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ABSTRACT

Heterogeneous memory systems promise better performance, energy-

efficiency, and cost trade-offs in emerging systems. But delivering

on this promise requires efficient OS mechanisms and policies for

data tiering and migration. Unfortunately, modern OSes are lacking

inefficient support for data tiering. While this problem is known for

application data, the question of how best to manage kernel objects

for filesystems and networking—i.e., inodes, dentry caches, journal

blocks, socket buffers, etc.—has largely been ignored and presents

a performance challenge for I/O-intensive workloads. We quantify

the scale of this challenge and introduce a new OS abstraction,

kernel-level object contexts (KLOCs), to enable efficient tiering of

kernel objects. We use KLOCs to identify and group kernel objects

with similar hotness, reuse, and liveness, and demonstrate their

use in data placement and migration across several heterogeneous

memory system configurations, including Intel’s Optane systems.

Performance evaluations using RocksDB, Redis, Cassandra, and

Spark show that KLOCs enable up to 2.7× higher system throughput

versus prior art.
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1 INTRODUCTION

Memory heterogeneity is here. Emerging systems combine the best

properties of memory technologies optimized for latency, bandwidth,

capacity, persistence, and cost. Multiple DRAM nodes are being

augmented with die-stacked DRAM [15, 30, 45], high-bandwidth
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multi-channel DRAM (e.g., Intel’s Knight’s Landing [6]), and byte-

addressable NVMs (e.g., 3D XPoint in Intel Optane DC) [4, 14, 16].

While heterogeneous memory systems may offer better perfor-

mance, energy-efficiency, and cost trade-offs, they complicate mem-

ory management. Decades of research have demonstrated the chal-

lenge of data allocation and migration in multi-socket non-uniform

memory access (NUMA) architectures [7, 8, 10, 26, 33, 47]. Het-

erogeneous memory systems amplify this challenge by integrating

memory devices with more varied latency, bandwidth, and capacity

characteristics.

To optimize a heterogeneous memory system for performance,

one would ideally place the hottest data in the fastest memory node

(in terms of latency or bandwidth) until that node is full, the next-

hottest data would be filled into the second-fastest node up to its

capacity, and so on. As a program executes, its data would be peri-

odically assessed for hotness and re-organized to maximize perfor-

mance. For emerging software-controlled heterogeneous memory

systems, hotness detection and migration requires effective soft-

ware mechanisms and policies to determine data reuse and control

data migration. While it is possible for application developers to

orchestrate these tasks, efficient OS approaches that are transpar-

ent to the programmer are preferable because of their less onerous

programming model. Current OS mechanisms to measure reuse

and migrate data have, however, surprisingly high overheads and

have consequently been the subject of recent software and hardware

acceleration techniques [13, 19, 31, 33, 35, 37, 40, 50, 53, 57].

Unfortunately, most prior research on OS-directed data tiering

focuses on application-level data and ignores kernel objects. One

exception is recent work that migrates and replicates page tables

in DRAM devices in different sockets [11], but memory tiering of

kernel objects for storage and networking I/O remains unexplored.

This is because kernel objects have traditionally been thought to be

few in number, restricted in memory footprint, and less significant in

their impact on overall performance. This view is driven by network

and disk I/O speeds that are several orders of magnitude slower –

and hence more consequential to performance – than memory. But

while this was true in the past, advances in networking and storage

speeds now make memory management of kernel objects critical to

performance. We quantify the scale of this criticality by showing

that current approaches that ignore tiering of inodes, dentry caches,

journal blocks, network socket buffers, etc., leave as much as 4×

performance on the table. This paper’s central contribution is to

recover this wasted performance via a new OS abstraction, kernel-

level object contexts (KLOCs), that permits fluid tiering of kernel

objects.

The KLOC abstraction: KLOCs are logical groupings that capture

the kernel objects associated with OS entities requested by applica-

tions. Kernel entities requested by applications are files and sockets,

while kernel objects range from structures associated with files (e.g.,



KLOC Type Kernel Object Structure

FS/Network inode_struct - Per-file inode

FS block - Block I/O structure for conversion of metdata to disk

blocks

FS journal - Filesystem journal buffers

FS page_cache - Buffer cache page

FS dentry - Name resolution for each file

FS extent - Structure for grouping contiguous disk blocks

FS blk_mq - Block layer multi-queue structure for parallel dis-

patch of blocks to disk

Network sock - Socket object for packet buffers

Network skbuff - Header for packet buffer

Network skbuff->data - Data buffer for packet

Network rx_buf - Network receive driver buffer

Table 1: Kernel objects associated with file systems and net-

working that form the basis of this work.
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Figure 1: All of the kernel objects associated with each ac-

tive file and active socket represent individual KLOCs. All the

KLOCs in the system are tracked using a kmap. The inode of

each active file or socket maintains a pointer to a knode data

structure, which tracks associated kernel objects.

inodes, blocks, journals, etc.) to those associated with sockets (e.g.,

packet buffers, headers, data buffers, etc.), as listed in Table 1. Fig-

ure 1 shows that we treat all the kernel objects associated with each

active file and each active socket as individual KLOCs. This means

that in Unix-based "everything is a file" OSes, there is one KLOC of

kernel objects associated with each inode.

Using KLOCs: Good performance is achieved when hot application

data and kernel objects are placed in faster and nearer memory up

to its capacity, while colder data and kernel objects are placed in

slower and more distant memory. As we will show, kernel objects are

rapidly allocated and deallocated, and have much shorter lifetimes

than application pages. This makes it challenging to extend existing

OS LRU code paths that identify hot/cold pages – originally built for

longer-living application pages – to place and migrate kernel objects

in a sufficiently timely manner for good performance. Even if some

of these code paths could be accelerated, the diverse assortment of

kernel objects used today and the complexity of their intertwined

memory allocation, reuse, and deletion code paths make it difficult

to implement these changes.

KLOCs offer a principled way to tame this diverse ecosystem of

kernel objects and quickly ascertain their hotness/coldness. When the

OS determines that an inode has become cold (because, for example,

the file or socket associated with the inode has been closed), KLOCs

permit direct identification of all kernel objects associated with the

inode and mark them as candidates for migration to slow memory.

In other words, rather than relying on expensive and independent

traversals of separate code paths for all the kernel objects to gradually

which of them are cold, KLOCs short-circuit this process and migrate

related cold kernel objects en masse. Our implementation in a Linux

4.17 kernel shows that KLOCs improve the performance of I/O-

intensive workloads like RocksDB, Redis, Cassandra, and Spark by

up to 2.7× on a two-tier memory system and 1.4× on a multi-socket

Intel Optane system compared to state-of-the-art application tiering

(Nimble [53]).

Implementing KLOCs: In realizing KLOCs, we answer several

important research questions:

What OS entity should KLOCs be anchored to? Grouping kernel

objects according to files and sockets strikes a good compromise

between performance and minimal kernel changes. This is because it

allows identification of well-defined points where the OS can manip-

ulate kernel objects – i.e., existing system calls for file and network

I/O (e.g., file create, open, etc.) – and also naturally groups related

kernel objects. Leaning on existing system calls also means that

KLOCs are transparent to programmers and manipulated entirely

within the kernel.

How should KLOCs manage member kernel objects? The OS must

group millions of kernel object pages with diverse sizes, reuse, and

intricate associations across files and sockets into KLOCs. We rely

on principled use of data structures already widely employed in

real-world OS kernels to efficiently track these relationships. Figure

1 illustrates our implementation. Each inode is expanded to maintain

a pointer to a knode structure, which uses kernel red-back trees to

track all associated kernel objects. When the OS opts to migrate

a KLOC, the kernel objects pointed to by the subtree under the

corresponding knode are migrated. Furthermore, all system KLOCs

are tracked using a global kmap structure, which maintains pointers

to all system knodes.

What changes to kernel object code paths are necessary to support

KLOCs? To support KLOCs, some kernel object code paths need

to be changed. For example, KLOCs must enable the relocation of

kernel objects. Unfortunately, OSes create kernel buffers with either

slab allocators, which are fast but preclude kernel object relocation.

In contrast, vmalloc and page alloc allocations permit kernel object

relocation but are unsuitable for kernel objects that are referenced by

physical address. We create a KLOC allocation interface that permits

fast allocation of kernel objects while supporting relocatability and,

via systematic study, are able to redirect 400+ allocation sites to

our interface. Similarly, associating a kernel object with the right

file/socket can be a high-latency endeavor. For example, the OS

determines the socket for incoming network packet buffers only

after traversing several levels in the TCP stack. This long-latency

process can overly delay kernel object migration decisions. We

design KLOCs to circumvent these challenges and enable the fast

association of kernel objects with files/sockets.

Overall, we show that memory management of kernel objects has

become vital to the performance of heterogeneous memory systems.

KLOCs are an initial approach to tame the large design space of

kernel object management options. We expect future research to

improve the efficiency and design elegance of kernel object tiering,

but believe that the notion of kernel object contexts can help manage

the continued growth in memory footprint and diversity of kernel

objects.



2 RECENT WORK ON DATA TIERING

Heterogeneous memory devices are being integrated into systems

with conventional DRAM, with die-stacked 3D-DRAM, Hybrid

Memory Cube (HMC), High Bandwidth Memory (HBM), and byte-

addressable NVMs showing early promise in addressing the big-data

needs of modern applications [12, 35, 45, 48]. While they offer per-

formance benefits, these devices pose complex performance and

capacity tradeoff questions. Technologies like 3D-DRAM, HMC,

and HBM provide 2-10× higher bandwidth and 1.5× lower la-

tency than conventional DRAM, but suffer 8-16× lower capac-

ity [12, 15, 16, 41]. Meanwhile, byte-addressable NVMs offer 4-

8× higher capacity than DRAM but suffer 2-3× higher read la-

tency, 5× higher write latency, and 3-5× reductions in access band-

width [26, 44, 52]. To manage a mix of heterogeneous memories,

recent studies propose several software and hardware techniques,

including OS and runtime approaches [13, 27, 33, 35, 37, 41, 53].

Most of these approaches track page hotness by scanning page tables

to migrate hot application pages of different sizes to fast memory. Ap-

proaches such as HeteroVisor [27] and HeteroOS [33] propose data

placement and migration for applications in virtualized datacenters,

while other work accelerates page migration using multi-threading

and more efficient caching [53]. Lagar-Cavilla et al. [35] propose a

combination of OS-level hotness scanning combined with machine

learning for data placement.

In contrast, hardware approaches for data tiering include aug-

menting the memory controller [19, 46] or the TLBs [40] for efficient

identification of hot pages and migration. These studies have pri-

marily focussed on byte-addressable NVMs and on-chip die-stacked

3D-DRAM technologies [15, 18, 19, 25, 28, 31, 36, 38, 40, 42,

57]. While the NVMs are used as slower memory [36], stacked

3D-DRAMs are used either as a hardware-managed last level L4

cache [18, 31, 38, 43, 57] or faster DRAM. The hardware memory

controller is delegated with the responsibility of managing page

placement across memories as well as predicting and prefetching

pages.

None of these studies consider kernel object tiering. Recent work

on accelerating OS page migration mechanisms place kernel objects

either entirely in slow memory for two-tier memory systems or in

DRAM local to the CPU that allocated the kernel object for con-

ventional NUMA systems [33, 53, 54]. They do not quantitatively

ascertain the performance impact of these decisions or consider al-

ternatives. The closest prior work comes to studying kernel objects

placement is Mitosis, a recent study on page tables placement across

NUMA memory sockets [11], but even this ignores file or network-

ing objects. In fact, not only is there no prior work on heuristics

and mechanisms for file and network object tiering, modern OSes

cannot migrate many kernel objects for reasons that we discuss sub-

sequently. While better hardware caching and prefetching techniques

complement KLOCs by improving data placement to a faster mem-

ory, these techniques do not differentiate between kernel objects

and application pages with different lifetimes. We show the need to

treat short-lived kernel pages differently from application pages and

increase the direct placement of kernel objects by avoiding delays

from hotness detection and migration overheads.

3 MOTIVATION

3.1 Prevalence of Kernel Objects

In this section, we characterize the memory footprint, reuse, and life-

times of kernel objects. In §6, we summarize the I/O-intensive work-

loads and platforms used in our studies. Figure 2a shows the percent-

age of pages allocated to different kernel objects and separates these

from application-level page allocations. All workloads are config-

ured with 40GB input data sets, and we quantify the number of pages

allocated in units of millions of pages on top of each bar. Kernel

objects are prevalent for all these applications. Consider Filebench,

which uses 16 threads to read and write 4KB blocks to separate files.

Writes and reads to disk may prompt page cache page allocations,

updates, and allocation of journals, metadata radix trees, block driver

buffers, etc. As another example, consider RocksDB, which updates

hundreds of 4MB files with key-value data, and spends 40% of its

runtime within the OS kernel allocating inodes, driver block I/O and

journals, dentry caches, and radix tree nodes. Spark [56], which uses

the Hadoop file system to store and checkpoint data, is similarly

filesystem-intensive.1 These observations apply to network-intensive

workloads too. For example, Redis allocates a significant number of

kernel object pages for ingress and egress socket buffers, and page

cache pages to periodically checkpoint key-value store state to a

large file on disk [9].

Figure 2a shows that kernel object memory footprints can rival

memory capacities expected for high-bandwidth DRAM devices in

the near-term. Recent studies focus on fast memory nodes in the

range of 4-16GB [13, 33, 41, 53, 54], and our results show that even

with a modest input data set of 40GB, I/O-intensive workloads need

more than 10s of GBs for kernel objects alone. Different workloads

rely on different sets of kernel objects extensively. For example,

while page cache pages dominate RocksDB allocation, Redis and

Cassandra require a mix of page cache and socket buffer objects.

Overall, kernel objects are plentiful, even exceeding application

pages in some cases, and need to be carefully managed.

Figure 2b shows that the observations from Figure 2a hold as the

sizes of our input data sets are changed. In Figure 2b, our workloads

are adjusted to use 10GB input data sets (Small) in addition to the

40GB input data sets showed in Figure 2a (Large), and we show

the percentage of pages allocated to kernel objects versus userspace.

Kernel objects continue to use a significant fraction of the total

pages.

Figure 2c quantifies the percentage of memory references to user-

space data versus kernel objects. These results were collected using

on-chip performance counters via Intel’s VTune, and Linux Perf [5],

and shows that kernel objects are accessed often. Consider a file

write in Filebench. The virtual file system looks up the page cache

radix tree, allocates a new page if necessary, inserts the page into the

radix tree, performs metadata/data journalling, and finally, commits

blocks to storage. These steps are even more memory-intensive than

writing data to the page cache because of the increase in random

accesses and poor locality of reference. In fact, scaling the workload

inputs leads to a sharp increase in LLC misses due to higher traffic

to kernel buffers. Filebench spends 86% of execution time inside

1The Hadoop filesystem is run as a separate process that maintains user-level caches

and periodically updates page caches.
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Figure 2: Figure 2a shows the breakdown of pages used by application, page cache, and other slab allocations across the file and

the network subsystems for the large workload. In Figure 2b, the y-axis shows the percentage of page allocations in the application

and the OS. Small and large workloads use data sizes (RocksDB, Redis, and Cassandra) or file sizes (Filebench, Spark) of 10GB and

40GB, respectively. OS allocations include page cache, slab, and vmalloc objects. Pages are allocated and released (freed) frequently;

hence the total allocations can be greater than available memory. Figure 2d shows the lifetime of application pages, slab, and page

cache pages.

the OS, and hence, the memory accesses increase are higher than

RocksDB (54%) and Redis (38%).

3.2 Kernel Object Hotness

In §3.1, we showed that kernel objects are allocated and accessed

frequently. Consequently, we need to identify the ones that are hot

for placement in capacity-constrained fast memory. We define hot

kernel objects as those currently in use by applications or have

been recently used, and cold kernel objects as those that are good

candidates for placement in slow memory. There are several reasons

that a kernel object may become cold. Consider the case when an

application closes an open file. If no other processes continue to

leave the file open, then the inode, block, dentry, extent, page cache

pages, and other structures associated with the file are now cold. As

another example, even if the file remains open, it may have been

accessed long ago and is hence cold.

As with application pages, there is no clear threshold as to how

long ago a file must have been accessed to be considered cold. Rather,

to tier kernel objects appropriately, the OS-level LRU policies must

be augmented to identify kernel objects associated with files that are

definitely cold (i.e., because the file has been closed) and must be

able to infer the relative ages of files that have not yet been closed

to identify those that are likely cold because of a lack of recent

use. The exact number of kernel objects that are to be migrated and

the threshold where the kernel objects are considered cold hence

remains a function of the OS LRU policy. This notion of kernel

object coldness has three implications:

First, on file creation, the associated kernel objects should be

allocated in fast memory because they are hot. As they become

colder, they may be migrated to slower memory. This presents a

contrast to all recent work [41, 53], which, for two-tier systems,

allocates kernel objects entirely in slow memory, or, in traditional

NUMA systems, allocates them to the memory socket local to the

CPU performing the allocation without the option of migrating them

in the future.

Second, kernel objects associated with files that have been deleted

or completely unlinked (i.e., their reference count is zero) are not

cold, but are instead deallocated. They should not be migrated to

slow memory and can be deleted.

Third, all kernel objects associated with a file inode are treated as

having the same level of hotness/coldness and are migrated together.

This reduces kernel bookkeeping cost and is appropriate because all

kernel objects associated with the inode do tend to be accessed during

I/O. However, it is possible that in select cases, some kernel objects

may see different reuse attributes. In practice, we find that this

happens so rarely that opting for an inode-driven view of all kernel

objects offers a simplistic implementation and good performance.

3.3 Challenges of Kernel Object Tiering

One may initially consider extending existing OS LRU code paths to

also account for all kernel object pages, currently lacking in modern

OSes. OSes like Linux or FreeBSD scan to identify hot and cold

pages by traversing an application’s page table and visiting all phys-

ical frames to mark them as eviction candidates. While one could

potentially identify kernel objects in this manner, this approach is

successful only if the time taken to identify cold kernel objects is

significantly faster than the kernel objects’ lifetime. Figure 2d quan-

tifies the lifetime of several categories of kernel objects. Because the

lifetime of kernel objects is tied to OS mechanisms used to allocate

them, we separate kernel objects into those allocated by slab alloca-

tors versus kernel objects like page cache pages, which are allocated

via other techniques.

Short-lived kernel objects – i.e., inodes, blocks, dentrys, ex-

tents, dir buffers, skbuffs – are typically allocated using slab al-

locators (kmalloc and its variants like kmem_cache_alloc in Linux

and FreeBSD). Kernel objects allocated with kmalloc use only con-

tiguous physical pages for allocation, do not require manipulation of

page tables during allocation and release, and cannot be relocated.

However, they are allocated quickly. In contrast, separate allocators

are used for large kernel objects like filesystem page caches. Unlike



slab allocations, these are mapped into the virtual address space of

processes in order to satisfy reads/writes from the application.

Regardless of allocation strategy, Figure 2d shows that kernel

objects are short-lived. While application-level data for RocksDB

and Redis have lifetimes in the tens of minutes, their slab pages are

alive for only 36ms on average. Page cache pages live for marginally

longer, averaging 160ms. Such short lifetimes for kernel objects are

expected. The lifetime of page cache pages can also vary depending

on memory pressure. When available free memory is low, the cache

pages are aggressively released to accommodate application alloca-

tions. Slab-allocated kernel objects consist of buffers added to radix

tree nodes to track file metadata or structures like dentry caches and

in-memory journals. These structures are frequently queried, allo-

cated, and deleted when trees are rebalanced, or page cache pages are

evicted [32]. Consequently, application pages are long-lived enough

to tolerate LRU scan times. For example, we measure the time taken

to scan one million pages on our Intel Xeon platform as 2 seconds,

corroborating results from recent work [13] – but kernel objects are

not, even if the LRU scans occur in the background.

Yet another approach may be one where the concept of NUMA

nodes is extended to kernel objects, and associations are built be-

tween CPU nodes and the kernel objects that they allocate. This

would enable kernel objects tiering close to the CPU that likely

uses them. Indeed, this is what modern OSes do – they allocate

kernel objects on the NUMA socket corresponding to the core that

is responsible for the OS activity leading to kernel object creation.

However, while NUMA systems do migrate pages between sockets

post-allocation if the traffic from remote sockets increases, kernel

objects are never migrated. This leads to performance loss when ker-

nel objects are used asynchronously (e.g., receive path kernel objects

associated with sockets or pages invoked via I/O prefetching).

4 DESIGN OF THE KLOC ABSTRACTION

We first provide a brief overview of KLOC followed by the design

approach.

4.1 Overview

Figures 1 and 3(a) illustrate the data structures involved in realizing

KLOCs within the Linux kernel. At their core, these data structures

are manipulated by two general OS sub-components. The first is

the OS system call interface, which allocates kernel objects and

adds pointers to them in the knodes. The knodes act as a "table

of contents" to the locations of all associated kernel objects and

sidestep the challenges detailed in §3.3. Intercepting system calls

as the medium for knodes to point to kernel objects ensures that the

KLOC abstraction remains transparent to applications.

Figure 3(a) shows that the second OS sub-component necessary

for the management of KLOCs involves the data structures used by

Linux’s LRU code paths to identify hot/cold kernel objects. Most

OSes, including Linux, use a data structure to track important per-

CPU information for scheduling and resource usage. Our approach

is to add, to this data structure, a list of pointers to knodes touched by

each CPU. As we discuss in §4, this data structure acts as a software

cache of the bigger kmap structure in Figure 1, and is similar in spirit

to several other "fast path" software caches that OSes maintain for

page tables, virtual memory area (VMA) trees, etc. The knodes are

further associated with a variable for tracking their hotness (age) and

whether they are active (inuse). The code paths that implement OS

LRU policies use these per-CPU lists of knode pointers to quickly

identify cold knodes. Moreover, without walking the page table to

identify all the kernel objects associated with this knode, the kernel

can identify objects pointed to by each knode. This permits the LRU

engine to short-circuit lengthy page table scans.

The exact number of pages, kernel objects, and KLOCs to mi-

grate depends upon memory pressure and LRU policies to govern

the aggressiveness with which data migration must be pursued. The

KLOC abstraction does not enforce any constraints on these run-

time decisions but instead offers fast migration capabilities for any

existing OS policy.

4.2 KLOC Management

Figures 1 and 3 highlight key aspects of the KLOC abstraction. We

now discuss more concrete design details. To drive our design, we

focus on our prototype in the Linux kernel. Our prototype is likely

to extend to other monolithic kernels, even if the implementation

details vary. We next discuss how to initiate KLOC, allocation of

KLOC’s knode, and their management.

4.2.1 KLOC Initiation. System administrators trigger the use of the

KLOC abstraction via a begin_kloc() system call with the target

application passed as an argument. To avoid application changes, we

implement this as a shared user-level library that the application can

be linked. All activities pertaining to KLOC creation, management,

and deletion are handled entirely within the OS and are transparent

to the userspace.

4.2.2 Allocation. Every file, whether it is created by the filesystem

or the networking stack, has a knode associated with it. Every file’s

inode maintains a pointer to its associated knode. We make knodes

easily accessible to the filesystem and networking system code paths

by allocating them within the virtual filesystem (VFS) layer as a red-

black tree. We leverage Linux’s existing support for red-black trees

to enable efficient design, minimize correctness concerns, and ease

design effort [23, 34]. When an inode is created, an entry is allocated

in the knode red-black tree and pointed to by the appropriate file or

socket inode. When an inode is closed, the knode red-black tree is

searched, and the appropriate knode is marked inactive. All updates

to the knode red-black tree are performed serially to avoid race

conditions and deadlocks when multiple CPUs access per-inode

RB-trees. In ??, we discuss how we reduce red-black tree contention

and increase concurrency.

We use the slab allocator for knodes in order to optimize for

speed of allocation. This is important because I/O-intensive work-

loads spawn and delete files hundreds of thousands of times over an

application lifetime, leading to many knode allocations and deletions.

The downside of using slab allocators is, however, that the knodes

become non-migratable. However, our profiling results show that

prioritizing knode allocation speed over amenability for migration is

more important to overall system performance. This is because kn-

odes are orders of magnitude fewer in number than the kernel objects

that they point to (which must be migratable and cannot, therefore,

use slab allocation). Therefore, our design always allocates knodes
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Figure 3: On the left (a), we show that existing per-CPU structures in Linux are augmented with a list of knodes accessed by each

CPU, with information about the knode reuse. These data structures are used by Linux’s LRU engine to identify hot/cold KLOCs. In

the middle (b), we show an example of the key kernel objects related to file operations that are managed during open(), write(), sync(),

and close() operations. On the right (c), we show pseudocode for dentry object allocation using the KLOC abstraction.

to fast memory. Note that this is not a fundamental design decision,

and other designs are also possible.

Overall, the tight association between inodes and knodes binds

KLOC lifetime to that of the file or socket that it is associated with.

In other words, when an inode is created, so too is a KLOC. When

an inode is deleted, so too is its KLOC.

Next, regarding application pages, KLOCs prioritize application

pages to reduce their placement in slower memory, which can signif-

icantly impact performance. KLOCs attempt to allocate application

pages to a faster memory, unlike kernel objects, where only objects

of active knodes are allocated to fast memory.

4.2.3 Associating Kernel Objects to Knodes. After the knodes are

allocated, they must maintain pointers to all associated kernel ob-

jects. A key research question is the choice of data structure used

to track kernel objects. Kernel objects can number in millions (e.g.,

RocksDB has roughly two million kernel objects). They must be

quickly looked up via the knode and tracked using data structures

that are correctly implemented. To balance these factors, we opt for

Linux’s red-black trees. We find that using a single red-black tree

to record millions of kernel objects can be prohibitively expensive;

empirically, as many as ten memory references are needed on av-

erage for tree traversal, posing too high a performance tax. While

many design solutions are possible, we use the simple approach of

incorporating two red-black trees within each knode – rbtree-cache

tracks large kernel objects allocated using non-slab allocators, while

rbtree-slab tracks smaller kernel objects allocated using slab allo-

cators. Beyond its performance benefits, this approach also offers

the organizational benefits of separating page cache pages versus

smaller kernel allocations.

Any OS subsystem that accesses and manipulates files or sockets

is responsible for manipulating the red-black trees. Two such sub-

systems are system calls for the filesystem and networking system.

For example, when a file is created, so are the inodes, dentrys, and

journal blocks. A file write can create cache page objects, radix

tree nodes, journal records, and extents. Similarly, system calls re-

sponsible for socket creation (socket(), open()) result in creation and

manipulation of packet buffers (skbuff). When applications invoke

egress and ingress activity via send() and recv() system calls, or

when they poll, associated kernel objects are created. In all cases,

the pointers to these kernel objects must be inserted or deleted in the

target knode’s red-black tree. Figure 3(b)-(c) show the diagram and

pseudo-code associated with file creation. As shown, an inode is cre-

ated, a new knode is created, and a pointer to a dentry object is added

to the knodes. When the file is written, a page cache page is allocated,

and a pointer to it is added to the rbtree-cache, while references to

the extents and journal records (journal) are added to rbtree-slab.

After the file is closed, the page cache pages are removed. When the

file/inode is deleted, so too is its knode. Non-system call OS activity

can also change knodes. For example, when the filesystem block

driver commits in-memory pages to disk, it allocates the file’s block

I/O structures. Pointers to these must be added to the appropriate

knode.

While identifying the file/socket that a kernel object is associated

with is straightforward in many cases, it can pose a challenge in

others. Consider the networking stack. Packets are buffered across

several layers of ingress and egress paths, including TCP, UDP, IP,

and the network device driver (i.e., NAPI). Problematically, the

ingress path receives packets asynchronously. As network packets

arrive, the device driver allocates a generic packet buffer but does not

know the socket to which this packet belongs. This information is

extracted in a higher layer of the TCP stack and presents a problem

for KLOCs, which need fast association between kernel objects and

their corresponding file/socket for maximal performance.

In response, one might extract the packet’s entire header to iden-

tify the socket inside the driver code before transferring control to

the higher TCP layers. We find this to be CPU-intensive and com-

parable in latency to socket lifetimes, making it infeasible. Instead,

we extract socket information within the device driver and eliminate

redundant work at the higher-level layers. We do this by extending

the packet buffer structure (skbuff ) with an 8-byte socket field con-

taining the socket information extracted in the device driver. This

field elides the need for further socket information extraction at

higher levels of the TCP stack. We also extend the device driver to

add packets to the desired knode.



4.3 Concurrency Via Per-CPU Fast Paths

As initially described, we expect our system to suffer from two key

sources of degradation pertaining to synchronization. First, multi-

ple threads may simultaneously access per-inode red-black trees,

especially when objects are added to knodes or when threads respon-

sible for migrating kernel objects access them. Second, as shown in

Figure 1, we use a global kmap implemented as a red-black tree to

maintain pointers to all knodes. This global structure is susceptible

to synchronization overheads [39].

We exploit Linux’s red-black tree with read-copy-update (RCU)

support to partly mitigate some of these contention overheads. RCU

enables "multi-reader, single-writer" concurrency [20]. To reduce

locking overheads, we split a knode’s red-black tree into a cache

(rbtree-cache) and a kernel slab object (rbtree-slab) tree. We also, as

shown in Figure 3(a), employ a well-known OS approach of creating

a "fast path" cache of the kmap by implementing per-CPU linked-

lists of associated knodes. Creating separate lists of knodes reduces

synchronization overheads, and by restricting their sizes, ensures

that they can be traversed fast. However, they pose coherence chal-

lenges as the same knode may be accessed by multiple CPUs and

may hence be mapped to multiple per-CPU lists. Fortunately, Linux

already maintains APIs and mechanisms for coherence management

of per-CPU lists [24]; by leveraging these, we achieve correct im-

plementation. We find that existing coherence mechanisms present

minimal overhead to the KLOC design. Finally, each per-CPU list

associates an age variable with the knode pointers as shown in Fig-

ure 3a. This age variable is set to zero whenever a knode is accessed

and is incremented when the LRU policy scans it but does not mark

it as a candidate for eviction. As the age increases, its KLOC be-

comes colder and becomes a stronger candidate for eviction to slow

memory. Finally, KLOCs, similar to other kernel data structures in

NUMA-based systems, do not introduce additional false sharing

problems via coherence protocols. The combination of per-CPU

fast path lists and the red-black trees reduce knode contention. Per-

CPU lists reduce the rbtree-cache and rbtree-slab accesses by 54%.

Reusing existing RCU support for red-black trees also minimizes

contention among remaining accesses.

4.4 Support for Migration in KLOC

We first discuss the need for supporting kernel object migration

and then discuss our support for kernel object and application page

migration.

Migrating kernel objects with short lifetime. Cache and slab ob-

jects have short lifetimes, but many of them (e.g., inodes, socket

buffer structures) are frequently accessed through application life-

time. Using slow memory for all these objects hurts performance

(see Figure 5C). KLOCs aim to increase direct allocations of kernel

objects of an active knode to faster memory and too significantly

"reduce" migration from slow to fast memory. However, migration

cannot be completely eliminated because of limited fast memory

capacity. In fact, we find that inactive kernel and application pages

need to be downgraded from fast to slow memory frequently, and

represent 88% of total migrations. Within this group, 79% of the

migrations are for page cache pages. KLOCs also permit downgrad-

ing of slab objects, which are not freed even after a knode becomes

inactive. Because many real-world workloads see inodes, dentry

structures, and other filesystem structures enjoying periods of ac-

tivity interspersed with inactivity, KLOCs are vital to downgrading

these structures when necessary. On the other hand, reverse migra-

tion from slow to fast memory represents 4-12% of the migrations

and is mainly used for cache pages. With increasing fast memory

capacity, the slow memory page use reduces, consequently reduc-

ing the performance difference across approaches and the variance

across workloads.

Finally, we track KLOCs at the inode granularity, as opposed to

tracking each object in a fine-grained manner. This enables direct

allocation of short-lived kernel objects relevant to an I/O request

to fast memory and migration of inactive objects to slow memory.

Direct allocation of short-lived kernel objects reduce the cost of mov-

ing kernel objects across memories. Our future work will explore the

benefits of employing a fine-grained kernel object tracking approach

in ways that do not introduce tracking overheads.

Support for Kernel Object Migration. Once the OS kernel identi-

fies KLOCs with cold knodes, it migrates all kernel objects mapped

to knodes together. This means that the kernel objects pointed to

by a knode subtree in Figure 1 are migrated. While kernel objects

allocated using vmalloc() and page_alloc() (e.g., page cache pages)

are relocatable, those that are slab allocated are not. This is because

they are not mapped into a virtual address and allow kernel object

access using a physical address when required.

While it is possible to make wholesale changes to the slab allo-

cator to fix this, it is a complex endeavor. Instead, we build a new

allocation interface for kernel objects, enabling the allocation of

kernel objects into virtual address spaces by leveraging existing code

paths for anonymous virtual memory area (VMA) regions that are

not backed by files. While these VMA regions have traditionally

not been relocatable, we found that it was possible to more easily

enhance them than slab allocators to support kernel object migration.

Migration of Application Pages. In tandem with kernel objects,

application pages deemed to be inactive by Linux’s LRU mechanism

are migrated to slower memory. In our work, we repurpose OS-level

LRU for application data pages, like recent work like Nimble [53],

HeteroOS [33], and ThermoStat [13].

Making KLOCs amenable to I/O prefetching: Linux’s adaptive

readahead mechanism prefetches I/O pages with temporal and spa-

tial locality locality [51]. We augment this mechanism to prefetch

kernel objects associated with the inode by exposing them to the

I/O prefetcher kernel objects via the KLOC abstraction. The I/O

prefetcher’s existing logic modulates the cost-benefit trade-off of

prefetching kernel objects. As we describe in §7, KLOCs make I/O

prefetching even more effective. When the right kernel objects are

prefetched, KLOCs enable the I/O prefetcher to identify them more

quickly. When the kernel objects are actually poor prefetching can-

didates, KLOCs enable the OS to determine that they are cold, to

migrate them slow memory more quickly.

4.5 KLOC in HW-SW Managed Tiering

The KLOC abstraction is usable by any existing kernel-level policy

that tiers data. To demonstrate its utility, we enhance Linux’s existing

support for LRU and automatic NUMA (AutoNUMA) policies [22,

29] to take advantage of kernel object tiering.



KLOC API Description API User

sys_enable_kloc() System call to enable KLOC for

an application

Admin

map_knode(knode, inode) Map a new inode to a knode OS dev.

knode_add_obj(knode, obj) Add kernel object to a knode OS dev.

itr_knode_slab(knode) Iterate knode’s kernel objects in

slab tree

OS dev.

itr_knode_cache(knode) Iterate knode’s kernel objects in

page cache tree

OS dev.

add_to_kmap(knode) Add knode to global kmap OS dev.

get_LRU_knodes(kmap) Get LRU knodes from kmap OS dev.

find_cpu(knode) Find CPU that last accessed a kn-

ode

OS dev.

sys_kloc_memsize(memtype,

size)

System call to limit the memory

capacity use of a memory type by

KLOC

Admin

Table 2: KLOC APIs. App Dev., OS Dev., and Admin indicate KLOC API

use by application-, kernel-developers, and administrators, respectively.

Updating LRU and AutoNUMA: Modern LRU policies track ac-

tive pages and inactive pages via separate lists. Ideally, as pages

become inactive, they would be migrated to slow memory, and as

they become active, they are migrated to fast memory. Like prior

work for two-level memories [53], we use this approach to determine

which pages to migrate between memory devices. Unlike prior work,

we also migrate kernel objects. Once the knodes for a file/socket

becomes inactive, we immediately mark and migrate the kernel page

objects they are associated with, without waiting for scans of ac-

tive/inactive lists. We also enhance Linux’s existing LRU policy to

avoid repeated migration. We use 8-bit per-page counters to track

migrations and retain such pages in fast memory. We found that less

than 1% of pages met these conditions due to the shorter lifetime of

kernel objects.

We also enhance AutoNUMA with KLOCs to better balance

local/remote memory accesses in traditional multi-socket NUMA

systems. While recent kernel patches suggest that AutoNUMA de-

velopers are considering ways of optimizing data placement in tiered

memory systems, these approaches completely ignore kernel ob-

jects [29]. With AutoNUMA, the OS periodically scans a portion

of a task’s address space and marks the memory to force a page

fault when the data is next accessed. When this address is faulted

to, the data can be migrated to a memory node associated with the

task accessing the memory. AutoNUMA also uses a scheduler to

group tasks that share data. Baseline AutoNUMA works well for

application pages but takes too long to identify kernel objects such

as page cache associated with the application, corroborating results

from previous work [55]. We overcome these problems by enhancing

AutoNUMA with KLOCs via a simple policy: for all active KLOCs

currently in use by an application, we identify related kernel objects

and check if their pages are placed in local memory. We use the

kmap and per-CPU lists to do this and subsequently migrate kernel

objects that are remote. As we show in §7, improving AutoNUMA

with KLOCs performance by 1.4×.

5 IMPLEMENTATION

We briefly describe the components that support KLOC and then

discuss our current design implications and limitations.

KLOC components: Due to the lack of multi-tiered software-

controlled heterogeneous memory systems, we implement KLOCs

on a dual-socket system with fast and slow memory, where slow

memory is realized by throttling bandwidth. We also evaluate KLOCs

on an Intel Optane system [4] to explore its benefits in an environ-

ment that requires coordinated hardware and software management.

The KLOC abstraction and OS-level changes are implemented in

roughly 4K lines of code, spread across different parts of Linux mem-

ory management, ext4 file system, network, and storage block driver

stacks. KLOCs require no application changes except linking to a

userspace shared library. The shared library approach – as opposed

to a kernel configuration that enables KLOCs at the compile time –

offers system administrators the option to dynamically enable and

selectively control which kernel objects are included with KLOCs.

KLOC usage interface: Table 2 summarizes the set of functions

that we design and expose to the remainder of the kernel to manip-

ulate KLOCs. Figure 3(c) shows an example of how to use these

functions for the case where a dentry kernel object is allocated and

mapped. A dentry object is used to track the hierarchy of files in a

directory. The code checks to see whether there is an active knode

and then performs the requisite additions to the KLOC and KLOC

map.

KLOC memory usage: KLOCs increase memory consumption

by <1% of fast memory capacity. The memory increase stems from

the 8-byte red black tree pointers to cache pages and slab object

structure in the rb-cache and rb-slab trees, per-CPU active and

inactive lists, a linked list to track pages that need to be migrate, and

other auxiliary structures. In §7, we provide a breakdown of memory

increase with KLOC. Our future work will focus on reducing these

overheads.

KLOC System call cost: During a system call, the KLOCs code

paths set a flag to mark an inode active and a promising candidate

for allocation to fast memory. This is a fast operation. Kernel ob-

jects allocated during the system call are added to knodes. Although

KLOCs use the file and network system for kernel object placement

decisions, system call overheads are negligible. Kernel object mi-

grations are asynchronous, and we use dedicated kernel threads to

migrate kernel objects associated with active and inactive knodes

between fast and slow memory. This can involve additional CPUs

for the migration thread, but this is no different from the migra-

tion mechanisms used by modern swap managers, state-of-the-art

heterogeneous memory management systems such as Nimble [53],

Thermostat [13], and others [35].

KLOC support for multi-page size. Because most Linux kernel-

level objects like page cache and slab pages are allocated using 4KB

pages, we mainly focus on 4KB pages. For applications that can

use larger page sizes, the KLOC abstraction relies on existing Linux

LRU support for active and inactive page detection and migration.

Because KLOC aims to increase the placement of kernel objects to

fast memory and reduce migrations, KLOCs should provide higher

performance gains with THP [13, 53], although this hypothesis needs

to be tested in future studies.



Application Description Memory

Footprint

RocksDB [2] Facebook’s persistent key-value store based on

log-structured merge tree. We use DBbench [3]

workload with 1M keys and 16 client threads.

The benchmark performs 50% random and se-

quential writes and reads.

12.4GB

Redis [9] In-memory key-value store that periodically

checkpoints to disk. We use 16 Redis instances

that serve requests from 16 clients with 4M keys

with 75% sets (writes), 25% gets (reads).

14.0GB

Filebench [49] File system benchmark using 16 threads, 13.0GB

per-thread, executing 50% sequential and ran-

dom reads on a 32GB file.

16.3GB

Cassandra [1] NoSQL DB running YCSB [21] with 16 threads,

50% read-write ratio.

11.0GB

Spark [56] Apache Spark with Hadoop, running Terrasort on

20GB of data with 16 threads. The workload first

generates the dataset followed by the analytics.

32.1GB

Table 3: We evaluate KLOCs using I/O-intensive applications

that stress the storage and networking stacks.

6 EXPERIMENTAL METHODOLOGY

6.1 Evaluation Workloads

We quantify the benefits of KLOCs on the I/O-intensive workloads in

Table 3. Our evaluation focuses on the Filebench, RocksDB, Redis,

and Cassandra workloads because we had difficulty resolving issues

brought about by the firewall settings in Spark.

6.2 Evaluation Platforms

For evaluation, we use two experimental platforms. KLOCs can be

used in multiple tiered memory configurations. Evaluating KLOCs

on all memory configurations is infeasible, so we focused on two

extreme points – a software-managed tiered memory setup and a

combined hardware/software-managed tiered memory setup. The

Optane Memory Mode is the latter, where software is responsible for

migrating data across memory nodes, but hardware is responsible

for tiering data within each node. In both platforms, application and

kernel object pages are managed by the OS and are transparent to

the programmer.

Software-managed tiered memory. In our first platform, which we

refer to as two-tier memory, uses the OS to control data management

between a high-bandwidth, low-capacity first DRAM tier and a

lower-bandwidth, higher-capacity second DRAM tier. While we

would prefer using a real-world platform for these studies, there

are no commercially-available tiered memory systems with entirely

OS-controlled data movement, although they are expected to become

viable and widely-used in the near future (e.g., die-stacked memories,

disaggregated memories, etc. [41, 53]). Instead, like recent work, we

leverage a two-socket system for our studies [13, 33, 41, 53]. We

use thermal throttling to reduce the DRAM bandwidth in one of the

sockets in a configurable manner, mimicking the activity of slower

memory. Table 4 shows that fast memory is configured to 8GB of

capacity at 30GB/s. This matches the raw capacity and bandwidth

ranges as well as relative ratios between fast and slow memory from

recent studies [17, 33, 41, 53]. We also evaluate performance for

variations of fast memory capacity and slow memory bandwidth. We

turn off AutoNUMA for the two-tier memory system, like recent

work on Nimble [53]. This is because AutoNUMA moves pages

across homogeneous NUMA nodes based on CPU affinity/locality,

Experimental Platforms

Two-Tier Memory Platform

Processor 2-socket Intel E5–2650v4 (Broadwell), 2.4 GHz cores, 20

cores/socket, 2 threads/core

SRAM Cache 512 KB L2, 25 MB LLC

Memory Two 80 GB sockets, max bandwidth of 30 GB/sec

Storage 512 GB NVMe with 1.2 GB and 412 MB sequential and

random access bandwidth

OS Debian Trusty — Linux v4.17.0

Optane Memory Mode Platform

Processor 2-socket Intel Xeon, 2.67 GHz cores, 32 cores/socket, 2

threads/core

SRAM Cache 512 KB L2, 25 MB LLC

DRAM Cache 16-GB DRAM hardware-managed L4 cache per socket

Memory 128-GB Intel DC Persistent DIMM per socket

Storage 1-TB Intel NVMe Block Storage

OS Debian Trusty — Linux v4.17.0

Table 4: We use the two-tier memory and Optane Memory

Mode platforms for our evaluations. KLOCs are used in both

platforms by the OS, which controls data movement between

memory tiers in the first platform, and memory sockets in the

second platform.

unlike KLOCs and Nimble, whose goal is to enable tiering across

memory devices with differing performance characteristics.

Hardware/software-managed tiered memory. Our second plat-

form uses a two-socket Intel Optane DC system representative of

tiered memory systems that use a hybrid OS-hardware approach

for data management. We configure the Optane DC system to op-

erate in Intel Optane’s Memory Mode, meaning that each socket

uses its DRAM as a hardware-managed L4 cache of a slower-tier

byte-addressable persistent memory [55]. Data movement between

the L4 DRAM cache and persistent memory is controlled entirely

in hardware, while the OS is responsible for data movement be-

tween sockets using AutoNUMA techniques. The DRAM L4 cache

achieves 3-4× faster latency than persistent memory.

One might also consider using Intel Optane’s App Direct mode

for our studies. However, the goal of KLOCs is to manage OS kernel

object tiering. Since programmers do not have direct access to kernel

objects by design, it is not possible to tier kernel objects using the

App Direct mode and therefore not possible to demonstrate the ben-

efits of KLOCs in the App Direct mode. We show the configuration

parameters of the Memory Mode platform in Table 4.

Performance comparisons: We compare KLOCs against the mem-

ory management strategies in Table 5. We also compare against an

ideal scenario where all application and kernel data is resident in

fast memory (All Fast Mem), and the pessimistic scenario where

all application and kernel data is in slow memory (All Slow Mem).

Table 5 separates the tiering strategies for the two-tier versus Optane

Memory Mode platforms.

For the two-tier memory platform, we consider a Naive approach

that employs a greedy first-come, first-serve approach for allocating

data in fast memory. Once fast memory becomes full, all allocations

are directed to slow memory. Neither application nor kernel pages are

migrated between memory tiers, meaning that fast memory becomes

unavailable for allocation until some data in it is deallocated first.

In contrast, Nimble is a recently-proposed data placement and mi-

gration scheme for application pages in tiered memory [53]. Nimble



Strategy Description

Two-Tier Memory Platform

Naive Greedy approach that places application and kernel data in fast

memory until it fills up. After becoming full, fast memory is

available again when data in it is deallocated.

Nimble Prior work using OS-controlled application tiering with parallel

and concurrent page migration optimizations.

Nimble ++ Our extension of Nimble to migrate kernel object migration with

parallel migration optimizations, but without implementation of

the KLOC abstraction.

KLOCs Original Nimble policies to identify hot application pages and

mechanisms to accelerate application pages, KLOCs to associate

hot/cold application pages with kernel objects, and parallel kernel

page migration.

Optane Memory Mode

AutoNUMA AutoNUMA for application page migration between sockets,

with L4 DRAM caches of persistent memory.

KLOCs AutoNUMA with support to migrate kernel objects associated

with application pages between sockets, with L4 DRAM caches

of persistent memory.

Table 5: KLOCs and alternatives evaluated in our studies. Ap-

proaches like Nimble represent prior state of the art research

on application page migration [53], while AutoNUMA is the stan-

dard in modern OS kernels like Linux and FreeBSD.

optimizes page hotness tracking and accelerates software-directed

page migration via parallelization of page copy operations and con-

current multi-page migrations. We also enhance Nimble to support

kernel objects in two ways. The first and most straightforward ap-

proach (Nimble++) is to extend Nimble’s existing mechanisms and

policies that identify and migrate hot kernel objects without the

KLOC abstraction. While this approach does permit hot kernel ob-

jects to reside in fast memory, more practically, once kernel objects

are evicted to slow memory, they rarely return to fast memory. The

key problem is that Nimble’s page hotness and migration control

have higher latency than kernel objects’ lifetimes. Hence, Nimble++

offers sub-optimal performance because it cannot adapt to changes

in kernel object hotness sufficiently rapidly. In contrast, KLOCs per-

mits Nimble to more rapidly identify and migrate hot kernel objects

associated with hot application pages with Nimble’s parallel page

migration optimizations. While Nimble’s concurrent multi-page mi-

gration optimizations can be extended to kernel objects, we leave

this for future work because of the engineering complexity. We show

that just extending Nimble with kernel object support via KLOCs out-

performs Nimble and Nimble++, despite the absence of concurrent

multi-page kernel object migration.

For our Optane Memory Mode platform, we enhance AutoNUMA

with KLOCs so that the OS can migrate kernel objects between

sockets. Our experiments are set up such that workloads are run

concurrently with another workload that streams through memory

and hence interferes with our workload on one of the sockets. When

interference begins to harm performance, AutoNUMA migrates the

workload of interest to another socket where there is no interfering

workload. However, while vanilla AutoNUMA migrates application

pages, kernel object pages are ignored. This problem is resolved

with KLOCs, and kernel objects are also migrated.
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Figure 4: Performance of KLOCs on the two-tier memory

platform. Speedups are relative to the All Slow Mem con-

figuration. KLOCs outperform all other approaches, except

for Cassandra, where they are roughly similar to Nimble++.

KLOCs-nomigration shows an approach that uses KLOCs

to directly allocate kernel objects to fast memory with-

out migration. Finally, the KLOCs bars combine KLOCs-

nomigration’s direct allocation of kernel objects as well as

the migration of kernel objects associated with active and

inactive knodes.

Filebench RocksDB Redis Cassandra Spark

Mem usage

increase

44MB 101MB 83MB 12MB 43MB

Table 6: Average memory increase using KLOCs in MBs com-

pared to All Fast Mem approach.

7 EVALUATION

7.1 Overall Performance

Figure 4 quantifies the speedup achieved via KLOCs on the two-tier

memory platform versus the alternatives in Table 4, normalized to

the case when only slow memory is available. We compare KLOCs-

nomigration, an approach that directly allocates active KLOCs to

fast memory without migrating inactive kernel objects from fast

to slow memory, and KLOCs, which also migrates kernel objects.

Both approaches generally outperform other approaches. Consider,

for example, filesystem-intensive workloads like RocksDB, which

stores persistent key-values as a string-sorted table in hundreds of

4MB files. Because many of the files become inactive, Naive pollutes

fast memory. KLOCs-nomigration directly allocates performance-

critical active knode objects to available fast memory pages and

achieves 1.61× throughput gains over the naive approach. However,

KLOCs-nomigration cannot move inactive kernel objects that are

yet to be deallocated, reducing the available fast memory for kernel

objects of an active knode. In contrast, KLOCs also migrates inactive

kernel objects to fast memory, increasing fast memory availability,

and improving performance by 1.96×. Redis, which uses only a few

large files to checkpoint data, suffers cache pollution in the Naive

case. Because Redis is also networking-intensive, the Naive approach

is vastly outperformed by KLOCs (by 2.2×), which can ensure that

socket buffers are prioritized in fast memory and can rapidly identify

and migrate cold kernel socket buffers to slow memory.

In general, KLOCs also outperform Nimble and Nimble++. For

Redis, KLOCs throughput increases by 2.7× over Nimble. Both

Nimble and Nimble++ leave cold kernel objects for longer in fast

memory than KLOCs. Nimble and Nimble++ also take longer to

identify hot kernel objects and retrieve them in fast memory than
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(b) The number of pages allocated to the page

cache, slab allocations, and the number of pages

migrated from slow to fast memory for RocksDB

in two-tier memory.
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(c) Contribution of different kernel object types to the

performance of KLOCs on the two-tier memory plat-

form. All kernel objects excluded from KLOCs are

placed in fast memory.

Figure 5: Figure 5a shows the speedup offered by KLOCs in the Optane platform’s Memory Mode over the worst-case configuration

where all data is serviced from remote memory, the vanilla AutoNuma and the Nimble configurations. Figure 5b shows the number

of pages allocated in slow memory for page cache objects and slab objects (in units of 10 million pages), and pages migrated from fast

to slow memory on the two-tier memory platform for RocksDB. A good approach is to maximize the number of pages allocated in

fast memory (therefore, we wish to minimize page cache page and slab page allocations in slow memory) and migrate as many cold

pages to slow memory as possible. KLOCs does both better than Nimble or Nimble++. Figure 2a shows the impact of different kernel

objects on the KLOCs performance.

KLOCs. One might initially expect that since kernel objects have

short lifetimes, retrieving them into fast memory may be infrequent.

However, our experiments suggest that kernel objects experience

rapid phase changes in hotness, and while Nimble and Nimble++

are too coarse-grained in assessing these phase changes, KLOCs can

adapt to them more readily and improve performance.

Figure 4 shows that KLOCs is similar to Nimble++ for Cassandra.

This is because Cassandra uses a 512MB application-level cache for

200K keys. Because this large cache satisfies many requests at the

application level, kernel I/O is reduced, performance is less sensitive

to kernel object placement. Note that for the same reason, Cassandra

benefits the least from the ideal case where all data is placed in

fast memory. Additionally, Cassandra suffers from high Java and

language overheads towards storage access combined with the use

of the YCSB workload generator [21] running in a client-server

configuration.

Memory Usage. Table 6 shows the increase in memory usage

when using KLOCs for all applications compared to the All Fast

Mem approach. Although KLOCs increase memory usage, the in-

crease is < 1% of overall memory usage. For RocksDB, with the

maximum memory increase (101MB), the overheads stem from

metadata required for supporting KLOCs. The metadata memory

increase mainly stems from 8 byte RB-tree pointer for each cache

page and slab object structure that is added to rb-cache and rb-

slab trees (roughly 96MB). The per-CPU active and inactive list

(<800KB), a list to track pages to migrate (roughly 1MB depending

on migration size), 64 byte KLOC structure attached to each open

inode (<400KB), and other KLOC auxiliary bookkeeping structures

also contributed to memory increase.

Hardware/software-managed tiered memory. Figure 5a shows

that KLOCs outperform AutoNUMA in the Optane’s Memory Mode

configuration. The ideal scenario where all data can be maintained

in local memory offers a 1.6× speedup. AutoNUMA and Nimble

are able to achieve only a fraction of this improvement because they

ignore kernel pages, which remain resident in the memory device

where they were first allocated, even as execution shifts between

NUMA nodes. KLOCs achieve performance improvements close to

1.5× over AutoNUMA and 1.4× over Nimble.

7.2 Sources of Performance Improvement

To shed light on the source of KLOCs performance improvements

for the two-tier memory platform, Figure 5b quantifies the number of

page cache pages and slab pages allocated in slow memory, as well

as pages migrated from fast to slow memory for RocksDB. For good

performance, we wish to maximize the number of pages allocated in

fast memory and minimize the number of pages allocated in slow

memory. Figure 5b shows that KLOCs allocate data in slow memory

far less frequently than Naive, Nimble, or Nimble++ because they

are able to more quickly identify kernel objects associated with cold

application pages, and migrate them to slow memory as a group.

KLOCs also guard against excessive migration, which can damage

performance. In particular, it requires far fewer migrations than Nim-

ble and Nimble++. Both Nimble and Nimble++ lack the knowledge

of active and inactive kernel objects, and both application and kernel

pages are always maintained in fast memory, hence polluting fast

memory. In response, more application data migrations are neces-

sitated between the two tiers. In contrast, KLOCs only place active

kernel objects to a faster memory, reducing fast memory pollution

and resulting migrations. The confluence of these factors enables

KLOCs to achieve superior performance to the alternatives.

7.3 Performance sensitivity of kernel objects

Different workloads are more performance-sensitive to different

combinations of kernel objects. Figure 2a illustrates this, showing

that all kernel objects must be included within the KLOC abstrac-

tion for maximal performance benefit. To generate these results, we

incrementally add groups of kernel objects to the KLOC abstraction

and quantify performance improvements. Initially, we tier just the

application pages and always assign kernel objects to fast memory

only. Then we incrementally add KLOC support for page caches,
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Figure 6: Speedup on a two-tier memory platform. Fast

memory capacity is varied from 4GB to 8GB to 32GB. Band-

width differentials between slow and fast memory are varied

from the scenario where fast memory has 8× more band-

width than slow memory (1:8 x-axis label) to 4× to 2×. All

bars show the average across all workloads, and variance

bars capture the maximum and minimum speedup achieved

across workloads.

followed by journals, slab objects, socket buffers, and block I/O. For

each of these configurations, kernel objects excluded from KLOCs

are always maintained in fast memory. We find that many workloads

benefit from including page cache pages within KLOCs, but other

workloads like Redis also benefit from socket buffers, etc. The con-

clusion is that workloads employ kernel objects in diverse ways, and

a truly robust KLOC abstraction must include as many kernel object

types as possible.

KLOCs also offer complementary benefits to existing I/O prefetch-

ing techniques in modern OSes. We elide results for brevity, but find

that with Naive, Nimble, and Nimble++, prefetching can amplify

the likelihood fast memory is polluted by cold application pages and

hence, their associated kernel object pages. KLOCs can quickly iden-

tify the kernel object pages associated with cold application pages

and migrate them to slow memory. This is particularly useful for

not just applications where some prefetched pages are indeed useful

(e.g., RocksDB, Redis, and Cassandra), but also for workloads with

more random access patterns (e.g., Filebench) where pollution from

prefetching is pernicious. For instance, augmenting prefetchers with

KLOCs improves RocksDB throughput by 1.26×.

7.4 Sensitivity to Bandwidth and Capacity

Finally, Figure 6 quantifies KLOC speedup as a function of the

relative memory bandwidth of fast and slow tiers of memory and

the capacity of fast memory in the two-tier memory platform. We

show average speedups across all workloads, with variance bars

indicating the minimum and maximum speedups achieved by our

workload per configuration. KLOCs offer superior performance

across all bandwidth and capacity configurations, particularly as

the bandwidth differential between fast and slow memory becomes

more pronounced. KLOCs offer more speedup as capacity becomes

progressively limited, and as the memory bandwidth differential

grows. In general, the speedup benefits over Nimble and Nimble++

remain consistent and peak for mid-scale fast memory capacities of

8GB, especially for higher bandwidth differentials. As fast memory

capacity increases, slow memory is used less often, reducing the

performance difference of all tiering approaches.

8 CONCLUSION

We present KLOCs, a new OS abstraction to systematically group

and manage kernel objects data. As hardware vendors increase sys-

tem memory capacities, the total memory footprint of kernel objects

has grown to the extent that it can no longer be treated as an af-

terthought, particularly for heterogeneous memory systems. Many

refinements and enhancements can be made to this initial KLOC

abstraction, but by showing that even a proof-of-concept prototype

can achieve 1.4×-2.7× higher throughput than traditional systems,

we highlight the exigent need to investigate better kernel object

management in the systems research community.
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