
Nimble Page Management for Tiered
Memory Systems

Zi Yan
Rutgers University & NVIDIA

ziy@nvidia.com

Daniel Lustig
NVIDIA

dlustig@nvidia.com

David Nellans
NVIDIA

dnellans@nvidia.com

Abhishek Bhattacharjee
Yale University

abhishek@cs.yale.edu

Abstract
Software-controlled heterogeneous memory systems have
the potential to increase the performance and cost efficiency
of computing systems. However they can only deliver on this
promise if supported by efficient page management policies
and mechanisms within the operating system (OS). Current
OS implementations do not support efficient tiering of data
between heterogeneous memories. Instead, they rely on ex-
pensive offlining of memory or swapping data to disk as a
means of profiling and migrating hot or cold data between
memory nodes. They also leave numerous optimizations on
the table; for example, multi-threaded hardware is not lever-
aged to maximize page migration throughput, resulting in
up to 95% under-utilization of available memory bandwidth.
To remedy these shortcomings, we propose and imple-

ment a general purpose OS-integrated multi-level memory
management system that reuses current OS page tracking
structures to tier pages directly between memories with no
additional monitoring overhead. We augment this system
with four additional optimizations: native support for trans-
parent huge page migration, multi-threaded migration of
a page, concurrent migration of multiple pages, and sym-
metric exchange of pages. Combined, these optimizations
dramatically reduce kernel software overheads and improve
raw page migration throughput over 15×. Implemented in
Linux and evaluated on x86, Power, and ARM64 systems,
our OS support for heterogeneous memories improves ap-
plication performance 40% over baseline Linux for a suite
of real-world memory-intensive workloads utilizing a multi-
level disaggregated memory system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304024

CCS Concepts • Computer systems organization →
Heterogeneous (hybrid) systems; • Software and its en-
gineering → Virtual memory.

Keywords Page migration; Operating system; Heteroge-
neous memory management

ACM Reference Format:
Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
2019. Nimble Page Management for Tiered Memory Systems. In
2019 Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS ’19), April 13–17, 2019, Providence, RI, USA.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3297858.
3304024

1 Introduction
Modern computing systems are embracing heterogeneity in
their processing andmemory systems. Processors are special-
izing to improve performance and/or energy efficiency, with
CPUs, GPUs, and accelerators pushing the boundaries of
instruction and data level parallelism. Memory systems are
combining the best properties of emerging technologies that
may be optimized for latency, bandwidth, capacity, or cost.
For example, Intel’s Knight’s Landing uses a form of high
bandwidth memory called multi-channel DRAM (MCDRAM)
alongside DDR4 memory to achieve both high bandwidth
and high capacity [27, 28]. Non-volatile 3D XPoint memory
has been commercialized for next-generation database sys-
tems, and disaggregated memory may be a promising solu-
tion to capacity scaling for blade servers [41, 50]. Both CPUs
and GPUs are embracing heterogeneous memory with IBM
and NVIDIA having recently delivered supercomputers con-
taining high-bandwidth GPU memories and high-capacity
CPU memories [29, 38, 57, 58, 66, 67].
Figure 1 illustrates an abstract example of the memory

systems architects and OS designers will likely have to con-
sider in the future. These systems consist of a compute node
(CPU, GPU, or both) connected to multiple types of memory
with varying latency, bandwidth, and/or capacity properties.
Of course, the particular configuration will vary by system.
The critical operating system support needed to enable

the vision of efficiently moving data as programs navigate
different phases of execution, each with potentially distinct

https://doi.org/10.1145/3297858.3304024
https://doi.org/10.1145/3297858.3304024
https://doi.org/10.1145/3297858.3304024

HBM
Capacity: Small

DDR4
Capacity: Medium

CPU

128GB/s

Memory
Node

Memory
Node

Memory
Node

Memory
Node

3D XPoint
Capacity: XLarge
Non-volatile

Memory
Node

Memory
Node

Disaggregated
Memory

Capacity: Large

Memory
Node

Memory
Node

Disaggregated
Memory

Capacity: Large

Memory
Node

1024GB/s 16GB/s
64GB/s

Figure 1. A hypothetical future multi-memory system with
4 technology nodes, all exposed as non-uniform memory
nodes to the operating system.

working sets, is efficient page management and migration.
Regardless of configuration, to optimize for performance,
ideally the hottest pages will be placed in the fastest memory
node (in terms of latency or bandwidth) until that node is full,
the next-hottest pages will be filled into the second-fastest
node up to its capacity, and so on. Then as programs execute,
these pages must be constantly re-organized based on their
hotness to retain maximum workload performance.

Unfortunately, page migration in today’s systems has high
overheads and is surprisingly inefficient. Past work and re-
cent proposals mainly focus on reducing the overheads from
the hardware side. Some increase TLB coverage to amortize
the TLB miss penalty for migrated data [6, 13, 17, 19, 25, 33,
60–62, 65, 74] and others mitigate the performance ramifi-
cations caused by the correctness enforcement mechanisms
(e.g., TLB coherence) of page migration [3, 5, 34, 71, 80].
We performed an experiment in which we moved pages be-
tween two memory nodes and where each local node has
more memory bandwidth available than the inter-socket
interconnect. After allocating memory from distinct mem-
ory nodes, we measured both the cost breakdown and the
throughput of several types of cross-socket page migration.
Figure 2 shows the cost breakdown and throughput achieved
when migrating different page sizes on Linux today. For sin-
gle base page migration, the majority of time is spent within
kernel memory management and synchronization routines.
Only a small fraction of time is consumed by the actual page
copy. As a result, the effective migration throughput is just
40MB/s even though the hardware that has 19.2GB/s cross-
socket memory bandwidth (see Table 1 for our experimental
platform configuration). We also scaled the number of pages
being migrated to 512, matching the huge page size (2MB), to

0.04GB/s

Single
Base Page

4KB

0

10

20

30

40

50

60

70

80

90

T
im

e
(u

s)

0.75GB/s 0.75GB/s

512 Base Pages
(THP Equiv.)

Split 1 THP
Migration

2MB (512 4KB) 2MB

0

500

1000

1500

2000

2500

Page Size
Syscall Enter Check Perm. Migration Prep.

Form Page List Prepare Proc. Get New Pages

Split Huge Pages Lock Pages Unmap Pages

Alter Mappings Copy Pages Remap Pages

Putback Old Pages Putback New Pages Migration Cleanup

Store Return Vals Cleanup Syscall Exit

3

3 3

3

Figure 2. Pagemigration cost breakdown for migrating a sin-
gle 4KB page, 512 consecutive base pages, and both splitting
and migrating a 2MB THP. (Figure best viewed in color.)

amortize the software overhead across multiple migrations.
In this case, throughput does scale up to 750MB/s, but this
is still just 5% of peak hardware bandwidth. To investigate
the potential improvement of page migration, we profile the
data copy throughput of our system (described in Section 4.1)
with different thread counts and data sizes including 2MB.
Figure 3 shows that existing page migration throughput is
10× slower than what is achievable with a 2MB data size and
the gap is bigger with larger transferred data sizes.
To eliminate the page migration bottleneck, we propose

a set of four optimizations: transparent huge page migra-
tion, parallelized data copy, concurrent multi-page migration,
and symmetric exchange of pages. On top of these mecha-
nisms we build a holistic multi-level memory solution that
directly moves data between heterogeneous memories using
the existing OS active/inactive page lists, eliminating another
major source of software overhead in current systems. The
novel contributions of our work are as follows:

1. We show that breaking transparent huge pages (THPs),
which are currently non-movable, into movable base
pages reduces the effectiveness of THPs.We also demon-
strate that existing base page migration only achieves
throughput an order of magnitude lower than hard-
ware line rate. We remedy this by implementing native
huge page (THP) migration which improves migration
throughput by 2.8× over the Linux baseline, while also
having the side effect of improving TLB coverage.

2. Our additional page migration optimizations improve
throughput by 5.2× over our native THP migration

0

5

10

15

4KB
64KB

1MB
2MB

16MB
32MB

256MB
1GB

Data Size

T
h
ro

u
g
h
p
u
t(

G
B

/s
)

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads

Figure 3. Impact of thread count and transfer size on raw
data copy throughput (higher is better).

implementation alone. Together, they increase page
migration throughput 15× over the state of the art
today. By re-using existing OS interfaces, these opti-
mizations are automatically inherited by any memory
management policy using the standard Linux memory
management APIs. Our claim of broad applicability
is supported by the fact that some of our techniques
have been adopted into mainstream Linux [53]. We
have also publicly released the experimental kernel
we implemented all our optimizations in and used for
our evaluation1.

3. We explore a simple end-to-end heterogeneous mem-
ory profiling and placement policy. Unlike existing
implementations and other recent proposals, our sys-
tem does not swap data out to disk, nor does it make
portions of memory unavailable to profile accesses to
them via page faults. Instead, it simply repurposes the
existing OS active/inactive page lists. Therefore, our
approach imposes no profiling overhead on systems
which may not need its functionality.

4. We show that in a disaggregated memory system, an
emerging class of important multi-tier memory system
[22, 41, 42], our optimized OS support will improve ap-
plication performance over 40%, on average, compared
to current OS support for multi-level memories.

2 Background
Modern heterogeneous memory systems typically consist
of low-capacity, high-bandwidth memory as well as high-
capacity, low-bandwidth memory. Latency to large capacity
memories is also expected to be higher due to longer, po-
tentially multi-hop physical connections or differences in
the underlying memory technology. Consequently, heteroge-
neousmemory systemswill often have non-uniformmemory
access (NUMA) properties for both latency and bandwidth.
To ensure optimal performance, application developers will
rely on both initial page placement policies and follow-up
1https://github.com/ysarch-lab/nimble_page_management_asplos_2019

Kernel
Mem Policy

System call move_pages()

Mechanism
 Allocate new pages
 Unmap old pages & TLB invalidation
 Copy data from old pages to new pages
 Map new pages
 Free old pages

Program
Controlled

Device
Driver

Memory Management

Memory
Hot Remove

Memory Maintenance

Error Page
Offline

Figure 4. Separation of page migration policy and page mi-
gration mechanism in a multi-level memory system.

page migration policies to ensure that hot data pages remain
within the highest bandwidth or lowest latency memory
node during an application’s runtime [12, 32, 56].

2.1 Page Management Policies and Mechanisms
Modern OSes are already NUMA-aware [11, 14, 37]. In fact,
standards are already being introduced that allow heteroge-
neous memory properties (latency, bandwidth, durability)
to be exposed to the operating system so that page location
decisions can be optimized to maximize throughput [79, 83].
To explain holistic OS support for multi-level memory we
must conceptually separate this memory management into
two distinct components. Figure 4 shows that memory man-
agement policy decisions may be driven by the kernel, de-
vice drivers, programmer, or a system administrator. These
policies are all built on top of a common mechanism, page
migration, which performs the desired OS page movement
operations. Policy decisions are thus separated from page
migration mechanisms through a system call (or analogous
kernel interface), such as move_pages() on Linux.
Figure 4 also shows that a generic page migration mech-

anism involves 1 allocating a new page, 2 unmapping
the existing virtual to physical address translation (and, on
many architectures, issuing a TLB shootdown), 3 copying
data from the old physical page into the new physical page,
4 mapping the virtual address to the new physical page,
and finally 5 freeing the old physical page. The actual copy
between the old and new physical page occurs only in step
3 . Steps 1 – 2 and 4 – 5 are overheads needed to ensure
both correctness and protection guarantees so that neither
the old page nor the new page is accessed during the page
migration process. This work investigates the natural evolu-
tion of this multi-step process to leverage modern hardware
and improve migration throughput.
Today, Linux uses autoNUMA [12] to try and fairly bal-

ance memory and compute requirements between NUMA

https://github.com/ysarch-lab/nimble_page_management_asplos_2019

nodes. It relies on two basic techniques to do this: process
migration and page migration. Unfortunately, process migra-
tion is not applicable to to heterogeneous memory systems,
where multiple memory nodes are all connected to a single
processor. Page migration is also currently limited in multi-
level memory systems because autoNUMA can only migrate
pages to amemory nodewith free space; otherwise, pages are
swapped out to disk. This is at odds with the system’s goal of
placing as many pages in a (small) fast memory as possible.
Additionally, to obtain page access information autoNUMA
offlines pages for profiling, and such offlining causes unpre-
dictable memory access latency and bandwidth. These two
issues have spurred a range of academic work on two-level
memories; however, prior studies have generally focused on
page migration policy while assuming page migration mech-
anisms should be sufficient[2, 9, 15, 16, 24, 39, 46, 59, 69, 82].

2.2 Recent Developments
Because heterogeneousmemories are only now being adopted
commercially, multi-level memory paging remains an active
area of research. Researchers have begun exploring hard-
ware techniques to identify hot/cold pages and facilitate their
movement among memory devices [10, 23, 30, 44, 68, 75].
This work has spurred further studies on software-based ap-
proaches that are better able to manage heterogeneous mem-
ories with complex topologies [1, 2, 22, 32, 59, 82]. While
these studies have established the appeal of OS-managed
multi-level memories, they mostly rely on trace-based sim-
ulation (which excludes OS effects) [1, 48, 82], use non-
standard OS plumbing (such as the use of reserved page table
entry bits) [2], hoist page migration out of the OS (due to the
unavailability of the source code or the prohibitively large
engineering work) [8, 11, 54, 55, 72], and/or simply assume
that the OS can deliver the full hardware bandwidth (which
we demonstrate is not possible) during page migrations [1].

Page migration mechanisms have not been studied as ex-
tensively as policies, despite being critical to performance
in multi-level memory systems [20]. Combined, these seem-
ingly subtle issues may hinder real-world adoption of many
prior proposals because their conclusions may ultimately be
shown to be incomplete. Solutions must be generally main-
tainable to be adopted in practice [21, 47]. However, this
growing body of work does point to the need for both bet-
ter page migration mechanisms and policies, in addition to
system level evaluations of what effect the OS will have on
multi-level memory systems, both of which we now address.

3 Native OS Support for Multi-Level
Memories

Holistic support for multi-level memory systems includes
both intelligent memory management policies and efficient
page migration mechanisms. In this section we present our

page migration mechanism improvements, which are inde-
pendent of any one particular policy, as well as one specific
low-overhead policy that we use in Section 4 to demonstrate
the end-to-end benefits of our memory management system.

3.1 Optimizing Page Migration Mechanisms
Four critical issues need to be addressed within the operating
system to implement an efficient page migration mechanism:

Larger data sizes:With larger data sizes, the software over-
heads of page migration can be amortized away.
Multiple threads: Today, page migration is single-threaded
primarily for the sake of simplicity, but usingmultiple threads
would speed up the copy time itself.
Concurrent Migrations: Performing multiple migrations
concurrently can help us avoid the Amdahl’s Law bottleneck
seen in Figure 2. This problem cannot be solved by simply
using larger pages, since architectures only support a very
limited set of page sizes, and in general the largest page sizes
(e.g., 1GB on x86) are not supported transparently.
Efficient two-sided migration:When a page is migrated
to fast memory, a victim page must be migrated to slow
memory to make room. By eliding allocation/deallocation
and simply exchanging pages, two-sided operations can be
faster than the sum of two one-directional migrations.

We address each of the above issues in turn below.

3.1.1 Native THP Migration
Our first optimization is to implement native THP migration.
THP migration decreases both the hardware and software
overhead of migrating THPs by a factor of 512, due to not
splitting pages and reducing the number of required TLB
invalidations and shootdowns. It also increases the amount
of data migrated within a single migration operation. Al-
though it may appear obvious, page migration support for
THPs in Linux (and many OSes) is not yet mature, general,
or high-performance. Page migration was originally pro-
posed to enhance NUMA system performance and achieve
memory hotplug functionally before THPs had even been
introduced [4, 36].
Today, for example, Linux cannot migrate THPs in re-

sponse to programmatic resource management requests like
mbind and move_pages, which are designed to move data to
specific memory nodes at the request of programmers. This
is a serious shortcoming for heterogeneous memories since
there are important situations where programmer-directed
data placement enables good performance [59]. Similarly,
Linux cannot directly migrate THPs in response to memory
hot removal, soft off-lining, or cpuset/cgroup. In all these
cases, when Linux is migrating a virtual memory range that
contains transparent huge pages, it must split the THPs and
migrate the constituent base pages instead, resulting in poor
page migration performance and reduced TLB coverage.

①Allocate a New Page
②Unmap the Old Page

③Copy Data
from New to Old

④Map the New Page
⑤Free the Old Page

…

①Allocate a New Page
②Unmap the Old Page

③Copy Data
from New to Old

④Map the New Page
⑤Free the Old Page

…

①Allocate a New Page
②Unmap the Old Page

③Copy Data
from New to Old

④Map the New Page
⑤Free the Old Page

(a) Linux Serialized Multi-Page Migration

③ Copy Data
from New to Old

④Map the New Page
⑤Free the Old Page

… …④ Map the New Page
⑤ Free the Old Page

④ Map the New Page
⑤ Free the Old Page

①Allocate a New Page
②Unmap the Old Page

① Allocate a New Page
② Unmap the Old Page

① Allocate a New Page
② Unmap the Old Page

… …

(b) Proposed Concurrent Multi-Page Migration

Figure 5. Improvements to Linux multi-page migration to
enable large transfers for improved copy bandwidth.

To implement THP migration, we augment the five steps
shown in Figure 4 to be THP aware. Our THP implementa-
tion supports all resource management requests (i.e., mbind,
cpuset, etc.) In addition, we adjust other THP-specific code
paths in the kernel to account for the fact that THPs may
be undergoing migration at the time of the call. We do this
either by waiting for the end of the migration or by simply
skipping the THPs (as is done for base pages). Other OSes
can follow the same principle to realize THP migration to
enable significantly higher-throughput page migration for a
better support of heterogeneous memory systems.

3.1.2 Parallelized THP Migration
Currently, the Linux pagemigration routine is single-threaded
and has a limited amount of data (usually the size of one
base page) to transfer within a single migration. Motivated
by Figure 3, we implemented a variable-thread count based
copy subroutine within the page migration operation.
To enable multi-threaded page copies within the Linux

move_pages() system call, we use kernel workqueues to
spawn helper threads to copy data between arbitrary phys-
ical ranges. Our implementation calculates the amount of
data to be copied via each parallel thread by dividing the
page size (or, in Section 3.1.3, the aggregate of pages being
migrated concurrently) by the number of worker threads.

Because the exact selection of thread location and thread
count needed to maximize throughput is likely to differ
among systems, we provide parameter configuration through
the sysfs interface, so that system administrators can enable
or disable multi-threaded CPU copy or change the number
of CPUs involved in the data copy. We also augment the
move_pages() system call with an optional parameter flag,

MPOL_MF_MT, to enable migration policy engines to dynami-
cally choose the level of parallelism on a per migration basis.

3.1.3 Concurrent Multi-page Migration
Multi-page migration is expected to be common in multi-
level memory systems due to spatial locality and prefetching
effects. The Linux move_pages() interface already supports
migration of multiple pages with a single system call by
passing in a list of pointers to the pages to be migrated
between memory nodes. However, as shown in Figure 5a, the
current implementation serializes the copies and performs
them one page at a time.
Our new page migration implementation concurrently

migrates all pages in the list provided to move_pages() by
aggregating all data copy procedures into a single larger
logical step, as shown in Figure 5b. As an example, consider
the case of migrating 16 THPs of 2MB. In the current Linux
implementation, even using the parallel copy optimization,
Linux will transfer 16 THPs of 2MB, with an implicit barrier
between each parallel 2MB copy. In our concurrent migration
optimization, each of the pages in the list is allocated and
assigned a new page with matching size and then unmapped.
Then, all pages in the list are distributed to the per-CPU
workqueues according to the sysfs configuration.

If more parallel transfer threads are available than con-
current pages to migrate, our implementation uses multiple
threads to copy different parts of a single page to maximize
throughput. Once the concurrent page copy step is com-
pleted, the new pages are mapped onto the correct page
table entries and the old pages are freed. It may also be pos-
sible to parallelize other steps of page migration. However,
because there are strict correctness requirements for syn-
chronization including architecture-dependent page table
manipulation, failure recovery becomes complicated if opti-
mizations become too aggressive.

3.1.4 Symmetric Exchange of Pages
In multi-level memory systems, single-ended page migration
is unlikely to be the common case. Higher-bandwidth mem-
ory is generally capacity-limited compared to larger lower-
bandwidth memories. Therefore, when migrating pages into
a higher-level memory node, at steady state, the page mi-
gration policy will need to migrate pages out of that node,
so as to not exceed physical memory capacity. Therefore,
when managing a high performance heterogeneous memory
node as a software controlled cache, each hot-page insertion
requires a symmetric cold-page eviction.

Naive two-step, one-way migration makes inefficient use
of system hardware if the two copies are protected by locks
and executed serially, as is the case in today’s OSes. Fig-
ure 6a shows this common two-step page migration oper-
ation. First, the locking serialization limits the benefits of
our previously discussed optimizations. Second, each mi-
gration operation must perform independent physical page

Old Page
In Node 0

New Page
in Node 1

New Page
in Node 0

Old Page
in Node 1

③Copy ③Copy

①Allocate a New Page
②Unmap the Old Page

④ Map the New Page
⑤ Free the Old Page

④Map the New Page
⑤Free the Old Page

① Allocate a New Page
② Unmap the Old Page

Step 1 Step 2

(a) Exchange Two Page Lists in Linux

Old Page
in Node 0

Old Page
in Node 1

③ Exchange

④Map the Old(New) Page
⑤Free the Old Page

①Allocate a New Page
②Unmap the Old Page

①Allocate a New Page
②Unmap the Old Page

④Map the Old(New) Page
⑤Free the Old Page

Single Step

(b) Proposed Exchange Page Migration

Figure 6. Exchanging pages improves efficiency by elimi-
nating memory allocation and release when migrating sym-
metric page lists between memory nodes.

allocation and deallocation, and both are expensive software
overheads (as shown in Figure 2).
To eliminate these overheads, we propose to combine

the two one-way migration operations into a new single
symmetric exchange operation. By exchanging pages, our
implementation eliminates many of the kernel operations
required in unidirectional page migration and reuses the
existing physical pages instead of allocating new ones (as
shown in Figure 6b).

We implement symmetric page migration in Linux by pro-
viding a new exchange_pages() system call that accepts
two equal-sized lists of equal-sized pages. If the page lists
do not meet the requirement, the caller must revert to a tra-
ditional two-step migration process. When called with two
symmetric page lists, our exchange of pages implementation
follows a similar path to unidirectional page migration. The
differences are that that no new pages are allocated, and that
instead of copying data into new pages, we transfer data
between each pair of pages using copy thread(s) that use
CPU registers as the temporary storage for in-flight iterative
data exchange operations. This use of registers allows our
mechanism to avoid allocating a complete temporary page.
Both our parallel page copy and concurrent page migra-

tion optimizations focus on improving the data copy itself
while symmetric page exchange eliminates two of the most
expensive software overheads that occur during page mi-
gration: page allocation and release. Because these kernel

operations consume constant time irrespective of page size,
page exchange improves the migration throughput of both
base pages and transparent huge pages. Additionally, pairs
of pages can also be exchanged using parallel exchange (Sec-
tion 3.1.2), concurrent exchange (Section 3.1.3), or both, with-
out extra locking as long as each parallel exchange thread
operates in isolation.

3.2 Optimizing Page Tracking and Policy Decisions
A multi-level memory paging policy and system needs to be
sufficiently general and representative of real-world scenar-
ios in order to be broadly useful on the diverse set of hetero-
geneous memory systems that are beginning to emerge. To
this end, we explore a page migration policy that is simple,
has been shown to work well in a wide range of environ-
ments [32], and adds negligible overhead to the baseline. As
such, our implementation builds upon the existing Linux
page replacement algorithm. We intentionally make as few
changes as possible to keep our implementation maximally
compatible with the upstream kernel.

The goal of a page replacement algorithm is to identify hot
and cold pages so that the page migration mechanism can
migrate hot pages out of (historically) disk or (in our case)
slow memory, and into fast memory. Linux already achieves
this by separating hot and cold pages within each memory
node into active and inactive lists, where a page can be in
only one of these lists at a time. As hot pages become cold
and vice versa, the kernel actively moves the pages between
these lists as shown in Figure 7.
Like Linux’s, our policy moves pages from one list to an-

other by checking each page’s state and two access bits,
one in the page table entry pointing to the page and the
other in the page metadata maintained by the kernel. We
call the former the hardware access bit and the latter the
software access bit. A page table entry’s access bit is set by
the hardware page table walkers on the first TLB miss to
each virtual-to-physical translation corresponding to that
page. Its software access bit is set by the existing Linux pag-
ing algorithm for each physical page. Both hardware and
software access bits are inspected using the atomic opera-
tion test_and_clear(), except where marked “Ignored” in
Figure 7, in which case the bit is neither checked nor cleared.
The key difference between our proposed paging policy

and the standard Linux approach is graphically illustrated
with the greyed box in Figure 7. In Linux today, cold pages
that have not been accessed recently can be reclaimed (freed
or paged to disk). However, heterogeneous memory systems
aim to percolate such pages to the slower memory instead,
to avoid the high cost of paging them back in from disk later.
Consequently, our policy chooses to keep this page in the
inactive list to make it a candidate for migration out of the
fast memory. Similarly, if capacity is available in our fast
memory (e.g., due to memory deallocations or migration of
inactive pages), pages from the slow memory active list will

Slow Memory

Active
List

(FIFO)

Inactive
List

(FIFO)

Fast Memory

Active
List

(FIFO)

Inactive
List

(FIFO)

Page
Migration

Page
Migration

(a) Inter-memory-node page migration

In

Active
List

(FIFO)

Out

In

Inactive
List

(FIFO)

Out

HW access bit: Set
SW access bit: Ignored
Page Info: Code pages

TRUE FALSE TRUEFALSE

OR

HW access bit: Set
SW access bit: Not set
Page Info: Non-code

pages without sharing

HW access bit:
Not set

SW access bit:
Ignored

OR

HW access bit: Set
SW access bit: Not set
Page Info: Non-code

pages without sharing

HW access bit:
Not set

SW access bit:
Ignored

(b) Intra-memory-node page list manipulation

Figure 7. Proposed native multi-level paging policy consisting of (a) inter-memory node page migration and (b) intra-memory-
node page list manipulation. The former migrates hot pages (in the active list) from slow to fast memory and vice versa for
cold pages (in the inactive list). The latter moves pages within a given memory node from one tracking list to the other.

be migrated into the fast memory. If the fast memory is full
and does not contain inactive pages, no migration will occur.

Similar to traditional NUMA allocation policies, when new
memory is allocated, it will occur in the fast memory if free
space is available; otherwise, it will only occur in the slower
memory node. We do not evict pages upon allocation so that
we can keep page migration off the memory allocation path,
which is performance critical. Finally, our system optimizes
page locations only every 5 seconds throughout application
runtime to minimize active process interference, based on
profiling results.

4 Experimental Results
To quantify the utility of optimized page migration in a con-
crete scenario, we evaluate our approach on a disaggregated
memory system due to the emerging importance of these
systems in industry [22, 41].

4.1 Methodology
We emulate a disaggregated memory system using an exper-
imental machine that has two memory nodes; we use one as
fast local memory and the other as slow remote memory. We
emulate slow memory by running one or more instances of
memhog, an artificial memory-intensive workload that has
been used in prior studies to load the system [59, 64]. The
memhog instances, which run on otherwise-idle CPUs, in-
ject extra memory traffic into the system. This has the effect
of reducing remote memory bandwidth to one half of local
memory bandwidth and increasing unloaded access latency
to double that of local memory, which has been validated by
Intel Memory Latency Checker [26]. Table 1 gives additional
details of our setup.
To evaluate our OS optimizations, we integrate our pro-

posed optimizations into Linux v4.14. The statistics of kernel

Intel Xeon Dual Socket System

Processors 2-socket E5–2650v3
Memory DDR4 — 2133MHz

Cross-socket QPI BW 19.2 GB/s
Memory BW 34.0 GB/s (per-socket)

Memory Latency 84.9 ns
OS & Kernel Debian Buster — v4.14.0

Disaggr Mem BW (Emulated) 17.0 GB/s
Disaggr Mem Latency (Emulated) 199.2 ns

Table 1. Overview of experimental system.

modification given by git diff is: 23 files changed,
627 insertions(+), 114 deletions(-).
For the evaluation itself, we perform a variety of experi-

ments. First, we evaluate a set of microbenchmarks to mea-
sure the effect of each of our proposed optimizations in
isolation and combination. Second, to get complete end-to-
end performance numbers, we run workloads from SpecAC-
CEL [31] and graph500 [52], and we show the performance
across a range of fast memory oversubscription scenarios.
Third, we sweep the design space to highlight the interest-
ing behaviors that arise and to identify the configuration
parameters that perform the best. Finally, we evaluate them
on additional non-x86 architectures to prove the generality
of our proposed enhancements.

4.2 Page Migration System Call Performance
To build intuition as to the sources of the overall perfor-
mance improvements achieved by our page migration mech-
anisms, we first use microbenchmarks to tease out the rela-
tive benefits of the different (complementary) optimizations.
Our experiments use the generic page migration interfaces,
move_pages() (with our optimizations), and exchange_pages()
(our newly proposed system call).

0.75GB/s 0.75GB/s

2.15GB/s

512 Base Pages
(THP Equiv.)

Split 1 THP
Migration

Transparent
Huge Page

2MB (512 4KB) 2MB 2MB

0

500

1000

1500

2000

2500

Page Size

T
im

e
(u

s
)

Page Copy Time Kernel Activity Time

Figure 8. Cost breakdown (lower is better) of 512-base-
page migration, THP-split migration, native THP migration.

4.2.1 Native THP Migration
Figure 8 contrasts the performance of a kernel that migrates
pages in three ways. The leftmost bar is unmodified Linux
migrating 512 4KB pages. The middle bar is Linux migrating
a 2MB THP by splitting it into 4KB pages, which are then
migrated. The right bar is our proposed native THPmigration
support.
Migrating a 2MB THP with splitting achieves virtually

identical throughput as migrating 512 4KB pages. This is
unsurprising, since they perform the same kernel operations
for 512 pages plus one additional THP split. Our native THP
migration improves throughput by 2.9× because it reduces
kernel overhead by consolidating 512-page operations into
a single page operation. Figure 8 also shows that page copy
time decreases only marginally; i.e., there is still significant
room for our additional optimizations to improve overall
throughput.

4.2.2 Multi-threaded Transfers
Figure 9 shows the results of our second optimization, par-
allel (multi-threaded) page copying. We separate results for
the cases where we migrate 2MB THPs (the graph on the top)
and 4KB base pages (the graph on the bottom) also varying
the number of threads used to perform the copies.

There are two primary observations from ourmulti-threaded
copy results. First, parallel page copies are primarily benefi-
cial when the page sizes are larger. For example, 2MB THP
page migration time is sped up 2.8×, while parallel copies
do not improve the throughput for 4KB pages, because the
thread launch overhead cannot be amortized sufficiently.
This overhead is likely the reason that the current Linux
page migration has remained single-threaded regardless of
base page sizes. Second, the graph at the top of Figure 9
shows that even though parallel migration is useful for 2MB

TH
P (2M

B)

2

3

4

5

6

Base Page (4KB)

1 2 4 8 16
0.020

0.025

0.030

0.035

0.040

0.045

Number of Threads

Th
ro

ug
hp

ut
(G

B/
s)

Figure 9. Throughput (higher is better) of multi-threaded
single page migration for both base page (4KB) and THP
(2MB).

THPs, overall throughput still remains well below the maxi-
mum cross-socket copy throughput of around 16 GB/s (see
Figure 3), motivating the need for concurrent page migra-
tions.

4.2.3 Concurrent Page Transfers
Figure 10 illustrates the performance advantage of using
concurrent page migration optimization whenever possible.
Results are again separated for 2MB THPs (the graph on
the top) and 4KB base pages. For 4KB pages, parallel non-
concurrent migration is always inferior to single threaded
migration (due to the aforementioned parallelization over-
heads), and concurrent parallel migration only surpasses the
baseline at sufficiently large page counts. As previously men-
tioned, the OS overheads are too large to overcome. However,
utilizing both parallelism and concurrency are clear wins
when transferring 2MB THPs, with a performance advantage
(over parallelism alone) ranging from 10-25% depending on
the number of pages transferred.

4.2.4 Symmetric Exchange Pages
Figure 11 shows the benefits of symmetric page exchange
atop our prior optimizations. When using THPs, exchange
page throughput follows similar trends as concurrent page
migration, but with a performance improvement ranging
from 10-50% depending on the number of pages exchanged.
Interestingly, the largest fractional improvement is when
exchanging small numbers of pages, because in these cases
the software overhead remains a significant fraction of total
transfer time. Removing thememorymanagement overheads
from the page migration process can improve the throughput
of page migration to as high as 11.2GB/s when exchanging
two lists of 512 2MB pages (1GB data on each list); this is
very close to the best achievable copy throughput (excluding
kernel overhead) of 11.7GB/s.

TH
P (2M

B)
Base Page (4KB)

1 2 4 8 16 32 64 128 256 512

2

4

6

8

10

0.00

0.25

0.50

0.75

Number of Pages

Th
ro

ug
hp

ut
(G

B/
s)

Base Page Migration THP Migration
4-Thread Non-concurrent 4-Thread Concurrent

Figure 10. Throughput (higher is better) of concurrent
pagemigration for both base page (4KB) and THP (2MB) with
different numbers of pages under migration. 4-Thread Non-
concurrent uses 4-thread data copy and 4-thread Concurrent
adds concurrent page migration. Single-threaded Base Page
Migration and THP Migration are shown for reference.

Unlike our prior optimizations, when exchanging base
pages (4KB)we also observe throughput improvements.When
exchanging two lists of 512 4KB pages (2MB data on each
list), we get 1.1GB/s throughput, or 37.5% more than the
throughput of Linux’s base page migration.

4.2.5 Microbenchmark Summary
When using only base pages and the three non-THP improve-
ments (multi-threaded copy, concurrent copy, and two-way
exchange), our system yields a 1.4× throughput improve-
ment as compared to Linux’s single threaded implementation.
For THPmigration, native THPmigration alone (i.e., without
our parallel/concurrent/exchange optimizations) delivers a
2.9× migration throughput improvement over Linux’s state
of the art. With our parallel copy and concurrent page mi-
gration optimizations added, we achieve a 4.6× throughput
improvement over native-THP migration. With two-way
exchange, we further improve throughput by 1.1×. The com-
bined overall improvement for THPmigration over the Linux
baseline is 5.2× versus THP-splitting migration and 15× over
base page only migration.

4.3 End-to-End Performance Results
Thus far, we have used microbenchmarks to quantify the
performance benefits of our page mechanism optimizations.
We now turn our attention to evaluating the end-to-end per-
formance improvements that these optimizations, combined
with our low overhead page management policy, can achieve.
Our experimental testbed emulating a disaggregated mem-
ory is described in Section 4.1. No changes have been made
to Linux’s THP allocation policy and THPs are provided,
when possible, on demand by the operating system.

TH
P (2M

B)
Base Page (4KB)

2 4 8 16 32 64 128 256 512 1024

2

4

6

8

10

0.0

0.3

0.6

0.9

Number of Moved/Exchanged Pages

Th
ro

ug
hp

ut
(G

B/
s)

Base Page Migration THP Migration
4-Thread Concur Migrate 4-Thread Concur Exchange

Figure 11. Throughput (higher is better) of page exchange
vs. 2 page migrations for both base page (4KB) and THP
(2MB) sizes while varying the number of pages exchanged.
4-Thread Concur Migrate and 4-Thread Concur Exchange
use both concurrent and 4-thread parallel data copy. Single-
threaded Base Page and THP Migration throughput are
shown for reference.

We evaluate SpecACCEL and graph500, with the memory
footprints scaled to 32GB. With these workloads running
under our experimental setup, we find that over 90% of the
pages for each workloads is typically backed by THPs, indi-
cating that there is a significant negative impact of having
to split THPs into base pages before migration.
We first run each workload in a disaggregated memory

scenario that has 16GB local memory and 40GB remote mem-
ory. In this configuration, the local memory is only half the
size of the workload memory footprint, while the remote
memory can accommodate the entire workload footprint. We
compare four different page migration mechanisms, along
with an upper and lower bound for comparison:

1. All Remote, the lower bound, where workloads are
run entirely from the 40GB remote memory

2. Base Page Migration, the Linux default (THPs are
split before migration)

3. Opt. Exchange Base Pages, 4-threaded parallel copy
and 512-page concurrent exchange (THPs are split
before migration)

4. THP Migration, our native THP approach without
parallel, concurrent, or exchange optimizations

5. Opt. Exchange Pages, THP migration, 4-threaded
parallel copy and 8-page concurrent exchange

6. All Local, the upper bound, where workloads are run
entirely from a 40GB fast local memory

In configurations 3 and 5, we use 4 threads for copying 512
and 8 pages respectively for our migration parameters. From
our microbenchmark results, this presents the best configu-
ration for both base and THP migrations. In Section 4.5 we
present further sensitivity analysis to justify these selections.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

503.poste
ncil

551.ppalm

553.pclvrleaf

555.pseism
ic

556.psp

559.pmniGhost

560.pilbdc

563.pswim
570.pbt

graph500

geomean

Benchmarks

Pe
rf

or
m

an
ce

 S
pe

ed
up

 (o
ve

r A
ll

Re
m

ot
e)

All Remote Base Page Migration Opt Exchange Base Pages
THP Migration Opt Exchange Pages All Local

Figure 12. Benchmark runtime speedup (over All Remote,
higher is better) with 16GB local memory. Base page migra-
tion and THP migration are single-threaded and serialized
and shown for comparison, while Opt Exchange Base Pages
uses 4-thread parallel and 512-page concurrent migration
and Opt Exchange Pages use 4-thread parallel and 8-page
concurrent migration.

Figure 12 shows the relative speedup of these six configu-
rations over All Remote. All Local, which is our ideal case,
on average achieves about 2× geomean speedup over All Re-
mote, reflecting the local vs remote memory bandwidth and
access latency difference in our system. Base Page Migration,
which is our baseline for managing disaggregated memories,
improves workload performance on average by 9%. However,
some workloads (e.g., 551.ppalm, 556.psp, and graph500) per-
form worse than All Remote, meaning Base Page Migration
is not always making good use of the 16GB local memory.
Opt. Exchange Base Pages improves workload performance
by 16% on average, and in this case, only graph500 does
not take advantage of the 16GBs of local memory. Both of
these results are testament to the notion that poor migration
mechanisms can actually degrade performance despite the
addition of a faster tier of memory.
Fortunately, enabling our native THP Migration can in-

deed harness the benefit of fast memory. Enabling THP mi-
gration improves the geomeanworkload performance by 31%
over All Remote and achieving 68% of the geomean All Local
performance, which is our ideal case. Our Opt. Exchange
Pages (which can migrate both base pages and THPs) further
improves average performance by 48% over All Remote and
achieves 77% of the geomean ideal All Local performance.

4.4 Sensitivity to Local Memory Size
To further demonstrate the general applicability of our ap-
proach, we sweep the local memory size from 4GB to 28GB
and show the geomean of all benchmark speedup over All
Remote. Figure 13 shows that the performance trends are sim-
ilar to those of the 16GB local memory case and we note four
key observations First, Linux’s Base Page Migration is not

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

 4 8 12 16 20 24 28
Local Mem Size(GB)

G
eo

m
ea

n
of

Al
l B

en
ch

m
ar

k
Pe

rf
. S

pe
ed

up
(O

ve
r A

ll
Re

m
ot

e)

All Remote Base Page Migration Opt Exchange Base Pages
THP Migration Opt Exchange Pages All Local

Figure 13. Geomean speedup (over All Remote, higher is
better) over a sweep of local memory sizes, from 4GB to
28GB. Base page migration and THP migration are single-
threaded and serialized, while Opt. Exchange Base Pages
uses 4-thread parallel and 512-page concurrent migration,
and Opt. Exchange Pages uses 4-thread parallel and 8-page
concurrent migration.

1.34

1.36

1.38

1.40

1.42

8 64 512 unconstrained
Number of Pages under Migration

G
eo

m
ea

n
of

Al
l B

en
ch

m
ar

k
Pe

rf
. S

pe
ed

up
(O

ve
r A

ll
Re

m
ot

e)

Opt Exchange Pages

Figure 14. Geomean speedup (over All Remote, higher is
better) given different numbers of pages under migration.
Opt Exchange Pages use 4-thread parallel data copy. “Uncon-
strained” means we do not limit the number of pages under
migration; instead we just migrate all pages at once. All use
16GB Local Memory.

able to exploit the full potential of the disaggregated memo-
ries. When the local memory size (such as 4GB and 8GB) is
much smaller than the workload’s 32GB memory footprint,
it degrades workload performance by 5% to 10% on average.
Second, our Opt. Exchange Base Pages can help improve
performance but is still limited by page migration through-
put. It is however slightly better than Base Page Migration.
Third, our THP Migration keeps improving performance;
thus, it is able to make using disaggregated memory feasible
without any performance loss. Fourth, our Opt. Exchange
Pages improves performance substantially, exploiting most
of the potential in the disaggregated memory system and
outperform Linux’s Base Page Migration 40% on average.

4.5 Sensitivity to Tunable Parameters
Our page management system provides a number of user-
tunable parameters. Here, we evaluate how sensitive the

performance is to two of those parameters: the parallel copy
thread count and the number of pages migrated concurrently.

4.5.1 Number of threads for parallel page migration
Because our system allows the number of threads used to
copy data to vary, it is important to understand the impor-
tance of this tunable parameter. Using higher thread counts
will improve copy throughput, but steals compute resources
from the application itself, thus how to strike a balance be-
tween these factors is important to understand.
We swept the number of threads used by parallel page

migration from 1 to 16. Using 4 copy threads was mostly
the highest performing configuration, but that performance
when using other thread counts had a maximum variation
of just 4%, indicating that our proposed system is not overly
sensitive to this parameter. Therefore, simply selecting a
reasonable point (such as the 4 thread configuration we used
in our end-to-end results) is a reasonable decision.

4.5.2 Number of pages being migrated concurrently
Similar to the variation possible in copy threads, we tested
our system’s sensitivity to the number of pages we migrate
concurrently. As the number of migrated pages increases,
so should throughput. However, beyond a certain point, mi-
grating a high number of pages also can result in application
stalls and decreased performance, because these pages are
in-flight and unavailable to the user process.
Figure 14 shows the effect of varying the concurrent mi-

gration page count. We observe that limiting the number
of concurrently migrated pages in the system is necessary,
with 8 pages (32KB or 16MB of data respectively depending
on page size) performing best. There is very little perfor-
mance variation when using any value less than 64 pages,
but performance does drop by almost 10% if the number is
left unconstrained.

4.6 Generality Across Architectures
To explore the platform independence of our multi-level
memory system and optimizations, we port them to other
hardware platforms and compare the microbenchmarks used
in Section 4.2. Our multi-level memory page tracking and
policy implementation is architecture independent by de-
sign, because it is based on Linux’s current architecture-
independent active and inactive page list implementation.
Thus we focus on platform sensitivity for our migration opti-
mizations. We show results in Table 2 using optimal tunable
parameters, as the best configuration for each platform varies
due to available memory bandwidth and CPU performance.
While all platforms benefit from our optimizations, us-

ing Intel Xeons, we get a 2.9× improvement in migration
bandwidth using native THP migration, an additional 4.6×
by employing parallelization and concurrency optimizations,
and another 1.1× by utilizing our new exchange_page() in-
terface, which results in 15× total improvement. For Power,

Page Migration Type
Platform Base Page THP Opt. Opt. Exch.
Intel Xeon 0.75 2.15 9.80 11.23
IBM Power 8 1.24 8.70 23.20 26.88
NVIDIA TX1 0.64 1.36 - -

Table 2. Maximum achieved huge page migration (in GB/s)
throughput based on architecture independent optimizations
(bolded) shown across three architectures. When on NVIDIA
TX1 (ARM64), due to platform constraints, we are only able
to run THP migration.

we achieve 7.0×, 2.7×,and 1.2× the throughput, respectively,
with the same optimizations. This results in a 21.7× through-
put improvement. For an NVIDIA TX1 (ARM64), we observe
2.1× throughput with THP migration as compared to base
page migration. However due to lack of NUMA support
on this hardware platform, we do not include concurrent
THP migration and exchange of pages, as measuring results
within a single socket may skew the results.

On the Xeon platform there is variance in copy through-
put depending on the x86_64 data copy instructions (integer
vs. floating-point) used. However our testing finds that SIMD
floating-point instructions, like SSE and AVX, no longer
provide significantly higher copy throughput than mov on
x86_64 due to aggressive linear prefetching within caches
for easily identified memory patterns like page migrations.

On Power systems, a single-threaded data transfer achieves
almost 10GB/s of copy bandwidth regardless of transfer size,
but this is still less than 50% of the maximum achievable
copy bandwidth when using multiple threads. The improved
single-threaded throughput on Power arises comes from the
integer vector move instruction that moves data at an effi-
cient 16-byte granularity. CPU instructions and architectures
that can improve single threaded copy bandwidth will ulti-
mately help both base and transparent huge page migration,
but it is unlikely that even vector instructions can achieve
the 15× improvement needed to match the aggregate perfor-
mance this work achieves through software only techniques.

4.7 Discussion of Experimental Results
To summarize, in heterogeneousmemory systems such as the
disaggregated memory system we use, low-throughput page
migration mechanisms (e.g., Linux’s baseline) do not allow
workloads to exploit the benefits of fast memory. In fact, the
existing mechanisms often even degrade performance to the
point that they may result in runtimes that are worse than
simply running on a system without any fast memory.
Realizing the potential of multi-tiered memory requires

enabling our four key optimizations: THP migration, multi-
threaded copy, concurrent migration of multiple pages, and
two-way exchange. Our evaluation shows that the heteroge-
neous memory page management system that we propose
is able to deliver significant speedup across multiple bench-
marks, and our design space exploration shows that our

techniques are flexible and general enough to apply across a
range of architectures and memory system configurations.
We also varied the bandwidth and access latency of the

slow memory relative to fast memory and measured perfor-
mance changes. We found that the performance improve-
ments offered by our optimizations enjoy similar trends as
those seen in Sections 4.3 and 4.4. This observation further
emphasizes the importance of improving page migration
mechanisms in managing tiered memory systems.

5 Related Work
Heterogeneous Memory: Hybrid memory systems con-

sisting of high-bandwidth, low-capacity memory (e.g. Hy-
brid Memory Cube (HMC) [49, 63], High Bandwidth Mem-
ory (HBM) [29]) and low-bandwidth, high-capacity mem-
ory (e.g. DDR, NVM [45]) are being widely adopted by ven-
dors [27, 57]. Recent work has investigated architecting high
performance memory in a hybrid memory system either as
a hardware-managed cache [68, 76] or part of the OS-visible
main memory system [10, 27, 51, 75]. When hybrid memory
is OS-managed, performance is primarily dependent on the
service rate from the high bandwidth, low capacity memory.

Page Placement Policies: To effectively utilize hybrid
memory system performance, prior art focuses on page place-
ment policies. Such policies use heuristics or hardware coun-
ters for page access profiling [70, 77], dynamic page access
tracking [48], or bandwidth partitioning [1]. These page ac-
cess profiling techniques either require specialized hardware
(precluding policy portability) or incur high overhead, re-
ducing the number of profiled pages. For example, consider
that autoNUMA is carefully designed to balance the costs
of profiling with the accuracy of profiling. Since autoNUMA
uses page faults to sample data (which can consume ∼1000
cycles [78]), it limits its sampling rate to reduce the per-
formance problems of excessive page faults. Thermostat [2]
samples page hotness using page faults (via BadgerTrap [18]).
This can cause ∼4× slowdown if all pages are profiled; con-
sequently, Thermostat only profiles 0.5% of total memory.
HeteroOS [32] targets heterogeneous memory in virtual-

ized environments. This work adapts Linux’s page replace-
ment algorithm as we do, but relies on page hotness tracking.
This tracking mechanism can cause frequent and expensive
TLB invalidations; consequently the authors are careful to
limit aspects of their tracking mechanism. Like our work,
HeteroOS shows that the high overhead of page migration
makes heterogeneous memory system management subopti-
mal but does not address the issue further.

Page Migration Mechanisms: Similar in spirit to opti-
mizing page migration, one recent study focuses on enhance-
ments to the DRAM architecture to migrate pages within the
memory controller without bringing data on-chip [73, 81].
This avoids cache pollution effects. Further, to avoid lock-
ing down page accesses during migration, other proposals

pin data in caches, enabling pages to be accessed during
migration [7]. Others have attempted to avoid the use of
the in-kernel locks by freezing the related applications in-
stead [40]. Lin et al. propose an asynchronous OS interface
called memif for accelerating page migration with DMA
devices [43]. Instead of using traditional Linux migration
interfaces, it requires rewriting programs to adopt a new
interface and is limited to only ARM processors due to an
architectural dependence for race detection. More recently,
Ryoo et al. discover that migrating larger numbers of pages
(64KB or 2MB in groups of 4KB pages) could improve ap-
plication performance in heterogeneous memory systems
based on their leading-load model, which further supports
our THP migration proposal [72].

Huge Page Management: Ingens [35] is a huge page
management framework. They focus on principled ways to
coordinate the construction of more THPs. Our work asks a
complementary question: how can we preserve THPs? Our
work can speed up their huge page promotion process and
preserve THPs during migrations.

6 Conclusions
Current OS page migration and management frameworks
were developed at at time when page sizes were small and
page migration existed to support memory hotplug func-
tionality rather than performance optimization. With the
introduction of heterogeneous memory systems, pressure is
being put on the OS to adapt to new hardware paradigms
and efficiently support multi-tiered memory systems. This
work implements a novel holistic high-performance page
migration system which increases migration throughput
from under 100MB/s to over 10GB/s, rendering it appropri-
ate for a wide variety of future asymmetric memory studies.
We also design a low overhead page tracking and migra-
tion policy, that significantly reuses pre-existing internal OS
structures, thus having wide applicability to a range of antic-
ipated multi-level memory systems. Using a disaggregated
memory system as an example, our page migration enhance-
ments along with this native two-level paging system result
in a 40% end-to-end improvement in workload performance.
Our work demonstrates that combining simple management
policies with high performance page migration is critical
to the future of high-performance heterogeneous memory
systems yet achievable.

Acknowledgments
We thank the National Science Foundation, which has sup-
ported this work through grants 1253700, 1337147, and 1319755.
Additionally, we thank Guilherme Cox and Jan Vesely for
their input on early drafts, as well as Chris Rossbach, who
helped inform our choice of case study to quantify the bene-
fits of our optimizations.

References
[1] Neha Agarwal, David Nellans, Mark Stephenson, Mike O’Connor,

and Stephen W. Keckler. 2015. Page Placement Strategies for GPUs
within Heterogeneous Memory Systems. In International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 607–618.

[2] Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-
transparent Page Management for Two-tiered Main Memory. In Pro-
ceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’17). ACM, New York, NY, USA, 631–644. https://doi.org/10.1145/
3037697.3037706

[3] Nadav Amit. 2017. Optimizing the TLB Shootdown Algorithm
with Page Access Tracking. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17). USENIX Association, Santa Clara, CA,
27–39. https://www.usenix.org/conference/atc17/technical-sessions/
presentation/amit

[4] Andrea Arcangeli. [n. d.]. RFC: Transparent Hugepage support. https:
//lwn.net/Articles/358904/. [Online; accessed 31-Jul-2018].

[5] Amro Awad, Arkaprava Basu, Sergey Blagodurov, Yan Solihin, and
Gabriel H. Loh. 2017. Avoiding TLB Shootdowns Through Self-
Invalidating TLB Entries. In 2017 26th International Conference on
Parallel Architectures and Compilation Techniques (PACT). 273–287.
https://doi.org/10.1109/PACT.2017.38

[6] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and
Michael M. Swift. 2013. Efficient Virtual Memory for Big Memory
Servers. In Proceedings of the 40th Annual International Symposium on
Computer Architecture (ISCA ’13). ACM, New York, NY, USA, 237–248.
https://doi.org/10.1145/2485922.2485943

[7] Santiago Bock, Bruce R. Childers, Rami Melhem, and Daniel Mossé.
2014. Concurrent Page Migration for Mobile Systems with OS-
managed Hybrid Memory. In Proceedings of the 11th ACM Conference
on Computing Frontiers (CF ’14). ACM, New York, NY, USA, Article 31,
10 pages. https://doi.org/10.1145/2597917.2597924

[8] Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and Mendel
Rosenblum. 1994. Scheduling and Page Migration for Multiprocessor
Compute Servers. In Proceedings of the Sixth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS VI). ACM, New York, NY, USA, 12–24. https://doi.
org/10.1145/195473.195485

[9] Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi. 2017. BAT-
MAN: Techniques for Maximizing System Bandwidth of Memory Sys-
tems with stacked-DRAM. In Proceedings of the International Sympo-
sium on Memory Systems (MEMSYS ’17). ACM, New York, NY, USA,
268–280. https://doi.org/10.1145/3132402.3132404

[10] Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2014.
CAMEO: A Two-Level Memory Organization with Capacity of Main
Memory and Flexibility of Hardware-Managed Cache. In Proceedings
of the 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO-47). IEEE Computer Society, Washington, DC, USA,
1–12. https://doi.org/10.1109/MICRO.2014.63

[11] Julita Corbalan, Xavier Martorell, and Jesus Labarta. 2003. Evaluation
of the Memory Page Migration Influence in the System Performance:
The Case of the SGI O2000. In Proceedings of the 17th Annual Interna-
tional Conference on Supercomputing (ICS ’03). ACM, New York, NY,
USA, 121–129. https://doi.org/10.1145/782814.782833

[12] Jonathan Corbet. 2012. AutoNUMA: the other approach to NUMA
scheduling. http://lwn.net/Articles/488709/. [Online; accessed 31-Jul-
2018].

[13] Guilherme Cox and Abhishek Bhattacharjee. 2017. Efficient Address
Translation for Architectures with Multiple Page Sizes. In Proceedings
of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’17). ACM,
New York, NY, USA, 435–448. https://doi.org/10.1145/3037697.3037704

[14] Kathy Davies. 2016. What’s new in Hyper-V on Win-
dows Server 2016 Technical Preview. https://technet.
microsoft.com/en-us/windows-server-docs/compute/hyper-v/
what-s-new-in-hyper-v-on-windows. [Online; accessed: 31-Jul-2018].

[15] Peter J. Denning. 1967. The Working Set Model for Program Be-
havior. In Proceedings of the First ACM Symposium on Operating
System Principles (SOSP ’67). ACM, New York, NY, USA, 15.1–15.12.
https://doi.org/10.1145/800001.811670

[16] Xiangyu Dong, Yuan Xie, Naveen Muralimanohar, and Norman P.
Jouppi. 2010. Simple but Effective Heterogeneous Main Memory
with On-Chip Memory Controller Support. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’10). IEEE Computer Society,
Washington, DC, USA, 1–11. https://doi.org/10.1109/SC.2010.50

[17] Y. Du, M. Zhou, B. R. Childers, D. MossÃľ, and R. Melhem. 2015. Sup-
porting superpages in non-contiguous physical memory. In 2015 IEEE
21st International Symposium on High Performance Computer Architec-
ture (HPCA). 223–234. https://doi.org/10.1109/HPCA.2015.7056035

[18] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift.
2014. BadgerTrap: A Tool to Instrument x86-64 TLB Misses. SIGARCH
Comput. Archit. News 42, 2 (Sept. 2014), 20–23. https://doi.org/10.1145/
2669594.2669599

[19] Jayneel Gandhi, Vasileios Karakostas, Furkan Ayar, AdriÃąn Cristal,
Mark D. Hill, Kathryn S. McKinley, Mario Nemirovsky, Michael M.
Swift, and Osman S. ÃĲnsal. 2016. Range Translations for Fast Virtual
Memory. IEEE Micro 36, 3 (May 2016), 118–126. https://doi.org/10.
1109/MM.2016.10

[20] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston,
Alexandra Fedorova, and Vivien Quema. 2014. Large Pages May Be
Harmful on NUMA Systems. In 2014 USENIX Annual Technical Con-
ference (USENIX ATC 14). USENIX Association, Philadelphia, PA, 231–
242. https://www.usenix.org/conference/atc14/technical-sessions/
presentation/gaud

[21] Mel Gorman. 2004. Understanding the Linux Virtual Memory Manager.
Prentice Hall. https://books.google.com/books?id=ce1QAAAAMAAJ

[22] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. 2017. Efficient Memory Disaggregation with In-
finiswap. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA, 649–
667. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/gu

[23] Nagendra Gulur, MaheshMehendale, R.Manikantan, and R. Govindara-
jan. 2014. Bi-Modal DRAMCache: A Scalable and Effective Die-Stacked
DRAMCache. In Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-47). IEEE Computer Society,
Washington, DC, USA, 38–50. https://doi.org/10.1109/MICRO.2014.36

[24] Vishal Gupta, Min Lee, and Karsten Schwan. 2015. HeteroVisor: Ex-
ploiting Resource Heterogeneity to Enhance the Elasticity of Cloud
Platforms. In Proceedings of the 11th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments (VEE ’15). ACM,
New York, NY, USA, 79–92. https://doi.org/10.1145/2731186.2731191

[25] Swapnil Haria, Mark D. Hill, andMichaelM. Swift. 2018. Devirtualizing
Memory in Heterogeneous Systems. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’18). ACM, New York, NY,
USA, 637–650. https://doi.org/10.1145/3173162.3173194

[26] Intel. [n. d.]. Intel Memory Latency Checker. https://software.intel.
com/en-us/articles/intelr-memory-latency-checker. [Online; accessed
31-Jul-2018].

[27] Intel. 2016. Knights Landing (KNL): 2nd Generation Intel Xeon Phi
Processor. http://www.hotchips.org/wp-content/uploads/hc_archives/
hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.
25.710-Knights-Landing-Sodani-Intel.pdf. [Online; accessed
31-Jul-2018].

https://doi.org/10.1145/3037697.3037706
https://doi.org/10.1145/3037697.3037706
https://www.usenix.org/conference/atc17/technical-sessions/presentation/amit
https://www.usenix.org/conference/atc17/technical-sessions/presentation/amit
https://lwn.net/Articles/358904/
https://lwn.net/Articles/358904/
https://doi.org/10.1109/PACT.2017.38
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/2597917.2597924
https://doi.org/10.1145/195473.195485
https://doi.org/10.1145/195473.195485
https://doi.org/10.1145/3132402.3132404
https://doi.org/10.1109/MICRO.2014.63
https://doi.org/10.1145/782814.782833
http://lwn.net/Articles/488709/
https://doi.org/10.1145/3037697.3037704
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/what-s-new-in-hyper-v-on-windows
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/what-s-new-in-hyper-v-on-windows
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/what-s-new-in-hyper-v-on-windows
https://doi.org/10.1145/800001.811670
https://doi.org/10.1109/SC.2010.50
https://doi.org/10.1109/HPCA.2015.7056035
https://doi.org/10.1145/2669594.2669599
https://doi.org/10.1145/2669594.2669599
https://doi.org/10.1109/MM.2016.10
https://doi.org/10.1109/MM.2016.10
https://www.usenix.org/conference/atc14/technical-sessions/presentation/gaud
https://www.usenix.org/conference/atc14/technical-sessions/presentation/gaud
https://books.google.com/books?id=ce1QAAAAMAAJ
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://doi.org/10.1109/MICRO.2014.36
https://doi.org/10.1145/2731186.2731191
https://doi.org/10.1145/3173162.3173194
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf

[28] JEDEC. 2014. JESD79-4A: DDR4 SDRAM Standard. https://www.
jedec.org/sites/default/files/docs/JESD79-4A.pdf. [Online; accessed
31-Jul-2018].

[29] JEDEC. 2015. High Bandwidth Memory(HBM) DRAM - JESD235A.
http://www.jedec.org/standards-documents/docs/jesd235a. [Online;
accessed 31-Jul-2018].

[30] Djordje Jevdjic, Gabriel H. Loh, Cansu Kaynak, and Babak Falsafi. 2014.
Unison Cache: A Scalable and Effective Die-Stacked DRAM Cache. In
Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-47). IEEE Computer Society, Washington,
DC, USA, 25–37. https://doi.org/10.1109/MICRO.2014.51

[31] Guido Juckeland, William Brantley, Sunita Chandrasekaran, Barbara
Chapman, Shuai Che, Mathew Colgrove, Huiyu Feng, Alexander
Grund, Robert Henschel, Wen-Mei W. Hwu, Huian Li, Matthias S.
Müller, Wolfgang E. Nagel, Maxim Perminov, Pavel Shelepugin, Kevin
Skadron, John Stratton, Alexey Titov, Ke Wang, Matthijs van Waveren,
BrianWhitney, SandraWienke, Rengan Xu, and Kalyan Kumaran. 2015.
SPEC ACCEL: A Standard Application Suite for Measuring Hardware
Accelerator Performance. Springer International Publishing, Cham,
46–67. https://doi.org/10.1007/978-3-319-17248-4_3

[32] Sudarsun Kannan, AdaGavrilovska, Vishal Gupta, and Karsten Schwan.
2017. HeteroOS: OS Design for Heterogeneous Memory Management
in Datacenter. In Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture (ISCA ’17). ACM, New York, NY, USA,
521–534. https://doi.org/10.1145/3079856.3080245

[33] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal,
Mark D. Hill, Kathryn S. McKinley, Mario Nemirovsky, Michael M.
Swift, and Osman Ünsal. 2015. Redundant Memory Mappings for
Fast Access to Large Memories. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture (ISCA ’15). ACM,
New York, NY, USA, 66–78. https://doi.org/10.1145/2749469.2749471

[34] Mohan Kumar, Steffen Maass, Sanidhya Kashyap, Ján Veselý, Zi Yan,
Taesoo Kim, Abhishek Bhattacharjee, and Tushar Krishna. 2018. LATR:
Lazy Translation Coherence. In Proceedings of the Twenty-Third In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’18). ACM, New York, NY, USA,
651–664. https://doi.org/10.1145/3173162.3173198

[35] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,
and Emmett Witchel. 2016. Coordinated and Efficient Huge Page
Management with Ingens. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI’16). USENIX
Association, Berkeley, CA, USA, 705–721. http://dl.acm.org/citation.
cfm?id=3026877.3026931

[36] Christoph Lameter. [n. d.]. Swap migration V3: Overview. https:
//lwn.net/Articles/156603/. [Online; accessed 31-Jul-2018].

[37] Christoph Lameter. 2013. NUMA (Non-Uniform Memory Access):
An Overview. Queue 11, 7, Article 40 (July 2013), 12 pages. https:
//doi.org/10.1145/2508834.2513149

[38] Lawerence Livermore National Laboratory. 2016. CORAL/Sierra. https:
//asc.llnl.gov/coral-info. [Online; accessed 31-Jul-2018].

[39] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009.
Architecting Phase Change Memory As a Scalable Dram Alternative.
In Proceedings of the 36th Annual International Symposium on Computer
Architecture (ISCA ’09). ACM, New York, NY, USA, 2–13. https://doi.
org/10.1145/1555754.1555758

[40] Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. 2015. Thread
and memory placement on NUMA systems: asymmetry matters. In
2015 USENIX Annual Technical Conference (USENIX ATC 15). 277–289.

[41] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,
Steven K. Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated
Memory for Expansion and Sharing in Blade Servers. In Proceedings
of the 36th Annual International Symposium on Computer Architecture
(ISCA ’09). ACM, New York, NY, USA, 267–278. https://doi.org/10.
1145/1555754.1555789

[42] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan
Chang, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2012.
System-level Implications of Disaggregated Memory. In International
Symposium on High-Performance Computer Architecture (HPCA). 1–12.

[43] Felix Xiaozhu Lin and Xu Liu. 2016. Memif: Towards programming
heterogeneous memory asynchronously. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 369–383.

[44] Gabriel H. Loh and Mark D. Hill. 2011. Efficiently Enabling Con-
ventional Block Sizes for Very Large Die-stacked DRAM Caches. In
Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-44). ACM, New York, NY, USA, 454–464.
https://doi.org/10.1145/2155620.2155673

[45] Jasmina Malicevic, Subramanya Dulloor, Narayanan Sundaram, Na-
dathur Satish, Jeff Jackson, and Willy Zwaenepoel. 2015. Exploiting
nvm in large-scale graph analytics. In Proceedings of the 3rd Workshop
on Interactions of NVM/FLASH with Operating Systems and Workloads.
ACM, 2.

[46] Sally A. McKee. 2004. Reflections on the Memory Wall. In Proceedings
of the 1st Conference on Computing Frontiers (CF ’04). ACM, New York,
NY, USA, 162–. https://doi.org/10.1145/977091.977115

[47] Marshall Kirk McKusick and George V. Neville-Neil. 2004. The De-
sign and Implementation of the FreeBSD Operating System. Pearson
Education.

[48] Mitesh R. Meswani, Sergey Blagodurov, David Roberts, J ohn Slice,
Mike Ignatowski, and Gabriel H. Loh. 2015. Heterogeneous Memory
Architectures: A HW/SW Approach For Mixing Die-stacked And Off-
package Memories. In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). 126–136.

[49] Micron 2015. Hybrid Memory Cube Specification 2.1. https://www.
nuvation.com/sites/default/files/Nuvation-Engineering-Images/
Articles/FPGAs-and-HMC/HMC-30G-VSR_HMCC_Specification.
pdf. [Online; accessed 31-Jul-2018].

[50] Micron. 2016. 3D XPoint Technology. https://www.micron.com/
products/advanced-solutions/3d-xpoint-technology. [Online; ac-
cessed 31-Jul-2018].

[51] Jeffery Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi.
2009. Operating System Support for NVM+DRAM Hybrid Main Mem-
ory. In Proceedings of the 12th Conference on Hot Topics in Operating
Systems (HotOS’09). USENIX Association, Berkeley, CA, USA, 14–18.
http://dl.acm.org/citation.cfm?id=1855568.1855582

[52] Richard C. Murphy, Kyle B. Wheeler, Brian W. Barrett, and James A.
Ang. 2010. Introducing the Graph 500. In Cray User’s Group.

[53] Linux Newbies. 2017. Linux 4.14 Release Note. https://kernelnewbies.
org/Linux_4.14#Memory_management

[54] Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou, Constantine D.
Polychronopoulos, Jesús Labarta, and Eduard Ayguadé. 2000. A Case
for User-level Dynamic Page Migration. In Proceedings of the 14th
International Conference on Supercomputing (ICS ’00). ACM, New York,
NY, USA, 119–130. https://doi.org/10.1145/335231.335243

[55] Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou, Constantine D.
Polychronopoulos, Jesús Labarta, and Eduard Ayguadé. 2000. User-
Level Dynamic Page Migration for Multiprogrammed Shared-Memory
Multiprocessors. In Proceedings of the Proceedings of the 2000 Inter-
national Conference on Parallel Processing (ICPP ’00). IEEE Computer
Society, Washington, DC, USA, 95–. http://dl.acm.org/citation.cfm?
id=850941.852887

[56] NVIDIA Corporation. 2013. Unified Memory in CUDA 6. http:
//devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/. [On-
line; accessed 31-Jul-2018].

[57] NVIDIACorporation. 2014. NVLink, Pascal and StackedMemory: Feed-
ing the Appetite for Big Data. http://devblogs.nvidia.com/parallelforall/
nvlink-pascal-stacked-memory-feeding-appetite-big-data/. [Online;
accessed 14-Aug-2016].

https://www.jedec.org/sites/default/files/docs/JESD79-4A.pdf
https://www.jedec.org/sites/default/files/docs/JESD79-4A.pdf
http://www.jedec.org/standards-documents/docs/jesd235a
https://doi.org/10.1109/MICRO.2014.51
https://doi.org/10.1007/978-3-319-17248-4_3
https://doi.org/10.1145/3079856.3080245
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1145/3173162.3173198
http://dl.acm.org/citation.cfm?id=3026877.3026931
http://dl.acm.org/citation.cfm?id=3026877.3026931
https://lwn.net/Articles/156603/
https://lwn.net/Articles/156603/
https://doi.org/10.1145/2508834.2513149
https://doi.org/10.1145/2508834.2513149
https://asc.llnl.gov/coral-info
https://asc.llnl.gov/coral-info
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1145/2155620.2155673
https://doi.org/10.1145/977091.977115
https://www.nuvation.com/sites/default/files/Nuvation-Engineering-Images/Articles/FPGAs-and-HMC/HMC-30G-VSR_HMCC_Specification.pdf
https://www.nuvation.com/sites/default/files/Nuvation-Engineering-Images/Articles/FPGAs-and-HMC/HMC-30G-VSR_HMCC_Specification.pdf
https://www.nuvation.com/sites/default/files/Nuvation-Engineering-Images/Articles/FPGAs-and-HMC/HMC-30G-VSR_HMCC_Specification.pdf
https://www.nuvation.com/sites/default/files/Nuvation-Engineering-Images/Articles/FPGAs-and-HMC/HMC-30G-VSR_HMCC_Specification.pdf
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
http://dl.acm.org/citation.cfm?id=1855568.1855582
https://kernelnewbies.org/Linux_4.14#Memory_management
https://kernelnewbies.org/Linux_4.14#Memory_management
https://doi.org/10.1145/335231.335243
http://dl.acm.org/citation.cfm?id=850941.852887
http://dl.acm.org/citation.cfm?id=850941.852887
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/nvlink-pascal-stacked-memory-feeding-appetite-big-data/
http://devblogs.nvidia.com/parallelforall/nvlink-pascal-stacked-memory-feeding-appetite-big-data/

[58] Oak Ridge National Laboratory. 2018. Summit. https://www.olcf.ornl.
gov/summit/. [Online; accessed 31-Jul-2018].

[59] Mark Oskin and Gabriel H. Loh. 2015. A Software-Managed Ap-
proach to Die-Stacked DRAM. In Proceedings of the 2015 Interna-
tional Conference on Parallel Architecture and Compilation (PACT)
(PACT ’15). IEEE Computer Society, Washington, DC, USA, 188–200.
https://doi.org/10.1109/PACT.2015.30

[60] Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge
Pages Actually Useful. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 679–692.
https://doi.org/10.1145/3173162.3173203

[61] Misel-Myrto Papadopoulou, Xin Tong, AndrÃľ Seznec, and Andreas
Moshovos. 2015. Prediction-based superpage-friendly TLB designs. In
2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA). 210–222. https://doi.org/10.1109/HPCA.2015.
7056034

[62] Mayank Parasar, Abhishek Bhattacharjee, and Tushar Krishna. 2018.
SEESAW: Using Superpages to Improve VIPT Caches. In Proceedings
of the 45th Annual International Symposium on Computer Architecture
(ISCA ’18). IEEE Press, Piscataway, NJ, USA, 193–206. https://doi.org/
10.1109/ISCA.2018.00026

[63] J. Thomas Pawlowski. 2011. Hybrid memory cube (HMC). In 2011
IEEE Hot Chips 23 Symposium (HCS). 1–24. https://doi.org/10.1109/
HOTCHIPS.2011.7477494

[64] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H.
Loh. 2014. Increasing TLB reach by exploiting clustering in page
translations. In 2014 IEEE 20th International Symposium on High Per-
formance Computer Architecture (HPCA). 558–567. https://doi.org/10.
1109/HPCA.2014.6835964

[65] Binh Pham, Ján Veselý, Gabriel H. Loh, and Abhishek Bhattacharjee.
2015. Large Pages and Lightweight Memory Management in Virtual-
ized Environments: Can You Have It Both Ways?. In Proceedings of the
48th International Symposium on Microarchitecture (MICRO-48). ACM,
New York, NY, USA, 1–12. https://doi.org/10.1145/2830772.2830773

[66] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014. Architec-
tural Support for Address Translation on GPUs: Designing Memory
Management Units for CPU/GPUs with Unified Address Spaces. In Pro-
ceedings of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’14). ACM,
New York, NY, USA, 743–758. https://doi.org/10.1145/2541940.2541942

[67] Jason Power, Mark D. Hill, and David A. Wood. 2014. Supporting
x86-64 address translation for 100s of GPU lanes. In 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA). 568–578. https://doi.org/10.1109/HPCA.2014.6835965

[68] Moinuddin K. Qureshi and Gabe H. Loh. 2012. Fundamental Latency
Trade-off in Architecting DRAM Caches: Outperforming Impractical
SRAM-Tags with a Simple and Practical Design. In Proceedings of the
2012 45th Annual International Symposium on Microarchitecture. 12.
https://doi.org/10.1109/MICRO.2012.30

[69] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers.
2009. Scalable High Performance Main Memory System Using Phase-
change Memory Technology. In Proceedings of the 36th Annual Inter-
national Symposium on Computer Architecture (ISCA ’09). ACM, New
York, NY, USA, 24–33. https://doi.org/10.1145/1555754.1555760

[70] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page
Placement in Hybrid Memory Systems. In Proceedings of the Interna-
tional Conference on Supercomputing (ICS ’11). ACM, New York, NY,

USA, 85–95. https://doi.org/10.1145/1995896.1995911
[71] Bogdan F. Romanescu, Alvin R. Lebeck, Daniel J. Sorin, and Anne Bracy.

2010. UNified Instruction/Translation/Data (UNITD) coherence: One
protocol to rule them all. In HPCA - 16 2010 The Sixteenth International
Symposium on High-Performance Computer Architecture. 1–12. https:
//doi.org/10.1109/HPCA.2010.5416643

[72] Jee Ho Ryoo, Lizy K. John, and Arkaprava Basu. 2018. A Case for
Granularity Aware Page Migration. In Proceedings of the International
Conference on Supercomputing (ICS ’18). ACM, New York, NY, USA.
https://doi.org/10.1145/3205289.3208064

[73] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, , Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu,
Phillip B Gibbons, and Michael A Kozuch. 2016. RowClone: fast and
energy-efficient in-DRAM bulk data copy and initialization. In 2016
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA). IEEE, 481–493.

[74] AndrÃľ Seznec. 2004. Concurrent Support of Multiple Page Sizes on
a Skewed Associative TLB. IEEE Trans. Comput. 53, 7 (July 2004),
924–927. https://doi.org/10.1109/TC.2004.21

[75] Jaewoong Sim, Alaa R Alameldeen, Zeshan Chishti, Chris Wilker-
son, and Hyesoon Kim. 2014. Transparent hardware management
of stacked dram as part of memory. In 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, 13–24.

[76] Jaewoong Sim, Gabriel H. Loh, Hyesoon Kim, Mike O’Connor, and
Mithuna Thottethodi. 2012. AMostly-Clean DRAMCache for Effective
Hit Speculation and Self-Balancing Dispatch. In Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-45). IEEE Computer Society, Washington, DC, USA, 247–257.
https://doi.org/10.1109/MICRO.2012.31

[77] Mustafa M. Tikir and Jeffrey K. Hollingsworth. 2008. Hardware Mon-
itors for Dynamic Page Migration. J. Parallel Distrib. Comput. 68, 9
(Sept. 2008), 1186–1200. https://doi.org/10.1016/j.jpdc.2008.05.006

[78] Linus Torvalds. 2014. Performance profiling on core kernel code. https:
//plus.google.com/+LinusTorvalds/posts/YDKRFDwHwr6. [Online;
accessed 31-Jul-2018].

[79] UEFI.org. 2017. Advanced Configuration and Power Interface Specifi-
cation, Version 6.2. http://www.uefi.org/sites/default/files/resources/
ACPI_6_2.pdf. [Online; accessed 31-Jul-2018].

[80] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion,
Alex Ramirez, Avi Mendelson, Nacho Navarro, Adrian Cristal, and
Osman S. Unsal. 2011. DiDi: Mitigating the Performance Impact of
TLB Shootdowns Using a Shared TLB Directory. In 2011 International
Conference on Parallel Architectures and Compilation Techniques. 340–
349. https://doi.org/10.1109/PACT.2011.65

[81] Hao Wang, Jie Zhang, Sharmila Shridhar, Gieseo Park, Myoungsoo
Jung, and Nam Sung Kim. 2016. DUANG: Fast and lightweight page
migration in asymmetric memory systems. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
481–493.

[82] Zi Yan, Ján Veselý, Guilherme Cox, and Abhishek Bhattacharjee.
2017. Hardware Translation Coherence for Virtualized Systems. In
Proceedings of the 44th Annual International Symposium on Com-
puter Architecture (ISCA ’17). ACM, New York, NY, USA, 430–443.
https://doi.org/10.1145/3079856.3080211

[83] Ross Zwisler. 2017. Surface Heterogeneous Memory Performance
Information. https://lwn.net/Articles/727348/. [Online; accessed 31-
Jul-2018].

https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
https://doi.org/10.1109/PACT.2015.30
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1109/HPCA.2015.7056034
https://doi.org/10.1109/HPCA.2015.7056034
https://doi.org/10.1109/ISCA.2018.00026
https://doi.org/10.1109/ISCA.2018.00026
https://doi.org/10.1109/HOTCHIPS.2011.7477494
https://doi.org/10.1109/HOTCHIPS.2011.7477494
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/2541940.2541942
https://doi.org/10.1109/HPCA.2014.6835965
https://doi.org/10.1109/MICRO.2012.30
https://doi.org/10.1145/1555754.1555760
https://doi.org/10.1145/1995896.1995911
https://doi.org/10.1109/HPCA.2010.5416643
https://doi.org/10.1109/HPCA.2010.5416643
https://doi.org/10.1145/3205289.3208064
https://doi.org/10.1109/TC.2004.21
https://doi.org/10.1109/MICRO.2012.31
https://doi.org/10.1016/j.jpdc.2008.05.006
https://plus.google.com/+LinusTorvalds/posts/YDKRFDwHwr6
https://plus.google.com/+LinusTorvalds/posts/YDKRFDwHwr6
http://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
https://doi.org/10.1109/PACT.2011.65
https://doi.org/10.1145/3079856.3080211
https://lwn.net/Articles/727348/

	Abstract
	1 Introduction
	2 Background
	2.1 Page Management Policies and Mechanisms
	2.2 Recent Developments

	3 Native OS Support for Multi-Level Memories
	3.1 Optimizing Page Migration Mechanisms
	3.2 Optimizing Page Tracking and Policy Decisions

	4 Experimental Results
	4.1 Methodology
	4.2 Page Migration System Call Performance
	4.3 End-to-End Performance Results
	4.4 Sensitivity to Local Memory Size
	4.5 Sensitivity to Tunable Parameters
	4.6 Generality Across Architectures
	4.7 Discussion of Experimental Results

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

