacity and cost benefits of
flash while maintaining the abstraction of virtual memory. We
identify that paging overheads can be divided into core-side
and memory-side arising from task switching and memory
management. As a solution, we employ DRAM as a hardware-
managed cache (e.g., Intel Knights Landing [68]) to eliminate
the OS memory-management overheads and enable near-
DRAM capacity management and data movement. We also
hide the flash access latency using fast user-level thread
switches triggered on a DRAM-cache miss instead of the
traditional OS-based context switches, thus enabling efficient
asynchronous flash accesses. While prior proposals [44], [49],
[50], [65] typically focus on optimizing one class of overheads,
AstriFlash achieves better performance by addressing core-side
and memory-side overheads synergistically. Overall, AstriFlash
efficiently absorbs the µs-scale flash latency by providing cross-
stack integration with ns-scale overheads. Such integration
requires a novel re-design of three essential techniques:

1) While switch-on-miss architectures have been studied
for ns-scale memory stalls [17] and ms-scale disk stalls [71],
AstriFlash requires absorbing µs-scale flash accesses in online
services using flexible user-level threads. In contrast to a
limited number of hardware threads and expensive OS-based

1

context switches, user-level threads enable low-cost contexts to
efficiently overlap flash accesses by directly switching threads
in 100 ns on a DRAM-cache miss. AstriFlash also provides
hardware support to ensure forward progress and prevent
starvation, thus upholding the tail latency of online services.

2) AstriFlash revisits classic proposals on memory traps [62]
as it requires tolerating µs-scale DRAM-cache misses instead
of rare ms-scale page faults using OS support. Accommodating
frequent DRAM-cache misses in modern out-of-order (OoO)
cores requires efficient microarchitectural support to revert
committed stores residing in the Store Buffer (SB). AstriFlash
extends existing speculation proposals [77] to cover the SB,
thus allowing reverting stores without OS support.

3) AstriFlash avoids OS-based memory management using a
hardware-managed DRAM cache and provides microarchitec-
tural support for managing 100s of concurrent misses. While
traditional on-chip cache designs implement costly SRAM-
based structures to support 10s of concurrent misses for
ns-scale cache-refill latency, the DRAM cache can have 100s
of concurrent misses because of the µs-scale cache refills from
flash. To the best of our knowledge, while previous DRAM-
cache proposals [35], [36], [51], [63] do not provide such
support, AstriFlash provides novel microarchitectural support
to implement an in-DRAM miss status table to track concurrent
misses at low cost.

Overall, AstriFlash provides a flash-based system for online
services where a fast-but-expensive DRAM contains the hot
fraction, and a slow-but-cheaper flash contains the dataset, thus
reducing the memory cost by 20x. Our evaluation shows that
AstriFlash achieves ∼95% of the throughput of a DRAM-only
system while maintaining the 99th-percentile latency.

II. FLASH-INTEGRATED HIERARCHIES

NAND flash offers 50x cost improvement [6], [34] but incurs
1000x higher latency (50 µs) than DRAM [37], [44], [67],
[80]. While various online services with ms-scale tail latency
constraints can absorb a few µs-scale flash accesses [14],
[18], [22], [23], [41], [42], [44], replacing all DRAM with
flash will result in unacceptable performance. Therefore, a
careful combination of flash and DRAM is required to reduce
costs while maintaining acceptable performance. Flash is
commercialized as a storage device called Solid State Drive
(SSD) with legacy I/O interfaces that preclude its use in online
services. Therefore, tighter flash integration while maintaining
DRAM-like performance requires the following considerations.

A. Identifying the required DRAM-to-flash ratio

Memory hierarchies are designed using caching principles
to exploit the locality present in data accesses. Faster devices
are used as a cache to serve frequently accessed data while
backing slower devices serve data in case of a cache miss [47].
In datacenter workloads, a small fraction of the dataset can
absorb most of the data accesses. Such an access pattern can
be exploited by hosting the hot fraction of the dataset in
DRAM while the backing flash contains the whole dataset [73],
[74], [75], [76]. Each DRAM miss requires fetching the

0

30

60

90

120

150

0 2 4 6 8 10

Fl
as

h
Ba

nd
w

id
th

 (G
Bp

s)

DRAM capacity as a fraction of dataset size (%)

0

3

6

9

12

15

M
iss

 R
at

e
(%

)

Max. PCIe Gen5 Bandwidth

= Knee PointUpper Bound

Lower Bound

Max. PCIe Gen4 Bandwidth

Fig. 1: Miss rate and flash bandwidth vs. DRAM capacity.

requested data from flash. Similar to previous studies [73],
[76], we examine the DRAM miss ratio while varying the
DRAM-to-flash capacity ratio for CloudSuite [23] workloads.

BWFlash =
BWDRAM

Cache Block Size
× Miss Rate × Page Size (1)

We also study the tradeoff between DRAM capacity and flash
bandwidth required to refill the DRAM. We calculate the flash
bandwidth required per core using Equation 1 with 0.5 GBps as
average DRAM bandwidth [74], [75], 4KB and 64B as the page
and cache block size. Page is the smallest data unit in DRAM
but is decided to be larger than the cache block to capture spatial
locality in the lower levels of the memory hierarchy where
temporal locality is scarce. Large pages also reduce the tracking
metadata required for all pages in DRAM. Figure 1 shows the
average cache miss ratio across workloads and the required
flash bandwidth for different DRAM capacities. Similar to
previous studies [73], [76], the miss rates flatten around 3% of
DRAM capacity, which requires 60 GBps of flash bandwidth
for a 64-core system [3]. With PCIe Gen5 specifications [20]
providing up to 128 GBps bandwidth, it is possible to meet
the flash bandwidth requirements for high core counts using
multiple SSDs. To reduce the bandwidth requirements further,
we can use a larger DRAM cache, employ smaller pages, or
use optimizations such as Footprint Cache [36].

Henceforth, we assume a system with 1TB dataset hosted
in flash and a DRAM cache with 3% capacity (i.e., 32GB),
which requires 60 GBps aggregate flash bandwidth for 64
cores. As flash is 50x cheaper than DRAM, this configuration
reduces the memory cost by 20x compared to a 1TB DRAM
system [10], [66]. Today, we can already implement such a
flash-based system with existing OS paging support. However,
our workloads indicate that each core encounters a DRAM
miss every 5-25 µs, thus causing the µs-scale paging support
to become the performance bottleneck.

B. Programming abstractions for flash

Data movement between flash and DRAM layers can either
be orchestrated by programmers or transparently done by the

2

OS using virtual memory [15]. While the latter places a lower
burden on the programmer, its reliance on demand paging
makes it more challenging to guarantee good performance. To
stress-test AstriFlash, we do not expect the programmer to
control data movement between the DRAM and flash layers.

Data movement in the case of virtual memory is transparent
to programmers, and demand paging is used to retrieve data
from flash. All pages are mapped into the application’s Virtual
Address (VA) space, but only a subset may be present in the
Physical Address (PA) space, i.e., DRAM. When the application
accesses a page not present in DRAM, the OS copies the
required page from flash to DRAM and maps it to the correct
VA. The application is oblivious to the physical location of a
page and uses the same VA for each page throughout execution.
Therefore, virtual memory provides ease of programmability
by enabling permanent VA addresses for data.

Data movement in case of explicit I/O is orchestrated by
programmers. The application manages data transfer between
flash and DRAM using system calls or user-space I/O [32], [44],
[69], and can issue an explicit request to copy a page from
flash into a self-managed memory pool. Complex indexing
structures [44] are used to track pages in both DRAM and
flash, and the limited capacity of the memory pool is exposed
to the application. Thus, as DRAM pages are not guaranteed to
remain at the same index throughout execution, the application
cannot rely on permanent VA addresses.

C. Overheads of demand paging

Modern memory hierarchies use flash as a logical extension
of memory. Demand paging abstractions use DRAM as an
OS-managed cache for flash, where DRAM is exposed to the
OS through a physical address space, and page tables map
virtual addresses to physical addresses. When the application
accesses a virtual address that is not mapped to a physical
address, a page-fault exception is triggered, and the OS fetches
the required page from flash and installs it in the physical
address space, potentially evicting another page. After initiating
the page fault, the OS also performs a context switch, thus
overlapping the flash access with useful work [50].

Traditional demand paging abstraction for I/O was origi-
nally built for dealing with ms-scale access latencies (e.g.,
disks) where the device overheads overshadowed the µs-scale
software overheads. However, as modern devices (e.g., flash)
exhibit µs-scale access latencies, paging becomes a critical
performance bottleneck [12]. We categorize these overheads
into memory-side representing flash-access scheduling and
memory-capacity management, and core-side representing task
management and context switches.

Every page fault requires the OS to schedule an I/O request
to fetch the requested page based on the SSD protocol (e.g.,
NVMe [57]). Checking the page cache and executing the OS
storage stack and NVMe driver can consume up to 10 µs [9],
[49], [50], [65]. Even with recent proposals that include
lean software stacks [32], [69] or allow direct user access
to flash using normal loads and stores [1], [9], systems still
incur µs-scale overheads. As flash accesses are 1000x longer

Thread 1
Thread 2
Thread 3

App
10 μs

Page fault
5 μs

Flash Access
50 μs

Context switch
2.5 μs each side

(a) Traditional Page Fault

Thread 1
Thread 2
Thread 3

(b) Ideal

Fig. 2: Asynchronous flash accesses.

than DRAM accesses, frequently accessed pages should be
maintained in DRAM for fast access. Migrating a page to
DRAM might also require evicting another page, where victim
selection is performed using complex policies in the OS
with µs-scale overhead. Page migration also requires updating
the address mappings in the page tables. Keeping the TLBs
coherent with the page tables requires a global TLB shootdown,
which removes the old entries from all the TLBs. Modern TLB
shootdowns are a broadcast operation, thus scaling poorly with
the number of cores and incurring over 10 µs in latency [4],
[46]. Recent proposals [1], [46] attempt to reduce the overhead
by batching multiple page faults together. However, for frequent
flash accesses, the number of overall shootdowns grows with
the core count, thus accumulating high memory-side overhead.

As OoO pipelines cannot hide 50 µs long flash access
latency, the OS provides the abstraction of asynchronous flash
accesses. The OS triggers a context switch on each page fault
to overlap flash latency with useful work and maintain high
system throughput. Previous proposals [1], [9] without context
switches suffer a 5-10x performance degradation compared to
DRAM-only systems. However, each context switch has ∼5 µs
of core-side overhead [39], [65], [72] because of complex
scheduling policies in the OS.

Figure 2 compares asynchronous flash accesses with tra-
ditional paging overheads and an ideal system with no
paging overhead. With 3% DRAM capacity, modern datacenter
workloads have a DRAM miss every ∼10 µs per thread
accompanied by 10 µs of page fault and context switch
overhead [65]. Moreover, TLB shootdowns and OS mechanisms
result in global synchronization and thus do not scale with
the number of cores. Clearly, µs-scale paging overhead causes
high throughput degradation. To address these challenges, we
propose AstriFlash, a hardware-software co-designed flash-
based system for online services.

III. ASTRIFLASH

This section describes the key insights for AstriFlash,
provides an overview of its design, and discusses the tradeoffs
against DRAM-only and flash-based memory hierarchies.

A. Key insights

AstriFlash 1) uses lightweight user-level thread switches
to hide flash accesses and maintain tail-latency constraints,

3

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1N
or

m
al

ize
d

99
th

-p
er

ce
nt

ile
 la

te
nc

y

Throughput normalized to DRAM-only system

DRAM-only AstriFlash Model OS-Swap Flash-Sync

SLO >
40x Avg. service time

Fig. 3: 99th-percentile latency normalized to the average service
time of a DRAM-only system with a single physical server.

and 2) eliminates traditional OS paging overheads using an
accelerated DRAM miss handler.

The first insight aims at reducing the core-side overheads and
is based on queuing characteristics at the tail of the response-
latency distribution in online services with ms-scale Service-
Level Objectives (SLO) [14], [18], [22], [23], [41], [42], [44].
The response latency of requests is dominated by queuing
delay because a system that implements a single-server queuing
model requires the younger requests to wait for older requests
to finish and free up the server. With asynchronous flash
accesses and lightweight thread-switching support, a single
physical server can instead function as a logical multi-server
queuing model. Therefore, older requests waiting for pending
flash accesses can free up the server instead of blocking
younger requests, thus removing the request-level head-of-
the-line blocking and allowing AstriFlash to maintain similar
overall response latency as a DRAM-only system. This insight
applies best at high loads when there are multiple outstanding
requests to cover the flash access latency.

The second insight aims at eliminating the memory-side
overheads and asserts that conventional OS demand paging
abstractions are fundamentally not scalable in systems with
high paging frequency because of synchronization in either
software (i.e., multiple OS threads modifying kernel data
structures like page tables) or hardware (i.e., broadcast-based
TLB shootdowns), thereby limiting throughput as shown
in Figure 2. Memory mapping flash and encapsulating the
memory-management activity in an accelerated miss handler
between the DRAM cache and flash enables removing the
paging overheads and maximizing throughput.

Figure 3 presents the analytical latency and throughput of
AstriFlash, a DRAM-only system, a traditional swap-based
system (OS-Swap), and a system with synchronous flash
accesses (Flash-Sync). DRAM-only and Flash-Sync represent
an M/M/1 queuing system where all the requests always run
to completion. In contrast, AstriFlash and OS-Swap represent
an M/M/k queuing system where k requests are required to
overlap the flash accesses. We assume that every 10 µs of
execution triggers a flash access that takes 50 µs to complete.
Flash-Sync has the worst performance with >80% throughput
degradation as each flash access is synchronous. Though OS-

Swap performs asynchronous flash accesses, it suffers from
severe core-side and memory-side overheads (10 µs per flash
access) because of page fault handling and context switches
that cause ∼50% throughput degradation. AstriFlash has little
overhead from flash access and thread switching, and thus
the throughput approaches that of a DRAM-only system. Our
analysis indicates that an application with flash accesses every
∼10 µs of execution requires a SLO of 40x the average service
time to perform within ∼20% of the DRAM-only system.
The performance gap shrinks as the SLO is relaxed or more
physical servers are added. Overall, AstriFlash can sustain
ms-scale SLOs for online services while achieving DRAM-
like throughput using lightweight, user-level thread switching.

B. Design overview

Figure 4a, 4b, and 4c depict the design overview of OS-
Swap, Flash-Sync, and AstriFlash respectively. On the core side,
AstriFlash provides fast switching among user-space threads at
a µs-scale granularity to efficiently overlap flash accesses with
useful work. On the memory side, AstriFlash allows mapping
flash into the physical address space while using DRAM as a
hardware-managed cache (3% of the flash size).

1) Core-side design: AstriFlash provides novel hardware-
software co-design [29] to hide asynchronous flash accesses
efficiently. While OoO cores are provisioned to hide syn-
chronous DRAM accesses, traditional disk accesses are long
and infrequent enough to perform a context switch in the OS
and hide the latency. However, in AstriFlash, we face µs-scale
stalls which cannot be handled efficiently either in hardware
or software [12]. Previous proposals [1], [76] expose the flash
access latency to the cores and force them to wait for a response,
thus losing throughput. In contrast, AstriFlash provides a novel
µs-scale switch-on-miss architecture that allows switching
user-level threads on a DRAM miss to hide flash accesses
efficiently and achieve DRAM-like throughput. While switch-
on-miss architectures [17] have been studied only in the context
of ns-scale memory stalls and batch workloads like SPEC,
AstriFlash needs to absorb µs-scale stalls and support latency-
sensitive workloads. As online services can incur multiple
outstanding flash accesses, flexible user-level threads are a cost-
effective way to provide the traditional sequential execution
abstraction to programmers and manage 100s of execution
contexts [65], while hardware threads are limited in number.
AstriFlash uses a simple user-level thread library [5], [61] to
switch between threads in 100 ns, which is 50x faster than
context switches, and 5x faster than recent proposals [39],
[65]. AstriFlash also provides architectural support in OoO
cores to invoke the user-level thread scheduler on a DRAM-
cache miss, where the scheduler stops the running thread and
schedules the next available thread. When the original thread
is rescheduled after the flash access completes, it resumes
from the instruction that caused the DRAM-cache miss and
successfully reads the required data from the DRAM cache.
AstriFlash also provides scheduling policies and architectural
support to minimize request starvation.

4

Core

DRAM

Flash

P0 P1 P2 P3

Context Switch

Page Migration
through OS

(a) OS-Swap.

Core

DRAMFlash

Page Migration
OS + HW Support

P0 P1 P2 P3

Context Switch

(b) Flash-Sync.

Core

DRAM
Cache

Flash

F

B

1

2

3

4

5

6

1 Access DRAM cache: Miss!

2 Notify backside controller of miss

3 Send page request to flash

4 Send miss signal to core

5 Switch to another thread

6 Receive page from flash

F Frontside controller

B Backside controller

(c) AstriFlash.

Fig. 4: Comparison of hybrid memory system designs.

The µs-scale switch-on-miss design requires microarchi-
tectural changes because the existing OoO cores assume
that all successfully launched memory instructions finish
synchronously. In contrast, on a DRAM-cache miss, AstriFlash
aborts the responsible instruction, e.g., a committed store
residing in the Store Buffer, and resets the core state to that
of the last finished instruction before invoking the user-level
thread scheduler. While a similar problem has been studied
in the context of rare memory traps, previous proposals [62]
rely on the OS to handle the trap. However, as DRAM-cache
misses happen every ∼10 µs, AstriFlash cannot rely on the
heavyweight OS mechanisms and requires microarchitectural
support. As any memory instruction can potentially trigger a
DRAM-cache miss and thus has to be aborted, instructions can
only retire after the previous instruction completes, therefore
disabling the performance critical memory reorderings from
relaxed memory consistency models [55] and resulting in
slow, sequentially-consistent execution. However, the memory
reorderings can be performed speculatively if a rollback
mechanism ensures correctness in case of aborts and discards
all the speculative instructions. The speculation succeeds if
the memory instruction completes, thus allowing the follow-
ing speculatively-executed instructions to retire legally. Such
speculation mechanisms [16], [24], [77] have been extensively
studied in the context of memory consistency models and
require extra tracking structures per core.

2) Memory-side design: As memory management and flash
interaction contribute ∼5 µs of paging overhead per flash
access, AstriFlash employs a hardware-managed DRAM cache
to provide efficient near-DRAM capacity management and
orchestration of data movement, thus eliminating the traditional
OS paging overheads. Removing the explicit DRAM-capacity
management in the OS also eliminates OS synchronization
due to page-table modifications and TLB shootdowns for
data movement between DRAM and flash, while substituting
OS-based page replacement policies with cache eviction
policies and I/O scheduling logic with hardware-triggered flash
accesses. AstriFlash requires DRAM controllers to look up
the DRAM cache and determine hit or miss decisions that are

communicated to the requesting core, while the misses cause
the corresponding pages to be fetched from flash.

Incorporating a GB-scale DRAM cache requires careful
consideration in picking the page size. Traditional SRAM
caches have 64B blocks as they need a small block size to track
multiple independent data items to benefit from the temporal
locality closer to the cores. In contrast, the DRAM cache
being the last level in the cache hierarchy should be tailored
for spatial locality as temporal locality is scarce. Moreover,
having 64B blocks in a 32GB cache will require ∼4GB of tags
which is impractical. Therefore, the DRAM cache in AstriFlash
should employ a larger page size such as 4KB. However, even
with a 4KB block size, we still need 64MB of tags which
will be prohibitively expensive to hold in an SRAM tag array.
Therefore, we conservatively employ designs that hold the
tags in the DRAM cache at the cost of serialized tag and
data lookup [35], [36]. System designers can pick alternative
DRAM-cache designs [51], [63] if they can accommodate the
required SRAM tag array.

Similar to the non-blocking on-chip SRAM caches, the
DRAM cache also needs to track multiple concurrent misses.
While the on-chip caches use expensive SRAM structures
(MSHRs) to track 10s of concurrent misses, the DRAM cache
can have 100s of concurrent misses because of the long flash
access latency and thus cannot rely on expensive SRAM
structures. AstriFlash provides scalable bookkeeping of the
DRAM-cache misses using hardware support for an in-DRAM
miss status table, which is inexpensive compared to the typical
CAM-based MSHR solutions. To the best of our knowledge,
previous DRAM-cache proposals [35], [36], [51], [63] suffer
from similar problems but do not provide any solutions.

IV. ASTRIFLASH IMPLEMENTATION

This section describes the detailed implementation of
AstriFlash mechanisms in the same sequence as required in
the DRAM-cache miss-handling control path.

A. Flash addressing and memory mapping
AstriFlash uses existing PCIe mechanisms [1], [9] to create

memory mappings for flash. PCIe devices have Base Address

5

Set

DRAM Cache

Tag Data

(i)

Set

(ii)
Miss Status Row

Way

(a) Physical organization.

Pending
request?

Open correct DRAM
row set (RAS) and
Tag column (CAS)

Tag
matches?

Get data (CAS)

Reply to LLC
with DRAM miss

Reply to LLC
with data

Yes

Yes

No

No

Send miss request to
backside controller

Free
queue
entry?

Yes

No

(b) Frontside controller.

New miss
request?

Open DRAM miss
status row (RAS) and

column (CAS)

Miss info
exists?

Allocate miss
information, send
request to flash

Yes

No

Yes

Any new
reply?

Remove existing
page in set, send to

evict buffer

Yes

Fill in page data,
update tag

No
No

Free
space?

No

Yes

Remove miss
status entry

(c) Backside controller.

Fig. 5: AstriFlash DRAM cache structure and controller logic.

Registers (BARs) which contain the base address and offset of
the address space assigned to an endpoint device such as an
SSD. At boot time, the OS reads these BARs and acknowledges
them as the physical address space assigned to the SSD. Then,
the OS can use the page tables to directly map virtual addresses
to these physical addresses, thereby exposing the SSD as a
memory device. The obtained physical addresses are used to
look up data in the cache hierarchy and are equivalent to the
Logical Page Numbers of the SSD used internally in Flash
Translation Layer and wear-leveling.

Address translation for servers provisioned with TBs of
DRAM [10], [66] is an important problem [27] as modern
TLB hierarchies cannot provide enough coverage. AstriFlash
can benefit from previously proposed solutions [13], [27], [81],
where Midgard [27] in particular is an excellent fit because
it relies on large cache hierarchy capacity to reduce address
translation overheads. AstriFlash and DRAM-only system have
similar address translation overheads because both the hot data
and corresponding page tables are served from the on-chip or
DRAM caches. However, in the case of cold data accesses, both
the data and the required page tables might have to be retrieved
from flash. While AstriFlash’s switch-on-miss architecture can
provide DRAM-like throughput, serving page table from flash
using a serialized page table walk might cause the application to
violate its SLO. To address this challenge, AstriFlash employs
available hardware and OS support to ensure that page tables
are always DRAM resident.

On the hardware side, we use a hybrid-DRAM architecture
similar to Intel’s Knights Landing [68] in which the DRAM
is split into a cache and a flat space that the OS can use
directly. On the OS side, recent proposals [2] have engineered
Linux to ensure page tables are allocated in specific DRAM
nodes. Therefore, the OS can assuredly place page tables in

a DRAM partition that is directly exposed to the OS. Such a
design requires the DRAM controller to logically partition the
available number of DRAM rows into flat and cached parts at
boot time. The flat rows do not contain tags and expose a unique
physical address range to the OS using BARs, while the cached
rows contain tags and should be probed using the physical
address range exposed by the flash BARs. For every memory
access, if the requested physical address belongs to BARs
dedicated to the flat rows, then the data is retrieved from the
required flat row as per traditional DRAM design. Otherwise,
the cached rows are searched for the required page using the
set index and tag bits. Overall, AstriFlash can place page
tables directly in DRAM and provide the address translation
characteristics of a traditional DRAM-only system.

B. DRAM-cache organization

AstriFlash uses a DRAM-cache design [35] with 4KB page
granularity instead of block-based caches [51], [63], therefore
enabling a simple page fetch from flash on a DRAM-cache miss.
Each DRAM row is equivalent to a set in a set-associative cache
and contains both tag and data fields, as shown in Figure 5a. We
implement two DRAM-cache controllers, where the frontside
controller manages the DRAM-cache accesses, while the
backside controller manages the DRAM-cache misses.

1) Frontside controller (FC): Figure 5b depicts that FC
handles all DRAM data requests from the on-chip caches.
It calculates hit/miss decisions by looking up the tags and
sends replies for each request. We design FC by extending
a traditional DRAM controller which inherits typical DRAM
commands and scheduling policies. When FC receives a request,
it calculates the set index (row number) from the address. It then
checks if the row contains the page using a Row Address Strobe
(RAS) operation to fetch the row into the DRAM row buffer,

6

followed by a Column Address Strobe (CAS) operation to fetch
the tags and compare them against the requested address. The
tags contain the physical addresses of the pages as exposed by
flash and each tag occupies 8B. Therefore, each tag column
(64B) can map up to 8 ways. If one of the tags matches, FC
fetches the requested data with further CAS operations and
sends it to the LLC. If no tag matches the requested address,
FC sends a miss request to the backside controller’s queue to
fetch the requested page from flash. If the queue is full, FC
stalls while waiting for free entries in the queue. Once the
backside controller accepts the miss request, FC generates and
sends a miss response for the data request to the LLC.

2) Backside controller (BC): Figure 5c depicts that BC
interacts with flash and manages the metadata required for
handling misses. As flash accesses are long (50 µs), BC has
ample time to perform miss-handling operations. We propose
implementing BC as programmable logic using microcode or
software [25], [45] instead of hardwired FSMs, thus enabling
the implementation of flexible and complex policies.

BC issues a 4KB read request to fetch a page from flash using
the physical address. The on-chip network routes the requests
generated by BC to the PCIe controller, which forwards them
to flash [1], [9]. To receive the requested page, BC needs to
secure available space in the corresponding DRAM set and
might require evicting an existing page. After BC requests the
page from flash, it identifies a victim page and copies it to the
evict buffer. If the evicted page is dirty, it is written back to
flash off the critical path. Once the requested page arrives, BC
installs the data and tag in the designated set and way.

Traditionally, on-chip caches manage misses with Miss Status
Handling Registers (MSHRs). As MSHRs are CAM-based
and expensive, there are only tens of MSHRs per cache. In
AstriFlash, as each miss lasts for 50 µs, it is possible to have
hundreds of concurrent misses, which makes it too expensive
to implement enough MSHRs. Instead, AstriFlash tracks the
outstanding misses in a specialized DRAM row called Miss
Status Row (MSR). The MSR stores miss-handling entries
containing the addresses and metadata of missing pages. To
allow fast searches, we design the MSR as a set-associative
structure where each entry is 8B and can be retrieved with a
CAS operation. Once a DRAM-cache miss is detected, BC
checks the MSR for a pending miss to the same page to avoid
issuing duplicate requests to flash. If BC finds an existing entry,
it discards the request; otherwise, it locates free entries in the
set and allocates a new entry for the request. In case of no free
entries, BC waits for pending flash requests to finish and free
an MSR entry. Once the requested page arrives, BC removes
the matching MSR entry, thus indicating miss completion.

In AstriFlash, the DRAM cache buffers all write operations
that happen only on dirty page evictions, leading to fewer flash
writebacks that are de-prioritized against reads. Flash writes are
expensive as they can trigger garbage collection required for
wear leveling, incurring up to 100ms of latency [26], [80]. To
minimize garbage collection overheads, we suggest employing
previous proposals [80] that perform block erasure only in the
local plane, thus reducing wear-leveling latency.

LOAD 0xMISS
…
…
…

Handler Address Register

DRAM Cache
Miss0xHANDLER

ROB
ROB Flush

Jump to
handler

Switch to next thread

Run

0xHANDLER {
saveRegisters(currThread);
currThread = nextReady();
loadRegisters(currThread);

jump(currThread->PC);
}

Fig. 6: Switch-on-miss hardware-software interface.

C. µs-scale switch-on-miss architecture

Once FC detects a DRAM-cache miss, it sends a miss signal
to the core to trigger a thread switch instead of the traditional
synchronous wait for data.

1) Sending a miss signal to the core: As the memory
request corresponding to the DRAM-cache miss cannot be
completed immediately and should be executed later, all
resources allocated to the memory request should be reclaimed
for the system to progress. E.g., if MSHRs retain memory
requests that miss in the DRAM cache, all the MSHRs will
eventually get occupied, and the on-chip caches will block.
The mechanism required here is similar to the existing DRAM
ECC error interface. When a non-correctable DRAM ECC error
occurs, the DRAM controller generates an exception for the
requesting core, and all the resources allocated to the request
in the cache hierarchy are reclaimed [33], [70]. AstriFlash
piggybacks miss signaling on the same mechanism, freeing up
the allocated MSHRs at each cache level and sending the miss
signal up the hierarchy towards the requesting core.

2) Triggering a thread switch: The miss signal triggers
a user-level thread switch after reaching the core. Similar
to previous proposals [30], [54], our mechanism for thread
switching requires a new Handler Address Register and Resume
Register as part of the architectural state. For each process,
the handler address register contains the virtual address of the
user-level handler, which will trigger a thread switch using the
user-level thread library. For security purposes, this register can
only be written in privileged mode, thus requiring an additional
system call to verify and install a legitimate handler address.
In contrast, the resume register can be read and written in user
mode. Both these registers are part of the normal process state
and will change on a context switch.

The core-side MSHRs track the memory requests sent to the
cache hierarchy and can link the incoming miss signal back to
the triggering instruction, which is assumed to be in the ROB
as shown in Figure 6. Once the miss-triggering instruction is
identified and all the older instructions have retired, the ROB
is flushed and the Program Counter (PC) is set to the handler
address. The PC of the miss-triggering instruction is saved in
the resume register so that the thread can later resume from
the same instruction. Thus, the CPU is not stalled for flash
accesses and the control is passed back to the program.

3) Forward progress guarantees: The execution of multiple
threads can cause a deadlock in AstriFlash. When rescheduling

7

STORE 0xMISS
STORE (Hit)

…

L1 Cache
SB

LOAD (Hit)
ADD

…
…

DRAM Cache
Miss

ROB

Fig. 7: Aborting speculative stores on a DRAM-cache miss.

a miss-generating thread, the requested page might have already
been evicted because of DRAM-cache contention among
multiple threads and cores, thus preventing the thread from
progressing. To handle such cases, AstriFlash includes an
architectural mechanism to force forward progress of threads
when they are rescheduled so that they are not de-scheduled
again before retiring at least one instruction. Therefore, even if
the requested page is not present in DRAM when the thread is
rescheduled, the thread is not switched out and blocks the core
while waiting for the flash response. Moreover, AstriFlash can
also expose such contention events to software for management
at a higher level. AstriFlash implements this mechanism by
adding a forward progress bit to the resume register. When
a thread is rescheduled and the scheduler needs to force it
to make forward progress, it stores the PC of the resuming
instruction in the resume register and sets the forward progress
bit. If this bit is set, the new memory request for the resuming
instruction is forced to complete synchronously at FC, even if
the DRAM cache misses. Therefore, the resuming instruction
will block the core until it receives the requested data from the
memory hierarchy, after which it retires and unsets the forward
progress bit. Thus, the scheduler can flexibly choose between
thread switches and forward progress while using contention
information for thread scheduling or OS monitoring.

4) Precise exceptions and speculative stores: In modern
processors, each core has a Store Buffer (SB) to collect
stores that have retired but not completed. As stores do not
produce direct register values for younger instructions, the
store can be retired once its value and address are obtained
and it is at the head of the ROB, and is sent to the SB
where it awaits completion. In AstriFlash, as the DRAM
cache might miss for store accesses, a thread switch will be
triggered on corresponding stores. However, if the store has
already retired from the pipeline and is resident in the SB, it
cannot be discarded using existing speculation mechanisms.
Therefore, as it is always possible for a store and the following
instructions to be aborted due to a DRAM-cache miss, the
OoO core is forced to run in a sequentially-consistent manner,
thus prohibiting any memory reorderings of relaxed memory
consistency models [55] and the non-speculative retirement of
younger instructions. We employ post-retirement speculation
techniques [16], [24], [77] that regain the performance of
relaxed memory consistency models by speculatively reordering
memory operations.

Based on ASO [77], we expand the speculation mechanisms
already present in the ROB to cover the SB so that we can abort
the “speculative” stores in case of a DRAM-cache miss. For
typical ROB exceptions/speculation, each instruction’s physical

register mappings are kept until it retires from the ROB. In
case of an exception or misspeculation, the core reverts to
the older mappings before the instruction and discards newer
mappings. We extend the speculation mechanism so that the
mappings for a store are only freed when it leaves the SB.
We assume a 4-way OoO ARM A76 core with 128-entry
ROB, 32-entry SB, and a base 128-entry Physical Register File
(PRF). We analyze our workloads to find that an average of
four registers are modified between two stores, requiring four
additional physical registers per store in the SB. Therefore, a
32-entry SB requires 32*4=128 additional registers in our PRF,
equivalent to 1KB of additional SRAM. Finally, each store
entry in the SB requires a map table to track the associated
physical registers, where each map table entry represents 8-bit
PRF indices for 32 registers, therefore requiring 32*32*8b =
1KB of SRAM. As PRF and map tables consume most of the
additional silicon in ASO, we discount the silicon required
for any additional microarchitectural structures. Based on 7nm
SRAM density projections, modern silicon layouts can provide
2MB SRAM/mm2 while Cortex A76 core is 1.3mm2 in size.
Therefore, our 2KB overhead per core occupies 0.001mm2

(0.1% of Cortex A76), which might be acceptable.

D. Incorporating user-level threads

AstriFlash uses a user-level threading library that interacts
with the hardware to provide hardware-triggered µs-scale thread
switches on a DRAM-cache miss. The thread scheduler is
designed to ensure that online services can satisfy their tail-
latency requirements. We implement the proposed user-level
threading library in C and Assembly and evaluate it with a
cycle-accurate full-system simulator described in section V.

1) User-level threads: For each physical core, we assume a
single global queue that receives jobs from the clients. The user-
level scheduler picks new jobs from this queue and executes
them on user-level worker threads. The same scheduler manages
the context of each thread and switches among them for
cooperative multithreading. This scheduling model [5], [19],
[61] allows the applications to be easily ported to the AstriFlash
infrastructure using the traditional notion of threads.

The scheduler cannot preempt the user-level threads directly
as jobs are much smaller than the typical OS time quantum.
Therefore, AstriFlash executes the jobs on a run-to-completion
basis, except when they trigger a DRAM-cache miss and have
to wait for data access from flash to complete. AstriFlash allows
the user-level scheduler to be triggered on a DRAM-cache miss,
which can be enabled by installing the scheduler handler’s
address in the handler address register. Once the scheduler
is triggered, it deschedules the running thread that suffered
the DRAM-cache miss and schedules a ready thread, thus
overlapping the wait for the flash reply with useful work. The
scheduler backs up the context for the running thread, consisting
of the general-purpose registers and AstriFlash-specific resume
register, and stores it on the thread stack. Logically, on a
DRAM-cache miss, the running thread is halted and is stored
in a pending job queue, as shown in Figure 8. The pending
queue’s size is limited so that pending jobs do not exceed the

8

Job

New Jobs
Priority = 2

Job Context, Age

Pending Jobs
Priority = 1 or 3

Higher
Priority?

pick_new_job(){
if (pendingq.front().age > X)

job = pendingq.front();
else

job = newq.front();
}

Fig. 8: Priority-based thread scheduling in AstriFlash.

tail-latency requirements. Once the pending queue is full, any
new DRAM-cache misses result in the scheduler waiting for
the flash response for the oldest job.

2) Priority scheduling with aging: The user-level thread
library schedules new and pending jobs where the new jobs
have never been scheduled for execution, while the pending
jobs were halted after being scheduled because they suffered a
DRAM-cache miss. The scheduler is optimized to provide the
service latency distribution that matches the ideal Flash-Sync
system (Figure 4b), where the jobs wait for flash to respond.

We implement a priority scheduler that assigns a default
priority of one to pending jobs and a higher priority of two
to new jobs to overlap the flash access latency with useful
work. However, similar to traditional priority scheduling [71],
AstriFlash also needs to handle the starvation problem. In a
skewed job distribution, it is possible to have consecutive new
jobs that do not face DRAM-cache misses, causing a simpler
scheduler to starve the pending queue. However, Aging policies
can be used to prevent such starvation. Each job entry records
a timestamp when it enters the pending queue. When picking
a new job to execute, the scheduler checks the head of the
pending queue. If the age of the head job is greater than the
average flash response time, then the scheduler picks it to
execute; otherwise, it picks a new job, as shown in Figure 8.
To combat latency spikes due to garbage collection and flash-
side queuing, it is possible to program the backside controller
and create a notification mechanism using queue pairs that can
notify the core upon page arrivals from flash, similar to modern
storage response arrivals [32], [69]. The scheduler can then
read the queue pairs and schedule the corresponding thread.
As datacenter jobs typically take 10-100 µs to finish, which
is comparable to the flash latency itself, the pending jobs can
be scheduled soon after their data arrives from flash. In this
manner, the user-level thread scheduler maintains a service
latency distribution similar to the Flash-Sync system.

V. METHODOLOGY

A. Applications and system architecture

We implement a user-level threading library that spawns
32-64 user threads per core (depending on the workload)
and provides fast switching amongst them. We evaluate
Silo and Masstree workloads from Tailbench [40] and port
them to our threading library with few changes. We also
evaluate five workloads from a microbenchmark suite [28]
to capture data structure access patterns along with high-
level database operations such as TATP and TPCC. In Array
Swap, each operation swaps two array elements, generating

Core
16× ARM Cortex-A76 [79], 64-bit, 2GHz
4-way OoO, 128-entry ROB, 32-entry SB

TLB L1(I,D): 48 entries, L2: 1024 entries

L1 Caches
64KB 4-way L1D, 64KB 4-way L1I
64-byte blocks, 2 ports, 32 MSHRs
2-cycle latency (tag+data)

LLC 1MB/tile, 16-way, 6-cycle access, non-inclusive
Coherence Directory-based MESI

Interconnect 4× 4 2D mesh, 16B links, 3 cycles/hop

DRAM cache
4 MCs, 2GB per MC (512MB per core)
128K sets, 4 ways, 16KB row, 4KB page
RAS = 55 cycles, CAS (8B) = 3 cycles

SSD
50/100 µs random read/write latency
4KB page, 4GB/Plane, TLC, Plane-blocking GC

TABLE I: System parameters for simulation on QFlex.

both reads and writes. Red Black Tree (RBT) and Hash
Table perform data structure lookups with pointer chasing
behavior. TATP and TPCC execute ‘update subscriber data’
and ‘neworder’ transactions for items in a database. We model
data accesses with an analytical Zipfian distribution so that the
benchmarks trigger a DRAM-cache miss every 5-25 µs. Our
workloads mimic limited write traffic as identified by previous
proposals [1], [76], resulting in infrequent garbage collection
events and practical endurance/lifetime for flash.

We model 16× ARM Cortex-A76 cores with 1MB LLC
per core. We scale down our 1TB dataset for 64 cores to a
256GB dataset for 16 cores and use an 8GB (3%) DRAM
cache while flash stores the 256GB dataset. Both the DRAM
cache and flash use the standard page size of 4KB. The
frontside controller is an FSM that extends the traditional
DRAM controller and uses FR-FCFS scheduling. We model
one cycle each to issue commands for opening DRAM rows
and columns, sending hit/miss responses to the on-chip caches,
and miss requests to the backside controller. In contrast to the
frontside controller, the backside controller is programmable
and is slower in issuing requests. We model three cycles each
for issuing DRAM commands and sending requests to flash.

For the AstriFlash scheduler, we implement job-based
priority scheduling as described in subsection IV-D. We model
a large job queue to evaluate the maximum throughput the
system can sustain while also monitoring the service time of
each job. Apart from actual work, the service time includes
the wait time in case of a DRAM-cache miss but does not
include the time spent waiting in the job queue. To measure
the tail latency distribution, we use a Poisson process to model
request arrival times and measure both the queuing time in the
job queue and the service time.

B. Evaluated configurations

We use QFlex [59], a cycle-accurate full-system simulator
based on Flexus [78] to evaluate AstriFlash. Table I lists the
detailed simulation parameters used in QFlex. We evaluate the
following configurations:

1) DRAM-only represents ideal performance, as all the data
is served from DRAM without any flash accesses.

9

0

20

40

60

80

100

Masstree Silo Array
Swap

RBT Hash
Table

TATP TPCC Geomean

Th
ro

ug
hp

ut
 n

or
m

al
ize

d
to

 D
RA

M
 (%

)
Flash-Sync OS-Swap AstriFlash AstriFlash-Ideal

Fig. 9: Throughput comparison of different configurations
normalized to a DRAM-only system.

2) AstriFlash represents our proposal, where DRAM acts
as a hardware cache and contains the hot data, while
the backing flash contains the whole dataset. A priority
scheduler is used for switching among user-level threads,
and each switch costs around 100ns.

3) AstriFlash-Ideal represents the AstriFlash design with no
cost associated with thread switching.

4) AstriFlash-noPS represents AstriFlash with a FIFO
scheduling policy instead of Priority Scheduling.

5) AstriFlash-noDP represents AstriFlash without DRAM
partitioning, and thus TLB misses can incur flash-based
page-table walks (subsection IV-A).

6) OS-Swap represents traditional systems where the OS
uses paging to swap pages between the DRAM and flash
(subsection III-A).

7) Flash-Sync represents FlatFlash [1], a latency-optimized
system where the core waits for flash accesses to complete
synchronously, thus resulting in a 50 µs delay.

VI. EVALUATION

This section describes our evaluation of AstriFlash based
on cycle-accurate simulation. The evaluation results include
throughput, service time, and tail latency comparisons.

A. Throughput comparison

We first evaluate the throughput of AstriFlash compared to a
DRAM-only system. Figure 9 shows that AstriFlash achieves
an average of 95%, while AstriFlash-Ideal achieves 96% of
the DRAM-only system’s throughput. The 5% throughput loss
is because of the DRAM-cache tag comparisons and response
wait, pipeline flush for every DRAM-cache miss, and the
scheduler overhead for switching threads.

For each DRAM-cache miss, DRAM-side tag checking is
an overhead because it does not result in data access and will
be repeated later. When the miss signal is sent to the core, the
pipeline is flushed to redirect control to the user-level handler.
As modern processors feature 100s of ROB entries, each
flush loses useful work done by the OoO pipeline resulting in
throughput degradation. As TPCC is the most computationally
intensive workload, there is higher throughput degradation as

Benchmark AstriFlash AstriFlash-noPS AstriFlash-noDP

Masstree 1.02 4.61 2.43
Silo 1.01 6.73 1.57
Array Swap 1.04 12.03 1.84
RBT 1.03 5.98 2.03
Hash Table 1.01 3.92 1.26
TATP 1.01 15.33 2.01
TPCC 1.01 5.09 2.96
Geomean 1.02 6.82 1.76

TABLE II: Comparison of 99th-percentile service latency
normalized to the Flash-Sync configuration service latency.

each ROB flush is comparatively costlier. Finally, the user-level
thread scheduler also causes throughput degradation as each
switch on a DRAM-cache miss takes 100ns.

The OS-Swap configuration achieves 58% of the DRAM-
only system’s throughput as it has high page fault and context
switch overheads for each DRAM-cache miss. The Flash-Sync
configuration achieves only 27% of the DRAM-only system’s
throughput because the core has to wait for flash to respond to
each DRAM-cache miss. Overall, AstriFlash achieves DRAM-
like throughput while reducing the memory cost by 20x using
a small DRAM cache and cost-effective flash.

B. Service-latency comparison

AstriFlash must schedule both new and pending jobs fairly
so that the service latency of the pending jobs does not lead
to SLO violations. We show that AstriFlash – along with
an optimized priority-based scheduling policy – achieves a
similar latency distribution as in the Flash-Sync system. Table II
compares the 99th-percentile latency from AstriFlash against
AstriFlash-noPS that does not use the Priority Scheduler and
AstriFlash-noDP that does not have DRAM partitioning, thus
resulting in flash-based page-table walks. We normalize all
latencies to the 99th-percentile latency of Flash-Sync as it
represents the ideal latency when accessing flash. Compared
to Flash-Sync, AstriFlash has a 2% latency degradation as
once the requested page arrives, the non-preemptive scheduler
might have to wait for the current job to finish before it can
schedule the pending job. In contrast, AstriFlash-noPS has a
∼7x latency degradation as the scheduler executes new jobs
even if the requested page for a pending job has arrived and
only checks the pending queue when encountering a miss.
Thus, the priority scheduler prevents the pending queue from
starvation by checking it after every request. AstriFlash-noDP
has a ∼70% latency degradation as page-table entries for cold
pages have to be fetched from flash, which affects the 99th-
percentile latency and can violate the SLO.

C. Tail-latency comparison

We study the tail-latency distribution for TATP, as it
represents the short database operations present in datacenter
workloads and takes ten µs on average. We use a Poisson
process to model a bursty request arrival distribution and sweep
the average inter-arrival time between requests from zero to
ten µs, where each value represents a different request load in

10

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1N
or

m
al

ize
d

99
th

-p
er

ce
nt

ile
 la

te
nc

y

Throughput normalized to DRAM-only system

DRAM-only AstriFlash

Fig. 10: Comparison of 99th-percentile latency normalized to
average service time of a DRAM-only system.

the system. Figure 10 represents the tail-latency distribution of
the DRAM-only system and AstriFlash. The X-axis represents
the system throughput normalized to the maximum throughput
of the DRAM-only system, while the Y-axis represents the
99th-percentile latency normalized to the average service time
of the DRAM-only system, as previously shown in Figure 3.
AstriFlash has higher 99th-percentile latency even at low loads
with negligible queuing because of requests that require flash
access. However, as the load increases, queuing latency also
increases allowing the AstriFlash switch-on-miss architecture to
overlap the flash access latency with queuing latency. Therefore,
AstriFlash with 93% throughput matches the tail latency of a
DRAM-only system with 96% throughput, thus maintaining
the same tail latency with only 3% less throughput and 20x
less memory cost.

The tail latency for the same load is worse because each
DRAM-cache miss flushes the ROB, and the following thread
switch destroys the on-chip cache/TLB locality, incurring more
on-chip misses. It is also possible that requests which have
already faced a long queuing delay further incur a DRAM-
cache miss, thus exacerbating their overall response latency.
Even though the service latency is higher as AstriFlash includes
the flash access time, the queueing latency is significantly lower
because fast DRAM-miss-triggered thread switches reduce the
overall queueing, thus maintaining the same response time.
Overall, as AstriFlash achieves near-DRAM 99th-percentile
response latency, it enables online services to serve data directly
from flash while maintaining the overall tail-latency constraints.

D. Garbage collection overheads

Garbage collection events in flash may block incoming read
requests. For a flash with 256GB capacity, garbage collection
blocks 4% of read/write requests [80], which impacts the tail
latency. As AstriFlash uses a 1TB flash with more chips, the
number of blocked requests reduces by more than 4x the 256GB
flash, affecting less than 1% of the total requests. Moreover,
AstriFlash can employ previously proposed local garbage
collection algorithms to further enforce tail latency [80]. Finally,
as flash writes are asynchronous, garbage collection generally
happens off the critical path, thus preventing AstriFlash from
suffering severe tail latency degradation.

VII. RELATED WORK

AstriFlash is inspired by various previous proposals:
Flash integration: Flash-based memory systems significantly

improve performance compared to disks. SSDAlloc [8] pro-
poses a hybrid DRAM/flash memory manager while using flash
as a log-structured page store. FlashMap [31] maps flash into
a unified address space with DRAM. 2B-SSD [9] proposes
accessing the same file with two separate byte-based and block-
based I/O paths by utilizing a byte-addressable SSD and MMIO.
FlatFlash [1] proposes a horizontally-tiered flash-based memory
system to use DRAM as a cache for flash with customized
page promotion techniques. A similar system was proposed by
PageSeer [43] in the context of NVM. Overall, these proposals
aim for a tighter integration of flash with the CPU.

Emerging memory technologies: NVM provides lower la-
tency, higher bandwidth, and better endurance than flash [28].
Eisenman et al. [22] propose an NVM-based memory system
for Facebook’s workloads. They also study trade-offs across
capacity, latency, and persistence and propose using NVM as
a software-controlled cache between DRAM and flash. While
NVM provides various attractive performance use cases, it
does not benefit from economies of scale as of now and thus
has severe volatility in its cost.

User-level threading and killer microseconds: AstriFlash’s
switch-on-miss architecture is inspired by informing memory
operations [30] with lightweight multi-threading [54]. As
lean user-level threading libraries [5], [44], [61] provide fast
ns-scale thread switching, they are also useful for hiding
DRAM accesses, e.g., co-routines for databases [38], [60].
Duplexity [53] shares resources in OoO cores with other smaller
cores to hide µs-scale stalls, while Cho et al. [19] apply system-
level modifications to get rid of µs-scale stalls. AIFM [65]
uses highly-optimized user-level preemptions to migrate pages
between local and remote devices efficiently.

VIII. CONCLUSION

We proposed AstriFlash, a flash-based system for online
services that eliminates traditional demand paging overheads by
employing a hardware/software co-designed µs-scale switch-
on-miss architecture. AstriFlash serves data directly out of
flash and achieves DRAM-like performance, thus allowing
integration of denser and slower memory technologies for
online services. Overall, AstriFlash reduces the memory cost by
20x, providing a solution for future TB-scale memory systems.

ACKNOWLEDGMENTS

We thank Alexandros Daglis, Mario Drumond, Emilien
Guandalino, Slim Fatnassi, and the anonymous reviewers
for their feedback and support. This work was partially
supported by FNS projects “Hardware/Software Co-Design
for In-Memory Services” (200020B 188696) and “Memory-
Centric Server Architecture for Datacenters” (200021 165749),
a Qualcomm Innovation Fellowship (461760), and the National
Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIT) (2021R1G1A1094978).

11

REFERENCES

[1] A. H. M. O. Abulila, V. S. Mailthody, Z. Qureshi, J. Huang, N. S.
Kim, J. Xiong, and W.-M. W. Hwu, “FlatFlash: Exploiting the Byte-
Accessibility of SSDs within a Unified Memory-Storage Hierarchy.”
in Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-
XXIV), 2019, pp. 971–985.

[2] R. Achermann, A. Panwar, A. Bhattacharjee, T. Roscoe, and J. Gandhi,
“Mitosis: Transparently Self-Replicating Page-Tables for Large-Memory
Machines.” in Proceedings of the 25th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XXV), 2020, pp. 283–300.

[3] AMD EPYC, https://www.amd.com/en/products/cpu/amd-epyc-7742.
[4] N. Amit, “Optimizing the TLB Shootdown Algorithm with Page Access

Tracking.” in Proceedings of the 2017 USENIX Annual Technical
Conference (ATC), 2017, pp. 27–39.

[5] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy,
“Scheduler Activations: Effective Kernel Support for the User-Level
Management of Parallelism.” in Proceedings of the 13th ACM Symposium
on Operating Systems Principles (SOSP), 1991, pp. 95–109.

[6] Anton Shilov, “Analysts Predict SSD Prices May Halve by Mid-
2023,” https://www.tomshardware.com/news/analysts-predict-ssd-prices-
may-halve-by-mid-2023, 2022.

[7] AWS, “Amazon EC2 On-Demand Pricing,” https://aws.amazon.com/ec2/
pricing/on-demand, 2022.

[8] A. Badam and V. S. Pai, “SSDAlloc: Hybrid SSD/RAM Memory
Management Made Easy.” in Proceedings of the 8th Symposium on
Networked Systems Design and Implementation (NSDI), 2011.

[9] D.-H. Bae, I. Jo, Y. Choi, J. Y. Hwang, S. Cho, D. D. G. Lee, and
J. Jeong, “2B-SSD: The Case for Dual, Byte- and Block-Addressable
Solid-State Drives.” in Proceedings of the 45th International Symposium
on Computer Architecture (ISCA), 2018, pp. 425–438.

[10] J. Barr, “EC2 High Memory Update: New 18 TB and 24 TB In-
stances,” https://aws.amazon.com/blogs/aws/ec2-high-memory-update-
new-18-tb-and-24-tb-instances/, 2019.

[11] L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines, ser. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publishers,
2009.

[12] L. A. Barroso, M. Marty, D. A. Patterson, and P. Ranganathan, “Attack
of the killer microseconds.” Commun. ACM, vol. 60, no. 4, pp. 48–54,
2017.

[13] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers.” in Proceedings of the 40th
International Symposium on Computer Architecture (ISCA), 2013, pp.
237–248.

[14] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “IX: A Protected Dataplane Operating System for High
Throughput and Low Latency.” in Proceedings of the 11th Symposium on
Operating System Design and Implementation (OSDI), 2014, pp. 49–65.

[15] A. Bhattacharjee and D. Lustig, Architectural and Operating System
Support for Virtual Memory, ser. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2017.

[16] C. Blundell, M. M. K. Martin, and T. F. Wenisch, “InvisiFence:
performance-transparent memory ordering in conventional multiproces-
sors.” in Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), 2009, pp. 233–244.

[17] B. Boothe and A. G. Ranade, “Improved Multithreading Techniques
for Hiding Communication Latency in Multiprocessors.” in Proceedings
of the 19th International Symposium on Computer Architecture (ISCA),
1992, pp. 214–223.

[18] S. Chen, C. Delimitrou, and J. F. Martı́nez, “PARTIES: QoS-Aware
Resource Partitioning for Multiple Interactive Services.” in Proceedings
of the 24th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XXIV), 2019,
pp. 107–120.

[19] S. Cho, A. Suresh, T. Palit, M. Ferdman, and N. Honarmand, “Taming
the Killer Microsecond.” in Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018, pp. 627–
640.

[20] A. Cunningham, “PCIe 5.0 is just beginning to come to new PCs, but
version 6.0 is already here,” https://arstechnica.com/gadgets/2022/01/pci-

express-6-0-spec-is-finalized-doubling-bandwidth-for-ssds-gpus-and-
more/, 2022.

[21] J. Dean and L. A. Barroso, “The tail at scale.” Commun. ACM, vol. 56,
no. 2, pp. 74–80, 2013.

[22] A. Eisenman, D. Gardner, I. AbdelRahman, J. Axboe, S. Dong, K. M.
Hazelwood, C. Petersen, A. Cidon, and S. Katti, “Reducing DRAM
footprint with NVM in facebook.” in Proceedings of the 2018 EuroSys
Conference, 2018, pp. 42:1–42:13.

[23] M. Ferdman, A. Adileh, Y. O. Koçberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: a study of emerging scale-out workloads on
modern hardware.” in Proceedings of the 17th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XVII), 2012, pp. 37–48.

[24] C. Gniady, B. Falsafi, and T. N. Vijaykumar, “Is SC + ILP=RC?”
in Proceedings of the 26th International Symposium on Computer
Architecture (ISCA), 1999, pp. 162–171.

[25] B. T. Gold, A. Ailamaki, L. Huston, and B. Falsafi, “Accelerating
Database Operations Using a Network Processor.” in Proceedings of
the 1st international workshop on Data management on new hardware,
2005.

[26] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation
layer employing demand-based selective caching of page-level address
mappings.” in Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XIV), 2009, pp. 229–240.

[27] S. Gupta, A. Bhattacharyya, Y. Oh, A. Bhattacharjee, B. Falsafi, and
M. Payer, “Rebooting Virtual Memory with Midgard.” in Proceedings
of the 48th International Symposium on Computer Architecture (ISCA),
2021, pp. 512–525.

[28] S. Gupta, A. Daglis, and B. Falsafi, “Distributed Logless Atomic
Durability with Persistent Memory.” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2019, pp. 466–478.

[29] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward Dark
Silicon in Servers.” IEEE Micro, vol. 31, no. 4, pp. 6–15, 2011.

[30] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith, “Informing
Memory Operations: Providing Memory Performance Feedback in
Modern Processors.” in Proceedings of the 23rd International Symposium
on Computer Architecture (ISCA), 1996, pp. 260–270.

[31] J. Huang, A. Badam, M. K. Qureshi, and K. Schwan, “Unified address
translation for memory-mapped SSDs with FlashMap.” in Proceedings
of the 42nd International Symposium on Computer Architecture (ISCA),
2015, pp. 580–591.

[32] IO URING, “Efficient IO with io uring,” https://kernel.dk/io uring.pdf,
2020.

[33] B. L. Jacob, S. W. Ng, and D. T. Wang, Memory Systems: Cache, DRAM,
Disk. Morgan Kaufmann, 2008.

[34] James Carbone, “DRAM price increases will ease,” https://electronics-
sourcing.com/2022/05/12/dram-price-increases-will-ease/, 2022.

[35] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison Cache: A
Scalable and Effective Die-Stacked DRAM Cache.” in Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2014, pp. 25–37.

[36] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM caches for
servers: hit ratio, latency, or bandwidth? have it all with footprint
cache.” in Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), 2013, pp. 404–415.

[37] Joel Hruska, “Why Latency Impacts SSD Performance More Than
Bandwidth Does,” https://www.extremetech.com/computing/325146-
why-latency-impacts-ssd-performance-more-than-bandwidth-does, 2021.

[38] C. Jonathan, U. F. Minhas, J. Hunter, J. J. Levandoski, and G. V. Nishanov,
“Exploiting Coroutines to Attack the ”Killer Nanoseconds”.” Proc. VLDB
Endow., vol. 11, no. 11, pp. 1702–1714, 2018.

[39] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and
C. Kozyrakis, “Shinjuku: Preemptive Scheduling for µsecond-scale Tail
Latency.” in Proceedings of the 16th Symposium on Networked Systems
Design and Implementation (NSDI), 2019, pp. 345–360.

[40] H. Kasture and D. Sánchez, “Tailbench: a benchmark suite and evaluation
methodology for latency-critical applications.” in Proceedings of the 2016
IEEE International Symposium on Workload Characterization (IISWC),
2016, pp. 3–12.

[41] A. Klimovic, H. Litz, and C. Kozyrakis, “ReFlex: Remote Flash ≈
Local Flash.” in Proceedings of the 22nd International Conference

12

https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.tomshardware.com/news/analysts-predict-ssd-prices-may-halve-by-mid-2023
https://www.tomshardware.com/news/analysts-predict-ssd-prices-may-halve-by-mid-2023
https://aws.amazon.com/ec2/pricing/on-demand
https://aws.amazon.com/ec2/pricing/on-demand
https://aws.amazon.com/blogs/aws/ec2-high-memory-update-new-18-tb-and-24-tb-instances/
https://aws.amazon.com/blogs/aws/ec2-high-memory-update-new-18-tb-and-24-tb-instances/
https://arstechnica.com/gadgets/2022/01/pci-express-6-0-spec-is-finalized-doubling-bandwidth-for-ssds-gpus-and-more/
https://arstechnica.com/gadgets/2022/01/pci-express-6-0-spec-is-finalized-doubling-bandwidth-for-ssds-gpus-and-more/
https://arstechnica.com/gadgets/2022/01/pci-express-6-0-spec-is-finalized-doubling-bandwidth-for-ssds-gpus-and-more/
https://kernel.dk/io_uring.pdf
https://electronics-sourcing.com/2022/05/12/dram-price-increases-will-ease/
https://electronics-sourcing.com/2022/05/12/dram-price-increases-will-ease/
https://www.extremetech.com/computing/325146-why-latency-impacts-ssd-performance-more-than-bandwidth-does
https://www.extremetech.com/computing/325146-why-latency-impacts-ssd-performance-more-than-bandwidth-does

on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XXII), 2017, pp. 345–359.

[42] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis,
“Pocket: Elastic Ephemeral Storage for Serverless Analytics.” in Pro-
ceedings of the 13th Symposium on Operating System Design and
Implementation (OSDI), 2018, pp. 427–444.

[43] A. Kokolis, D. Skarlatos, and J. Torrellas, “PageSeer: Using Page Walks
to Trigger Page Swaps in Hybrid Memory Systems.” in Proceedings of
the 25th IEEE Symposium on High-Performance Computer Architecture
(HPCA), 2019, pp. 596–608.

[44] K. Kourtis, N. Ioannou, and I. Koltsidas, “Reaping the performance of
fast NVM storage with uDepot.” in Proceedings of the 17th USENIX
Conference on File and Storage Technologie (FAST), 2019, pp. 1–15.

[45] Y. O. Koçberber, B. Grot, J. Picorel, B. Falsafi, K. T. Lim, and
P. Ranganathan, “Meet the walkers: accelerating index traversals for
in-memory databases.” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2013, pp. 468–
479.

[46] M. Kumar, S. Maass, S. Kashyap, J. Veselý, Z. Yan, T. Kim, A. Bhat-
tacharjee, and T. Krishna, “LATR: Lazy Translation Coherence.” in
Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-
XXIII), 2018, pp. 651–664.

[47] B. W. Lampson, “Hints for Computer System Design.” in Proceedings
of the 9th ACM Symposium on Operating Systems Principles (SOSP),
1983, pp. 33–48.

[48] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative.” in Proceedings of the 36th
International Symposium on Computer Architecture (ISCA), 2009, pp.
2–13.

[49] G. Lee, W. Jin, W. Song, J. Gong, J. Bae, T. J. Ham, J. W. Lee, and
J. Jeong, “A Case for Hardware-Based Demand Paging.” in Proceedings
of the 47th International Symposium on Computer Architecture (ISCA),
2020, pp. 1103–1116.

[50] G. Lee, S. Shin, W. Song, T. J. Ham, J. W. Lee, and J. Jeong,
“Asynchronous I/O Stack: A Low-latency Kernel I/O Stack for Ultra-Low
Latency SSDs.” in Proceedings of the 2019 USENIX Annual Technical
Conference (ATC), 2019, pp. 603–616.

[51] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block
sizes for very large die-stacked DRAM caches.” in Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2011, pp. 454–464.

[52] K. T. Malladi, F. A. Nothaft, K. Periyathambi, B. C. Lee, C. Kozyrakis,
and M. Horowitz, “Towards energy-proportional datacenter memory with
mobile DRAM.” in Proceedings of the 39th International Symposium
on Computer Architecture (ISCA), 2012, pp. 37–48.

[53] A. Mirhosseini, A. Sriraman, and T. F. Wenisch, “Enhancing Server
Efficiency in the Face of Killer Microseconds.” in Proceedings of the
25th IEEE Symposium on High-Performance Computer Architecture
(HPCA), 2019, pp. 185–198.

[54] T. C. Mowry and S. R. Ramkissoon, “Software-Controlled Multithreading
Using Informing Memory Operations.” in Proceedings of the 6th IEEE
Symposium on High-Performance Computer Architecture (HPCA), 2000,
pp. 121–132.

[55] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer
on Memory Consistency and Cache Coherence, Second Edition, ser.
Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2020.

[56] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-
out NUMA.” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XIX), 2014, pp. 3–18.

[57] NVM Express, NVM Express Base Specification v1.4. NVM Express
Workgroup, 2019.

[58] D. Ongaro, S. M. Rumble, R. Stutsman, J. K. Ousterhout, and M. Rosen-
blum, “Fast crash recovery in RAMCloud.” in Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP), 2011, pp.
29–41.

[59] Parallel Systems Architecture Lab (PARSA), EPFL, “QFlex,” 2020.
[Online]. Available: https://qflex.epfl.ch

[60] G. Psaropoulos, T. Legler, N. May, and A. Ailamaki, “Interleaving with
coroutines: a systematic and practical approach to hide memory latency
in index joins.” VLDB J., vol. 28, no. 4, pp. 451–471, 2019.

[61] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. K. Ousterhout, “Arachne: Core-
Aware Thread Management.” in Proceedings of the 13th Symposium
on Operating System Design and Implementation (OSDI), 2018, pp.
145–160.

[62] X. Qiu and M. Dubois, “Tolerating Late Memory Traps in ILP Processors.”
in Proceedings of the 26th International Symposium on Computer
Architecture (ISCA), 1999, pp. 76–87.

[63] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-off in
Architecting DRAM Caches: Outperforming Impractical SRAM-Tags
with a Simple and Practical Design.” in Proceedings of the 45th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2012, pp. 235–246.

[64] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology.”
in Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), 2009, pp. 24–33.

[65] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay, “AIFM: High-
Performance, Application-Integrated Far Memory.” in Proceedings of
the 14th Symposium on Operating System Design and Implementation
(OSDI), 2020, pp. 315–332.

[66] S. Shah, “Announcing the general availability of 6 and 12 TB
VMs for SAP HANA instances on Google Cloud Platform,” https:
//cloud.google.com/blog/products/sap-google-cloud/announcing-the-
general-availability-of-6-and-12tb-vms-for-sap-hana-instances-on-gcp,
2019.

[67] Skylake, “Intel Skylake,” https://www.7-cpu.com/cpu/Skylake.html,
2019.

[68] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights Landing: Second-
Generation Intel Xeon Phi Product.” IEEE Micro, vol. 36, no. 2, pp.
34–46, 2016.

[69] SPDK, “Storage Performance Development Kit,” https://spdk.io/, 2020.
[70] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,

J. Shalf, and S. Gurumurthi, “Memory Errors in Modern Systems: The
Good, The Bad, and The Ugly.” in Proceedings of the 20th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XX), 2015, pp. 297–310.

[71] A. S. Tanenbaum, Modern operating systems, 3rd Edition. Pearson
Prentice-Hall, 2009.

[72] D. Tsafrir, “The context-switch overhead inflicted by hardware interrupts
(and the enigma of do-nothing loops).” in Experimental Computer Science,
2007, p. 4.

[73] D. Ustiugov, A. Daglis, J. Picorel, M. Sutherland, E. Bugnion, B. Falsafi,
and D. N. Pnevmatikatos, “Design guidelines for high-performance SCM
hierarchies.” in Proceedings of the International Symposium on Memory
Systems (MemSys) 2018, 2018, pp. 3–16.

[74] S. Volos, “Memory systems and interconnects for scale-out servers,”
EPFL Thesis, 2015. [Online]. Available: http://infoscience.epfl.ch/record/
211040

[75] S. Volos, D. Jevdjic, B. Falsafi, and B. Grot, “Fat Caches for Scale-Out
Servers.” IEEE Micro, vol. 37, no. 2, pp. 90–103, 2017.

[76] F. A. Ware, J. Bueno, L. Gopalakrishnan, B. Haukness, C. Haywood,
T. Juan, E. Linstadt, S. A. McKee, S. C. Woo, K. L. Wright, C. Hampel,
and G. Bronner, “Architecting a hardware-managed hybrid DIMM
optimized for cost/performance.” in Proceedings of the International
Symposium on Memory Systems (MemSys) 2018, 2018, pp. 327–340.

[77] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Mecha-
nisms for store-wait-free multiprocessors.” in Proceedings of the 34th
International Symposium on Computer Architecture (ISCA), 2007, pp.
266–277.

[78] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe, “SimFlex: Statistical Sampling of Computer System
Simulation.” IEEE Micro, vol. 26, no. 4, pp. 18–31, 2006.

[79] Wikichip, “ARM Cortex A76,” https://en.wikichip.org/wiki/arm
holdings/microarchitectures/cortex-a76, 2020.

[80] S. Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman, A. A. Chien, and
H. S. Gunawi, “Tiny-Tail Flash: Near-Perfect Elimination of Garbage
Collection Tail Latencies in NAND SSDs.” in Proceedings of the 15th
USENIX Conference on File and Storage Technologie (FAST), 2017, pp.
15–28.

[81] Z. Yan, D. Lustig, D. W. Nellans, and A. Bhattacharjee, “Translation
ranger: operating system support for contiguity-aware TLBs.” in Pro-
ceedings of the 46th International Symposium on Computer Architecture
(ISCA), 2019, pp. 698–710.

13

https://qflex.epfl.ch
https://cloud.google.com/blog/products/sap-google-cloud/announcing-the-general-availability-of-6-and-12tb-vms-for-sap-hana-instances-on-gcp
https://cloud.google.com/blog/products/sap-google-cloud/announcing-the-general-availability-of-6-and-12tb-vms-for-sap-hana-instances-on-gcp
https://cloud.google.com/blog/products/sap-google-cloud/announcing-the-general-availability-of-6-and-12tb-vms-for-sap-hana-instances-on-gcp
https://www.7-cpu.com/cpu/Skylake.html
https://spdk.io/
http://infoscience.epfl.ch/record/211040
http://infoscience.epfl.ch/record/211040
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a76
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a76

	Introduction
	Flash-Integrated Hierarchies
	Identifying the required DRAM-to-flash ratio
	Programming abstractions for flash
	Overheads of demand paging

	AstriFlash
	Key insights
	Design overview
	Core-side design
	Memory-side design

	AstriFlash Implementation
	Flash addressing and memory mapping
	DRAM-cache organization
	Frontside controller (FC)
	Backside controller (BC)

	s-scale switch-on-miss architecture
	Sending a miss signal to the core
	Triggering a thread switch
	Forward progress guarantees
	Precise exceptions and speculative stores

	Incorporating user-level threads
	User-level threads
	Priority scheduling with aging

	Methodology
	Applications and system architecture
	Evaluated configurations

	Evaluation
	Throughput comparison
	Service-latency comparison
	Tail-latency comparison
	Garbage collection overheads

	Related Work
	Conclusion
	References

