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Abstract— Brain-computer interfaces (BCIs) with processing
integrated on the device enable fast and autonomous closed-loop
interaction with the brain. While such BCIs are rapidly gaining
traction, they are also difficult to design due to the tight and
conflicting power and performance needs of on-device processing.
Meeting these specifications often requires the BCI processors to
be co-designed with applications and algorithms, with processor
designers and computational neuroscientists working closely to
converge on the target hardware platform. But, this process has
traditionally been cumbersome and ad hoc, due to the lack of
systematic design space exploration frameworks. In response, we
present Foresee, a new framework for fast exploration of BCI
processors. Foresee offers a unified and modular interface for
iteratively co-optimizing BCI processors with their algorithms,
without sacrificing accuracy, speed, or ease of use. Foresee is
publicly available, and comes with a library of hardware blocks
for common signal processing functions that the community
could contribute and build on. We demonstrate Foresee’s utility
and capability by analyzing on-device processing for two seizure
detection methods from prior work, and validating our analysis
on real hardware. We expect Foresee to be vital in designing
next-generation BCIs.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) connect neural activity
in the brain with computers and machines, enabling novel
ways to shed light on brain function and disease, restore
lost function, treat dysfunction, and more [18]. Wearable and
implanted BCIs have evolved from proof-of-concept demon-
strations to viable solutions for research and therapeutics [39].

Recent years have witnessed a move towards integrating
on-device processing on BCIs [13, 16, 18, 28]. Unlike most
existing BCIs, which offload processing to servers external
to the brain, BCIs with on-device processing offer sub-
millisecond responsiveness and autonomous operation without
relying on external connections and tethering [16, 28, 29].

Unfortunately, developing on-device processors for BCIs
(especially those that are implanted) is challenging. This is
because BCI processors must aggressively constrain power
consumption and thermal elevation to ensure safe operation,
while simultaneously meeting the high computational de-
mands of emerging applications. These constraints preclude
typical low-power microcontrollers [4], low-power Graphics
Processing Units (GPUs) from mobile devices [21], or similar
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off-the-shelf designs, as they cannot meet the safe power and
temperature while offering adequate compute capability.

Consequently, BCI processors are developed by co-design—
specializing the processing hardware to the applications
that the BCI is expected to run, while also modifying
the computational methods to fit on resource-constrained
processors [22, 28, 30, 31]. This is an iterative methodology
where processor designers and computational neuroscientists
explore the suitability of various processor and algorithmic
optimizations, validate them on their datasets, develop proto-
types and test them, before finalizing the design. The promise
of co-design is that it achieves superior performance per watt
than other design approaches.

But, unfortunately, no existing framework systematically
explores BCI processor development and co-design. This leads
to several technical and logistical challenges. For example, the
tools and programming environments used by computational
neuroscientists and processor designers are strikingly different,
making it difficult for the two groups to collaborate. Typically,
high-level programming languages like Python or MATLAB
are used in algorithmic development for their convenience of
usage and abstraction over low-level computational details,
whereas processor design needs detailed precise specification
through hardware description languages like Verilog, VHDL,
SystemC, etc. This makes exchanging specifications and
optimizations between teams cumbersome, ad hoc, and error-
prone. Furthermore, given the lengthy timeframe (i.e., several
months or more) needed to prototype a processor, validating
the processor against the expected results of the algorithm
occurs only much later. These prolonged design cycles make
it harder to rework optimizations in a timely manner.

We believe that there is an urgent need for a new framework
to simplify and accelerate the iterations needed to co-design
BCI algorithms with hardware, and validate the co-design
rapidly. This framework must simultaneously offer convenient
algorithmic development in high-level languages, and the
precise specification for hardware description.

To meet this need, this paper presents Foresee1, a new
tool for fast and early-stage exploration of BCI processors.
Foresee allows users to define neural signal processing
pipelines as a chain of “Modules” that can be described
in Python during algorithmic development. Modules can also

1Foresee is a fast, open, and reconfigurable simulator for early exploration
of processing in BCIs.



be connected to Verilog hardware implementations, when
exploring processor design. Foresee would then report detailed
hardware power consumption and latency estimates from this
description. This serves as a unified platform for co-design.
Importantly, Foresee also allows plugging in conventional
task-specific tools that users might be familiar with, offering
compatibility with existing workflows. Finally, Foresee also
makes a library of Verilog hardware description blocks for
several signal processing methods open-source, enabling the
broader community to contribute and build on it2.

Foresee is useful in several ways. Computational neurosci-
entists can use Foresee to evaluate the suitability of different
algorithms and their variants for on-device processing. To-
gether with processor designers, they can also use Foresee
to co-design algorithms and hardware. Neuroengineers and
BCI designers can use Foresee to quickly evaluate whether
the new processing features they plan to integrate into BCI
are feasible from the perspective of hardware latency and
power consumption. These feasibility studies are also helpful
for regulators evaluating the possibility of integrating critical
features (e.g., encryption) on resource-constrained processors.

Overall, Foresee is a first-of-its-kind framework to explore
integrated processing on BCIs. We demonstrate Foresee by
using it to specify two seizure detection algorithms from
prior work, explore the tradeoffs in their algorithmic accuracy
and hardware costs, and finally, validate them on real Field
Programmable Gate Array (FPGA) hardware, demonstrating
Foresee’s utility and capability.

II. BACKGROUND & MOTIVATION

Both wearable and implantable BCIs are becoming increas-
ingly capable of supporting a rich set of applications. By
leaning on advances in neural sensing and computational
neural decoding [18, 39], modern BCIs can read and process
several tens of megabits per second (Mbps) of neural data [38]
with complex signal processing methods to infer intended
movement or speech, detect aberrant activity (as in epilepsy
and Parkinson’s), and respond in seconds [32, 34, 39].

But, BCIs still offload most of their processing to servers
away from the brain, or curtail the data rates or functionality
they support. These choices restrict BCI responsiveness,
performance, or limit their use to the vicinity of servers [29].

Overcoming current limitations and delivering on the
promise of BCIs requires additional focus on on-device pro-
cessing. Such processing can offer sub-millisecond response
times and autonomous operation without relying on external
connections [16, 22, 28, 31], enabling new BCI applications
that have not been feasible until now.

A. On-Device BCI Processing

Safe near-brain operation requires power and energy
dissipation to be capped in order to prevent overheating of
the brain and to prolong device battery life. These constraints
are especially stringent for implanted BCIs, which cannot
heat brain tissue by more than 1 ◦C. This limits the power

2Foresee is publicly available at https://github.com/bci-foresee/foresee.

consumption of the BCI processor to a few milliwatts [26, 37].
In contrast, state-of-the-art mobile phone processors typically
consume a few watts, which is ≈100× higher [8]. Under
these tight constraints, BCI processors must run complex
processing required by applications on the growing volumes
of neural data that the sensors record, now in tens of Mbps.

Off-the-shelf low-power microcontrollers, Digital Signal
Processors (DSPs), or low-power GPUs, and similar proces-
sors (e.g., [4, 21]), are designed for more general purpose use,
and fail to meet the power or energy efficiency requirements of
near-brain BCI processing. This has prompted researchers to
pursue more efficient hardware, where features are customized
to the BCI algorithms that the device runs. At the same
time, the algorithm is also refactored to operate on resource-
constrained processors. In the past, such co-design has led to
a variety of BCI processors ranging from highly-specialized
Application-Specific Integrated Circuits (ASICs) [20, 38] to
more flexible designs [22, 28, 30, 31].

B. BCI Processor Co-Design and Infrastructure Requirements

While the need for co-design through iterative algorithm
and processor optimization is not unique to BCIs (e.g., [24]),
the constraints of near-brain processing pose unique chal-
lenges. Foremost, BCIs need much tighter development cycles
between the algorithm and processor optimization than in
other domains (e.g., machine learning and datacenters). This
is because BCI algorithms are becoming increasingly complex
and data-intensive while the device power consumption and
thermal profiles are highly constrained. Without significant
co-design, on-device BCI processing will be unable to meet
the performance per watt targets needed for near-brain
processing [22, 28, 31].

At the same time, BCI algorithm and hardware development
focus on different objectives (e.g., ease of design and accu-
racy in the algorithm versus hardware power consumption),
requiring different expertise and dedicated workflows. Yet,
they must easily exchange specifications (e.g., channel counts,
accuracy, latency, throughput, power) and optimized designs,
and validate their performance. This poses a need for a unified
platform that provides the convenience of languages like
Python and its ecosystem in algorithm development, but the
precision of Verilog in hardware description, and support for
hardware design automation tools.

Importantly, a tool for BCI processor exploration must
also offer flexibility, speed, and accuracy to be useful. BCI
algorithms are evolving rapidly, and a given task (e.g., seizure
detection) has several algorithms and variants, each of which
work effectively under different conditions [27]. It is necessary
to iterate over this large and changing design space quickly.
Historically, computer scientists have developed several tools
and simulators that sacrifice accuracy of processor analysis
for speed (e.g., [6, 14, 19]). However, existing state-of-the-art
tools suffer from inaccuracies in the range of watts of power.
This may be acceptable when exploring the design of servers
that consume tens to hundreds of watts, but is unsuitable for
implantable BCIs, where even a few milliwatts of inaccuracy
risks overheating the brain.

https://github.com/bci-foresee/foresee
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Fig. 1: Overall workflow with Foresee. There is a unified interface for processor exploration and co-design with the algorithm.
Each task can use corresponding languages, tools, and packages, enabling compatibility with existing toolsets. Hardware
blocks can be custom specified or selected from Foresee’s open collection.

Similarly, there are some high-level synthesis (HLS)
tools (e.g. [1]) and frameworks (e.g., PyMTL [5, 15]) that
offer precise hardware development and analysis in Python.
However, these are intended for use by processor designers
and are not easy to use for BCI algorithm development.

What we seek is a new tool, one that offers Python-level
convenience for application development, and the accuracy
and precision for hardware description and analysis. Today,
there exists no unified, fast, and modular framework for
exploring BCI processing and co-design.

III. Foresee: A NEW FRAMEWORK TO EXPLORE
PROCESSING ON-BCI

Figure 1 shows the overall workflow enabled by Foresee.
The framework facilitates co-design and processor exploration
by building neural signal processing pipelines with “Modules”
that can be seamlessly specified in Python for algorithmic
development or in Verilog for hardware description, and iterate
between them with a single interface. Foresee also releases an
open-source collection of hardware blocks for several signal
processing methods that users can utilize directly.

This section describes Foresee’s interface and operation.
Section IV describes Foresee being used to explore hardware
design for two published seizure detection methods.

A. Graphical User Interface (GUI)

Foresee offers a GUI powered by an internal Python engine
for intuitive usage. While most of Foresee’s features are
available through the GUI, users can also opt to interact with
Foresee using the command line. In either mode, users must
supply Python (and Verilog) code when creating a Module
not present in Foresee.

Foresee offers three views through its GUI: Overview,
Pipeline, and Analysis. Figure 2 shows the Overview page,
which is the main view on Foresee’s launch. From here, users
can create or import new pipelines and Modules, and launch
various algorithm or hardware analyses.

Figure 3 shows the Pipeline page, which is the workspace
where Modules are connected to form pipelines. Modules
include inputs (synthetic data generators, or files from
datasets), computational blocks, and outputs (files to write
the outputs of signal processing). Modules can be added
from the previously defined collection (see the example in
Figure 3), or can be created anew. Selecting a module lists the
options that can be configured for that module in this pipeline.
Figure 3 shows the available options for a pre-defined Fast

Fourier Transform (FFT) Module. Different modules can be
connected with wires.

Fig. 2: Foresee’s Overview page (i.e., its launch page).

Fig. 3: Foresee’s Pipeline page showing an example pipeline,
with the Modules window open and an FFT module selected.

Foresee also supports creating new modules. When this
option is chosen from the Overview, users can select the
Python and hardware files that define the new module.

Once a pipeline is specified, users can analyze Python
descriptions for functional operation and accuracy, or with
the hardware implementations for power and latency analyses
(Section III-B). Figure 4 shows the analysis page, which
presents the results of the user-specified measurements and
comparisons. All data can be exported in a Comma-Separated
Value (CSV) file for offline analysis.

By default, Foresee uses open-source tools and can integrate
any semiconductor fabrication technology, silicon process
node, and design tools to analyze power and latency. Our



evaluations in Section III-B assume a default process tech-
nology (130 nm), to enable tractable presentation of results.

Fig. 4: Foresee’s Analysis page showing sample results.

B. Forsee’s Analysis Modes
Foresee currently supports three types of analyses. These

are: Python execution for algorithmic accuracy, hardware
latency (and accuracy), and hardware power estimation.
Python execution is the simplest, and runs the modules
natively on any supplied datasets to obtain accuracy values.

For hardware latency and accuracy, Foresee internally runs
a cycle-accurate hardware simulation of each Module on the
provided data using iverilog [35], which is an open source
tool for Verilog simulations.

When users need power estimation, Foresee uses additional
tools and steps because accurate power modeling depends
on detailed hardware circuit and activity information. First,
Foresee converts the Verilog description of the Module into
circuits that are amenable for hardware fabrication. This is
done with Yosys [36], an open-source tool which also takes as
input, the fabrication process-specific information (termed the
process design kit by the foundry). Then, Foresee uses iverilog
to obtain the activation of various parts of the hardware
circuits on the provided data. Next, Foresee uses another
tool, OpenSTA [3] for timing and power analysis, based on
this information. OpenSTA reads the hardware circuit, the
fabrication process-specific information, and the hardware
activation data to compute the total power that the Module
consumes. OpenSTA is open-source and is validated against
real hardware to produce highly accurate measurements.

Overall, Foresee relies on reliable methodologies and tools
to perform accurate analyses. Foresee also supports using
custom tools instead of iverilog, Yosys, or OpenSTA, offering
flexibility for users.

C. Open Hardware Library
Foresee is packaged with an open collection of hardware

implementations for several signal processing modules. These
are: fast Fourier transform (FFT), pairwise cross correlation
(PWXC), Butterworth bandpass filter (BBF), support vector
machine (SVM), thresholding block (THR), Teager-Kaiser
energy operator (TKEO), and signal averaging (AVG). We
envision adding more implementations to this library of
hardware modules, and invite community submissions.

IV. SHOWCASING Foresee THROUGH AN EXAMPLE

We demonstrate Foresee by using it to compare two
methods of seizure detection based on prior work [9, 12, 27],
from the perspective of both algorithmic accuracy and on-
BCI processing. The computational steps of each are shown
in Figure 5, using the names of signal processing blocks
from Section III-C. More details about the configurations of
individual signal processing steps are available in respective
references. We additionally add a storage element that
captures the inputs and outputs for archival.
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(a) Pipeline 1 based on [27].
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(b) Pipeline 2 based on [9, 12].

Fig. 5: Seizure detection pipelines based on prior work to be
created and compared with Foresee.

Following Foresee’s workflow in Figure 1, we begin by
selecting each pipeline and describing its modules. For
example, consider Pipeline 1. We navigate to the workspace by
selecting the “Custom Pipeline” option on the Overview page
(Figure 2). Then, from the Modules menu in the Pipeline
page 3, we find that the Foresee hardware library has all
the modules we need. We add the required modules and
specify their configuration (e.g., the Berger bands for the
BBF module) by selecting them individually. For the SVM
module, we identify its parameters by training it separately,
since Foresee does not yet support native training, and specify
those values too. We use data from [7] to train the SVM.
Since we need a data source to measure accuracy, we also add
a source, and specify our validation data. Next, we proceed
to the Analysis page where we see the results. We repeat the
process for Pipeline 2.

Foresee has the option to summarize results from multiple
analyses, and Figure 6a shows the accuracy comparison we
obtain. We find that Pipeline 1 has slightly higher accuracy,
since it uses more features in the incoming data.
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Fig. 6: Comparing two seizure detection pipelines for on-
device processing with Foresee.

Once we are satisfied with the algorithmic accuracy of
our pipelines, we then evaluate their suitability for hardware



implementation. We return to the pipelines we saved, and
simply select hardware latency and power measurements in
the Analysis page. Foresee automatically selects the hardware
files for the modules and runs these analyses. Figures 6b
and 6c show these results. We find that while both pipelines
are quite fast (µs–ms), Pipeline 1 is about 50× slower than
Pipeline 2 because it uses more complex computations. For
the same reason, it also consumes nearly 3 W of power that
is 100× higher than that of Pipeline 2, which consumes only
30 mW of power. Following these results, users can now
easily identify the pipeline they would choose for the goals
they have with the BCI. For example, for the implanted case,
one could select Pipeline 2 for on-BCI processing since it is
low power, while Pipeline 1 as we configured is unsuitable
due to its higher power consumption.

Foresee also provides a detailed breakdown of latency
and power per-module to localize inefficiency and direct co-
design and optimization effort. Figure 7 shows this analysis
for the two pipelines. Based on this data, we identify that the
FFT module is responsible for the significantly high power
consumption of Pipeline 1, followed by BBF. Indeed, we used
a large 8192-point FFT with on-chip memory for our hardware
that contributed to high power consumption. This insight
could be used to guide the optimization in the algorithm to
explore less computationally intensive alternatives.
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Fig. 7: Triaging on sources of inefficiency with Foresee.

Throughout this example workflow, we could specify
different pipelines, seamlessly iterate between algorithm and
hardware analysis, and obtain accurate results. The entire
process could be run within the span of a few minutes.
Additionally, we could quickly locate sources of inefficiency
in the pipelines to focus further optimization strategies that
are crucial for on-BCI processing.

A. FPGA validation

Foresee uses community-validated tools like OpenSTA for
power and latency measurement. Nonetheless, to confirm
Foresee’s ability to accurately capture hardware power con-
sumption, we prototype the pipelines described in our example
workflow on an actual FPGA test board (Xilinx Nexys A7)
and validate the measured power against Foresee’s reported
values. This setup is shown in Figure 8a. Figure 8b shows the
relative breakdown of power consumption measured on the
FPGA alongside those reported by Foresee (from Figure 7b).
These results are close, with the slight difference attributed to
FPGA measurement overhead, confirming Foresee’s accuracy.
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Fig. 8: Validating Foresee power measurements against
prototyped FPGA measurements.

V. DISCUSSION

We presented the utility of Foresee in advancing on-device
processing for BCIs. Prior work has developed tools for other
aspects of BCIs; e.g., algorithmic performance and signal
analysis [2, 10, 11, 25]. But, Foresee uniquely focuses on
processor co-design and exploration. Foresee is open-source
allowing the community to contribute and build on.

A key design choice in Foresee is to use a different level
of design description and abstraction for algorithmic and
hardware design tasks that is natural for the respective goals,
such as Python for the former and Verilog for the latter,
instead of forcing a common representation that is non-
intuitive for either. A consequence of this choice is that
the processing designs that Foresee can capture are limited
to those that stream data through a sequence of blocks in a
structured manner as described earlier. While this is restrictive
for general processors, it is not so for BCIs where the
computations are naturally organized as streaming dataflow
pipelines that Foresee supports. Hence, we find this design
choice in favor of intuitive design development acceptable.

We will continue to develop and support Foresee, and add
more functionality to enhance its utility. On the algorithmic
front, we are exploring methods to support plugging into
frameworks like PyTorch for emerging neural network-based
BCI algorithms. For hardware development, we are working to
include automated checks for thermal and power compliance,
and holistic hardware modeling. For example, one feature
that we are currently integrating is the modeling of storage
on device. On-BCI storage helps collect neural data without
relying on external connections, and can also enable new
BCI algorithms [31]. However, there are many parameters
to consider in identifying a suitable storage medium for
BCIs, such as their non-volatility (ability to hold data without
power consumption), device longevity, and area. Figure 9
shows some possible non-volatile memory (NVM) storage
technologies and their characteristics for Pipeline 1, obtained
from NVM modeling tools like NVMExplorer [23]. The tech-
nologies modeled (described in [17]) are STT (spin-transfer
torque), PCM (phase-change memory), FeFET (ferroelectric
field-effect transistor), and RRAM (resistive random access
memory). Due to the constraints of on-BCI processing, the
choice of storage technology and size must also be optimized
with processor design [33]. We plan to integrate such tools
and analyses in Foresee.
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One limitation of Foresee is that it supports a limited set
of hardware blocks currently. However, Foresee is designed
to naturally support a community-wide effort to add to these
hardware blocks with additional Verilog description. Our
eventual goal is to automate generation of Verilog modules
from Python, offering even more flexibility and simplicity for
users. In the interim, we plan to create an open repository for
the hardware blocks for the community to submit, keeping
pace with the development of new BCI algorithms, and curate
these to ensure usability with Foresee.

Foresee also does not currently support advanced hardware
design features like clock-generation and management for
power, since it is aimed at early-stage hardware exploration.
However, the hardware designs described in Foresee can
easily be ported to other existing design automation software
to incorporate such mechanisms. Understanding how such
features can be incorporated directly into Foresee is an
exciting design automation research task.

VI. CONCLUSION

This paper presented Foresee, a new framework that bridges
the gap between computational neuroscience and computer
systems in the service of on-BCI processing. Through
this unified and modular platform that offers convenience,
accuracy and productivity, Foresee could serve the needs of
the BCI community in developing new-generation BCIs.
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