
Rebooting Virtual Memory with Midgard
Siddharth Gupta
EcoCloud, EPFL

siddharth.gupta@epfl.ch

Atri Bhattacharyya
EcoCloud, EPFL

atri.bhattacharyya@epfl.ch

Yunho Oh*

Sungkyunkwan University
yunho.oh@skku.edu

Abhishek Bhattacharjee
Yale University

abhishek@cs.yale.edu

Babak Falsafi
EcoCloud, EPFL

babak.falsafi@epfl.ch

Mathias Payer
EcoCloud, EPFL

mathias.payer@epfl.ch

Abstract—Computer systems designers are building cache
hierarchies with higher capacity to capture the ever-increasing
working sets of modern workloads. Cache hierarchies with higher
capacity improve system performance but shift the performance
bottleneck to address translation. We propose Midgard, an
intermediate address space between the virtual and the physical
address spaces, to mitigate address translation overheads without
program-level changes.

Midgard leverages the operating system concept of virtual
memory areas (VMAs) to realize a single Midgard address space
where VMAs of all processes can be uniquely mapped. The
Midgard address space serves as the namespace for all data in a
coherence domain and the cache hierarchy. Because real-world
workloads use far fewer VMAs than pages to represent their
virtual address space, virtual to Midgard translation is achieved
with hardware structures that are much smaller than TLB
hierarchies. Costlier Midgard to physical address translations are
needed only on LLC misses, which become much less frequent
with larger caches. As a consequence, Midgard shows that instead
of amplifying address translation overheads, memory hierarchies
with large caches can reduce address translation overheads.

Our evaluation shows that Midgard achieves only 5% higher
address translation overhead as compared to traditional TLB
hierarchies for 4KB pages when using a 16MB aggregate LLC.
Midgard also breaks even with traditional TLB hierarchies for
2MB pages when using a 256MB aggregate LLC. For cache
hierarchies with higher capacity, Midgard’s address translation
overhead drops to near zero as secondary and tertiary data
working sets fit in the LLC, while traditional TLBs suffer even
higher degrees of address translation overhead.

Index Terms—virtual memory, address translation, memory
hierarchy, virtual caches, datacenters, servers

I. INTRODUCTION

We propose, design, and evaluate Midgard,1 an experiment
in future-proofing the virtual memory (VM) abstraction from
performance and implementation complexity challenges in
emerging big-memory systems.

VM simplifies the programming model by obviating the
need for programmer-orchestrated data movement between
memory devices and persistent storage [9], offers “a pointer
is a pointer everywhere” semantics across multiple CPU
cores [50] and accelerators (e.g., GPUs [49], FPGAs [33],
NICs [41], ASICs [31], [51]). Also, VM is the foundation of

*This work was done while the author was at EPFL.
1The middle realm between Asgard and Helheim in Norse mythology.

access control and memory protection mechanisms ubiquitous
to modern computer systems security.

Unfortunately, VM is today plagued with crippling per-
formance and complexity challenges that undermine its pro-
grammability benefits. The central problem is that computer
architects are designing systems with increasingly higher-
capacity cache hierarchies and memory. The latter improves
system performance in the face of big-data workloads [4],
[27], [28], [50], as evidenced by recent work on die-stacking,
chiplets, DRAM caches [24], [25], [61], and non-volatile
byte-addressable memories [13], [19]. However, they also
shift the performance bottleneck to virtual-to-physical address
translation, which can consume as much as 10-30% of overall
system performance [4], [28], [50], [51].

Systems architects are consequently designing complex ad-
dress translation hardware and Operating System (OS) support
that requires significant on-chip area and sophisticated heuris-
tics. The complex hardware and OS support pose verification
burdens despite which design bugs still abound [36]. Individual
CPU cores (and recent accelerators) integrate large two-level
TLB hierarchies with thousands of entries, separate TLBs
at the first level for multiple page sizes, and skew/hash-
rehash TLBs at the second level to cache multiple page
sizes concurrently [14], [43], [54]. These in turn necessitate
a staggering amount of OS logic to defragment memory to
create ‘huge pages’ [47], [48], [67] and heuristics to determine
when to create, break, and migrate them [35], [40], [59],
[60]. Because huge page heuristics can lead to performance
pathologies and hence are not a panacea, processor vendors
also integrate specialized MMU cache per core to accelerate
the page table walk process [3], [7]. Specialized per-core TLBs
and MMU cache in turn necessitate sophisticated coherence
protocols in the OS (i.e., shootdowns) that are slow and buggy,
especially with the adoption of asynchronous approaches to
hide shootdown overheads at higher core and socket counts in
modern servers [2], [34], [37].

We circumvent these problems by asking the following
questions: Larger cache hierarchies (i.e., L1-LLCs) tradition-
ally amplify VM overheads, but could they actually mitigate
VM overheads if we redirect most translation activity to them
rather than to specialized translation hardware? This question
is inspired in part by prior work on virtual cache hierar-



chies [10], [11], [16] and in-cache address translation [65],
which reduce address translation pressure by deferring the
need for physical addresses until a system memory access.
Unfortunately, they also compromise programmability because
of problems with synonyms/homonyms, and reliance on in-
flexible fixed-size segments. While approaches like single
address space OSes [32] tackle some of these problems (i.e.,
removal of synonyms/homonyms), they require recompilation
of binaries to map all data shared among processes into a
unified virtual address space. What is needed is a programmer-
transparent intermediate address space for cache hierarchies
– without the shortcomings of homonyms, synonyms, or
fixed-size segments – that requires a lightweight conversion
from virtual addresses and a heavier translation to physical
addresses only when accessing the system memory.

We propose the Midgard abstraction as this intermediate
address space by fusing the OS concept of virtual memory
areas (VMAs) into hardware for the first time. Applications
view memory as a collection of a few flexibly sized VMAs
with certain permissions. We show that it is possible to
create a single intermediate Midgard address space where
VMAs of various processes can be uniquely mapped. This
unique address space serves as a namespace for all data in
a coherence domain and cache hierarchies. All accesses to
the cache hierarchy must be translated from the program’s
virtual address to a Midgard address. However, the latter can
be accomplished using translation structures that are much
smaller than TLBs because there are far fewer VMAs (∼10)
than pages in real-world workloads. Translation from Midgard
to physical addresses can be filtered to only situations where
an access misses in the coherent cache hierarchy. Therefore,
instead of amplifying address translation overheads, larger
cache hierarchies can now be leveraged to reduce them.

We quantify Midgard’s performance characteristics over
cache hierarchies ranging in size from tens of MBs to tens
of GBs and show that even modest MB-scale SRAM cache
hierarchies filter the majority of memory accesses, leaving
only a small fraction of memory references for translation
from Midgard to physical addresses. We characterize VMA
counts as a function of dataset size and thread count and
confirm that low VMA counts mean a seamless translation
from virtual to Midgard addresses. Using average memory
access time (AMAT) analysis, we show that LLC capacities
in the tens of MBs comfortably outperform traditional address
translation and that at hundreds of MBs, they even outperform
huge pages. In our evaluation, Midgard reaches within 5% of
address translation overhead of conventional 4KB-page TLB
hierarchies for a 16MB LLC and breaks even with 2MB-
page TLB hierarchies for a 256MB LLC. Unlike TLB hierar-
chies exhibiting higher overhead with larger cache hierarchies,
Midgard’s overhead drops to near zero as secondary and
tertiary data working sets fit in the cache hierarchies. Finally,
we show how, even for pessimistic scenarios with small LLCs,
Midgard can be augmented with modest hardware assistance
to achieve competitive performance with traditional address
translation.

This paper is the first of several steps needed to demon-
strate a fully working system with Midgard. In this paper,
we focus on a proof-of-concept software-modeled prototype
of key architectural components. Future work will address
the wide spectrum of topics needed to realize Midgard in
real systems, including (but not restricted to) OS support,
verification of implementation on a range of architectures, and
detailed circuit-level studies of key hardware structures.

II. VIRTUAL MEMORY

A. The Virtual Memory Abstraction

Modern OSes and toolchains organize the program virtual
address space into VMAs, which are large contiguous regions
representing various logical data sections (e.g., code, heap,
stack, bss, mapped files). Each VMA consists of a base
and bound address, a set of permissions, and other optional
properties. VMAs adequately represent the program’s logi-
cal properties without actually tying them to the underlying
physical resources. Modern programs regularly use a few
hundred VMAs, but only a handful (i.e., ∼10) are frequently
accessed [20], [38], [67], and thus constitute the working set.

The OS is responsible for allocating physical memory to
the program and creating mappings from virtual to physical
addresses. While a trivial approach might be to map a VMA to
an identically sized contiguous region of physical memory, the
latter results in external fragmentation. Moreover, as physical
memory is a constrained resource, the OS targets optimizing
towards efficient memory capacity management. Therefore,
current systems divide virtual and physical memory into small,
fixed-size regions called pages and frames, respectively. And
then, the systems map virtual pages to physical frames, effec-
tively utilizing physical memory capacity. A page becomes the
smallest unit of memory allocation, and each VMA’s capacity
is forced to be a page-size multiple by the OS. Typically,
programs can continue using the VMA abstraction without
directly encountering the page-based management of physical
memory by the OS.

Current VM subsystems combine access control with trans-
lation. Each memory access needs to undergo a permission
check or access control. Additionally, locating a page in the
physical memory device requires virtual to physical address
translation. A page table stores the virtual to physical page
mappings for a process. While VMAs dictate the permission
management granularity, the permission bits are duplicated for
each page and stored in the page tables. TLBs are hardware
structures that cache the page table entries to provide fast
access and perform both access control and address translation.

B. The Address Translation Bottleneck

With the growth in modern data-oriented services, programs
are becoming more memory intensive. As online services
hosted in the datacenter generate data rapidly, the memory
capacity of servers operating on these datasets is growing
commensurately already reaching terabytes [23], [56].

Unfortunately, scaling physical memory to terabytes results
in linear growth in translation metadata. With 4KB pages, 1TB



Core

L1

LLC

Core

L1

Memory

Core

L1

LLC

Core

L1

Memory

Core

L1

LLC

Core

L1

Memory

Virtual

Physical

Midgard

(a) Traditional (b) Virtual hierarchies (c) Midgard

Figure 1: Various arrangements of address spaces. The legend
refers to various address spaces.

of physical memory requires 256M mappings. Even with high
locality (e.g., 3% of the data captures most of the memory
accesses in server workloads [61]), the system requires fre-
quent lookups to 8M mappings. While modern systems already
provide thousands of TLB entries per core [26], we still fall
short by three orders of magnitude. Moreover, we cannot
provision thousands of TLB entries for every heterogeneous
logic that comes in various sizes (e.g., small cores, GPUs, and
accelerators). This mismatch in requirements and availability
makes virtual memory one of the most critical bottlenecks in
memory scaling.

Each TLB miss incurs a long-latency page table walk.
Larger memory capacity often means larger page tables and
walk latency, thus further increasing the TLB miss overhead.
Intel is already shifting to 57-bit virtual address spaces, which
require 5-level page table walks, increasing both page table
walk latency and traffic [22]. While there have been proposals
to parallelize page table walks for reducing latency [38],
[55], the incurred latency remains a performance bottleneck.
Overall, core-side long-latency operations are a problem and
undermine the hierarchical structure of memory as complex
operations should be delegated to the bottom of the hierarchy.

Huge pages were introduced to increase TLB reach. Un-
fortunately, huge pages are difficult to use transparently in
programs without causing internal fragmentation [14]. More
importantly, letting programs guide page allocation further
erodes the VM abstraction. Ideally, programs using large
VMAs should experience iso-performance as using huge pages
without explicitly requesting them. Finally, huge pages add
alignment constraints to a VMA’s base address.

Furthermore, as a result of the end of DRAM scaling [53],
the memory is becoming increasingly heterogeneous. Migrat-
ing pages dynamically among heterogeneous devices (e.g.,
DRAM, Persistent Memory, High-Bandwidth Memory, and
Flash) for performance gains requires page mapping modi-
fications, which results in expensive, global TLB shootdowns
to invalidate the corresponding TLB entries from all cores.

C. Virtual Cache Hierarchies and Single Address Space OSes

Prior work observes that access control is required for
every memory access, while translation to physical addresses
is only required for physical memory accesses. However,
traditional systems translate a virtual address to a physical
address and use it as an index in the cache hierarchy because
physical addresses form a unique namespace (Figure 1a). This

Process 0’s Virtual Address Space

System-wide Midgard Address Space

Heap0 Stack1Shared CodeHeap1 Stack0

System-wide Physical Address Space

Process 1’s Virtual Address Space

Heap0 Stack0Shared Code Heap1 Stack1Shared Code

Figure 2: Mapping from the virtual to the Midgard address
space in units of VMAs and mapping from Migard address
spaces to physical address spaces in units of pages. The cache
hierarchy is placed in the Midgard address space.

early translation forces the core-side TLBs to operate at page
granularity, while pages are only required for efficient capacity
management on the memory side.

Virtual cache hierarchies [10], [11], [16] aim to delay this
translation to the memory side, thus removing the complex
TLB hierarchy from the critical path of every memory access
and away from the core. The process-private virtual addresses
are used as a namespace to index the cache hierarchies
(Figure 1b). Virtual hierarchies are difficult to incorporate in
a modern system because of the complexity of resolving syn-
onyms and homonyms across virtual addresses and implement-
ing OS-level access control. While there have been numerous
proposals for mechanisms and optimizations to implement
virtual cache hierarchies, their implementation complexity
remains high, thus preventing mainstream adoption.

Single address space operating systems [32] avoid syn-
onyms and homonyms by design, thus making virtual cache
hierarchies easier to adopt. Instead of process-private virtual
address spaces, these OSes divide a single virtual address
space among all the processes, identify shared data among
processes and represent them with unique virtual addresses.
Unfortunately, implementing a single address operating system
requires significant modifications to programming abstrac-
tions, which is a key obstacle to its adoption.

III. THE MIDGARD ABSTRACTION

Midgard is based on three conceptual pillars. First, Midgard
enables the placement of the coherent cache hierarchy in
a namespace (Figure 1c) that offers the programmability
of traditional VM. Second, Midgard quickly translates from
virtual addresses to this namespace, permitting access control
checks along the way and requiring significantly fewer hard-
ware resources than modern per-core TLBs and MMU cache
hierarchies. Third, translating between Midgard addresses and
physical addresses requires only modest augmentation of mod-
ern OSes. Midgard filters heavyweight translation to physical
addresses to only those memory references that miss in the
LLC. Sizing LLCs to capture workload working sets also
naturally enables better performance than traditional address
translation.



A. Building Midgard atop Virtual Memory Areas

Midgard injects VMAs directly into hardware to realize the
address space decoupling shown in Figure 2. Instead of a
single layer of mapping from per-process virtual pages to a
system-wide set of physical frames, logic between CPUs and
the cache hierarchy, which we call the “front side”, maps per-
process virtual pages to a system-wide Midgard address space
in the unit of VMAs. Logic after the cache hierarchy, which we
call the “back side”, maps VMA-size units from the Midgard
address space to page-size physical frames.

Translating at the granularity of VMAs is beneficial because
real-world workloads use orders of magnitude fewer VMAs of
unrestricted size than pages of fixed size. Whereas traditional
VM relies on large specialized TLB and MMU cache hierar-
chies and multi-level page tables, Midgard incorporates much
smaller hardware and OS-level translation tables.

Midgard’s ability to defer translation until LLC misses
means that relatively costly translations at the page-level
granularity can be eliminated except for LLC misses. Our
evaluation shows that modestly sized LLCs in the 10s of MBs
eliminate the need for heavyweight translations to physical
frames for more than 90% of the memory references of modern
graph processing workloads. The integration of large multi-GB
eDRAM and DRAM caches [26], [57], [61] means that, unlike
traditional TLB-based translation, Midgard’s LLC filtering of
translation requests future-proofs VM’s performance.

Midgard obviates the need to compromise programmability.
Thanks to the indirection to a unique namespace, Midgard
mitigates the homonym and synonym problems and access
control limitations of virtual cache hierarchies [10], [11],
[16] and in-cache address translation [65]. Midgard avoids
modifying existing programming abstractions or recompiling
binaries as in single address space OSes [32] or virtual block
interfaces [18]. Unlike prior work restricting VM abstractions
to fixed-size segments [69], Midgard uses the existing OS-level
variable VMA sizes in a flexible manner.

B. Operating System Support for Midgard

Midgard requires that the OS is augmented to map VMAs
in per-process virtual address spaces to Midgard memory areas
(MMAs) in a single system-wide Midgard address space. The
OS must also maintain the tables for VMA to MMA mappings
and for MMA mappings to physical frame numbers.

Sizing the Midgard address space: All per-process VMAs are
mapped to a single Midgard address space (Figure 2) without
synonyms or homonyms; the OS must deduplicate shared
VMAs across various processes. VMAs occupy a contiguous
region in virtual and Midgard address spaces, and therefore
growing a VMA in the virtual address space requires growing
its corresponding MMA. To grow, MMAs must maintain
adequate free space between one another to maximize their
chances of growth without collision and their ensuing (costly)
relocation. Fortunately, in practice, many MMAs are partly
backed by physical memory and only some are fully backed.
In other words, as long as the Midgard address space is

adequately larger than the physical address space (e.g., 10-
15 bits in our study), MMAs from thousands of processes can
be practically accommodated. In the less common case where
growing MMAs collide, the OS can either remap the MMA to
another Midgard address, which may require cache flushes or
splitting the MMA at the cost of tracking additional MMAs.

Tracking VMA to MMA mappings: We add a data structure
in the OS, which we call a VMA Table, for VMA to MMA
mappings to achieve V2M translation in the front side. Many
data structures can be used to implement the VMA Table.
Possibilities include per-process VMA Tables, like traditional
per-process radix page tables, or system-wide VMA Tables
like traditional inverted page tables.

In our Midgard prototype, we use compact per-process data
structures that realize arbitrarily sized VMAs spanning ranges
of virtual addresses. Akin to recent work on range tables [28],
we implement VMA Tables with B-tree structures. Each VMA
mapping requires a base and a bound virtual address that
captures the size of the VMA. VMA mappings also need an
offset field which indicates the relative offset between the
position of the VMA in the virtual address space and the
position of the MMA that it points to in the Midgard address
space. Since the base, bound, and offset are all page-aligned,
they require 52 bits of storage each in VMA Table entries for
64-bit virtual and Midgard address spaces. VMA Table entries
also need permission bits for access control. Each VMA
mapping is therefore roughly 24 bytes. Even relatively high
VMA counts that range in the ∼100s can be accommodated
in just a 4KB page, making the VMA Table far smaller than
traditional page tables. We leave a detailed study of VMA
Table implementations for future work [55].

Tracking MMA to physical frame number mappings: We also
add a data structure, which we call a Midgard Page Table,
in the OS to map from pages in MMAs to physical frame
numbers to support M2P translation in the backside. Unlike
the VMA Table, Midgard Page Table needs to map at the
granularity of pages in the VMAs to physical frame numbers.
Although alternative designs are possible, we use a radix page
table [38]. These mappings can be created either at memory
allocation time or lazily akin to demand paging. When a page
from the MMA is not mapped to a physical frame, lookups in
the cache hierarchy will miss. The latter will prompt an M2P
translation, which will in turn prompt a page fault, at which
point control will be vectored to the OS, which will either
lazily create an MMA to physical frame number mapping,
initiate demand paging, or signal a segmentation fault.

Although not necessary for correctness, Midgard’s per-
formance also benefits from optimizations where the pages
holding the Midgard Page Table are allocated contiguously. As
explained subsequently in Section III-C, contiguous allocation
allows M2P translations to short-circuit lookups of multiple
levels of the radix tree used to implement the Midgard
Page Table, similar in spirit to the operation of modern per-
core hardware paging structure caches [3], [8]. Contiguous
allocation is based on the insight that radix page tables are



31 2 3 4 1 2 3 4

(a) Layout in Physical Memory. (b) Layout in Midgard.

Base L1MA

Base L2MA

Base L3MA

Base L1PA

Figure 3: Midgard page table layout using a hypothetical three-
level page table with a radix-degree of two.

only sparsely utilized. We fully expand the radix tree and lay
out even unmapped pages in a contiguous manner as shown
in Figure 3b, enabling short-circuited M2P walks.

C. Hardware Support for Midgard

Midgard requires hardware support within the CPU and
memory hierarchy for correct and efficient operation.

Registers to the root of VMA and Midgard Page Table:
The VMA Table is mapped into the Midgard address space
and exposed to each CPU using per-core VMA Table Base
Registers which store the Midgard address of the root node
of the B-tree. In contrast, a pointer to the physical address of
the root of the Midgard Page Table is maintained in dedicated
Midgard Page Table Base Registers at the memory controllers.

Hardware support for page faults: Page faults due to M2P
translation failures signal an exception to the core from
which the memory request originated. To maintain precise
exceptions, the faulting instruction needs to be rolled back
before the exception handler can be executed. Such rollbacks
are easier to implement for loads as they are synchronous
operations and block until data arrives, than for stores that
are asynchronous operations. Modern out-of-order processors
retire stores from the reorder buffer once their values and
addresses are confirmed. In other words, stores wait for
completion in the store buffer while the out-of-order execution
moves ahead. If the M2P translation for such a store fails,
current speculation techniques cannot roll back the store, lead-
ing to imprecise exceptions. Midgard necessitates hardware
extensions to buffer speculative state in the pipeline to cover
the store buffer [15], [62]. For each store in the store buffer,
we need to record the previous mappings to the physical
register file, permitting rollback to those register mappings in
case of an M2P translation failure. We leave details of such
mechanisms for future work.

Updating the Midgard Page Table: The Midgard Page Table
entries (like conventional page tables) track access and dirty
bits to identify recently used or modified pages. While access
bits in TLB-based systems can be updated on a memory
access, modern platforms opt for setting the access bit only
upon a page walk and a TLB entry fill. Midgard updates the
access bit upon an LLC cache block fill and the corresponding
page walk. Because access bits present approximate access
recency information and are reset periodically by the OS,
coarse-grained updates to the access bits may be acceptable for

large memory systems [66] as page evictions are infrequent. In
contrast, dirty bits require precise information and are updated
upon an LLC writeback and the corresponding page walk.

Accelerating V2M translation: We use per-core Virtual Looka-
side Buffers (VLBs) akin to traditional TLBs to accelerate
V2M translation. Like VMA Tables, VLBs offer access control
and fast translation from virtual to Midgard addresses at a
VMA granularity. Because real-world programs use orders of
magnitude fewer VMAs than pages, it suffices to build VLBs
with tens of entries rather than TLBs with thousands of entries.
VLBs are significantly smaller than TLBs, but they do rely on
range comparisons to determine the VMA corresponding to
a virtual address. As we discuss in Section IV, care must be
taken to ensure that these comparisons do not unduly slow
down the VLB access.

Accelerating M2P translation: Because the majority of mem-
ory references are satisfied from the cache hierarchy, M2P
translations are far less frequent than V2M translations. We
nevertheless propose two optimizations to accelerate M2P
translation cost when necessary.

First and foremost, the contiguous layout of the pages used
to realize the Midgard Page Table permits short-circuiting of
the radix tree walk. A contiguous layout enables the identifi-
cation of the desired required entry in each level based purely
on the Midgard address. The backside logic that performs
the M2P translation can calculate the Midgard address of the
required entry using the target Midgard address of the data
in tandem with the base address of the last-level contiguous
region. Contiguous allocation permits walk short-circuiting
similar to the way in which paging structure caches are looked
up using just the data’s target virtual address [3], [8]. If this
entry is present in the cache hierarchies, it can be looked up
directly using the calculated Midgard address, thus skipping
all the other levels in the Midgard Page Table. If the requested
entry is not present in the cache hierarchies, the backside
Midgard Page Table traversal logic looks up the level above
to find the Midgard Page Table’s last-level entry’s physical
address and fetch it from memory. For each subsequent miss,
this algorithm traverses the Midgard Page Table tree towards
the root, as shown in Figure 4. The physical address of the
root node is used when none of the levels are present in the
cache hierarchies.

We also explore a second optimization, a system-wide
Midgard Lookaside Buffer (MLB), to cache frequently used
entries from the Midgard Page Table with a mapping, ac-
cess control information and access/dirty bits. MLBs are
optional and useful really only for power/area-constrained
settings where the capacity of the LLC is relatively small
(i.e., <32MB). MLBs are similar to traditional set-associative
TLBs and are accessed with a Midgard address upon an
LLC miss. An MLB miss leads to a Midgard Page Table
walk. Because the LLC already absorbs most of the temporal
locality, MLB lookups are expected to be primarily spatial in
nature and fundamentally different from those of traditional
TLBs, requiring typically only a few entries per thread for



VLB 
lookup

Cache 
lookup 

for data

Walk the
VMA Table

Cache 
lookup 

for VMA 
Table

MLB 
lookup

Walk the
Midgard Page Table

Cache 
lookup 
for leaf 

PTE

Cache 
lookup 

for leaf-1 
PTE

Get leaf PTE
from memory

Get data/VMA
from memory

Start End

Miss

Hit

Hit

Miss

Hit

Hit

Recurse
on missMiss

Hit

Miss

Miss

Hit

DataVMA

Figure 4: Logical flow of a memory reference from V2M
translation through M2P translation. This diagram assumes the
use of the optional MLB.

streaming accesses to pages. Much as in TLBs, MLB entries
also maintain status bits to implement a replacement policy.

D. Summary of the Two-Step Address Translation

Figure 4 summarizes the overall flow of Midgard for the
case where all hardware and software features – even optional
ones like the MLB – are included. The sequence of steps shows
V2M translation, which begins with a VLB lookup and falls
back on a lookup of the VMA Table on a VLB miss. The VMA
Table may in turn be absent from the cache hierarchy, in which
case an M2P translation for the VMA Table is performed.
Once that is satisfied (or in the event of a VLB hit or VMA
Table hit in the cache hierarchy), the memory reference is
replayed and data lookup proceeds. Only if lookup misses in
all cache hierarchies does an M2P translation begin. At this
point, the MLB can be consulted. In the event of an MLB
miss, a walk commences for the Midgard Page Table. This
walk can be optimized via short-circuited paging structure
cache-style lookups of the LLC to accelerate the Midgard
Page Table walk. We assume that traversals of the VMA Table
and the Midgard Page Table are managed entirely in hardware
without OS intervention, mirroring hardware page table walks
in traditional systems.

E. Other Conceptual Benefits

So far in this section, we have focused on Midgard’s
ability to reduce the frequency of heavyweight virtual to
physical address translations in traditional systems via a level
of indirection. There are, however, a number of additional
benefits that are possible because of Midgard.

Mitigation of shootdown complexity: VMAs are much coarser-
grained than pages, allocated/deallocated less frequently than
pages, and suffer far fewer permission changes than pages.
For these reasons, switching the front side of the system
to a VMA-based VLB from a page-based TLB means that
expensive and bug-prone OS-initiated shootdowns become

MLBMLB

Tile Tile
Core

VLB

LLC

L1

TileTile

MC

Tile Tile TileTile

Tile Tile TileTile

Tile Tile TileTile

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

MC

MLBMC MLB MC

Figure 5: The anatomy of a multicore system with Midgard.
Dashed lines indicate that MLB is optional.

far less common in Midgard. Moreover, the fact that there
is no need for dedicated translation hardware on the back
side for M2P translation for most reasonably sized LLCs
means that OS-initiated shootdowns can be entirely elided
at that level. Even for conservative scenarios, where only a
small LLC is permitted and a single system-wide MLB is
required, we find shootdowns to be far less expensive versus
the broadcast-based mechanisms that need to be implemented
to maintain coherence across multiple TLBs and MMU cache
hierarchies private to individual CPUs. The relative ease with
which permissions can now be changed opens up optimization
opportunities in data sharing and security outside of the scope
of this paper.

Flexible page/frame allocations: Midgard allows independent
allocation of V2M and M2P translations. Independent alloca-
tions at the two levels enable different allocation granularities
at different levels. For example, virtual memory might be al-
located at 2MB chunks, while physical memory is allocated in
4KB frames. With a larger V2M translation granularity, virtual
and Midgard addresses share more bits thereby increasing the
L1 set-index bits known prior to translation, ameliorating a
limitation of modern VIPT (and our VIMT) cache hierarchies
and allowing the L1 cache to scale in capacity [45]. Implemen-
tations of guard pages [21], [52] can also be improved with
Midgard. Logically united VMAs traditionally separated by a
guard page can be merged as one in a Midgard system, and the
guard page can be left as unmapped in the M2P translation.

IV. IMPLEMENTING MIDGARD

In this section, we discuss implementation details of per-
core VLBs and mechanisms to accelerate M2P translation.
Without loss of generality, we assume a system with 64-
bit virtual addresses (mapping 16 exabytes), 52-bit physical
addresses (mapping 4 petabytes), 64-bit Midgard addresses
and that the OS allocates memory at a 4KB granularity.
Figure 5 depicts the anatomy of a Midgard-based cache-
coherent 4 × 4 multicore with various system components
following the same color coding as Figure 5 to indicate which
are affected by Midgard. The specific parameters for the
system size and configuration are only selected for discussion
purposes.



A. Virtual Lookaside Buffers (VLBs)

VLBs benefit from abundant temporal and spatial locality
in memory accesses. Real-world applications use few active
VMAs requiring a few VLB entries to cache them. Never-
theless, unlike TLBs which require matching a page number,
VLBs perform range lookups which are fundamentally slower
in hardware. Because each memory access requires a V2M
translation, VLB lookups must also match the core’s memory
access rate.

To understand the impact of the range lookup on VLB
access time, we build and analyze VLB hardware in a 22nm
CMOS library. Each VLB entry has a base and bound register
which require range comparisons with the virtual address. The
range comparison latency is largely determined by comparison
bit-width and the number of VMA entries concurrently com-
pared. For 64-bit virtual address spaces, the base and bound
registers are 52 bits as the VMA capacity is a multiple of 4KB.
A 16-entry VLB has an access time of 0.47ns, consuming
the entire clock cycle of our 2GHz clock. We prefer leaving
greater slack between VLB access time and clock cycle time
so that we can accommodate optimizations like adding more
ports to the VLB or supporting higher clock rates.

We therefore design a two-level VLB hierarchy, similar
to recently proposed range TLBs [28]. The L1 VLB is a
traditional fixed-size page-based TLB while the L2 VLB is
a fully associative VMA-based Range TLB, as shown in
Figure 6. As the L1 VLB requires equality comparison, it
can be sized to meet the core’s timing constraints. The L1
VLB filters most of the translation requests while maintaining
the traditional translation datapath of the core. The L2 VLB
performs a range comparison but only on L1 VLB misses and
can therefore tolerate a higher (up to 9 cycles [17]) access
latency with more entries to capture all active VMAs.

Once VLB translation succeeds, the cache hierarchy is
accessed using Midgard addresses. Recall that in our imple-
mentation, Midgard addresses are 12 bits wider than physical
addresses. Therefore, a cache (or directory) in the Midgard ad-
dress space integrates tags that are 12 bits longer as compared
to a cache in the physical address space. Assuming 64KB L1
instruction and data caches, a 1MB LLC cache per tile, 64-
byte blocks and full-map directories (with a copy of the L1
tags), our 16-core Midgard example system maintains tags for
∼320K blocks. With 12 bits extra per tag, the system requires
an additional 480KB of SRAM to support Midgard.

Finally, the dimensions and structure of the VMA Table
determine the number of memory references for its traversal on
a VLB miss. Because each VMA Table entry is 24 bytes, two
64-byte cache lines can store roughly five VMA entries which
can accommodate a VMA Table as a balanced three-level B-
Tree [28] with 125 VMA mappings. The non-leaf entries in the
B-Tree contain a Midgard pointer to their children instead of
an offset value. A VMA Table walk starts from the root node,
compares against the base and bound registers, and follows the
child pointer on a match until arriving at the final leaf entry.

L1 VLB (Pages)

Tag

Page

=

L1I/D L2 VLB (VMAs)

Base

Offset

<

Bound >In
pu

t

Hit

Miss

VM
A 

Ta
bl

e 
W

al
k

In
pu

t Miss

Hit

+

Figure 6: Two-level VLB design.

B. Walking the Midgard Page Table

The dimensions and structure of the Midgard Page Table
determine the number of memory references for its traversal.
We use a single traditional radix page table with a degree of
512 to store all the Midgard to physical address mappings
at the granularity of pages. As our Midgard address space
is 64 bits, we need a 6-level radix table. Traversing the
Midgard Page Table therefore requires two sequential memory
references beyond what is needed for four-level page tables in
traditional VM. The contiguous layout of the Midgard Page
Table enables short-circuited walks and that effectively hides
the latency of the deeper Midgard Page Table.

Midgard Page Table entries must be cacheable for fast
lookup. On M2P translation, the back-side logic responsible
for walking the Midgard Page Table generates a request to the
cache hierarchy. LLC slices are closer to the back-side walker
logic than L1 or intermediate cache levels. Therefore, memory
references from the back-side walker are routed to the LLC.
In response, the coherence fabric retrieves the most recently
updated copy of the desired Midgard Page Table entry, which
may be in any of the cache hierarchies. In other words, the
coherence fabric satisfies M2P walks in the same way that it
satisfies traditional page table walks from IOMMUs [42].

The latency of the M2P walk is determined by the level of
the cache hierarchy that the coherence fabric finds the desired
Midgard Page Table entry in. If, for example, the OS has
recently accessed the Midgard Page Table entry, it may be
in the L1 or intermediate levels of cache. But since Midgard
Page Table walks are more frequent than OS changes to the
Midgard Page Table entry, lookups for the Midgard Page Table
entry usually hit in the LLC.

Since cache hierarchies operate on Midgard addresses,
Midgard Page Table must also be mapped into the Midgard
address space to be cacheable. We reserve a memory chunk
within the Midgard address space for the Midgard Page Table.
To calculate the size of this memory chunk, consider that
the last level of the page table can contain 252 pages and
can thus occupy 255 bytes. Because the Midgard Page Table
is organized as a radix tree with degree 512, its total size
must therefore be no larger than 256 bytes. We reserve a
memory chunk of 256 bytes in the Midgard address space for
the Midgard Page Table, and use the Midgard Base Register
to mark the start of this address chunk (e.g., Base L3MA in
Figure 3b).

Recall that the contiguous layout of the Midgard Page Table
permits short-circuited lookups of the radix tree as well as
parallel lookups of each level of the radix tree. Short-circuited



lookups reduce the latency of the Midgard Page Table walk
and are a uniformly useful performance optimization. Parallel
lookups of the Midgard Page Table, on the other hand, can
potentially reduce walk latency (especially if LLC misses
for lookups of deeper levels of the Midgard Page Table are
frequent) but can also amplify LLC lookup traffic. We studied
the potential utility of parallel lookups for multiple levels of
the Midgard Page Table and found that the average page walk
latency difference is small for the system configurations that
we evaluate.

C. The Midgard Lookaside Buffer (MLB)

In the uncommon case where LLCs are relatively small, we
can integrate a single central MLB shared among cores in the
back-side. Centralized MLBs are better than per-core MLBs
in many ways. Centralized MLBs offer the same utilization
benefits versus private MLBs that shared TLBs enjoy versus
private TLBs; by allocating hardware resources to match the
needs of the individual cores rather than statically partitioning
the resources into a fixed number of entries. Centralized MLBs
eliminate replication of mappings that would exist in per-core
MLBs. Centralized MLBs also simplify shootdown logic in
the OS, by eliding the need for invalidation broadcasts across
multiple MLBs.

The centralized MLB can be sliced to improve access
latency and bandwidth, similar to LLCs. As modern mem-
ory controllers use page-interleaved policies, we can divide
the MLB into slices and colocate them with the memory
controllers as shown in Figure 5. In this manner, colocating
MLB slices with the memory controller can benefit the overall
memory access latency as for an MLB hit, the local memory
controller can be directly accessed to retrieve the required data
from memory.

Finally, MLBs can be designed to concurrently cache map-
pings corresponding to different page sizes, similar to modern
L2 TLBs [43]. Traditional L2 TLBs tolerate longer access
latencies and can therefore sequentially apply multiple hash
functions, one for each supported page size, until the desired
entry is found or a TLB miss is detected [26], [43] by
masking the input address according to the page size and
then comparing against the tag. Since the MLB resides at the
bottom of the memory hierarchy and receives low traffic, it has
even more relaxed latency constraints compared to L2 TLBs.
A relaxed-latency MLB is therefore ripe for support of huge
pages concurrently with traditional 4K pages if necessary.

V. METHODOLOGY

We implement Midgard on top of QFlex [44], a family of
full-system instrumentation tools built on top of QEMU. Table
I shows the detailed parameters used for evaluation. We model
a server containing 16 ARM Cortex-A76 [64] cores operating
at 2GHz clock frequency, where each core has a 64KB L1
cache and 1MB LLC tile, along with an aggregate 256GB of
memory. Each core has a 48-entry L1 TLB and a 1024-entry
L2 TLB that can hold translations for 4KB or 2MB pages. For
Midgard, we conservatively model an L1 VLB with the same

Core 16× ARM Cortex-A76 [64]
Traditional L1(I,D): 48 entries, fully associative, 1 cycle

TLB Shared L2: 1024 entries, 4-way, 3 cycles
L1 Caches 64KB 4-way L1(I,D), 64-byte blocks, 4 cycles (tag+data)

LLC 1MB/tile, 16-way, 30 cycles, non-inclusive

Memory
256GB capacity (16GB per core)
4 memory controllers at mesh corners

Midgard
VLB: L1(I,D): 48 entries, fully associative, 1 cycle
L2 (VMA-based VLB): 16 VMA entries, 3 cycles

Table I: System parameters for simulation on QFlex [44].

capacity as the traditional L1 TLB along with a 16-entry L2
VLB. All the cores are arranged in a 4x4 mesh architecture
with four memory controllers at the corners.

As Midgard directly relies on the cache hierarchy for
address translation, its performance is susceptible to the cache
hierarchy capacity and latency. We evaluate cache hierarchies
ranging from MB-scale SRAM caches to GB-scale DRAM
caches and use AMAT to estimate the overall address transla-
tion overhead in various systems.

To approximate the impact of latency across a wide range
of cache hierarchy capacities, we assume three ranges of
cache hierarchy configurations modeled based on AMD’s Zen2
Rome systems [63]: 1) a single chiplet system with an LLC
scaling from 16MB to 64MB and latencies increasing linearly
from 30 to 40 cycles, 2) a multi-chiplet system with an aggre-
gate LLC capacity ranging from 64MB to 256MB for up to
four chiplets with remote chiplets providing a 50-cycle remote
LLC access latency backing up the 64MB local LLC, and 3)
and a single chiplet system with a 64MB LLC backed by a
DRAM cache [57] using HBM with capacities varying from
512MB to 16GB with an 80-cycle access latency. Our baseline
Midgard system directly relies on Midgard Page Table walks
for performing M2P translations. We also evaluate Midgard
with optional architectural support for M2P translation to
filter requests for Midgard Page Table walk for systems with
conservative cache sizes.

We use Average Memory Access Time (AMAT) as a metric
to compare the impact of address translation on memory access
time. We use full-system trace-driven simulation models to
extract miss rates for cache and TLB hierarchy components,
assume constant (average) latency based on LLC configuration
(as described above) at various hierarchy levels, and measure
memory-level parallelism [12] in benchmarks to account for
latency overlap.

To evaluate the full potential of Midgard, we use graph
processing workloads including the GAP benchmark suite [6]
and Graph500 [39] with highly irregular access patterns and
a high reliance on address translation performance.

The GAP benchmark suite contains six different graph algo-
rithm benchmarks: Breadth-First Search (BFS), Betweenness
Centrality (BC), PageRank (PR), Single-Source Shortest Path
(SSSP), Connected Components (CC), and Triangle Count-
ing (TC). We evaluate two graph types for each of these
algorithms: uniform-random (Uni) and Kronecker (Kron).
Graph500 is a single benchmark with behavior similar to BFS



Dataset Size (GB) Thread Count
0.2 0.5 1 2 4 8 12 16 24 32

BFS
51 51 52 52 52 60 68 76 84 108

SSSP

Table II: VMA count against dataset size and thread count.

in the GAP suite. The Kronecker graph type uses the Graph500
specifications in all benchmarks. All graphs evaluated contain
128M vertices each for 16 cores [5].

VI. EVALUATION

In this section, we first evaluate Midgard’s opportunity for
future-proofing virtual memory with minimal support for the
VMA abstraction. We then present Midgard’s performance
sensitivity to cache hierarchy capacity with a comparison to
both conventional TLB hierarchies and huge pages. We finally
present an evaluation of architectural support to enhance
Midgard’s performance when the aggregate cache hierarchy
capacity is limited.

A. VMA Usage Characterization

We begin by confirming that the number of unique VMAs
needed for large-scale real-world workloads, which directly
dictates the number of VMA entries required by the L2 VLB,
is much lower than the number of unique pages. To evaluate
how the VMA count scales with the dataset size and the
number of threads, we pick BFS and SSSP from the GAP
benchmark suite as they exhibit the worst-case performance
with page-based translation. Table II depicts the change in
the number of VMAs used by the benchmark as we vary
the dataset size from 0.2GB to 2GB. Over this range, the
VMA count only increases by one, possibly from the change
in algorithm going from malloc to mmap for allocating large
spaces. The VMA count plateaus when scaling the dataset
from 2GB to the full size of 200GB (∼ 225 pages) because
larger datasets use larger VMAs without affecting their count.

Table II also shows the required number of VMAs while
increasing the number of threads in our benchmarks using the
full 200GB dataset. The table shows that each additional thread
adds two VMAs comprising a private stack and an adjoining
guard page. Because these VMAs are private per thread, their
addition does not imply an increase in the working set of the
number of L2 VLB entries for active threads.

Finally, Table III depicts the required L2 VLB size for
benchmarks. For each benchmark, the table presents the
power-of-two VLB size needed to achieve a 99.5% hit rate. In
these benchmarks, >90% accesses are to four VMAs including
the code, stack, heap and a memory-mapped VMA storing
the graph dataset. TC is the only benchmark that achieves the
required hit rate with four VLB entries. All other benchmarks
require more than four entries but achieve the hit rate with
8, with BFS and Graph500 being the only benchmarks that
require more than eight entries. These results corroborate prior
findings [38], [67] showing that ∼10 entries are sufficient
even for modern server workloads. We therefore conservatively
over-provision the L2 VLB with 16 entries in our evaluation.

0

5

10

15

20

25

30

35

16GB8GB4GB2GB1GB512MB256MB128MB64MB32MB16MB

Ad
dr

es
s 

Tr
an

sla
tio

n 
O

ve
rh

ea
d 

(%
)

Cache Capacity

Midgard Traditional (4K) Traditional (2M)

Kn
ig

ht
s 

La
nd

in
g

Ka
by

La
ke

AM
D

 Z
en

2

Figure 7: Percent AMAT spent in address translation.

B. Address Translation Overhead

Besides supporting VMA translations directly in hardware,
a key opportunity that Midgard exploits is that a well-
provisioned cache hierarchy filters the majority of the memory
accesses, requiring M2P translation for only a minuscule frac-
tion of the memory requests. Much like in-cache address trans-
lation, a baseline Midgard system uses table walks to perform
the M2P translation for memory requests that are not filtered
by the cache hierarchy. In contrast, a traditional TLB-based
system typically requires provisioning more resources (e.g.,
TLB hierarchies, MMU caches) to extend address translation
reach with an increased aggregate cache hierarchy capacity.

Figure 7 compares the overall address translation overhead
as a fraction of AMAT between Midgard and TLB-based
systems. The figure plots the geometric mean of the address
translation overhead across all benchmarks. In this figure, we
vary the cache hierarchy configurations (as described in V) in
steps to reflect aggregate capacity in recent products – such as
Intel Kabylake [26], AMD Zen2 Rome [63], and Intel Knights
Landing [57].

The figure shows that address translation overhead in tradi-
tional 4KB-page systems running graph workloads with large
datasets even for minimally sized 16MB LLCs is quite high
at around 17%. As shown in Table III, the L2 TLB misses per
thousand instructions (MPKI) in 4KB-page systems is overall
quite high in our graph benchmarks (with the exception of BC
and TC with Kron graphs). These miss rates are also much
higher than those in desktop workloads [29] or scaled down
(e.g., 5GB) server workloads [30].

The figure shows that Midgard achieves only 5% higher
overall address translation overhead as compared to traditional
4KB-page TLB-based systems for a minimally sized LLC
while virtually eliminating the silicon provisioned for per-core
1K-entry L2 TLBs (i.e., ∼16KB SRAM), obviating the need
for MMU caches and hardware support for M2P translation
and page walks.

As the dataset sizes for server workloads increase, modern
servers are now featuring increasingly larger aggregate cache
hierarchy capacities [26], [57], [63]. With an increase in
aggregate cache capacity, the relative TLB reach in traditional



Benchmark
Traditional

L2 TLB MPKI
Required
L2 VLB
capacity

% Traffic filtered by LLC Avg. page walk cycles
Uni Kron Uni Kron

Uni Kron 32MB 512MB 32MB 512MB Traditional Midgard Traditional Midgard

BFS 23 29 16 95 99 95 100 51 31 30 30
BC < 1 < 1 8 100 100 100 100 20 35 20 35
PR 71 68 8 85 100 89 100 45 30 42 30

SSSP 74 70 8 87 98 90 100 47 31 38 30
CC 23 18 8 98 100 97 100 39 34 44 31
TC 62 < 1 4 80 92 100 100 48 30 48 30

Graph500 - 27 16 - - 96 100 - - 32 30

Table III: Analysis of miss rate (MPKI) in traditional 4KB-page L2 TLBs, L2 VLB size for 99.5%+ hit rate, M2P traffic
filtered, and page walk latency for traditional 4KB-page TLB-based and Midgard systems. Graph500 only uses the Kronecker
graph type.

systems decreases while the average time to fetch data de-
creases due to higher cache hit rates. Unsurprisingly, the figure
shows that the address translation overhead for traditional
4KB-page TLB-based systems exhibit an overall increase,
thereby justifying the continued increase in TLB-entry counts
in modern cores. The figure also shows that our workloads
exhibit secondary and tertiary working set capacities at 32MB
and 512MB where the traditional 4KB-page system’s address
translation overhead increases because of limited TLB reach
to 25% and 33% of AMAT respectively.

In contrast, Midgard’s address translation overhead drops
dramatically at both secondary and tertiary working set tran-
sitions in the graph thanks to the corresponding fraction of
memory requests filtered in the cache hierarchy. Table III also
shows the amount of M2P traffic filtered by 32MB and 512MB
LLCs for the two working sets. The table shows that 32MB
already filters over 90% of the M2P traffic in the majority of
benchmarks by serving data directly in the Midgard namespace
in the cache hierarchy. With a 512MB LLC, all benchmarks
have over 90% of traffic filtered with benchmarks using the
Kron graph (virtually) eliminating all translation traffic due
to enhanced locality. As a result, with Midgard the resulting
address translation overhead (Figure 7) drops to below 10%
at 32MB, and below 2% at 512MB of LLC.

Next, we provide a comparison of average page table walk
latency between a 4KB-page TLB-based system and Midgard.
Because Midgard fetches the leaf page table entries from the
caches during a page walk in the common case, on average
it requires only 1.2 accesses per walk to an LLC tile which
is (∼30 cycles) away (Table III). In contrast, TLB-based
systems require four lookups per walk. While these lookups
are performed in the cache hierarchy, they typically miss in
L1 requiring one or more LLC accesses. As such, Midgard
achieves up to 40% reduction in the walk latency as compared
to TLB-based systems. BC stands as the outlier with high
locality in the four lookups in L1 resulting in a TLB-based
average page walk latency being lower than Midgard.

C. Comparison with Huge Pages

To evaluate future-proofing virtual memory with Midgard,
we also compare Midgard’s performance against an opti-
mistic lower bound for address translation overhead using

0

20

40

60

80

100

4M2M1M
51

2K
25

6K
12

8K64
K

32
K

16
K8K4K2K1K51
2

25
6

12
86432160

M
PK

I

Number of 4KB MLB entries

BFS Uni BFS Kron BC Uni BC Kron PR Uni PR Kron

SSSP Uni SSSP Kron CC Uni CC Kron TC Uni TC Kron

Figure 8: Sensitivity to MLB size for a 16MB LLC.

huge pages. Huge pages provide translation at a larger page
granularity (e.g., 2MB or 1GB) and thereby enhance TLB
reach and reduce the overall address translation overhead. Prior
work [40], [48], [67] indicates that creating and maintaining
huge pages throughout program execution requires costly
memory defragmentation and frequent TLB shootdowns [1],
[2]. Huge pages may also inadvertently cause a performance
bottleneck – e.g., when migrating pages in a NUMA sys-
tem [46]. To evaluate a lower bound, we optimistically assume
zero-cost memory defragmentation and TLB shootdown, thus
allowing ideal 2MB pages for address translation that do not
require migration. We also assume the same number of L1
and L2 2MB TLB entries per core as the 4KB-page system.

Figure 7 also depicts a comparison of address translation
overhead between Midgard and ideal 2MB-page TLB-based
systems. Not surprisingly, a 2MB-page system dramatically
outperforms both TLB-based 4KB-page and Midgard systems
for a minimally sized 16MB LLC because of the 500x increase
in TLB reach. Much like 4KB-page systems, the TLB-based
huge page system also exhibits an increase in address trans-
lation overhead with an increase in aggregate LLC capacity
with a near doubling in overall address translation overhead
from 16MB to 32MB cache capacity.

In contrast to 4KB-page systems which exhibit a drastic
drop in TLB reach from 256MB to 512MB caches with the



0
2
4
6
8

10
12
14
16
18
20

512MB256MB128MB64MB32MB16MB

Ad
dr

es
s 

Tr
an

sla
tio

n 
O

ve
rh

ea
d 

(%
)

Cache Capacity

Midgard 16 entries 32 entries 64 entries 128 entries

Figure 9: Required MLB size as a function of LLC capacity.

tertiary data working set, huge pages allow for a 32GB overall
TLB reach (i.e., 16 cores with 1K-entry L2 TLB) showing
little sensitivity to the tertiary working set fitting. Instead,
because for the DRAM cache configurations we assume a
transition from multiple chiplets to a single chiplet of 64MB
backed up by a slower 512MB DRAM cache with a higher
access latency, a larger fraction of overall AMAT goes to the
slower DRAM cache accesses. As such, the address translation
overhead drops a bit for DRAM caches but increases again
with an increase in aggregate cache capacity.

In comparison to huge pages, Midgard’s performance con-
tinuously improves with cache hierarchy capacity until address
translation overhead is virtually eliminated. Midgard reaches
within 2x of huge pages’ performance with 32MB cache
capacity, breaks even at 256MB which is the aggregate SRAM-
based LLC capacity in AMD’s Zen2 Rome [63] products,
and drops below 1% beyond 1GB of cache capacity. While
Midgard is compatible with and can benefit from huge pages,
Midgard does not require huge page support to provide ade-
quate performance as traditional systems do. Overall, Midgard
provides high-performance address translation for large mem-
ory servers without relying on larger page sizes.

D. Architectural Support for M2P Translation

While we expect future server systems to continue inte-
grating larger cache hierarchies, our memory-access intensive
workloads exhibit a non-negligible degree of sensitivity to
address translation overhead (i.e., > 5%) with aggregate cache
hierarchy capacities of less than 256MB. In this subsection, we
evaluate architectural support for M2P translation using MLBs.
While MLBs (like TLBs) complicate overall system design,
the higher complexity may be justified by the improvements
in address translation overhead for a given range of cache
hierarchy capacity.

We first analyze the required aggregate MLB size (i.e.,
the total number of MLB entries across the four memory
controllers) for the GAP benchmarks for a minimally sized
LLC at 16MB. Figure 8 illustrates the MPKI (i.e., the number
of M2P translations per kilo instruction requiring a page walk)
as a function of log scale of MLB size. The figure shows
that while the MLB size requirements across the benchmarks

largely vary, there are approximately two windows of sizes that
exhibit M2P translation working sets. The primary working
set on average appears to be roughly around 64 aggregate
MLB entries with many benchmarks exhibiting a step function
in MPKI. The latter would provision only four MLB entries
per thread indicating that the M2P translations are the results
of spatial streams to 4KB page frames in memory. Beyond
the first window, the second and final working set of M2P
translations is around 128K MLB entries which is prohibitive,
thereby suggesting that practical MLB designs would only
require a few entries per memory controller.

Figure 9 illustrates the address translation overhead for
cache hierarchies of upto 512MB while varying the number
of aggregate MLB entries from 0 to 128 averaged over all the
GAP benchmarks. Midgard in the figure refers to the baseline
system without an MLB. The figure corroborates the results
that on average 64 MLB entries is the proper sweet spot for
16MB caches. Comparing the figure with Figure 7, we see
that for a 16MB LLC, Midgard can break even in address
translation overhead with traditional 4KB-page systems with
only 32 overall MLB entries (i.e., 8 entry per memory con-
troller). In contrast, practical provisioning for MLB will not
help Midgard break even with an ideal huge page system for a
minimally sized LLC. The figure also shows that with only 32
and 64 MLB entries, Midgard can virtually eliminate address
translation overhead in systems with 256MB and 128MB
aggregate LLC respectively. Moreover, with 64 MLB entries,
Midgard outperforms huge pages for LLC capacity equal or
greater than 32MB. Finally, for LLC capacity of 512MB or
larger, there is very little benefit from architectural support for
M2P translation.

VII. RELATED WORK

While there is a large body of work on virtual memory [9],
we only list a few of them because of space constraints.

Virtual caches: Proposals for virtual caches date back to the
’80s [16], with recent papers proposing virtual caches in the
context of GPUs [68]. Ceckleov et al. [10], [11] summarize
a variety of tradeoffs in the context of virtual caches. Single
Address Space Operating System [32] eases virtual cache im-
plementations but requires significant software modifications.

Intermediate address spaces: Wood et al. [65] propose a global
virtual address space used to address the caches. However,
translations from virtual to global virtual address space are
done using fixed-size program segments, which now have
been replaced with pages. Zhang et al. [69] propose an
intermediate address space while requiring virtual addresses
to be translated at a 256MB granularity. While this works
well for GB-scale memory, it does not scale for TB-scale
memory. Hajinazar et al. [18] propose an intermediate address
space containing fixed-size virtual blocks, which are then used
by the applications. While these virtual blocks are similar to
the VMAs in Midgard, using them requires the significant
application and toolchain modifications.



Huge pages and Ranges: There is a large body of work
targeting adoption and implementation of huge pages [40],
[48], [58]–[60] to reduce the address translation overheads.
Midgard is compatible with most proposals on huge page
integration and would benefit in M2P translation performance.
Recent papers [4], [19], [28], [47], [67] have also introduced
the notion of ranges, which are contiguous data regions in
the virtual address space mapped to contiguous regions in the
physical address space. These optimizations are compatible
with Midgard M2P translation as well.

VIII. CONCLUSION

Despite decades of research on building complex TLB
and MMU cache hardware as well as hardware/OS support
for huge pages, address translation has remained a vexing
performance problem for high-performance systems. As com-
puter systems designers integrate cache hierarchies with higher
capacity, the cost of address translation has continued to surge.

This paper proposed, realized, and evaluated a proof-of-
concept design of Midgard, an intermediate namespace for
all data in the coherence domain and cache hierarchy, in
order to reduce address translation overheads and future-proof
the VM abstraction. Midgard decouples address translation
requirements into core-side access control at the granularity
of VMAs, and memory-side translation at the granularity of
pages for efficient capacity management. Midgard’s decou-
pling enables lightweight core-side virtual to Midgard address
translation, using leaner hardware support than traditional
TLBs, and filtering of costlier Midgard to physical address
translations to only situations where there are LLC misses. As
process vendors increase LLC capacities to fit the primary,
secondary, and tertiary working sets of modern workloads,
Midgard to physical address translation becomes infrequent.

We used AMAT analysis to show that Midgard achieves
only 5% higher address translation overhead as compared
to traditional TLB hierarchies for 4KB pages when using
a 16MB aggregate LLC. Midgard also breaks even with
traditional TLB hierarchies for 2MB pages when using a
256MB aggregate LLC. For cache hierarchies with higher
capacity, Midgard’s address translation overhead drops to near
zero as secondary and tertiary data working sets fit in the LLC,
while traditional TLBs suffer even higher degrees of address
translation overhead.

This paper is the first of several steps needed to demonstrate
a fully working system with Midgard. We focused on a proof-
of-concept software-modeled prototype of key architectural
components. Future work will address the wide spectrum of
topics needed to realize Midgard in real systems.

ACKNOWLEDGMENTS

We thank Mark Silberstein, Mario Drumond, Arash
Pourhabibi, Mark Sutherland, Ognjen Glamocanin, Yuanlong
Li, Ahmet Yuzuguler, and Shanqing Lin for their feedback
and support. This work was partially supported by FNS

projects “Hardware/Software Co-Design for In-Memory Ser-
vices” (200020B 188696) and “Memory-Centric Server Ar-
chitecture for Datacenters” (200021 165749), and an IBM
PhD Fellowship (612341).

REFERENCES

[1] N. Amit, “Optimizing the TLB Shootdown Algorithm with Page Access
Tracking.” in Proceedings of the 2017 USENIX Annual Technical
Conference (ATC), 2017, pp. 27–39.

[2] N. Amit, A. Tai, and M. Wei, “Don’t shoot down TLB shootdowns!” in
Proceedings of the 2020 EuroSys Conference, 2020, pp. 35:1–35:14.

[3] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching: skip,
don’t walk (the page table).” in Proceedings of the 37th International
Symposium on Computer Architecture (ISCA), 2010, pp. 48–59.

[4] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers.” in Proceedings of the 40th
International Symposium on Computer Architecture (ISCA), 2013, pp.
237–248.

[5] S. Beamer, K. Asanovic, and D. A. Patterson, “Locality Exists in Graph
Processing: Workload Characterization on an Ivy Bridge Server.” in
Proceedings of the 2015 IEEE International Symposium on Workload
Characterization (IISWC), 2015, pp. 56–65.

[6] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP Benchmark
Suite.” CoRR, vol. abs/1508.03619, 2015.

[7] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating
two-dimensional page walks for virtualized systems.” in Proceedings
of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XIII), 2008,
pp. 26–35.

[8] A. Bhattacharjee, “Large-reach memory management unit caches.” in
Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2013, pp. 383–394.

[9] A. Bhattacharjee and D. Lustig, Architectural and Operating System
Support for Virtual Memory, ser. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2017.

[10] M. Cekleov and M. Dubois, “Virtual-address caches. Part 1: problems
and solutions in uniprocessors.” IEEE Micro, vol. 17, no. 5, pp. 64–71,
1997.

[11] M. Cekleov and M. Dubois, “Virtual-address caches.2. Multiprocessor
issues.” IEEE Micro, vol. 17, no. 6, pp. 69–74, 1997.

[12] Y. Chou, B. Fahs, and S. G. Abraham, “Microarchitecture Optimizations
for Exploiting Memory-Level Parallelism.” in Proceedings of the 31st
International Symposium on Computer Architecture (ISCA), 2004, pp.
76–89.

[13] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C. Lee, D. Burger, and
D. Coetzee, “Better I/O through byte-addressable, persistent memory.”
in Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP), 2009, pp. 133–146.

[14] G. Cox and A. Bhattacharjee, “Efficient Address Translation for Ar-
chitectures with Multiple Page Sizes.” in Proceedings of the 22nd
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XXII), 2017, pp. 435–448.

[15] C. Gniady, B. Falsafi, and T. N. Vijaykumar, “Is SC + ILP=RC?”
in Proceedings of the 26th International Symposium on Computer
Architecture (ISCA), 1999, pp. 162–171.

[16] J. R. Goodman, “Coherency for Multiprocessor Virtual Address Caches.”
in Proceedings of the 1st International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-
I), 1987, pp. 72–81.

[17] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks.”
in Proceedings of the 27th USENIX Security Symposium, 2018, pp. 955–
972.

[18] N. Hajinazar, P. Patel, M. Patel, K. Kanellopoulos, S. Ghose,
R. Ausavarungnirun, G. F. Oliveira, J. Appavoo, V. Seshadri, and
O. Mutlu, “The Virtual Block Interface: A Flexible Alternative to the
Conventional Virtual Memory Framework.” in Proceedings of the 47th
International Symposium on Computer Architecture (ISCA), 2020, pp.
1050–1063.

[19] S. Haria, M. D. Hill, and M. M. Swift, “Devirtualizing Memory in
Heterogeneous Systems.” in Proceedings of the 23rd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXIII), 2018, pp. 637–650.



[20] P. Hornyack, L. Ceze, S. Gribble, D. Ports, and H. Levy, “A study
of virtual memory usage and implications for large memory,” Workshop
on Interactions of NVM/FLASH with Operating Systems and Workloads,
2013.

[21] IBM, “Guard Pages,” https://patents.google.com/patent/
US20080034179A1/en, 2020.

[22] Intel, “Intel 5-level Paging and 5-level EPT,” https://software.intel.com/
sites/default/files/managed/2b/80/5-level paging white paper.pdf,
2017.

[23] Jeff Barr, AWS, “EC2 High Memory Update: New 18 TB and 24 TB In-
stances,” https://aws.amazon.com/blogs/aws/ec2-high-memory-update-
new-18-tb-and-24-tb-instances/, 2019.

[24] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison Cache: A
Scalable and Effective Die-Stacked DRAM Cache.” in Proceedings of
the 47th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), 2014, pp. 25–37.

[25] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM caches for
servers: hit ratio, latency, or bandwidth? have it all with footprint cache.”
in Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), 2013, pp. 404–415.

[26] Kabylake, “Intel Kabylake,” https://en.wikichip.org/wiki/intel/
microarchitectures/kaby lake, 2020.

[27] A. Kannan, N. D. E. Jerger, and G. H. Loh, “Enabling interposer-
based disintegration of multi-core processors.” in Proceedings of the
48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2015, pp. 546–558.

[28] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. S. Unsal, “Redundant memory
mappings for fast access to large memories.” in Proceedings of the 42nd
International Symposium on Computer Architecture (ISCA), 2015, pp.
66–78.

[29] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. S. Unsal, “Energy-efficient address
translation.” in Proceedings of the 22nd IEEE Symposium on High-
Performance Computer Architecture (HPCA), 2016, pp. 631–643.

[30] V. Karakostas, O. S. Unsal, M. Nemirovsky, A. Cristal, and M. M. Swift,
“Performance analysis of the memory management unit under scale-out
workloads.” in Proceedings of the 2014 IEEE International Symposium
on Workload Characterization (IISWC), 2014, pp. 1–12.

[31] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J.
Rossbach, “Sharing, Protection, and Compatibility for Reconfigurable
Fabric with AmorphOS.” in Proceedings of the 13th Symposium on
Operating System Design and Implementation (OSDI), 2018, pp. 107–
127.

[32] E. J. Koldinger, J. S. Chase, and S. J. Eggers, “Architectural Support
for Single Address Space Operating Systems.” in Proceedings of the
5th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-V), 1992, pp. 175–186.

[33] D. Korolija, T. Roscoe, and G. Alonso, “Do OS abstractions make sense
on FPGAs?” in Proceedings of the 14th Symposium on Operating System
Design and Implementation (OSDI), 2020, pp. 991–1010.

[34] M. Kumar, S. Maass, S. Kashyap, J. Veselý, Z. Yan, T. Kim, A. Bhat-
tacharjee, and T. Krishna, “LATR: Lazy Translation Coherence.” in
Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-
XXIII), 2018, pp. 651–664.

[35] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Coordinated
and Efficient Huge Page Management with Ingens.” in Proceedings of
the 12th Symposium on Operating System Design and Implementation
(OSDI), 2016, pp. 705–721.

[36] D. Lustig, G. Sethi, M. Martonosi, and A. Bhattacharjee, “COATCheck:
Verifying Memory Ordering at the Hardware-OS Interface.” in Proceed-
ings of the 21st International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XXI), 2016,
pp. 233–247.

[37] S. Maass, M. Kumar, T. Kim, T. Krishna, and A. Bhattacharjee, “Ecotlb:
Eventually consistent tlbs,” ACM Transactions on Architecture and Code
Optimization, 2020.

[38] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched
Address Translation.” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2019, pp.
1023–1036.

[39] R. C. Murphy, K. B. Wheeler, and B. W. Barrett, “Introducing the graph
500,” http://www.richardmurphy.net/archive/cug-may2010.pdf, 2010.

[40] J. Navarro, S. Iyer, P. Druschel, and A. L. Cox, “Practical, Transparent
Operating System Support for Superpages.” in Proceedings of the 5th
Symposium on Operating System Design and Implementation (OSDI),
2002.

[41] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-
out NUMA.” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XIX), 2014, pp. 3–18.

[42] L. E. Olson, J. Power, M. D. Hill, and D. A. Wood, “Border control:
sandboxing accelerators.” in Proceedings of the 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2015, pp. 470–
481.

[43] M.-M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos,
“Prediction-based superpage-friendly TLB designs.” in Proceedings of
the 21st IEEE Symposium on High-Performance Computer Architecture
(HPCA), 2015, pp. 210–222.

[44] Parallel Systems Architecture Lab (PARSA) EPFL, “Qflex,” https://
qflex.epfl.ch, 2020.

[45] M. Parasar, A. Bhattacharjee, and T. Krishna, “SEESAW: Using Super-
pages to Improve VIPT Caches.” in Proceedings of the 45th Interna-
tional Symposium on Computer Architecture (ISCA), 2018, pp. 193–206.

[46] C. H. Park, S. Cha, B. Kim, Y. Kwon, D. Black-Schaffer, and J. Huh,
“Perforated Page: Supporting Fragmented Memory Allocation for Large
Pages.” in Proceedings of the 47th International Symposium on Com-
puter Architecture (ISCA), 2020, pp. 913–925.

[47] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT:
Coalesced Large-Reach TLBs.” in Proceedings of the 45th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2012, pp. 258–269.

[48] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee, “Large pages
and lightweight memory management in virtualized environments: can
you have it both ways?” in Proceedings of the 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2015, pp. 1–
12.

[49] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural support for
address translation on GPUs: designing memory management units for
CPU/GPUs with unified address spaces.” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XIX), 2014, pp. 743–758.

[50] J. Picorel, D. Jevdjic, and B. Falsafi, “Near-Memory Address Transla-
tion.” in Proceedings of the 26th International Conference on Parallel
Architecture and Compilation Techniques (PACT), 2017, pp. 303–317.

[51] J. Picorel, S. A. S. Kohroudi, Z. Yan, A. Bhattacharjee, B. Falsafi,
and D. Jevdjic, “SPARTA: A divide and conquer approach to
address translation for accelerators,” CoRR, vol. abs/2001.07045, 2020.
[Online]. Available: https://arxiv.org/abs/2001.07045

[52] D. Plakosh, “Guard Pages,” https://us-cert.cisa.gov/bsi/articles/
knowledge/coding-practices/guard-pages, 2020.

[53] M. K. Qureshi, “Memory Scaling is Dead, Long Live Memory Scaling,”
https://hps.ece.utexas.edu/yale75/qureshi slides.pdf, 2014.

[54] A. Seznec, “Concurrent Support of Multiple Page Sizes on a Skewed
Associative TLB.” IEEE Trans. Computers, vol. 53, no. 7, pp. 924–927,
2004.

[55] D. Skarlatos, A. Kokolis, T. Xu, and J. Torrellas, “Elastic Cuckoo
Page Tables: Rethinking Virtual Memory Translation for Parallelism.”
in Proceedings of the 25th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-
XXV), 2020, pp. 1093–1108.

[56] Snehanshu Shah, Google Cloud, “Announcing the general availability of
6 and 12 TB VMs for SAP HANA instances on Google Cloud Platform,”
https://cloud.google.com/blog/products/sap-google-cloud/announcing-
the-general-availability-of-6-and-12tb-vms-for-sap-hana-instances-on-
gcp, 2019.

[57] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights Landing: Second-
Generation Intel Xeon Phi Product.” IEEE Micro, vol. 36, no. 2, pp.
34–46, 2016.

[58] M. R. Swanson, L. Stoller, and J. B. Carter, “Increasing TLB Reach
Using Superpages Backed by Shadow Memory.” in Proceedings of the
25th International Symposium on Computer Architecture (ISCA), 1998,
pp. 204–213.

[59] M. Talluri and M. D. Hill, “Surpassing the TLB Performance of
Superpages with Less Operating System Support.” in Proceedings of the

https://patents.google.com/patent/US20080034179A1/en
https://patents.google.com/patent/US20080034179A1/en
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://aws.amazon.com/blogs/aws/ec2-high-memory-update-new-18-tb-and-24-tb-instances/
https://aws.amazon.com/blogs/aws/ec2-high-memory-update-new-18-tb-and-24-tb-instances/
https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake
https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake
http://www.richardmurphy.net/archive/cug-may2010.pdf
https://qflex.epfl.ch
https://qflex.epfl.ch
https://arxiv.org/abs/2001.07045
https://us-cert.cisa.gov/bsi/articles/knowledge/coding-practices/guard-pages
https://us-cert.cisa.gov/bsi/articles/knowledge/coding-practices/guard-pages
https://hps.ece.utexas.edu/yale75/qureshi_slides.pdf
https://cloud.google.com/blog/products/sap-google-cloud/announcing-the-general-availability-of-6-and-12tb-vms-for-sap-hana-instances-on-gcp
https://cloud.google.com/blog/products/sap-google-cloud/announcing-the-general-availability-of-6-and-12tb-vms-for-sap-hana-instances-on-gcp
https://cloud.google.com/blog/products/sap-google-cloud/announcing-the-general-availability-of-6-and-12tb-vms-for-sap-hana-instances-on-gcp


6th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VI), 1994, pp. 171–182.

[60] M. Talluri, S. I. Kong, M. D. Hill, and D. A. Patterson, “Tradeoffs in
Supporting Two Page Sizes.” in Proceedings of the 19th International
Symposium on Computer Architecture (ISCA), 1992, pp. 415–424.

[61] S. Volos, D. Jevdjic, B. Falsafi, and B. Grot, “Fat Caches for Scale-Out
Servers.” IEEE Micro, vol. 37, no. 2, pp. 90–103, 2017.

[62] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Mechanisms
for store-wait-free multiprocessors.” in Proceedings of the 34th Interna-
tional Symposium on Computer Architecture (ISCA), 2007, pp. 266–277.

[63] Wikichip, “AMD Zen2,” https://en.wikichip.org/wiki/amd/
microarchitectures/zen 2, 2020.

[64] Wikichip, “ARM Cortex A76,” https://en.wikichip.org/wiki/arm
holdings/microarchitectures/cortex-a76, 2020.

[65] D. A. Wood, S. J. Eggers, G. A. Gibson, M. D. Hill, J. M. Pendleton,
S. A. Ritchie, G. S. Taylor, R. H. Katz, and D. A. Patterson, “An In-
Cache Address Translation Mechanism.” in Proceedings of the 13th
International Symposium on Computer Architecture (ISCA), 1986, pp.
358–365.

[66] D. A. Wood and R. H. Katz, “Supporting Reference and Dirty Bits
in SPUR’s Virtual Address Cache.” in Proceedings of the 16th Interna-
tional Symposium on Computer Architecture (ISCA), 1989, pp. 122–130.

[67] Z. Yan, D. Lustig, D. W. Nellans, and A. Bhattacharjee, “Translation
ranger: operating system support for contiguity-aware TLBs.” in Pro-
ceedings of the 46th International Symposium on Computer Architecture
(ISCA), 2019, pp. 698–710.

[68] H. Yoon, J. Lowe-Power, and G. S. Sohi, “Filtering Translation Band-
width with Virtual Caching.” in Proceedings of the 23rd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXIII), 2018, pp. 113–127.

[69] L. Zhang, E. Speight, R. Rajamony, and J. Lin, “Enigma: architectural
and operating system support for reducing the impact of address trans-
lation.” in Proceedings of the 24th ACM International Conference on
Supercomputing, 2010, pp. 159–168.

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a76
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a76

	Introduction
	Virtual Memory
	The Virtual Memory Abstraction
	The Address Translation Bottleneck
	Virtual Cache Hierarchies and Single Address Space OSes

	The Midgard Abstraction
	Building Midgard atop Virtual Memory Areas
	Operating System Support for Midgard
	Hardware Support for Midgard
	Summary of the Two-Step Address Translation
	Other Conceptual Benefits

	Implementing Midgard
	Virtual Lookaside Buffers (VLBs)
	Walking the Midgard Page Table
	The Midgard Lookaside Buffer (MLB)

	Methodology
	Evaluation
	VMA Usage Characterization
	Address Translation Overhead
	Comparison with Huge Pages
	Architectural Support for M2P Translation

	Related Work
	Conclusion
	References

