Notes on Theory of Distributed Systems

James Aspnes

2025-04-28 00:26

Copyright © 2002-2025 by James Aspnes. Distributed under a Cre-
ative Commons Attribution-ShareAlike 4.0 International license: https:
//creativecommons.org/licenses/by-sa/4.0/.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Contents

Table of contents ii
List of figures xvii
List of tables xviii
List of algorithms xix
Preface xXxiv
Syllabus XXV
Lecture schedule xxviii
1 Introduction 1
1.1 Models o oo 2
1.2 Properties)

I Message passing 7
2 Model 8
2.1 Basic message-passing model 0oL 8
2.1.1 Formal details 9

2.1.2 Network structure 10

2.2 Asynchronous systems 10
2.2.1 Example: client-server computing 11

2.3 Synchronous systems L. 12
2.4 Drawing message-passing executions 12
2.5 Complexity measures 13

ii

CONTENTS

3 Broadcast and convergecast

3.1 Flooding
3.1.1 Basicalgorithm
3.1.2 Adding parent pointers
3.1.3 Identifying children

3.2 Convergecast

3.3 Flooding and convergecast together

Distributed breadth-first search

4.1 Using explicit distances
4.2 Using layeringo
4.3 Using local synchronization

Leader election
5.1 Symmetry
5.2 Leader election in rings
5.2.1 The Le Lann-Chang-Roberts algorithm
5.2.1.1 Performance
5.2.2 The Hirschberg-Sinclair algorithm
5.2.3 Peterson’s algorithm for the unidirectional ring
5.2.4 A simple randomized O(nlogn)-message algorithm . .
5.3 Leader election in general networks
5.4 Lower bounds
5.4.1 Lower bound on asynchronous message complexity . .
5.4.2 Lower bound for comparison-based protocols

Causal ordering and logical clocks

6.1 Causal ordering o

6.2 Logicalclockso
6.2.1 Lamportclock,
6.2.2 Neiger-Toueg-Welch clock
6.2.3 Vectorclocks 0L

6.3 Consistent snapshots
6.3.1 Property testing

Synchronizers

7.1 Definitions L

7.2 Implementations
7.2.1 The alpha synchronizer
7.2.2 'The beta synchronizer

iii

17
17
17
19
20
22
24

26
26
28
28

32
33
34
35
36
36
37
38
40
40
41
42

46
47
49
50
50
o1
53
o4

CONTENTS

7.2.3 The gamma synchronizer
7.3 Applicationso L
7.4 Limitations of synchronizers
7.4.1 Impossibility with crash failures
7.4.2 Unavoidable slowdown with global synchronization . .

8 Coordinated attack
8.1 Formal descriptiono
8.2 Impossibility proofo
8.3 Randomized coordinated attack
8.3.1 Analgorithm
83.2 Whyitworks oL
8.3.3 Almost-matching lower bound

9 Synchronous agreement
9.1 Problem definition
9.2 Solution using flooding L Lo
9.2.1 Authenticated version
9.3 Lower boundonrounds
9.4 Variants e e e

10 Byzantine agreement

10.1 Lower bounds
10.1.1 Minimum number of rounds
10.1.2 Minimum number of processes
10.1.3 Minimum connectivity
10.1.4 Weak Byzantine agreement

10.2 Upper bounds oo
10.2.1 Exponential information gathering gets n =3f +1 . .
10.2.1.1 Proof of correctness

10.2.2 Phase king gets constant-size messages
10.2.2.1 The algorithm

10.2.2.2 Proof of correctness

10.2.2.3 Performance of phase king

11 Impossibility of asynchronous agreement
11.1 Agreement Lo
11.2 Failures o
11.3 Steps . . o o v o e
11.4 Bivalence and univalence

iv

o8
59
99
59
60

63
63
64
66
66
67
68

69
69
70
71
72
74

75
75
75
75
77
78
79
79
81
83
83
83
85

CONTENTS

11.5
11.6
11.7

Existence of an initial bivalent configuration
Staying in a bivalent configuration
Generalization to other models

12 Paxos

12.1
12.2
12.3
12.4
12.5
12.6
12.7

The Paxos algorithm
Informal analysis: how information flows between rounds

Example execution oL
Safety properties L L Lo
Learning the results
Liveness properties
Replicated state machines and multi-Paxos

13 Failure detectors

13.1
13.2

13.3
13.4
13.5

13.6
13.7

How to build a failure detector
Classification of failure detectors
13.2.1 Degrees of completeness
13.2.2 Degrees of accuracy
13.2.3 Boosting completeness
13.2.4 Failure detector classes
Consensus with S'.,
13.3.1 Proof of correctness
Consensus with ¢S and f<n/2
13.4.1 Proof of correctness
f < n/2is still required even with OP
Relationships among the classes
Terminating reliable broadcast with P

14 Quorum systems

14.1
14.2
14.3
14.4
14.5
14.6

14.7

Basics
Simple quorum systems oo
Goals
Paths system
Byzantine quorum systemso,
Probabilistic quorum systems oL,
14.6.1 Example e
14.6.2 Performance
Signed quorum systems L

89
89
90

92
92
96
96
98
99
99
100

102
103
103
103
103
104
105
106
107
108
110
111
111
112

CONTENTS

15 Permissionless systems
15.1 Sybil attackso
15.1.1 Resource-based defenses
15.1.2 Limitations of resource-based defenses
15.1.3 Alternative defenses
15.2 Bitcoin
15.2.1 Obtaining eventual consistency
15.2.2 Does Bitcoin disprove the folk theorem?

II Shared memory

16 Model
16.1 Atomic registers
16.2 Single-writer versus multi-writer registers
16.3 Fairness and crashes 0.
16.4 Concurrent executions
16.5 Consistency propertieso
16.6 Complexity measures v v v v v v
16.7 Fancier registers o 0oL

17 Distributed shared memory

17.1 Message passing from shared memory
17.2 Shared memory from message passing: the Attiya-Bar-Noy-

Dolev algorithm
17.3 Proof of linearizability
17.4 Proof that f < n/2ismnecessary
17.5 Multiple writers Lo o
17.6 Other operations oo
17.7 Byzantine failures.

18 Mutual exclusion

18.1 The problem
18.2 Goals e
18.3 Mutual exclusion using strong primitives
18.3.1 Testandset

18.3.2 A lockout-free algorithm using an atomic queue

18.3.2.1 Replacing the queue with RMW

18.4 Mutual exclusion and linearizability
18.5 Mutual exclusion using only atomic registers

vi

121
122
123
124
125
126
127
130

132

133
133
134
135
135
136
138
140

CONTENTS vii

18.5.1 Peterson’s algorithm 155
18.5.1.1 Correctness of Peterson’s protocol 155

18.5.1.2 Generalization to n processes 159

18.5.2 Fast mutual exclusion 159
18.5.3 Lamport’s Bakery algorithm 162

18.6 RMR complexityo 163
18.6.1 Cache-coherence vs. distributed shared memory 163
18.6.2 RMR complexity of Peterson’s algorithm 164
18.6.3 Mutual exclusion in the DSM model 165
18.6.4 Lower bounds L. 167

18.7 Space complexity o 168
19 The wait-free hierarchy 170
19.1 Formal version 171
19.1.1 Robustness 171
19.1.2 Initialization 172
19.1.3 Output value of the consensus protocol 173
19.1.4 Multiple objects vs multiple operations 173

19.2 Classification by consensus number 174
19.2.1 Level 1: registersetc. 174
19.2.2 Level 2: interfering RMW objects etc. 176
19.2.3 Level co: objects where the first write wins 178
19.2.4 Level 2m — 2: simultaneous m-register write. 180
19.2.4.1 Matching impossibility result 182

19.2.5 Level m: various m-bounded objects 183

19.3 Universality of consensus. 185
20 Atomic snapshots 188
20.1 The basic trick: two identical collects equals a snapshot . . . 188
20.2 Snapshots using double collects with helping 189
20.2.1 Linearizability 0. 190
20.2.2 Using bounded registers 191

20.3 Faster snapshots using lattice agreement 194
20.3.1 Lattice agreement 194
20.3.2 Connection to vector clocks 195
20.3.3 The full reduction 196
20.3.4 Why thisworks 197
20.3.5 Implementing lattice agreement 198

20.4 Practical snapshots using LL/SC 201

20.4.1 Details of the single-scanner snapshot 202

CONTENTS

20.4.2 Extension to multiple scanners
20.5 Applicationso
20.5.1 Multi-writer registers from single-writer registers . . .
20.5.2 Counters i i i e
20.5.3 Resilient snapshot objects

21 Lower bounds on perturbable objects

22 Restricted-use objects

22.1 Max registers e
22.2 Implementing bounded max registers
22.3 Encoding the set of values
22.4 Unbounded max registers,
22.5 Lower bound
22.6 Max-register snapshots oL

22.6.1 Linearizability
22.7 Restricted-use snapshots

22.7.1 Randomized and amortized snapshots

23 Common?2

23.1 Test-and-set and swap for two processes
23.2 Building n-process TAS from 2-process TAS
23.3 Obstruction-free swap from test-and-set
23.4 Wait-free swap from test-and-set
23.5 Implementations using stronger base objects

24 Randomized consensus and test-and-set

24.1 Role of the adversary in randomized algorithms
24.2 History o .o e e
24.3 Reduction to simpler primitives
24.3.1 Adopt-commit objectso
24.3.2 Conciliators oL
24.4 Implementing an adopt-commit object
24.5 Conciliators and shared coins
24.6 A one-register conciliator for an oblivious adversary
24.7 Sifters Lo
24.7.1 Test-and-set using sifters
24.7.2 Consensus using sifters
24.7.3 A better sifter for test-and-set
24.8 Space bounds L

viii

205
205
205
206
206

208

212
212
213
215
215
216
217
218
220
222

224
225
225
227
229
232

CONTENTS

25 Renaming

25.1
25.2
25.3
254

25.5

Renaming
Performance
Order-preserving renaming
Deterministic renaming

25.4.1 Wait-free renaming with 2n — 1 names

25.4.2 Long-lived renaming
25.4.3 Renaming without snapshots .
25.4.3.1 Splitters.
25.4.3.2 Splitters in a grid . .

25.4.4 Getting to 2n — 1 names in polynomial space

25.4.5 Renaming with test-and-set . .
Randomized renaming
25.5.1 Randomized splitters

25.5.2 Randomized test-and-set plus sampling

25.5.3 Renaming with sorting networks
25.5.3.1 Sorting networks . . .
25.5.3.2 Renaming networks .

25.5.4 Randomized loose renaming . .

26 Software transactional memory

26.1
26.2
26.3

26.4
26.5

Motivation
Basic approaches
Implementing multi-word RMW . . .
26.3.1 Overlapping LL/SC
26.3.2 Representing a transaction . .
26.3.3 Executing a transaction
26.3.4 Proof of linearizability
26.3.5 Proof of non-blockingness . . .
Improvements
Limitations

27 Obstruction-freedom

27.1
27.2

Why build obstruction-free algorithms?
Examples
27.2.1 Lock-free implementations . . .
27.2.2 Double-collect snapshots
27.2.3 Software transactional memory
27.2.4 Obstruction-free test-and-set .
27.2.5 An obstruction-free deque . . .

ix

251
251
252
253
253
254
255
256
256
257
259
260
260
261
261
262
263
264
265

267
268
268
269
270
270
271
271
272
272
272

CONTENTS X

27.3 Boosting obstruction-freedom to wait-freedom 280
27.3.1 Cost e 284

27.4 Lower bounds for lock-free protocols 285
27.4.1 Contention 285
2742 Theclass G o e 286
27.4.3 The lower bound proof 288
27.4.4 CONSeqUENCES . . . v v v v v vt e e e e 291
27.4.5 More lower bounds oL 292

27.5 Practical considerations Lo oL 292
28 BG simulation 293
28.1 High-level strategy 293
28.2 Safe agreement oL 294
28.3 The basic simulation algorithm 296
28.4 Effect of failures, 297
28.5 Inputs and outputs Lo 297
28.6 Correctness of the simulation 298
28.7 BG simulation and consensus 298
29 Topological methods 300
29.1 Basicidea 300
29.2 k-set agreement 301
29.3 Representing distributed computations using topology 302
29.3.1 Simplicial complexes and process states 303
29.3.2 Subdivisions 306

29.4 Impossibility of k-set agreement 309
29.5 Simplicial maps and specifications 311
29.5.1 Mapping inputs to outputs 312

29.6 The asynchronous computability theorem 313
29.6.1 The participating set protocol 314

29.7 Proving impossibility resultso 315
29.7.1 k-connectivity oo 0oL 316
29.7.2 Impossibility proofs for specific problems 317

30 Approximate agreement 319
30.1 Algorithms for approximate agreement 319

30.2 Lower bound on step complexity 322

CONTENTS xi
IIT Other communication models 324
31 Overview 325
32 Self-stabilization 326
32.1 Model oo 327
32.2 Token ring circulation 327
32.3 Synchromizers 330
32.4 Spanning treeso 333
32.5 Self-stabilization and local algorithms 334

33 Distributed graph algorithms 336
33.1 The LOCAL and CONGEST models 336
33.2 Local graph coloring 337
33.2.1 Coloring graphs with out-degree 1 337

33.2.2 Lower bound for rings 339

33.2.3 Coloring bounded-degree graphs 340

33.3 All-pairs shortest paths in CONGEST 341
33.3.1 BFS with fixed starting root 342

33.3.2 Leader election in CONGEST 342

33.3.3 All-pairs shortest paths 342

34 Population protocols 345
34.1 Definition of a population protocol 346
34.2 Stably computable predicates 347
34.2.1 Time complexity 347

34.2.2 Examples 348

34.2.2.1 Leaderelection 348

34.2.2.2 Distributing the output 349

34.2.2.3 Remaindermod m 349

34.2.2.4 Linear threshold functions 349

34.2.3 Presburger arithmetic and semilinear sets 350

34.2.3.1 Semilinear predicates are stably computable 351
34.2.3.2 Stably computable predicates are semilinear 352

34.3 Random interactions 352
35 Mobile robots 356
35.1 Model e 356
35.2 Two robots, nofaults 358

35.3 Three robots 359

CONTENTS xii

35.4 Many robots, with crash failures 361
36 Beeping 363
36.1 Interval coloring 364
36.1.1 Estimating the degree 365
36.1.2 Pickingslots L. 365
36.1.3 Detecting collisions 365
36.2 Maximal independent set 0L, 366
36.2.1 Lower bound 366
36.2.2 Upper bound with known boundonn 368
Appendix 372
A Assignments 372

A.1 Assignment 1: due Tuesday 2025-01-28, at 23:59 Eastern US
time oL 372
A.1.1 Local agreement 372
A.1.2 Finding your place 375

A.2 Assignment 2: due Thursday 2025-02-06, at 23:59 Eastern US
time L 376
A.2.1 Leader election in a ring with bounded ids 376
A.2.2 A covering problem 377

A.3 Assignment 3: due Thursday 2025-02-20, at 23:59 Eastern US
time oL 378
A.3.1 Coalition government 378
A.3.2 Stronger Byzantine agreement 379

A.4 Assignment 4: due Thursday 2025-03-06, at 23:59 Eastern US
time e 381
A.4.1 A primary-backup clock 381
A.4.2 Simulating an atomic register with churn 385

A.5 Assignment 5: due Thursday 2025-04-03, at 23:59 Eastern US
time oL 388
A.5.1 Fetch-and-max from fetch-and-add 388
A.5.2 Read-modify-write consensus 391

A.6 Assignment 6: due Thursday 2025-04-17, at 23:59 Eastern US
time oL 392
A6.1 Amod-2counter 392
A.6.2 A linear splitter network 394

A.7 CPSC 565 student presentations 396

CONTENTS xiii

A.7.1 Relevant dates 396
A.7.2 Instructionso 397
B Sample assignments from Fall 2023 398

B.1 Assignment 1: due Thursday 2023-09-21, at 23:59 Eastern US
time 398
B.1.1 Maximal independent set in aring 398
B.1.2 Deanonymization 399

B.2 Assignment 2: due Thursday 2023-10-05, at 23:59 Eastern US
time 401
B.2.1 Synchronous agreement in a bipartite network 401
B.2.2 Leader rotation oL 403

B.3 Assignment 3: due Thursday 2023-10-26, at 23:59 Eastern US
time oL 405
B.3.1 Eviltwins o 405
B.3.2 Crash failures with recovery 406

B.4 Assignment 4: due Thursday 2023-11-09, at 23:59 Eastern US
time oL 408
B.4.1 A one-object mutex 408
A more general solution. 411
B.4.2 Alockerobject 411

B.5 Assignment 5: due Thursday 2023-11-30, at 23:59 Eastern US
time oL 413
B.5.1 Writable max registers 413
B.5.2 Approximate vector agreement 415
C Sample assignments from Fall 2022 419

C.1 Assignment 1: due Thursday 2022-09-22, at 23:59 Eastern US
time 419
C.1.1 Leader election using broadcast 419
C.1.2 Discovery by flooding 421

C.2 Assignment 2: due Thursday 2022-10-06, at 23:59 Eastern US
time 422
C.2.1 Maximum COnsensus o v o v o v ... 422
C.2.2 Colorful Byzantine agreement 423

C.3 Assignment 3: due Thursday 2022-10-27, at 23:59 Eastern US
time e 424
C.3.1 A census of failure 424

C.3.2 Distributed shared memory with Byzantine servers . . 425

CONTENTS

C.4 Assignment 4: due Thursday 2022-11-10, at 23:59 Eastern US
time L
C.4.1 Arithmetic registers
C.4.2 Countingtotwo

C.5 Assignment 5: due Monday 2022-12-05, at 23:59 Eastern US
time
C.5.1 A hidden counter
C.5.2 One register to rule them all

Sample assignments from Spring 2020

D.1 Assignment 1: due Wednesday, 2020-09-23, at 5:00pm Eastern
UStime 0 e
D.1.1 A token-passing game
D.1.2 A load-balancing problem

D.2 Assignment 2: due Wednesday, 2020-10-07, at 5:00pm Eastern
UStime o e
D.2.1 Synchronous agreement with limited broadcast
D.2.2 Asynchronous agreement with limited failures

D.3 Assignment 3: due Wednesday, 2020-10-21, at 5:00pm Eastern
UStime e
D.3.1 Too many Byzantine processes
D.3.2 Committee election

D.4 Assignment 4: due Wednesday, 2020-11-04, at 5:00pm Eastern
UStime e
D.4.1 Counting without snapshots
D.4.2 Rock-paper-scissors.

D.5 Assignment 5: due Wednesday, 2020-11-18, at 5:00pm Eastern
UStime e
D.5.1 Randomized consensus with one max register
D.5.2 A plurality object L.

Sample assignments from Spring 2019
E.1 Assignment 1: due Wednesday, 2019-02-13, at 5:00pm
E.1.1 A message-passing bureaucracy
Time complexity
Message complexity
E.1.2 Algorithms on rings
E.1.3 Shuttingdown
E.2 Assignment 2: due Wednesday, 2019-03-06, at 5:00pm
E.2.1 A non-failure detector

Xiv

CONTENTS XV

E.2.2 Ordered partial broadcast 452
E.2.3 Mutual exclusion using a counter 454
E.3 Assignment 3: due Wednesday, 2019-04-17, at 5:00pm 457
E.3.1 Zero,one, many 457
E.3.2 Averyslowcounter 458
E.3.3 Double-entry bookkeeping 459
E.4 (CS465/CS565 Final Exam, May 7th, 2019 460
E.4.1 Avroster (20 points) 460
E.4.2 Self-stabilizing consensus (20 points) 461
E.4.3 All-or-nothing intermittent faults (20 points) 462
E.4.4 A tamper-proof register (20 points) 463
F Sample assignments from Spring 2016 464
F.1 Assignment 1: due Wednesday, 2016-02-17, at 5:00pm 464
F.1.1 Sharing the wealth 464
F.1.2 Eccentricityo 467
F.1.3 Leader election on an augmented ring 470
F.2 Assignment 2: due Wednesday, 2016-03-09, at 5:00pm 470
F2.1 Avrotorarray i 470
F.2.2 Setregisters. 472
F.2.3 Bounded failure detectors 473
F.3 Assignment 3: due Wednesday, 2016-04-20, at 5:00pm 474
F.3.1 Fetch-and-max 474
F.3.2 Median 475
F.3.3 Randomized two-process test-and-set with small registers477

F.4 Presentation (for students taking CPSC 565): due Wednesday,
2016-04-27 e e 479
F.5 (CS465/CS565 Final Exam, May 10th, 2016 480
F.5.1 A slow register (20 points) 480
F.5.2 Two leaders (20 points) 481
F.5.3 A splitter using one-bit registers (20 points) 482
F.5.4 Symmetric self-stabilizing consensus (20 points) 483
G Sample assignments from Spring 2014 485
G.1 Assignment 1: due Wednesday, 2014-01-29, at 5:00pm 485
G.1.1 Counting evil processes 485
G.1.2 Avoiding expensive processes 486
G.2 Assignment 2: due Wednesday, 2014-02-12, at 5:00pm 488
G.2.1 Synchronous agreement with weak failures 488

G.2.2 Byzantine agreement with contiguous faults 489

CONTENTS

G.3 Assignment 3: due Wednesday, 2014-02-26, at 5:00pm . . .
G.3.1 Amongtheelect
G.3.2 Failure detectors on the cheap.

G.4 Assignment 4: due Wednesday, 2014-03-26, at 5:00pm . . .
G.4.1 A global synchronizer with a global clock
G.4.2 A message-passing counter

G.5 Assignment 5: due Wednesday, 2014-04-09, at 5:00pm
G.5.1 A concurrency detector
G.5.2 Two-writer sticky bits

G.6 Assignment 6: due Wednesday, 2014-04-23, at 5:00pm . . .
G.6.1 A rotate register
G.6.2 A randomized two-process test-and-set

G.7 (CS465/CS565 Final Exam, May 2nd, 2014
G.7.1 Maxima (20 points)
G.7.2 Historyless objects (20 points)
G.7.3 Hams (20 points) L.
G.7.4 Mutexes (20 points)

H Sample assignments from Fall 2011
H.1 Assignment 1: due Wednesday, 2011-09-28, at 17:00
H.1.1 Anonymous algorithms on a torus
H.1.2 Clustering o
H.1.3 Negotiation
H.2 Assignment 2: due Wednesday, 2011-11-02, at 17:00
H.2.1 Consensus with delivery notifications
H.2.2 A circular failure detector
H.2.3 Anoddproblem
H.3 Assignment 3: due Friday, 2011-12-02, at 17:00
H.3.1 A restricted queue
H.3.2 Writable fetch-and-increment
H.3.3 Aboxobject
H.4 (CS465/CS565 Final Exam, December 12th, 2011
H.4.1 Lockable registers (20 points)
H.4.2 Byzantine timestamps (20 points)
H.4.3 Failure detectors and k-set agreement (20 points) . . .
H.4.4 A set data structure (20 points)

xvi

. 490

490
491

. 492

492
493

. 494

494
496

. 497

497
499
501
501
502
502
504

506
506
506
507
208
509
509
510
012
513
513
514
515
516
516
017
518

CONTENTS xvii

I Additional sample final exams 520
I.L1 CS425/CS525 Final Exam, December 15th, 2005 520
I.1.1 Consensus by attrition (20 points) 520

I.1.2 Long-distance agreement (20 points) 521

[.1.3 Mutex appendages (20 points) 523

[.2 (CS425/CS525 Final Exam, May 8th, 2008 524
[.2.1 Message passing without failures (20 points) 524

1.2.2 A ring buffer (20 points) 524

1.2.3 Leader election on a torus (20 points) 525

1.2.4 An overlay network (20 points) 526

1.3 (CS425/CS525 Final Exam, May 10th, 2010 527
[.3.1 Anti-consensus (20 points) 527

I.3.2 Oddoreven (20 points) 528

[.3.3 Atomic snapshot arrays using message-passing (20 points) 528

1.3.4 Priority queues (20 points) 529

J I/0 automata 531
J.1 Low-level view: I/O automata 531
J.1.1 Enmabled actions oL 531

J.1.2 Executions, fairness, and traces 532

J.1.3 Composition of automata 532

J.1.4 Hiding actions 933

J.1b Fairnesso oo 533

J.1.6 Specifying an automaton 534

J.2 High-level view: traces 534
J21 Example. o 535

J.2.2 Types of trace properties 535

J.2.2.1 Safety properties 535

J.2.2.2 Liveness properties. 536

J.2.2.3 Other properties 537

J.2.3 Compositional arguments 537

J.23.1 Example 538

J.2.4 Simulation arguments 938

J.24.1 Example 539
Bibliography 540
Index 568

List of Figures

2.1
2.2
2.3
2.4

5.1

10.1
10.2

12.1
13.1
14.1
22.1

25.1
25.2
25.3

29.1
29.2
29.3
294

G.1

Asynchronous message-passing execution 13
Asynchronous message-passing execution with FIFO channels 14
Synchronous message-passing execution 14
Asynchronous timeo 15
Labels in the bit-reversal ring withn=32 44
Synthetic execution for Byzantine agreement lower bound . . 76
Synthetic execution for Byzantine agreement connectivity . . 77
Example execution of Paxos 97
Failure detector classes 106
Figure 2 from [NWO8] 116

Snapshot from max arrays; taken from [AACHE1L5, Fig. 2] . . 222

A 6 x 6 Moir-Anderson grido oL 258
Path through a Moir-Anderson grid 259
A sorting network L Lo 263

Subdivision corresponding to one round of immediate snapshot308
Subdivision corresponding to two rounds of immediate snapshot309

An attempt at 2-set agreement 310
Output complex for renaming withn =3, m=4 318
Connected Byzantine nodes take over halfacut 489

xviii

List of Tables

19.1 Position of various types in the wait-free hierarchy

xix

List of Algorithms

2.1
2.2

3.1
3.2
3.3
3.4
3.5

4.1

5.1
5.2

10.1
10.2

12.1

13.1
13.2
13.3
13.4

15.1

18.1
18.2
18.3
18.4
18.5

Client-server computation: client code
Client-server computation: server code

Basic flooding algorithm
Flooding with parent pointers
Flooding tracking children
Convergecast e e e e e
Flooding and convergecast combined

AsynchBFS algorithm (from [Lyn96])

LCR leader election Lo
Peterson’s leader-election algorithm

Exponential information gathering
Byzantine agreement: phase king

Boosting completeness
Consensus with a strong failure detector
Reliable broadcast o L.
Consensus with an eventually-strong failure detector

Nakamoto consensus v v v oo e

Mutual exclusion using test-and-set
Mutual exclusion using a queue
Mutual exclusion using read-modify-write
Building a concurrent RMW object using mutex
Peterson’s mutual exclusion algorithm for two processes

XX

LIST OF ALGORITHMS xxi

18.6
18.7
18.8

19.1
19.2
19.3

20.1
20.2
20.3
204
20.5
20.6

22.1
22.2
22.3

23.1
23.2
23.3
234
23.5

24.1
24.2
24.3
244
24.5
24.6
24.7
24.8

25.1
25.2
25.3

26.1

27.1
27.2

Implementation of a splitter 160
Lamport’s Bakery algorithm 162
Yang-Anderson mutex for two processes 165
Id consensus from binary consensus 174
Determining the winner of a race between 2-register writes . . 181
A universal construction based on consensus 186
Snapshot of [AAD 93] using unbounded registers 190
Lattice agreement snapshot 196
Update for lattice agreement snapshot 197
Increasing set data structure 0. 200
Single-scanner snapshot: scan 203
Single-scanner snapshot: update 203
Max register read operation 213
Max register write operations 214
Recursive construction of a 2-component max array 219
Building 2-process TAS from 2-process consensus 225
Two-process one-shot swap from TAS 226
Tournament algorithm with gate 227
Obstruction-free swap from test-and-set 228
Wait-free swap from test-and-set [AMWIL] 231
Consensus using adopt-commit L. 238
A 2-valued adopt-commit object 239
Shared coin conciliator from [Aspl2b] 240
Impatient first-mover conciliator from [Aspl2b] 241
Asiftero 244
Test-and-set in O(loglogn) expected time 246
Sifting conciliator (from [Aspl2a]) 247
Giakkoupis-Woelfel sifter [GW12a] 248
Wait-free deterministic renaming 254
Releasing aname L 256
Implementation of a splitter 257
Overlapping LL/SC 270
Obstruction-free 2-process test-and-set 277
Obstruction-free dequeo 279

LIST OF ALGORITHMS xxii

27.3 Obstruction-freedom booster from [FLMS05] 282
28.1 Safe agreement (adapted from [BGLROIL]) 295
29.1 Participatingset Lo 314
30.1 Approximate agreement 320
32.1 Dijkstra’s large-state token ring algorithm [Dij74] 328
33.1 Single-source shortest paths using flooding 343
36.1 Beeping a maximal independent set (from [AABJT11]) 369
A.1 Local agreement algorithm: code for processi 373
A.2 Coalition consensus 378
A.3 Implementation of joinCoalitionfor f=1. 379
A.4 Primary-backup clock 382
A.5 Simulating a register with variable quorums. 386
A.6 Fetch-and-max from fetch-and-add 389
A.7 Fetch-and-max from fetch-and-add with unbounded n 390
A.8 Consensus from a single RMW object 391
A.9 Solo-terminating mod-2 counter from swap 394
A.10 Renaming with a linear splitter network 395
B.1 Counting off nodes inaring 400
B.2 Leader rotation algorithm 404
B.3 Candidate fetch-and-add mutex 408
B.4 Improved fetch-and-add mutex 410
B.5 Locker operations 412
B.6 Writable max register L L L oL 414
B.7 Solution to vector agreement problem 417
C.1 Counting to 2 with a splitter 429
D.1 Recruiting algorithm for Problem D.1.2. 435
D.2 Candidate algorithm for asynchronous agreement 437
D.3 Committee election using ABD 440
D.4 An alleged counter. Code for processi. 441
D.5 Implementation of a rock-paper-scissors object 443
E.1 Reporting Alice’s alarming messages 447

LIST OF ALGORITHMS xxiii

E.2
E.3
EA4
E.5

F.1
F.2
F.3
F4
F.5
F.6

G.1
G.2
G.3
G.4
G.5

H.1
H.2
H.3
H.4

J.1

Shutdown mechanism based on Chandy-Lamport 450
Consensus from totally-ordered partial broadcast 453
Peterson’s mutual exclusion algorithm using a counter 455
A 2-bounded counter 457
Computing eccentricity in a tree 468
Rotorarray 471
Two-process consensus using a rotor array 471
Max register modified to use a test-and-set bit 474
Randomized one-shot test-and-set for two processes 477
Splitter using one-bit registers 483
Counter algorithm for Problem G.4.2. 494
Two-process consensus using the object from Problem G.5.1 . 495
Implementation of a rotate register 498
Randomized two-process test-and-set for G.6.2 499
Mutex using a swap object and register 504
Resettable fetch-and-increment 515
Consensus using a lockable register 016
Timestamps with n > 3 and one Byzantine process. 518
Counter from set object, 519
Spambot as an I/O automaton 534

Preface

These are notes for the Yale course CPSC 465/565 Theory of Distributed
Systems. This document also incorporates the lecture schedule and assign-
ments, as well as some sample assignments from previous semesters. Because
this is a work in progress, it will be updated frequently over the course of
the semester.

The most recent version of these notes will be available at https:
//www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf. More stable
archival versions may be found at https://arxiv.org/abs/2001.04235.

Not all topics in the notes will be covered during a particular semester.
Some chapters have not been updated and are marked as possibly out of
date.

Much of the structure of the course follows Attiya and Welch’s Dis-
tributed Computing |], with some topics based on Lynch’s Distributed
Algorithms | | and additional readings from the research literature. In
most cases you'll find these materials contain much more detail than what is
presented here, so it may be better to consider this document a supplement
to them than to treat it as your primary source of information.

Acknowledgments

Many parts of these notes were improved by feedback from students taking
various versions of this course, as well as others who have kindly pointed
out errors in the notes after reading them online. Many of these suggestions,
sadly, went unrecorded, so I must apologize to the many students who
should be thanked here but whose names I didn’t keep track of in the past.
However, I can thank Mike Marmar and Hao Pan in particular for suggesting
improvements to some of the posted solutions, Guy Laden for suggesting
corrections to Figure 12.1, and Ali Mamdouh for pointing out an error in
the original presentation of Algorithm 5.2.

xxiv

https://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf
https://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf
https://arxiv.org/abs/2001.04235

Syllabus

Description

Models of asynchronous distributed computing systems. Fundamental con-
cepts of concurrency and synchronization, communication, reliability, topo-
logical and geometric constraints, time and space complexity, and distributed
algorithms.

Meeting times

Lectures are Mondays and Wednesdays, from 14:30 to 15:45 in SSS 114.

On-line course information

The lecture schedule, course notes, and all assignments can be found in
a single gigantic PDF file at https://www.cs.yale.edu/homes/aspnes/
classes/465/notes.pdf. You should probably bookmark this file, as it will
be updated frequently.

Staff

The instructor for the course is James Aspnes. Office: AKW 401. Email:
james.aspnes@gmail.com. URL: https://www.cs.yale.edu/homes/aspnes/.
The teaching fellows are:

o Weijie Wang weijie.wang@yale.edu.
e Peixin You peixin.you@yale.edu.

o Weiqgiang Zheng weigiang.zheng@yale.edu.

XXV

https://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf
https://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf
mailto:james.aspnes@gmail.com
https://www.cs.yale.edu/homes/aspnes/
mailto:weijie.wang@yale.edu
mailto:peixin.you@yale.edu
mailto:weiqiang.zheng@yale.edu

SYLLABUS XXVi

Office hours for all course staff can be found in the calendar on James
Aspnes’s web page.

Textbook

The primary course textbook is the lecture notes.

You may also find it helpful to look at the textbook on which the notes
were originally based:

Hagit Attiya and Jennifer Welch, Distributed Computing: Fundamentals,
Simulations, and Advanced Topics, second edition. Wiley, 2004. QA76.9.D5
AT75X 2004 (LC). ISBN 0471453242.

On-line version: https://dx.doi.org/10.1002/0471478210. (This may
not work outside Yale.)

Errata: http://www.cs.technion.ac.il/~hagit/DC/2nd-errata.html.

Course requirements

If you are taking the class as CPSC 465: Six graded assignments (100% of
the semester grade).

If you are taking the class as CPSC 565: Six graded assignments (85% of
the semester grade), plus a brief presentation (15%).

Each presentation will be a short description of the main results in a
relevant paper chosen in consultation with the instructor, and (circumstances
permitting) will be done live during one of the last few lecture slots. If
numbers and time permit, it may be possible to negotiate doing a presentation
even if you are taking the class as CPSC 465.

Use of outside help

Students are free to discuss homework problems and course material with
each other, and to consult with the instructor or a TF. Solutions handed in,
however, should be the student’s own work. If a student benefits substantially
from hints or solutions received from fellow students or from outside sources,
then the student should hand in their solution but acknowledge the outside
sources, and we will apportion credit accordingly. Using outside resources in
solving a problem is acceptable but plagiarism is not.

https://www.cs.yale.edu/homes/aspnes/
https://www.cs.yale.edu/homes/aspnes/
https://dx.doi.org/10.1002/0471478210
http://www.cs.technion.ac.il/~hagit/DC/2nd-errata.html

SYLLABUS xxvii

Questions and comments

Please feel free to send questions or comments on the class or anything
connected to it to the instructor at james.aspnes@gmail.com.

For questions about assignments, you may be able to get a faster re-
sponse using the course Discord server, invite link https://discord.gg/
tqnKMAugSG. Note that questions you ask there may be visible to other
students if sent to a public channel, so be careful not to broadcast your draft
solutions.

Late assignments

Late assignments will not be accepted without a Dean’s Excuse.

Academic integrity statement

The graduate school asks that the following statement be included in all
graduate course syllabi:

Academic integrity is a core institutional value at Yale. It
means, among other things, truth in presentation, diligence and
precision in citing works and ideas we have used, and acknowledg-
ing our collaborations with others. In view of our commitment
to maintaining the highest standards of academic integrity, the
Graduate School Code of Conduct specifically prohibits the fol-
lowing forms of behavior: cheating on examinations, problem
sets and all other forms of assessment; falsification and/or fabri-
cation of data; plagiarism, that is, the failure in a dissertation,
essay or other written exercise to acknowledge ideas, research,
or language taken from others; and multiple submission of the
same work without obtaining explicit written permission from
both instructors before the material is submitted. Students found
guilty of violations of academic integrity are subject to one or
more of the following penalties: written reprimand, probation,
suspension (noted on a student’s transcript) or dismissal (noted
on a student’s transcript).

mailto:james.aspnes@gmail.com
https://discord.gg/tqnKMAugSG
https://discord.gg/tqnKMAugSG

Lecture schedule

As always, the future is uncertain, so you should take parts of the schedule
that haven’t happened yet with a grain of salt. Unless otherwise specified,
readings refer to chapters or sections in the course notes.

2025-01-13 What distributed computing is and why we have a theory of
it. Basic models: message passing, shared memory, local interactions.
Configurations, events, executions, and schedules. The adversary. Basic
message-passing model. A simple flooding protocol. Safety properties
and invariants. Fairness, liveness properties, and progress measures.
Readings: Chapters 1 and 2; §3.1.1.

2025-01-15 Performance measures and time in message-passing systems.
Drawing message-passing executions. Broadcast and convergecast.
Synchronous vs. asynchronous message-passing. Distributed breadth-
first search. Readings: Rest of Chapter 2, Chapters 3 and 4.

2025-01-22 Leader election. Readings: Chapter 5.

2025-01-24 Causal ordering, logical clocks, and snapshots. Readings: Chap-
ter 6.

2025-01-27 Synchronizers. Readings: Chapter 7.

2025-01-29 Synchronous agreement with crash failures. Impossibility of
Byzantine agreement with n/3 faults. Readings: Chapter 8 (except
§8.3), Chapter 9, §10.1.2.

2025-02-03 Algorithms for synchronous Byzantine agreement: exponential
information gathering and phase king. Impossibility of asynchronous
agreement with one crash failure. Readings: §10.2, Chapter 11.

2025-02-05 Paxos. Readings: Chapter 12.

xxviii

LECTURE SCHEDULE xxix

2025-02-10 Failure detectors. Readings: Chapter 13.

2025-02-12 Permissionless systems: Sybil attacks, proof of work, and
blockchains. Readings: Chapter 15.

2025-02-17 Shared memory: model, linearizability, the ABD algorithm for
distributed shared memory. Readings: Chapters 16 and 17.

2025-02-19 Start of mutual exclusion: description of the problem, algo-
rithms for various models. Fast mutual exclusion using splitters. Read-
ings: Chapter 18 through §18.5.2.

2025-02-24 More mutual exclusion: RMR complexity and space complexity.
Readings: §§18.6 and 18.7.

2025-02-26 Wait-free computation and the wait-free hierarchy (levels 1, 2,
and 00). Readings: Chapter 19 through §19.2.3.

2025-03-03 More wait-free stufl: Intermediate levels of the wait-free hierar-
chy. Herlihy’s universal construction and helping. Readings: Rest of
Chapter 19.

2025-03-05 Atomic snapshots of shared memory. Atomic snapshots in
O(n?) individual steps using double collects with helping. Linear-time
snapshots via lattice agreement. Readings: Chapter 20.

2025-03-24 The Jayanti-Tan-Toueg lower bound and restricted-use objects.
Readings: Chapters 21 and 22.

2025-03-26 Randomized consensus: Why randomization helps; adopt-
commits, conciliators, and shared coins; types of adversaries; adaptive-
adversary consensus via voting; oblivious-adversary consensus via Chor-
Israeli-Li and variants. Readings: Chapter 24 through §24.6.

2025-03-31 Faster randomized test-and-set and consensus. Sifters. Ap-
plication to randomized renaming. Readings: Rest of Chapter 24;
§25.5.

2025-04-02 Renaming. Readings: Chapter 25.

2025-04-07 BG simulation of n process with f failures by f 4 1 processes
with f failures. Topological methods for testing solvability of asyn-
chronous decision tasks. Readings: Chapters 28 and 29.

LECTURE SCHEDULE XXX

2025-04-09 Self-stabilization and local computation: Dijkstra’s token ring
circulation algorithm, self-stabilizing synchronizers and BFS trees,
relation between local algorithms and self-stabilization. Readings:
Chapter 32.

2025-04-14 Distributed graph algorithms. The LOCAL and CONGEST
models. Local graph coloring. Readings: Chapter 33.

2025-04-16 Population protocols. Readings: Chapter 34.

2025-04-21 CPSC 565 student presentations. (Normal class time and
location.)

2025-04-22 CPSC 565 student presentations. (Zoom overflow session, start-
ing at 20:00. https://yale.zoom.us/j/220040380)

2025-04-23 CPSC 565 student presentations. (Normal class time and
location.)

https://yale.zoom.us/j/220040380

Chapter 1

Introduction

Distributed systems are characterized by their structure: a typical dis-
tributed system will consist of some large number of interacting devices that
each run their own programs but that are affected by receiving messages, or
observing shared-memory updates or the states of other devices. Examples
of distributed systems range from simple systems in which a single client
talks to a single server to huge amorphous networks like the Internet as a
whole.

As distributed systems get larger, it becomes harder and harder to
predict or understand their behavior. Part of the reason for this is that
we as programmers have not yet developed a standardized set of tools for
managing complexity (like subroutines or objects with narrow interfaces,
or even simple structured programming mechanisms like loops or if/then
statements) as are found in sequential programming. Part of the reason is
that large distributed systems bring with them large amounts of inherent
nondeterminism—unpredictable events like delays in message arrivals, the
sudden failure of components, or in extreme cases the nefarious actions of
faulty or malicious machines opposed to the goals of the system as a whole.
Because of the unpredictability and scale of large distributed systems, it can
often be difficult to test or simulate them adequately. Thus there is a need
for theoretical tools that allow us to prove properties of these systems that
will let us use them with confidence.

The first task of any theory of distributed systems is modeling: defining
a mathematical structure that abstracts out all relevant properties of a large
distributed system. There are many foundational models in the literature for
distributed systems, but for this class we will follow | | and use simple
automaton-based models.

CHAPTER 1. INTRODUCTION 2

What this means is that we model each process in the system as an
automaton that has some sort of local state, and model local computation
as a transition rule that tells us how to update this state in response to
various events. Depending on what kinds of system we are modeling, these
events might correspond to local computation, to delivery of a message by a
network, carrying out some operation on a shared memory, or even something
like a chemical reaction between two molecules. The transition rule for a
system specifies how the states of all processes involved in the event are
updated, based on their previous states. We can think of the transition
rule as an arbitrary mathematical function (or relation if the processes are
nondeterministic); this corresponds in programming terms to implementing
local computation by processes as a gigantic table lookup.

Obviously this is not how we program systems in practice. But what this
approach does is allow us to abstract away completely from how individual
processes work, and emphasize how all of the processes interact with each
other. This can lead to odd results: for example, it’s perfectly consistent
with this model for some process to be able to solve the halting problem, or
carry out arbitrarily complex calculations between receiving a message and
sending its response. A partial justification for this assumption is that in
practice, the multi-millisecond latencies in even reasonably fast networks are
eons in terms of local computation. And as with any assumption, we can
always modify it if it gets us into trouble.

1.1 Models

The global state consisting of all process states is called a configuration,
and we think of the system as a whole as passing from one global state
or configuration to another in response to each event. When this occurs
the processes participating in the event update their states, and the other
processes do nothing. This does not model concurrency directly; instead,
we interleave potentially concurrent events in some arbitrary way. The
advantage of this interleaving approach is that it gives us essentially the
same behavior as we would get if we modeled simultaneous events explicitly,
but still allows us to consider only one event at a time and use induction to
prove various properties of the sequence of configurations we might reach.
We will often use lowercase Greek letters for individual events or sequences
of events. Configurations are typically written as capital Latin letters (often
C). An execution of a schedule is an alternating sequence of configurations
and events Cyo1C102C5 . . ., where Cj41 is the configuration that results from

CHAPTER 1. INTRODUCTION 3

applying event o; to configuration C'. A schedule is a sequence of events
0109 ... from some execution. We say that an event ¢ is enabled in C if
this event can be carried out in C'; an example would be that the event that
we deliver a particular message in a message-passing system is enabled only
if that message has been sent and not yet delivered. When o is enabled in
C, it is sometime convenient to write C'o for the configuration that results
from applying o to C.

What events are available, and what effects they have, will depend
on what kind of model we are considering. We may also have additional
constraints on what kinds of schedules are admissible, which restricts the
schedules under consideration to those that have certain desirable properties
(say, every message that is sent is eventually delivered). There are many
models in the distributed computing literature, which can be divided into a
handful of broad categories:

o Message passing models (which we will cover in Part I) correspond
to systems where processes communicate by sending messages through
a network. In synchronous message-passing, every process sends
out messages at time ¢ that are delivered at time ¢ + 1, at which point
more messages are sent out that are delivered at time ¢ 4+ 2, and so
on: the whole system runs in lockstep, marching forward in perfect
synchrony.! Such systems are difficult to build when the components
become too numerous or too widely dispersed, but they are often
easier to analyze than asynchronous systems, where messages are
only delivered eventually after some unknown delay. Variants on these
models include semi-synchronous systems, where message delays are
unpredictable but bounded, and various sorts of timed systems. Further
variations come from restricting which processes can communicate with
which others, by allowing various sorts of failures: crash failures
that stop a process dead, Byzantine failures that turn a process
evil, or omission failures that drop messages in transit. Or—on the
helpful side—we may supply additional tools like failure detectors
(Chapter 13) or randomization (Chapter 24).

o Shared-memory models (Part II) correspond to systems where pro-
cesses communicate by executing operations on shared objects

In an interleaving model, these apparently simultaneous events are still recorded one
at a time. What makes the system synchronous is that we demand that, in any admissible
schedule, all n events for time ¢t occur as a sequential block, followed by all n events for
time ¢t + 1, and so on.

CHAPTER 1. INTRODUCTION 4

In the simplest case, the objects are simple memory cells supporting
read and write operations. These are called atomic registers. But
in general, the objects could be more complex hardware primitives
like compare-and-swap (§19.2.3), load-linked /store-conditional
(§19.2.3), atomic queues, or even more exotic objects from the seldom-
visited theoretical depths.

Practical shared-memory systems may be implemented as distributed
shared-memory (Chapter 17) on top of a message-passing system.
This gives an alternative approach to designing message-passing systems
if it turns out that shared memory is easier to use for a particular
problem.

Like message-passing systems, shared-memory systems must also deal
with issues of asynchrony and failures, both in the processes and in the
shared objects.

Realistic shared-memory systems have additional complications, in that
modern CPUs allow out-of-order execution in the absence of special
(and expensive) operations called fences or memory barriers.|]
We will effectively be assuming that our shared-memory code is liberally
sprinkled with these operations so that nothing surprising happens,
but this is not always true of real production code, and indeed there is
work in the theory of distributed computing literature on algorithms
that don’t require unlimited use of memory barriers.

e A third family of models has no communication mechanism indepen-
dent of the processes. Instead, the processes may directly observe
the states of other processes. These models are used in analyzing
self-stabilization, for some biologically inspired systems, and
for computation by population protocols or chemical reaction
networks. We will discuss some of this work in Part III.

e Other specialized models emphasize particular details of distributed
systems, such as the labeled-graph models used for analyzing routing or
the topological models used to give a very high-level picture of various
distributed decision problems (see Chapter 29).

We’ll see many of these at some point in this course, and examine which
of them can simulate each other under various conditions.

CHAPTER 1. INTRODUCTION)

1.2 Properties

Properties we might want to prove about a system include:

o Safety properties, of the form “nothing bad ever happens” or, more
precisely, “there are no bad reachable configurations.” These include
things like “at most one of the traffic lights at the intersection of Busy
Road and Main Street is ever green” or “every value read from a counter
equals the number of preceding increment operations.” Such properties
are typically proved using an , a property of configurations that is true
initially and that is preserved by all transitions (this is essentially a
disguised induction proof).

e Liveness properties, of the form “something good eventually happens.”
An example might be “my email is eventually either delivered or
returned to me.” These are not properties of particular states (I might
unhappily await the eventual delivery of my email for decades without
violating the liveness property just described), but of executions, where
the property must hold starting at some finite time. Liveness properties
are generally proved either from other liveness properties (e.g., “all
messages in this message-passing system are eventually delivered”)
or from a combination of such properties and some sort of timer
argument where some progress metric improves with every transition
and guarantees the desirable state when it reaches some bound (also a
disguised induction proof).

o Fairness properties are a strong kind of liveness property of the form
“something good eventually happens to everybody.” Such properties
exclude starvation, a situation where most of the kids are happily
chowing down at the orphanage (“some kid eventually eats something”
is a liveness property) but poor Oliver Twist is dying in the corner for
lack of gruel.

e Simulations show how to build one kind of system from another,
such as a reliable message-passing system built on top of an unreliable
system (TCP |]), a shared-memory system built on top of a
message-passing system (distributed shared memory—see Chapter 17),
or a synchronous system build on top of an asynchronous system
(synchronizers—see Chapter 7).

e Impossibility results describe things we can’t do. For example, the
classic Two Generals impossibility result (Chapter 8) says that it’s

CHAPTER 1. INTRODUCTION 6

impossible to guarantee agreement between two processes across an
unreliable message-passing channel if even a single message can be
lost. Other results characterize what problems can be solved if various
fractions of the processes are unreliable, or if asynchrony makes timing
assumptions impossible. These results, and similar lower bounds that
describe things we can’t do quickly, include some of the most technically
sophisticated results in distributed computing. They stand in contrast
to the situation with sequential computing, where the reliability and
predictability of the underlying hardware makes proving lower bounds
extremely difficult.

There are some basic proof techniques that we will see over and over
again in distributed computing.

For lower bound and impossibility proofs, the main tool is the in-
distinguishability argument. Here we construct two (or more) executions
in which some process has the same input and thus behaves the same way,
regardless of what algorithm it is running. This exploitation of process’s ig-
norance is what makes impossibility results possible in distributed computing
despite being notoriously difficult in most areas of computer science.’

For safety properties, statements that some bad outcome never occurs,
the main proof technique is to construct an invariant. An invariant is
essentially an induction hypothesis on reachable configurations of the system;
an invariant proof shows that the invariant holds in all initial configurations,
and that if it holds in some configuration, it holds in any configuration that
is reachable in one step.

Induction is also useful for proving termination and liveness properties,
statements that some good outcome occurs after a bounded amount of time.
Here we typically structure the induction hypothesis as a progress measure,
where we argue that each time unit causes the progress measure to advance
by some predictable amount, and that when the progress measure reaches a
particular value, our desired outcome is achieved.

2An exception might be lower bounds for data structures, which also rely on a process’s
ignorance.

Part 1

Message passing

Chapter 2

Model

Message passing models simulate networks. Because any interaction between
physically separated processors requires transmitting information from one
place to another, all distributed systems are, at a low enough level, message-
passing systems. We start by defining a formal model of these systems.

2.1 Basic message-passing model

We have a collection of n processes pj ...ps, each of which has a state
consisting of a state from from state set ;. We think of these processes
as nodes in a directed communication graph or network. The edges in
this graph are a collection of point-to-point channels or buffers b;;, one
for each pair of adjacent processes i and j, representing messages that have
been sent but that have not yet been delivered. Implicit in this definition is
that messages are point-to-point, with a single sender and recipient: if you
want broadcast, you have to build it yourself.

A configuration of the system consists of a vector of states, one for each
process and channel. The configuration of the system is updated by an event,
in which (1) zero or more messages in channels b;; are delivered to process p;,
removing them from b;;; (2) p; updates its state in response; and (3) zero or
more messages are added by p; to outgoing channels b;;. We generally think
of these events as delivery events when at least one message is delivered,
and as computation events when none are. An execution segment is a
sequence of alternating configurations and events Cp, ¢1, C1, ¢2, .. ., in which
each triple Cjp;4+1C;y1 is consistent with the transition rules for the event
®i+1, and the last element of the sequence (if any) is a configuration. If the
first configuration Cj is an initial configuration of the system, we have an

CHAPTER 2. MODEL 9

execution. A schedule is an execution with the configurations removed.

2.1.1 Formal details

Let P be the set of processes, () the set of process states, and M the set of
possible messages.

Each process p; has a state state; €). Each channel b;; has a state
buffer;; € P(M). We assume each process has a transition function
0:Q xP(M)— QxP(P x M) that maps tuples consisting of a state and
a set of incoming messages a new state and a set of recipients and messages
to be sent. An important feature of the transition function is that the
process’s behavior can’t depend on which of its previous messages have been
delivered or not. A delivery event del(i, A), where A = {(jx, my)}) removes
each message my, from b;;, updates state; according to d(state;, A), and adds
the outgoing messages specified to §(state;, A) to the appropriate channels.
A computation event comp(i) does the same thing, except that it applies
d(state;, 0).

Some implicit features in this definition:

e A process can’t tell when its outgoing messages are delivered, because
the channel states aren’t available as input to 9.

e Processes are deterministic: The next action of each process depends
only on its current state, and not on extrinsic variables like the phase
of the moon, coin-flips, etc. We may wish to relax this condition later
by allowing coin-flips; to do so, we will need to extend the model to
incorporate probabilities.

e It is possible to determine the accessible state of a process by looking
only at events that involve that process. Specifically, given a schedule
S, define the restriction S|i to be the subsequence consisting of all
comp(i) and del(i, A) events (ranging over all possible A). Since these
are the only events that affect the state of 7, and only the state of i is
needed to apply the transition function, we can compute the state of 4
looking only at S|i. In particular, this means that ¢ will have the same
accessible state after any two schedules S and S’ where S|i = S’|i, and
thus will take the same actions in both schedules. This is the basis for
indistinguishability proofs (§8.2), a central technique in obtaining
lower bounds and impossibility results.

Attiya and Welch [| use a different model in which communication
channels are not modeled separately from processes, but instead are baked

CHAPTER 2. MODEL 10

into processes as outbuf and inbuf variables. This leads to some oddities like
having to distinguish the accessible state of a process (which excludes the
outbufs) from the full state (which doesn’t). Our approach is close to that of
Lynch | |, in that we have separate automata representing processes and
communication channels. But since the resulting model produces essentially
the same executions, the exact details don’t really matter.'

2.1.2 Network structure

It may be the case that not all processes can communicate directly; if so,
we impose a network structure in the form of a directed graph, where i can
send a message to j if and only if there is an edge from ¢ to j in the graph.
Typically we assume that each process knows the identity of all its neighbors.

For some problems (e.g., in peer-to-peer systems or other overlay net-
works) it may be natural to assume that there is a fully-connected underlying
network but that we have a dynamic network on top of it, where processes
can only send to other processes that they have obtained the addresses of in
some way.

2.2 Asynchronous systems

In an asynchronous model, only minimal restrictions are placed on when
messages are delivered and when local computation occurs. A schedule is
said to be admissible if (a) there are infinitely many computation steps
for each process, and (b) every message is eventually delivered. (These are
fairness conditions.) The first condition (a) assumes that processes do not
explicitly terminate, which is the assumption used in [|; an alternative,
which we will use when convenient, is to assume that every process either
has infinitely many computation steps or reaches an explicit halting state.

!The late 1970s and early 1980s saw a lot of research on finding the “right” definition
of a distributed system, and some of the disputes from that era were hard fought. But in
the end, all the various proposed models turned out to be more or less equivalent, which
is not surprising since the authors were ultimately trying to represent the same intuitive
understanding of these systems. So most distributed computing papers now just use some
phrasing like “we consider the standard model of an asynchronous message-passing system”
and leave it to the reader to assume that this standard model is their favorite one.

An example of this trick in action is that you will never see del(i, A) or comp(i) again
after you finish reading this footnote.

CHAPTER 2. MODEL 11

2.2.1 Example: client-server computing

Almost every distributed system in practical use is based on client-server
interactions. Here one process, the client, sends a request to a second
process, the server, which in turn sends back a response. We can model
this interaction using our asynchronous message-passing model by describing
what the transition functions for the client and the server look like: see
Algorithms 2.1 and 2.2.

1 initially do

2 send request to server

3 upon receiving response do
4 L update state

Algorithm 2.1: Client-server computation: client code

1 upon receiving request do
2 L send response to client

Algorithm 2.2: Client-server computation: server code

The interpretation of Algorithm 2.1 is that the client sends request (by
adding it to its outbuf) in its very first computation event (after which it does
nothing). The interpretation of Algorithm 2.2 is that in any computation
event where the server observes request in its inbuf, it sends response.

We want to claim that the client eventually receives response in any
admissible execution. To prove this, observe that:

1. After finitely many steps, the client carries out a computation event.
This computation event puts request in the message buffer between the
client and server.

2. After finitely many more steps, a delivery event occurs that delivers
request to the server. This causes the server to send response.

3. After finitely many more steps, a delivery event delivers response to
the client, causing it to process response.

Each step of the proof is justified by the constraints on admissible
executions. If we could run for infinitely many steps without a particular

CHAPTER 2. MODEL 12

process doing a computation event or a particular message being delivered,
we’d violate those constraints.

Most of the time we will not attempt to prove the correctness of a
protocol at quite this level of tedious detail. But if you are only interested in
distributed algorithms that people actually use, you have now seen a proof
of correctness for 99.9% of them, and do not need to read any further.

2.3 Synchronous systems

A synchronous message-passing system is exactly like an asynchronous
system, except we insist that the schedule consists of alternating phases
in which (a) every process executes a computation step (that may send
messages), and (b) all messages are delivered while none are sent.”? The
combination of a computation phase and a delivery phase is called a round.
Synchronous systems are effectively those in which all processes execute in
lock-step, and there is no timing uncertainty. This makes protocols much
easier to design, but makes them less resistant to real-world timing oddities.
Sometimes this can be dealt with by applying a synchronizer (Chapter 7),
which transforms synchronous protocols into asynchronous protocols at a
small cost in complexity.

2.4 Drawing message-passing executions

Though formally we can describe an execution in a message-passing system
as a long list of events, this doesn’t help much with visualizing the underlying
communication pattern. So it can sometimes be helpful to use a more visual
representation of a message-passing execution that shows how information
flows through the system.

A typical example is given in Figure 2.1. In this picture, time flows
from left to right, and each process is represented by a horizontal line. This
convention reflects the fact that processes have memory, so any information
available to a process at some time t is also available at all times ¢’ > ¢.
Events are represented by marked points on these lines, and messages are
represented by diagonal lines between events. The resulting picture looks like
a collection of world lines as used in physics to illustrate the path taken
by various objects through spacetime.

2Formally, the delivery phase consists of n separate delivery events, in any order, that
between them clean out all the channels.

CHAPTER 2. MODEL 13

b3

b2

b1
Time —

Figure 2.1: Asynchronous message-passing execution. Time flows left-to-
right. Horizontal lines represent processes. Nodes represent events. Diagonal
edges between events represent messages. In this execution, p; executes a
computation event that sends messages to pe and ps. When py receives this
message, it sends messages to p; and p3. Later, ps executes a computation
event that sends a second message to p;. Because the system is asynchronous,
there is no guarantee that messages arrive in the same order they are sent.

Pictures like Figure 2.1 can be helpful for illustrating the various con-
straints we might put on message delivery. In Figure 2.1, the system is
completely asynchronous: messages can be delivered in any order, even if
sent between the same processes. If we run the same protocol under stronger
assumptions, we will get different communication patterns.

For example, Figure 2.2 shows an execution that is still asynchronous but
that assumes FIFO (first-in first-out) channels. A FIFO channel from some
process p to another process g guarantees that ¢ receives messages in the
same order that p sends them (this can be simulated by a non-FIFO channel
by adding a sequence number to each message, and queuing messages at
the receiver until all previous messages have been processed).

If we go as far as to assume synchrony, we get the execution in Figure 2.3.
Now all messages take exactly one time unit to arrive, and computation
events follow each other in lockstep.

2.5 Complexity measures

There is no explicit notion of time in the asynchronous model, but we can
define a time measure by adopting the rule that every message is delivered
and processed at most 1 time unit after it is sent. Formally, we assign time
0 to the first event, and assign the largest time we can to each subsequent
event, subject to the constraints that (a) no event is assigned a larger time
than any later event; (b) if a message m from i to j is created by an event at

CHAPTER 2. MODEL 14

b3

D2

b1

Time —

Figure 2.2: Asynchronous message-passing execution with FIFO channels.
Multiple messages from one process to another are now guaranteed to be
delivered in the order they are sent.

P3 o / °
N ’ \O
P O

Time —

Figure 2.3: Synchronous message-passing execution. All messages are now
delivered in exactly one time unit, and computation events immediately
follow the delivery events.

CHAPTER 2. MODEL 15

b3
1
b2
1
b1
0 2 2
Time —

Figure 2.4: Asynchronous message-passing execution with times.

time ¢, then the time for the delivery of m from ¢ to j is no greater than ¢+ 1,
and (c) any computation step is assigned a time no later than the previous
event at the same process (or 0 if the process has no previous events). This
is consistent with an assumption that message propagation takes at most 1
time unit and that local computation takes 0 time units.

Another way to look at this is that it is a definition of a time unit in terms
of maximum message delay together with an assumption that message delays
dominate the cost of the computation. This last assumption is pretty much
always true for real-world networks with any non-trivial physical separation
between components, thanks to speed of light limitations.

An example of an execution annotated with times in this way is given in
Figure 2.4.

The time complexity of a protocol (that terminates) is the time of the
last event at any process.

Note that looking at step complexity, the number of computation
events involving either a particular process (individual step complexity)
or all processes (total step complexity) is not useful in the asynchronous
model, because a process may be scheduled to carry out arbitrarily many
computation steps without any of its incoming or outgoing messages being
delivered, which probably means that it won’t be making any progress. These
complexity measures will be more useful when we look at shared-memory
models (Part IT).

For a protocol that terminates, the message complexity is the total
number of messages sent. We can also look at message length in bits, total
bits sent, and so on, if these are useful for distinguishing our new improved
protocol from last year’s model.

For synchronous systems, time complexity becomes just the number of
rounds until a protocol finishes. Message complexity is still only loosely
connected to time complexity; for example, there are synchronous leader

CHAPTER 2. MODEL 16

election (Chapter 5) algorithms that, by virtue of grossly abusing the
synchrony assumption, have unbounded time complexity but very low message

complexity.

Chapter 3

Broadcast and convergecast

Here we’ll describe protocols for propagating information throughout a
network from some central initiator and gathering information back to that
same initiator. We do this both because the algorithms are actually useful
and because they illustrate some of the issues that come up with keeping
time complexity down in an asynchronous message-passing system.

3.1 Flooding

Flooding is about the simplest of all distributed algorithms. It’s dumb and
expensive, but easy to implement, and gives you both a broadcast mechanism
and a way to build rooted spanning trees.

We'll give a fairly simple presentation of flooding roughly following
Chapter 2 of |]. For more recent work on flooding see | .

3.1.1 Basic algorithm

The basic flooding algorithm is shown in Algorithm 3.1. The idea is that
when a process receives a message M, it forwards it to all of its neighbors
unless it has seen it before, which it tracks using a single bit seen-message.

Theorem 3.1.1. Every process receives M after at most D time and at
most |E| messages, where D is the diameter of the network and E is the set
of (directed) edges in the network.

Proof. Message complexity: Each process only sends M to its neighbors
once, so each edge carries at most one copy of M.

Time complexity: By induction on d(root, v), we’ll show that each v sets
seen-message to true no later than time d(root,v) < D. The base case is

17

CHAPTER 3. BROADCAST AND CONVERGECAST 18

initially do
if pid = root then
seen-message < true
send M to all neighbors
else

L seen-message < false

7 upon receiving M do
if seen-message = false then
L seen-message < true

10 send M to all neighbors

Algorithm 3.1: Basic flooding algorithm

when v = root, d(root,v) = 0; here root does its initial computation event
at time 0. For the induction step, Let d(root,v) = k > 0. Then v has a
neighbor u such that d(root,u) = k — 1. By the induction hypothesis, u sets
seen-message to true no later than time k£ — 1. From the code, u then sends
M to all of its neighbors, including v; M arrives at v no later than time
(k—1)+1=k. O

Note that the time complexity proof also demonstrates correctness: every
process receives M at least once.

As written, this is a one-shot algorithm: you can’t broadcast a second
message even if you wanted to. The obvious fix is for each process to
remember which messages it has seen and only forward the new ones (which
costs memory) and/or to add a time-to-live (TTL) field on each message
that drops by one each time it is forwarded (which may cost extra messages
and possibly prevents complete broadcast if the initial TTL is too small).
The latter method is what was used for searching in http://en.wikipedia.
org/wiki/Gnutella, an early peer-to-peer system. An interesting property
of Gnutella was that since the application of flooding was to search for huge
(multiple MiB) files using tiny (~ 100 byte) query messages, the actual bit
complexity of the flooding algorithm was not especially large relative to the
bit complexity of sending any file that was found.

We can optimize the algorithm slightly by not sending M back to the
node it came from; this will slightly reduce the message complexity but
makes the proof a sentence or two longer. It’s all a question of what you
want to optimize.

http://en.wikipedia.org/wiki/Gnutella
http://en.wikipedia.org/wiki/Gnutella

CHAPTER 3. BROADCAST AND CONVERGECAST 19

3.1.2 Adding parent pointers

To build a spanning tree, modify Algorithm 3.1 by having each process
remember who it first received M from. The revised code is given as
Algorithm 3.2

1 initially do

2 if pid = root then

3 parent < root

4 send M to all neighbors
5 else

6 | parent + L

7 upon receiving M from p do
8 if parent = 1 then

9 parent <—p
10
11 send M to all neighbors

Algorithm 3.2: Flooding with parent pointers

We can easily prove that Algorithm 3.2 has the same termination proper-
ties as Algorithm 3.1 by observing that if we map parent to seen-message by
the rule 1 — false, anything else — true, then we have the same algorithm.
We would like one additional property, which is that when the algorithm
quiesces (has no outstanding messages), the set of parent pointers form a
rooted spanning tree. For this we use induction on time:

Lemma 3.1.2. At any time during the execution of Algorithm 3.2, the
following invariant holds:

1. Ifu.parent # 1, then u.parent.parent # 1 and following parent pointers
gives a path from u to root.

2. If there is a message M in transit from u to v, then u.parent # 1.

Proof. We have to show that the invariant is true initially, and that any
event preserves the invariant. We’ll assume that all events are delivery events
for a single message, since we can have the algorithm treat a multi-message
delivery event as a sequence of single-message delivery events.

We'll treat the initial configuration as the result of the root setting its
parent to itself and sending messages to all its neighbors. It’s not hard to
verify that the invariant holds in the resulting configuration.

CHAPTER 3. BROADCAST AND CONVERGECAST 20

For a delivery event, let v receive M from u. There are two cases: if
v.parent is already non-null, the only state change is that M is no longer in
transit, so we don’t care about w.parent any more. If v.parent is null, then

1. v.parent is set to u. This triggers the first case of the invariant. From
the induction hypothesis we have that u.parent % | and that there
exists a path from u to the root. Then v.parent.parent = u.parent # L
and the path from v — u — root gives the path from v.

2. Message M is sent to all of v’s neighbors. Because M is now in transit
from v, we need v.parent # L; but we just set it to u, so we are happy.

O]

At the end of the algorithm, the invariant shows that every process has a
path to the root, i.e., that the graph represented by the parent pointers is
connected. Since this graph has exactly |V| — 1 edges (if we don’t count the
self-loop at the root), it’s a tree.

Though we get a spanning tree at the end, we may not get a very good
spanning tree. For example, suppose our friend the adversary picks some
Hamiltonian path through the network and delivers messages along this
path very quickly while delaying all other messages for the full allowed 1
time unit. Then the resulting spanning tree will have depth |V| — 1, which
might be much worse than D. If we want the shallowest possible spanning
tree, we need to do something more sophisticated: see the discussion of
distributed breadth-first search in Chapter 4. However, we may be
happy with the tree we get from simple flooding: if the message delay on
each link is consistent, then it’s not hard to prove that we in fact get a
shortest-path tree. As a special case, flooding always produces a BFS tree in
the synchronous model.

Note also that while the algorithm works in a directed graph, the parent
pointers may not be very useful if links aren’t two-way.

3.1.3 Identifying children

By adding acknowledgment messages, it is possible for each node to learn
exactly which of its neighbors become its children. Because the system is
asynchronous, this requires each neighbor to inform the node both whether it
is a child (using an ack message) and when it is not (using a nack message);
only upon receiving one or the other of these messages will the node know
that it’s not going to receive the other.

The modified code is given in Algorithm 3.3

CHAPTER 3. BROADCAST AND CONVERGECAST

21

10
11
12
13
14
15
16
17

18

19

20
21

initially do

nonChildren < ()

if pid = root then

parent < root

children < {root}

send M to all neighbors
else

parent <— L

children < ()

upon receiving M from p do
if parent = | then
parent < p

send ack to p
send M to all neighbors
else
L send nack to p

upon receiving ack from p do
L children < children U {p}

upon receiving nack from p do
L nonChildren < nonChildren U {p}

Algorithm 3.3: Flooding tracking children

CHAPTER 3. BROADCAST AND CONVERGECAST 22

If we take an execution of Algorithm 3.3 and remove all the ack and nack
messages, we get an execution of Algorithm 3.2. So all of the properties that
we proved for Algorithm 3.2 continue to hold.

For the improved algorithm, we’d like to show that when the algorithm
quiesces, every node p; has a list of all the nodes p; for which p;.parent = p;
in p;.children and a list of all the neighbors p; for which p;.parent # p; in
p;.nonChildren.

We can do this by showing a mix of safety and liveness properties:

1. (Safety) If p; € p;.children, then p;.parent = p;. Proof sketch: Verify the
strengthening of this property that adds ack € bj; implies p;.parent = p;
is an invariant.

2. (Safety) If p; € p;.nonChildren, then p;.parent & {p;, L}. Proof sketch:
Verify the strengthening of this property that adds nack € b;; implies
pj.parent & {p;, L} is an invariant.

3. (Liveness) Eventually, every neighbor of p; appears in p;.children U
pi.nonChildren. Proof: We have previously shown that every node p;
eventually sets p;.parent # (). From the code we have that whenever
a node does this, it sends M to all neighbors. For each neighbor p;,
observe that upon receiving M it responds with exactly one of ack
or nack. When this message is eventually delivered, p; is added to
p;-children U p;.nonChildren.

Since we assume that each p; knows which nodes are its neighbors, we
can use the property that p;.children U p;.nonChildren includes all neighbors
as a kind of local termination test. This can be handy if we want to use
flooding as the first step in some larger protocol.

3.2 Convergecast

A convergecast is the inverse of broadcast: instead of a message propagating
down from a single root to all nodes, data is collected from outlying nodes
to the root. Typically some function is applied to the incoming data at
each node to summarize it, with the goal being that eventually the root
obtains this function of all the data in the entire system. (Examples would
be counting all the nodes or taking an average of input values at all the
nodes.)

A basic convergecast algorithm is given in Algorithm 3.4; it propagates
information up through a previously-computed spanning tree.

CHAPTER 3. BROADCAST AND CONVERGECAST 23

[uny

© ® N o ok

10
11

initially do
if I am a leaf then
L send input to parent

upon receiving M from c do
append (¢, M) to buffer
if buffer contains messages from all my children then
v < f(buffer,input)
if pid = root then
‘ return v
else
L send v to parent

Algorithm 3.4: Convergecast

The details of what is being computed depend on the choice of f:

e If input =1 for all nodes and f is sum, then we count the number of
nodes in the system.

e If input is arbitrary and f is sum, then we get a total of all the input
values.

e Combining the above lets us compute averages, by dividing the total
of all the inputs by the node count.

o If f just concatenates its arguments, the root ends up with a vector of
all the input values.

Running time is bounded by the depth of the tree: we can prove by

induction that any node at height h (height is length of the longest path from
this node to some leaf) sends a message by time h at the latest. Message
complexity is exactly n — 1, where n is the number of nodes; this is easily
shown by observing that each node except the root sends exactly one message.

Proving that convergecast returns the correct value is similarly done by

induction on depth: if each child of some node computes a correct value, then
that node will compute f applied to these values and its own input. What
the result of this computation is will, of course, depend on f; it generally
makes the most sense when f represents some associative operation (as in
the examples above).

CHAPTER 3. BROADCAST AND CONVERGECAST 24

3.3 Flooding and convergecast together

A natural way to build the spanning tree used by convergecast is to run
flooding first. This also provides a mechanism for letting the leaves know
that they are leaves and initiating the protocol. The combined algorithm is
shown as Algorithm 3.5.

initially do

children < ()

nonChildren < ()

if pid = root then

parent < root

send init to all neighbors

else
L parent < L

9 upon receiving init from p do
10 if parent = 1 then

11 parent <—p
12 send init to all neighbors
13 else

14 L send nack to p

15 upon receiving nack from p do
16 L nonChildren < nonChildren U {p}

17 as soon as children U nonChildren includes all my neighbors do
18 v < f(buffer, input)
19 if pid = root then

20 ‘ return v
21 else
22 L send ack(v) to parent

23 upon receiving ack(v) from k do

24 add (k,v) to buffer
25 add £ to children

Algorithm 3.5: Flooding and convergecast combined

However, this may lead to very bad time complexity for the convergecast
stage. Consider a wheel-shaped network consisting of one central node pg
connected to nodes p1,p2, ..., pn—1, where each p; is also connected to p;1.

CHAPTER 3. BROADCAST AND CONVERGECAST 25

By carefully arranging for the p;p;11 links to run much faster than the pop;
links, the adversary can make flooding build a tree that consists of a single
path popip2...pn—1, even though the diameter of the network is only 2.
While it only takes 2 time units to build this tree (because every node is only
one hop away from the initiator), when we run convergecast we suddenly
find that the previously-speedy links are now running only at the guaranteed
< 1 time unit per hop rate, meaning that convergecast takes n — 1 time.

This may be less of an issue in real networks, where the latency of links
may be more uniform over time, meaning that a deep tree of fast links is
still likely to be fast when we reach the convergecast step. But in the worst
case we will need to be more clever about building the tree. We show how
to do this in Chapter 4.

Chapter 4

Distributed breadth-first
search

Here we describe some algorithms for building a breadth-first search
(BFS) tree in a network. All assume that there is a designated initiator
node that starts the algorithm. At the end of the execution, each node except
the initiator has a parent pointer and every node has a list of children. These
are consistent and define a BFS tree: nodes at distance k from the initiator
appear at level k of the tree.

In a synchronous network, flooding (§3.1) solves BFS; see | ,
Lemma 2.8, page 21] or | , §4.2]. So the interesting case is when
the network is asynchronous.

In an asynchronous network, the complication is that we can no longer
rely on synchronous communication to reach all nodes at distance d at the
same time. So instead we need to keep track of distances explicitly, or
possibly enforce some approximation to synchrony in the algorithm. (A
general version of this last approach is to apply a synchronizer to one of the
synchronous algorithms using a synchronizer; see Chapter 7.)

To keep things simple, we’ll drop the requirement that a parent learn
the IDs of its children, since this can be tacked on as a separate notification
protocol, in which each child just sends one message to its parent once it
figures out who its parent is.

4.1 Using explicit distances

This is a translation of the AsynchBFS automaton from | , §15.4]. Tt’s
a very simple algorithm, closely related to Dijkstra’s algorithm for shortest

26

CHAPTER 4. DISTRIBUTED BREADTH-FIRST SEARCH 27

paths, but there is otherwise no particular reason to use it. Not only does
it not detect termination, but it is also dominated by the O(D) time and
O(DFE) message complexity synchronizer-based algorithm described in §4.3.
(Here D is the diameter of the network, the maximum distance between
any two nodes.)

The idea is to run flooding with distances attached. Each node sets its
distance to 1 plus the smallest distance sent by its neighbors and its parent
to the neighbor supplying that smallest distance. A node notifies all its
neighbors of its new distance whenever its distance changes.

Pseudocode is given in Algorithm 4.1

1 initially do

2 if pid = initiator then

3 distance < 0

4 send distance to all neighbors
5 else

6 L distance < oo

7 upon receiving d from p do
8 if d + 1 < distance then

9 distance <—d + 1
10 parent <—p
11 send distance to all neighbors
Algorithm 4.1: AsynchBFS algorithm (from | 1)
(See | | for a precondition-effect description, which also includes

code for buffering outgoing messages.)

The claim is that after at most O(V E) messages and O(D) time, all
distance values are equal to the length of the shortest path from the initiator
to the appropriate node. The proof is by showing the following;:

Lemma 4.1.1. The variable distance, is always the length of some path
from initiator to p, and any message sent by p is also the length of some
path from initiator to p.

Proof. The second part follows from the first; any message sent equals p’s
current value of distance. For the first part, suppose p updates its distance;
then it sets it to one more than the length of some path from initiator to p/,
which is the length of that same path extended by adding the pp’ edge. [

CHAPTER 4. DISTRIBUTED BREADTH-FIRST SEARCH 28

We also need a liveness argument that says that distance, = d(initiator, p)
no later than time d(initiator, p). Note that we can’t detect when distance
stabilizes to the correct value without a lot of additional work.

In | |, there’s an extra |V term in the time complexity that comes
from message pile-ups, since the model used there only allows one incoming
message to be processed per time units (the model in | | doesn’t have
this restriction). The trick to arranging this to happen often is to build a
graph where node 1 is connected to nodes 2 and 3, node 2 to 3 and 4, node
3 to 4 and 5, etc. This allows us to quickly generate many paths of distinct
lengths from node 1 to node k, which produces k outgoing messages from
node k. It may be that a more clever analysis can avoid this blowup, by
showing that it only happens in a few places.

4.2 Using layering

This approach is used in the Layered BF'S algorithm in |], which is due
to Gallager [].

Here we run a sequence of up to |V|] instances of the simple algorithm
with a distance bound on each: instead of sending out just 0, the initiator
sends out (0, bound), where bound is initially 1 and increases at each phase.
A process only sends out its improved distance if it is less than bound.

Each phase of the algorithm constructs a partial BFS tree that contains
only those nodes within distance bound of the root. This tree is used to
report back to the root when the phase is complete. For the following phase,
notification of the increase in bound increase is distributed only through
the partial BFS tree constructed so far. With some effort, it is possible to
prove that in a bidirectional network that this approach guarantees that
each edge is only probed once with a new distance (since distance-1 nodes
are recruited before distance-2 nodes and so on), and the bound-update and
acknowledgment messages contribute at most |V| messages per phase. So we
get O(E + VD) total messages. But the time complexity is bad: O(D?) in
the worst case.

4.3 Using local synchronization

The reason the layering algorithm takes so long is that at each phase we
have to phone all the way back up the tree to the initiator to get permission
to go on to the next phase. We need to do this to make sure that a node
is only recruited into the tree once: otherwise we can get pile-ups on the

CHAPTER 4. DISTRIBUTED BREADTH-FIRST SEARCH 29

channels as in the simple algorithm. But we don’t necessarily need to do this
globally. Instead, we’ll require each node at distance d to delay sending out
a recruiting message until it has confirmed that none of its neighbors will be
sending it a smaller distance. We do this by having two classes of messages:'

o exactly(d): “I know that my distance is d.”

o more-than(d): “I know that my distance is > d.”
The rules for sending these messages for a non-initiator are:

1. I can send exactly(d) as soon as I have received exactly(d — 1) from at
least one neighbor and more-than(d — 2) from all neighbors.

2. I can send more-than(d) if d = 0 or as soon as I have received more-than(d—
1) from all neighbors.

The initiator sends exactly(0) to all neighbors at the start of the protocol
(these are the only messages the initiator sends).

My distance will be the unique distance that I am allowed to send in an
exactly(d) messages. Note that this algorithm terminates in the sense that
every node learns its distance at some finite time.

If you read the discussion of synchronizers in Chapter 7, this algorithm
essentially corresponds to building the alpha synchronizer into the syn-
chronous BFS algorithm, just as the layered model builds in the beta
synchronizer. See | , §11.3.2] for a discussion of BFS using synchro-
nizers. The original approach of applying synchronizers to get BF'S is due to
Awerbuch |].

We now show correctness. Under the assumption that local computation
takes zero time and message delivery takes at most 1 time unit, we’ll show
that if d(initiator, p) = d, (a) p sends more-than(d’) for any d’ < d by time
d', (b) p sends exactly(d) by time d, (¢) p never sends more-than(d’) for any
d > d, and (d) p never sends exactly(d') for any d' # d. For parts (c¢) and
(d) we use induction on d’; for (a) and (b), induction on time. This is not
terribly surprising: (c) and (d) are safety properties, so we don’t need to
talk about time. But (a) and (b) are liveness properties so time comes in.

Let’s start with (c) and (d). The base case is that the initiator never
sends any more-than messages at all, and so never sends more-than(0), and

In an earlier version of these notes, these messages where called distance(d) and
not-distance(d); the more self-explanatory exactly and more-than terminology is taken from

[J-

CHAPTER 4. DISTRIBUTED BREADTH-FIRST SEARCH 30

any non-initiator never sends exactly(0). For larger d’, observe that if a
non-initiator p sends more-than(d’) for d’ > d, it must first have received
more-than(d’ — 1) from all neighbors, including some neighbor p’ at distance
d—1. But the induction hypothesis tells us that p’ can’t send more-than(d'—1)
for d —1 > d — 1. Similarly, to send exactly(d') for d < d, p must first
have received exactly(d’ — 1) from some neighbor p’, but again p’ must be at
distance at least d — 1 from the initiator and so can’t send this message either.
In the other direction, to send exactly(d') for d’ > d, p must first receive
more-than(d’ —2) from this closer neighbor p/, but then d' =2 >d—-2>d—1
so more-than(d’ — 2) is not sent by p'.

Now for (a) and (b). The base case is that the initiator sends exactly(0)
to all nodes at time 0, giving (a), and there is no more-than(d’) with d’ < 0
for it to send, giving (b) vacuously; and any non-initiator sends more-than(0)
immediately. At time ¢ + 1, we have that (a) more-than(t) was sent by any
node at distance ¢ + 1 or greater by time ¢ and (b) exactly(t) was sent by
any node at distance t by time t; so for any node at distance t + 2 we
send more-than(¢ + 1) no later than time ¢ + 1 (because we already received
more-than(t) from all our neighbors) and for any node at distance ¢t + 1 we
send exactly(t 4+ 1) no later than time ¢ + 1 (because we received all the
preconditions for doing so by this time).

Message complexity: A node at distance d sends more-than(d’) for all
0 < d < d and exactly(d) and no other messages. So we have message
complexity bounded by |E| - D in the worst case. Note that this is gives a
bound of O(DE), which is slightly worse than the O(FE 4+ DV') bound for
the layered algorithm.

Time complexity: It’s immediate from (a) and (b) that all messages that
are sent are sent by time D, and indeed that any node p learns its distance
at time d(initiator,p). So we have optimal time complexity, at the cost of
higher message complexity. I don’t know if this trade-off is necessary, or if a
more sophisticated algorithm could optimize both.

Our time proof assumes that messages don’t pile up on edges, or that
such pile-ups don’t affect delivery time (this is the default assumption used
in |])- A more sophisticated proof could remove this assumption.

One downside of this algorithm is that it has to be started simultaneously
at all nodes. Alternatively, we could trigger “time 0” at each node by
a broadcast from the initiator, using the usual asynchronous broadcast
algorithm; this would give us a BFS tree in O(|F| - D) messages (since the
O(|E|) messages of the broadcast disappear into the constant) and 2D time.
The analysis of time goes through as before, except that the starting time 0
becomes the time at which the last node in the system is woken up by the

CHAPTER 4. DISTRIBUTED BREADTH-FIRST SEARCH 31

broadcast. Further optimizations are possible; see, for example, the paper of
Boulinier et al. | |, which shows how to run the same algorithm with

constant-size messages.

Chapter 5

Leader election

(See also | , Chapter 3] or [, Chapter 3].)

The idea of leader election is that we want a single process to declare itself
leader and the others to declare themselves non-leaders. The non-leaders
may or may not learn the identity of the leader as part of the protocol; if not,
we can usually add an extra phase where the leader broadcasts its identity
to the others. The leader should be unique in the sense that there is exactly
one process that ever decides it is the leader. This excludes protocols that
might accidentally elect two or more leaders even if we eventually remove
the extras.

Traditionally, leader election has been used as a way to study the effects
of symmetry, and many leader election algorithms are designed for networks
in the form of a ring. These networks consist of a sequence of processes
D0, P1,---,Pn—1, With each process p; able to send messages only to its
immediate neighbors p;—; and p;41 (mod n). Some algorithms work in the
weaker model of a unidirectional ring where p; can only send messages to
Pi+1.

A classic result of Angluin | | shows that leader election in a ring is
impossible if the processes do not start with distinct identities. The proof is
that if the processes run synchronously, they all receive and send the same
messages in each round, update their state identically, and in the end all put
on the crown at the same time. We discuss this result in §5.1.

With ordered identities, a simple algorithm due to Le Lann [| and
Chang and Roberts [] solves the problem in O(n) time with O(n?)
messages: [send out my own ID clockwise and forward any ID bigger than
mine. If I get my ID back, I win. This works with a unidirectional ring,
doesn’t require synchrony, and never produces multiple leaders. See §5.2.1.

32

CHAPTER 5. LEADER ELECTION 33

On a bidirectional ring we can get O(nlogn) messages and O(n) time
with power-of-2 probing, using an algorithm of Hirschberg and Sinclair [].
See §5.2.2.

A sneaky trick: if we have synchronized starting and known n, and IDs
that are natural numbers (or that can be converted to natural numbers),
we can have process with ID ¢ wait until round 7 - n to start sending its 1D
around, and have everybody else drop out when they receive it; this way
only one process (the one with smallest ID) ever starts a message and only n
messages are sent. But the running time can be pretty bad. If we are willing
to do a bit more tinkering, we can follow | , Lemma 1] and have ID i be
forwarded by each process only after 2¢ steps; this also gets O(n) message
complexity, at the cost of even worse time complexity, but it does not require
knowing n.

For general networks, we can apply the same basic strategy as in Le Lann-
Chang-Roberts by having each process initiate a broadcast/convergecast
algorithm that succeeds only if the initiator has the smallest ID. See §5.3.

Some additional algorithms for the asynchronous ring are given in §§5.2.3
and 5.2.4. Lower bounds are shown in §5.4.

5.1 Symmetry

A system exhibits symmetry if we can permute the nodes without changing
the behavior of the system. More formally, we can define a symmetry
as an equivalence relation on processes, where we have the additional
properties that all processes in the same equivalence class run the same code;
and whenever p is equivalent to p/, each neighbor ¢ of p is equivalent to a
corresponding neighbor ¢’ of p'.

An example of a network with a lot of symmetries would be an anony-
mous ring, which is a network in the form of a cycle (the ring part) in
which every process runs the same code (the anonymous part). In this case
all nodes are equivalent. If we have a line, then we might or might not have
any non-trivial symmetries: if each node has a sense of direction that tells
it which neighbor is to the left and which is to the right, then we can identify
each node uniquely by its distance from the left edge. But if the nodes don’t
have a sense of direction, we can flip the line over and pair up nodes that
map to each other.!

ITypically, this does not mean that the nodes can’t tell their neighbors apart. But it
does mean that if we swap the labels for all the neighbors (corresponding to flipping the
entire line from left to right), we get the same executions.

CHAPTER 5. LEADER ELECTION 34

Symmetries are convenient for proving impossibility results, as observed by
Angluin |]. The underlying theme is that without some mechanism for
symmetry breaking, a message-passing system escape from a symmetric
initial configuration. The following lemma holds for deterministic systems,
basically those in which processes can’t flip coins:

Lemma 5.1.1. A symmetric deterministic message-passing system that
starts in an initial configuration in which equivalent processes have the same
state has a synchronous execution in which equivalent processes continue to
have the same state.

Proof. Easy induction on rounds: if in some round p and p’ are equivalent
and have the same state, and all their neighbors are equivalent and have the
same state, then p and p’ receive the same messages from their neighbors
and can proceed to the same state (including outgoing messages) in the next
round. O

An immediate corollary is that you can’t do leader election in an anony-
mous system with a symmetry that puts each node in a non-trivial equivalence
class, because as soon as I stick my hand up to declare I'm the leader, so do
all my equivalence-class buddies.

With randomization, Lemma 5.1.1 doesn’t directly apply, since we can
break symmetry by having my coin-flips come up differently from yours. It
does show that we can’t guarantee convergence to a single leader in any fixed
amount of time (because otherwise we could just fix all the coin flips to get
a deterministic algorithm). Depending on what the processes know about
the size of the system, it may still be possible to show that a randomized
algorithm necessarily fails in some cases.”

A more direct way to break symmetry is to assume that all processes
have identities; now processes can break symmetry by just declaring that
the one with the smaller or larger identity wins. This approach is taken in
the algorithms in the following sections.

5.2 Leader election in rings

Here we’ll describe some basic leader election algorithms for rings. Histor-
ically, rings were the first networks in which leader election was studied,

2Specifically, if the processes don’t know the size of the ring, we can imagine a ring
of size 2n in which the first n processes happen to get exactly the same coin-flips as the
second n processes for long enough that two matching processes, one in each region, both
think they have won the fight in a ring of size n and declare themself to be the leader.

CHAPTER 5. LEADER ELECTION 35

because they are the simplest networks whose symmetry makes the problem
difficult, and because of the connection to token-ring networks, a method for
congestion control in local-area networks that is no longer used much.

5.2.1 The Le Lann-Chang-Roberts algorithm

This is about the simplest leader election algorithm there is. It works in
a unidirectional ring, where messages can only travel clockwise.® The
algorithm does not require synchrony.

Formally, we’ll let the state space for each process ¢ consist of two variables:
leader, initially O, which is set to 1 if ¢ decides it’s a leader; and maxld, the
largest ID seen so far. We assume that ¢ denotes ¢’s position rather than its
ID, which we’ll write as id;. We will also treat all positions as values mod n,
to simplify the arithmetic.

The initial version of this algorithm was proposed by Le Lann | J; it
involved sending every ID all the way around the ring, and having a node
decide it was a leader if it had the largest ID. Chang and Roberts |]
improved on this by having nodes refuse to forward any ID smaller than the
maximum ID seen so far. This means that only the largest ID makes it all
the way around the ring, so a node can declare itself leader the moment it
sees its own ID. Depending on the writer, the resulting algorithm is known
as either Chang-Roberts or Le Lann-Chang-Roberts (LCR). We’ll go with
the latter because it is always polite to be generous with credit.

Code for the LCR algorithm is given in Algorithm 5.1.

Intuitively, this protocol works because whichever process pp,q; holds
the maximum ID id;,q, will (a) refuse to forward any smaller ID, and (b)
eventually have its value forwarded through all of the other processes, causing
it to eventually set its leader bit to 1.

Looking closely at this intuition we see that (a) is a safety property and
(b) a liveness property. So we obtain a proof of correctness by converting (a)
into an invariant that for each p; # Pmaz, id; is never sent by any process in
the range pmag - - - Pi—1; and converting (b) into an induction argument that
each process pmax+; sends idyqz 10 Pmax +j+1 no later than time j. Because
the code only has a process p; set leader to 1 if it receives id; from p;_1, the
invariant tells us that no p; # pmaz becomes the leader, while the induction
argument tells use that eventually p,,q, does.

3We'll see later in §5.2.3 that the distinction between unidirectional rings and bidirec-
tional rings is not a big deal, but for now let’s imagine that having a unidirectional ring is
a serious hardship.

CHAPTER 5. LEADER ELECTION 36

1 initially do

2 leader <— 0

3 maxld < id;

4 send id; to clockwise neighbor

upon receiving j do
if j =id; then
L leader < 1

if j > max|d then
L maxld < j

N o w

10 send j to clockwise neighbor

Algorithm 5.1: LCR leader election

5.2.1.1 Performance

It’s immediate from the correctness proof that the protocol elects a leader
within at most n time in the asynchronous model or exactly n rounds in a
synchronous model.

To bound message traffic, observe that each process sends at most one
copy of each of the n process IDs, for a total of O(n?) messages. This is a
tight bound since if the IDs are in decreasing order n,n —1,n—2,...1, then
no messages get eaten until they hit n.

There is a subtlety with the termination guarantee: at the moment
the unique leader p.,q. sets its leader bit, the other processes all have
maxld = idy,qz, but they don’t actually know that they have the correct
leader ID, since there is no information available locally at a non-leader
process that allows it to detect that there can’t be some larger ID out there
that just hasn’t reached it yet. As with all leader election algorithms, we can
have the leader confirm its election with an additional broadcast protocol,
which in this case raises the time complexity from n to 2n (still O(n)) and
adds an extra n messages (still O(n?) in total).

5.2.2 The Hirschberg-Sinclair algorithm

This algorithm improves on Le Lann-Chang-Roberts by reducing the message
complexity. The idea is that instead of having each process send a message all
the way around a ring, each process will first probe locally to see if it has the
largest ID within a short distance. If it wins among its immediate neighbors,
it doubles the size of the neighborhood it checks, and continues as long as it

CHAPTER 5. LEADER ELECTION 37

has a winning ID. This means that most nodes drop out quickly, giving a
total message complexity of O(nlogn). The running time is a constant factor
worse than LCR, but still O(n). The algorithm assumes a bidirectional ring,
since the reverse edges are needed to send back responses to probes.

To specify the protocol, it may help to think of messages as mobile agents
and the state of each process as being of the form (local-state, {agents I'm carrying}).
Then the sending rule for a process becomes ship any agents in whatever
direction they want to go and the transition rule is accept any incoming
agents and update their state in terms of their own internal transition rules.
An agent state for LCR will be something like (original-sender, direction,
hop-count, max-seen) where direction is R or L depending on which way the
agent is going, hop-count in phase k is initially 2* when the agent is sent
and drops by 1 each time the agent moves, and max-seen is the biggest ID of
any node the agent has visited. An agent turns around (switches direction)
when hop-count reaches 0.

To prove this works, we can mostly ignore the early phases (though we
have to show that the max-id node doesn’t drop out early, which is not too
hard). The last phase involves any surviving node probing all the way around
the ring, so it will declare itself leader only when it receives its own agent
from the left. That exactly one node does so is immediate from the same
argument for LCR.

Complexity analysis is mildly painful but basically comes down to the
fact that any node that sends a message 2* hops had to be a winner in phase
2k — 1, which means that it is the largest of some group of 2¥~! IDs. Thus
the 28-hop senders are spaced at least 2F~1 away from each other and there
are at most n/2F~! of them. Summing up over all [lgn] phases, we get

Z,Eiéﬂ 2Fn /2F=1 = O(nlogn) messages and Z,Eligﬂ 2F = O(n) time.

5.2.3 Peterson’s algorithm for the unidirectional ring

This algorithm is due to Peterson | | and assumes an asynchronous,
unidirectional ring. It gets O(nlogn) message complexity in all executions.

Let’s start by describing a version with two-way communication. Start
with n candidate leaders. In each of at most lgn asynchronous phases, each
candidate probes its nearest surviving neighbors to the left and right; if its
ID is larger than the IDs of both neighbors, it survives to the next phase.
Non-candidates act as relays passing messages between candidates. As in
Hirschberg and Sinclair (§5.2.2), the probing operations in each phase take
O(n) messages, and at least half of the candidates drop out in each phase.
The last surviving candidate wins when it finds that it’s its own surviving

CHAPTER 5. LEADER ELECTION 38

neighbor.

To make this work in a 1-way ring, we have to simulate 2-way communi-
cation by moving the candidates clockwise around the ring to catch up with
their unsendable counterclockwise messages. Peterson’s algorithm does this
with a two-hop approach that is inspired by the 2-way case above; in each
phase k, a candidate effectively moves two positions to the right, allowing it
to look at the IDs of three phase-k candidates before deciding to continue
in phase k + 1 or not. Here is a very high-level description; it assumes that
we can buffer and ignore incoming messages from the later phases until we
get to the right phase, and that we can execute sends immediately upon
receiving messages. Doing this formally in terms of the model of §2.1 means
that we have to build explicit internal buffers into our processes, which we
can easily do but won’t do here (see [, Pp- 483-484] for the right way
to do this).

We can use a similar trick to transform any bidirectional-ring algorithm
into a unidirectional-ring algorithm: alternate between phases where we send
a message right, then send a virtual process right to pick up any left-going
messages deposited for us. The problem with this trick is that it requires two
messages per process per phase, which gives us a total message complexity of
O(n?) if we start with an O(n)-time algorithm. Peterson’s algorithm avoids
this by propagating only the surviving candidates.

Pseudocode for Peterson’s algorithm is given in Algorithm 5.2.

Note: The phase arguments in the probe messages are useless if one has
FIFO channels, which is why [| doesn’t use them.

Proof of correctness is essentially the same as for the 2-way algorithm.
For any pair of adjacent candidates, at most one of their current IDs survives
to the next phase. So we get a sole survivor after [lgn| phases. Each process
sends or relays at most 2 messages per phase, so we get at most 2n[lgn]
total messages.

Curiously, the time complexity of Peterson’s algorithm may be worse
than O(n). It’s not hard to construct an identity assignment in which all
nodes in half the ring drop out, leaving n/4 candidates on the other side of
the ring. Each subsequent phase may then require as much as n/2 time to
transmit a message across the missing half. If it takes ©(logn) phases to
reduce these n/4 candidates to one, this gives ©(nlogn) total time.

5.2.4 A simple randomized O(nlogn)-message algorithm

An alternative to running a more sophisticated algorithm is to reduce the
average cost of LCR using randomization. The presentation here follows the

CHAPTER 5. LEADER ELECTION

39

1 procedure candidate()
2 phase «+ 0
3 current < pid
4 while true do
5 send probe(phase, current)
6 wait for probe(phase, x)
7 id2 — T
8 send probe(phase + 1/2,id2)
9 wait for probe(phase + 1/2, z)
10 idg < x
11 if idy = current then
12 I am the leader!
13 return
14 else if idy > current and idy > ids do
15 current < ids
16 phase < phase + 1
17 else
18 L switch to relay()

19 procedure relay|()
20 upon receiving probe(p,i) do
21 L send probe(p, i)

Algorithm 5.2: Peterson’s leader-election algorithm

CHAPTER 5. LEADER ELECTION 40

average-case analysis done by Chang and Roberts |].

Run LCR where each 1D is constructed by prepending a long random
bit-string to the real ID. This gives uniqueness (since the real IDs act as
tie-breakers) and something very close to a random permutation on the
constructed IDs. When we have unique random IDs, a simple argument
shows that the i-th largest ID only propagates an expected n/i hops, giving
a total of O(nH,) = O(nlogn) hops.* Unique random IDs occur with high
probability provided the range of the random sequence is > n?.

The downside of this algorithm compared to Peterson’s is that knowledge
of n is required to pick random IDs from a large enough range. It also has
higher bit complexity, since Peterson’s algorithm is sending only IDs (in the
FIFO-channel version) without any random padding. An possible upside is
that if the range of random IDs is large enough, we can run it without any
initial IDs at all, as long as we are willing to accept a small probability of
accidentally electing two leaders.

5.3 Leader election in general networks

For general networks, a simple approach is to have each node initiate a
breadth-first-search and convergecast, with nodes refusing to participate in
the protocol for any initiator with a lower ID. It follows that only the node
with the maximum ID can finish its protocol; this node becomes the leader.
If messages from parallel broadcasts are combined, it’s possible to keep the
message complexity of this algorithm down to O(DE).

More sophisticated algorithms reduce the message complexity by coalesc-
ing local neighborhoods similar to what happens in the Hirschberg-Sinclair
and Peterson algorithms. A noteworthy example is an O(nlogn) message-
complexity algorithm of Afek and Gafni [], who also show an Q(nlogn)
lower bound on message complexity for any synchronous algorithm in a
complete network.

5.4 Lower bounds

Here we present two classic ©2(logn) lower bounds on message complexity
for leader election in the ring. The first, due to Burns [|, assumes
that the system is asynchronous and that the algorithm is uniform: it

4 Alternatively, we could consider the average-case complexity of the algorithm when
we assume all n! orderings of the IDs are equally likely; this also gives O(nlogn) expected
message complexity []

CHAPTER 5. LEADER ELECTION 41

does not depend on the size of the ring. The second, due to Frederickson
and Lynch | |, allows a synchronous system and relaxes the uniformity
assumption, but requires that the algorithm can’t do anything to IDs but
copy and compare them.

5.4.1 Lower bound on asynchronous message complexity

Here we describe a lower bound for uniform asynchronous leader election in
the ring. The description here is based on [, §3.3.3]; a slightly different
presentation can also be found in | , §15.1.4]. The original result is due
to Burns |]. We assume the system is deterministic.

The proof constructs a bad execution in which n processes send lots of
messages recursively, by first constructing two bad (n/2)-process executions
and pasting them together in a way that generates many extra messages.
If the pasting step produces ©(n) additional messages, we get a recurrence
T(n) > 2T (n/2) + ©(n) for the total message traffic, which has solution
T(n) = Q(nlogn).

We’ll assume that all processes are trying to learn the identity of the
process with the smallest ID. This is a slightly stronger problem that mere
leader election, but it can be solved with at most an additional 2n messages
once we actually elect a leader. So if we get a lower bound of f(n) messages
on this problem, we immediately get a lower bound of f(n) — 2n on leader
election.

To construct the bad execution, we consider “open executions” on rings
of size n where no message is delivered across some edge (these will be partial
executions, because otherwise the guarantee of eventual delivery kicks in).
Because no message is delivered across this edge, the processes can’t tell if
there is really a single edge there or some enormous unexplored fragment of
a much larger ring. Our induction hypothesis will show that a line of n/2
processes can be made to send at least T'(n/2) messages in an open execution
(before seeing any messages across the open edge); we’ll then show that a
linear number of additional messages can be generated by pasting two such
executions together end-to-end, while still getting an open execution with n
processes.

In the base case, we let n = 1. Somebody has to send a message eventually,
giving T'(2) > 1.

For larger n, suppose that we have two open executions on n/2 processes
that each send at least 7'(n/2) messages. Break the open edges in both
executions and replace them with new edges to create a ring of of size n;
similarly paste the schedules o1 and o9 of the two executions together to

CHAPTER 5. LEADER ELECTION 42

get a combined schedule ;09 with at least 27'(n/2) messages. Note that in
the combined schedule no messages are passed between the two sides, so the
processes continue to behave as they did in their separate executions.

Let e and €’ be the edges we used to past together the two rings. Extend
o102 by the longest possible suffix o3 in which no messages are delivered
across e and €. Since o3 is as long as possible, after 10903, there are no
messages waiting to be delivered across any edge except e and ¢’ and all
processes are quiescent—they will send no additional messages until they
receive one.

We now consider some suffix o4 that causes the protocol to finish when
appended to og1o203. While executing o4, construct two sets of processes S
and S’ by the following rules:

1. If a process is not yet in S or S’ and receives a message delivered across
e, put it in S; similarly if it receives a message delivered across €', put
it in S’

2. If a process is not yet in S or S’ and receives a message that was sent
by a process in S, put it in S; similarly for S’.

Observe that this process must eventually make S and S’ adjacent,
because if there is some node in the half to the ring with the larger minimum
id that receives no messages in o4 (and thus is never added to S or S'?),
that node doesn’t learn the global minimum.

So now imagine stopping the process after the shortest prefix o/ of o4
that makes S and S” adjacent. This gives |SUS’| > n/2, because we include
all nodes between e and ¢’ on one side or the other. It follows that at least
one of S and S’ contains at least n/4 nodes after oy.

Assume without loss of generality that it is |S| that is at least n/4.
Except for the two processes incident to e, every process that is added to S
is added in response to a message sent in o). So there are at least n/4 — 2
such messages. We can also argue that all of these messages are sent in
the subschedule 7 of ¢ that contains only messages that do not depend on
messages delivered across e’. It follows that o102037 is an open execution
on n processes with at least 27(n/2) + n/4 — 2 sent messages. This gives
T(n) >2T(n/2) +n/4 —2=2T(n/2) + Q(n) as claimed.

5.4.2 Lower bound for comparison-based protocols

Here we give an 2(nlogn) lower bound on messages for synchronous-start
comparison-based protocols in bidirectional synchronous rings. For full

CHAPTER 5. LEADER ELECTION 43

details see | , §3.6], | , §3.4.2], or the original JACM paper by
Frederickson and Lynch |]
The argument proceeds as follows:

e Two fragments i...i+k and j...j+k of a ring are order-equivalent
provided id; 1, > id; 4 if and only if idj;, > id;jyp for b=0...k.

e A protocol is comparison-based if it can’t do anything to IDs but
copy them and test for <. The state of such an protocol is modeled
by some non-ID state together with a big bag of IDs, messages have a
pile of IDs attached to them, etc. Two states/messages are equivalent
under some mapping of IDs if you can translate the first to the second
by running all IDs through the mapping.

An equivalent version uses an explicit equivalence relation between
processes. Let executions of p; and ps be similar if both processes
send messages in the same direction(s) in the same rounds and both
processes declare themselves leader (or not) at the same round. Then
an protocol is comparison-based based if order-equivalent rings yield
similar executions for corresponding processes. This can be turned
into the explicit-copying-ids model by replacing the original protocol
with a full-information protocol in which each message is replaced
by the ID and a complete history of the sending process (including all
messages it has every received).

e Define an active round as a round in which at least one message
is sent. Claim: Actions of 7 after k active rounds depends, up to an
order-equivalent mapping of IDs, only on the order-equivalence class of
IDsini—k...i+k, the k-neighborhood of i. Proof: by induction on
k. Suppose i and j have order-equivalent (k — 1)-neighborhoods; then
after £ — 1 active rounds they have equivalent states by the induction
hypothesis. In inactive rounds, 7 and j both receive no messages and
update their states in the same way. In active rounds, ¢ and j receive
order-equivalent messages and update their states in an order-equivalent
way.

o If we have an order of IDs with a lot of order-equivalent k-neighborhoods,
then after k active rounds if one process sends a message, so do a lot
of other ones.

Now we just need to build a ring with a lot of order-equivalent neighbor-
hoods. For n a power of 2 we can use the bit-reversal ring, e.g., ID sequence

CHAPTER 5. LEADER ELECTION 44

35 T T T T T T
30
25
20
15

10

0 5 10 15 20 25 30 35

Figure 5.1: Labels in the bit-reversal ring with n = 32

000, 100,010,110,001,101,011, 111 (in binary) when n = 8. Figure 5.1 gives
a picture of what this looks like for n = 32.

For n not a power of 2 we look up Frederickson and Lynch |] or
Attiya et al. |]. In either case we get 2(n/k) order-equivalent members
of each equivalence class after k active rounds, giving Q(n/k) messages per
active round, which sums to Q(nlogn).

For non-comparison-based protocols we can still prove Q(n log n) messages
for time-bounded protocols, but it requires techniques from Ramsey theory,
the branch of combinatorics that studies when large enough structures in-
evitably contain substructures with certain properties.” Here “time-bounded”
means that the running time can’t depend on the size of the ID space. See
[, §3.4.2) or | , §3.7] for the textbook version, or [, §7] for
the original result.

The intuition is that for any fixed protocol, if the ID space is large
enough, then there exists a subset of the ID space where the protocol

5The classic example is Ramsey’s Theorem, which says that if you color the edges of
a complete graph red or blue, while trying to avoid having any subsets of k vertices with
all edges between them the same color, you will no longer be able to once the graph is large
enough (for any fixed k). See |] for much more on the subject of Ramsey theory.

CHAPTER 5. LEADER ELECTION 45

acts like a comparison-based protocol. So the existence of an O(f(n))-
message time-bounded protocol implies the existence of an O(f(n))-message
comparison-based protocol, and from the previous lower bound we know
f(n) is Q(nlogn). Note that time-boundedness is necessary: we can’t prove
the lower bound for non-time-bounded algorithms because of the i - n trick.

Chapter 6

Causal ordering and logical
clocks

Logical clocks assign a timestamp to all events in an asynchronous message-
passing system that simulates real time, thereby allowing timing-based algo-
rithms to run despite asynchrony. In general, they don’t have anything to
do with clock synchronization or wall-clock time; instead, they provide nu-
merical values that increase over time and are consistent with the observable
behavior of the system. This means that local events on a single process
have increasing times, and messages are never delivered before they are sent,
when time is measured using the logical clock.

Because the processes in a system don’t necessarily know the relative order
of distant events, a totally-ordered logical clock may impose an ordering on
events that is not observable by the processes. We can capture the observable
(partial) ordering using a causal ordering, defined in §6.1. A totally-
ordered logical clock is correct if it gives an ordering that is a refinement of
the causal ordering; some examples are given in §6.2. Alternatively, by using
partially-ordered set for the values of our logical clock, it may be possible to
capture the causal ordering precisely (§6.2.3).

One application of logical clocks is to implement a snapshot, as described
in §6.3. The simplest version of this is to have each process record its state
at some particular logical clock time. This is not quite an description of the
global configuration of the system at some real-time instant in the execution,
because asynchronous processes can’t guarantee that they all take a snapshot
at the same real time. Instead, it’s a description of a global configuration
that is consistent with the observations of the processes, in the sense that
there exists an execution indistinguishable from the real one that contains

46

CHAPTER 6. CAUSAL ORDERING AND LOGICAL CLOCKS 47

this configuration. Causal ordering is the tool that lets us argue that this
hypothetical execution exists.

6.1 Causal ordering

Here we define the causal ordering, a partial order on events that describes
when one event e can shown to occur before some other event e’ based only
on the sequences of events observed by each process.

For the purpose of defining the causal ordering and logical clocks, we will
assume that a schedule consists of send events and receive events, which
correspond to some process sending a single message or receiving a single
message, respectively. This is not quite the same as our usual model that
allows many messages to be received and sent as part of the same delivery
event, but for asynchronous systems we can treat the definitions as equivalent
by splitting a multi-message delivery event into a sequence of events, one for
each message.

Given two schedules S and S’, call S and S’ similar if S|p = S’|p for all
processes p; in other words, S and S’ are similar if they are indistinguishable
by all participants. We can define a causal ordering on the events of some
schedule S implicitly by considering all schedules S’ similar to S, and declare
that e < €’ if e precedes €’ in all such S. But it is usually more useful to
make this ordering explicit.

Following | , §6.1.1] (and ultimately |]), define the happens-
before relation ? on a schedule S to consist of:

1. All pairs (e, €’) where e precedes ¢’ in S and e and €’ are events of the
same process.

2. All pairs (e, e’) where e is a send event and ¢’ is the receive event for
the same message.

3. All pairs (e, €’) where there exists a third event €’ such that e rd e’
and e” e €¢’. (In other words, we take the transitive closure of the
relation defined by the previous two cases.)

It is not terribly hard to show that this gives a partial order; the main

observation is that if e :S> €/, then e precedes €’ in S. So :S> is a subset of the

total order <g given by the order of events in S.
A causal shuffle S’ of a schedule S is a permutation of S that is
consistent with the happens-before relation on .S; that is, if e happens-before

CHAPTER 6. CAUSAL ORDERING AND LOGICAL CLOCKS 48

e/ in S, then e precedes ¢/ in S’. The importance of the happens-before
relation follows from the following lemma, which says that the causal shuffles
of S are precisely the schedules S’ that are similar to S.

Lemma 6.1.1. Let S’ be a permutation of the events in S. Then the
following two statements are equivalent:

1. 8" is a causal shuffle of S.

2. S’ is the schedule of an execution fragment of a message-passing system
with S|p = S'|p for all S'.

Proof. (1 = 2). We need to show both similarity and that S” corresponds to
some execution fragment. We’ll show similarity first. Pick some p; then every
event at p in S also occurs in S’, and they must occur in the same order by
the first case of the definition of the happens-before relation. This gets us
halfway to showing S’ is the schedule of some execution fragment, since it
says that any events initiated by p are consistent with p’s programming. To
get the rest of the way, observe that any other events are receive events. For
each receive event €’ in S, there must be some matching send event e also in
S; thus e and ¢’ are both in S’ and occur in the right order by the second
case of the definition of happens-before.

(2 = 1). First observe that since every event e in S’ occurs at some
process p, if S'|p = S|p for all p, then there is a one-to-one correspondence
between events in S’ and S, and thus S’ is a permutation of S. Now we need
to show that S’ is consistent with ? Let e ? €¢'. There are three cases.

1. e and €’ are events of the same process p and e <g €¢’. But then e <g' ¢’
because S|p = 5'|p.

2. e is a send event and €’ is the corresponding receive event. Then
e <g € because S’ is the schedule of an execution fragment.
3. e = ¢’ by transitivity. Then each step in the chain connecting e to €’

uses one of the previous cases, and e <g €’ by transitivity of <g.

O]

There are two main applications for causal shuffles:

1. We can prove upper bounds by using a causal shuffle to turn some
arbitrary S into a nice S’, and argue that the niceness of S’ means
that even if S might not be nice, it looks nice to the processes. An
example of this can be found in Lemma 7.1.1.

CHAPTER 6. CAUSAL ORDERING AND LOGICAL CLOCKS 49

2. We can prove lower bounds by using a causal shuffle to turn some
specific S into a nasty S’, and argue that the existence of S’ tells us that
there exist nasty schedules for some particular problem. An example
of this can be found in §7.4.2. This works particularly well because :S>

includes enough information to determine the latest possible time of
any event in either S or S’, so rearranging schedules like this doesn’t
change the worst-case time.

In both cases, we are using the fact that if I tell you ?, then you know

everything there is to know about the order of events in S that you can
deduce from reports from each process together with the fact that messages
don’t travel back in time.

In the case that we want to use this information inside an algorithm, we
run into the issue that % is a pretty big relation (©(|S|*) bits with a naive

encoding), and seems to require global knowledge of <g to compute. So we
can ask if there is some simpler, easily computable description that works
almost as well. This is where logical clocks come in.

6.2 Logical clocks

The idea of a logical clock is to compute a timestamp for each event, so
that comparing timestamps gives information about ? Note that these

timestamps need not be totally ordered. In general, we will have a relation
<1, between timestamps such that e = ¢/ implies e <y, ¢/, but it may be that

there are some pairs of events that are ordered by the logical clock despite
being incomparable in the happens-before relation.

Examples of logical clocks that use small timestamps but add extra
ordering are Lamport clocks |], discussed in §6.2.1; and Neiger-Toueg-
Welch clocks | ,], discussed in §6.2.2. These both assign integer
timestamps to events and may order events that are not causally related.
The main difference between them is that Lamport clocks do not alter the
underlying execution, but may allow arbitrarily large jumps in the logical
clock values; while Neiger-Toueg-Welch clocks guarantee small increments at
the cost of possibly delaying parts of the system.'

More informative are vector clocks | ,], discussed in §6.2.3.
These use n-dimensional vectors of integers to capture ? exactly, at the cost

of much higher overhead.

!This makes them similar to synchronizers, which we will discuss in Chapter 7.

CHAPTER 6. CAUSAL ORDERING AND LOGICAL CLOCKS 50

6.2.1 Lamport clock

Lamport’s logical clock [| runs on top of any other message-passing
protocol, adding additional state at each process and additional content to
the messages (which is invisible to the underlying protocol). Every process
maintains a local variable clock. When a process sends a message or executes
an internal step, it sets clock < clock + 1 and assigns the resulting value
as the clock value of the event. If it sends a message, it piggybacks the
resulting clock value on the message. When a process receives a message with
timestamp ¢, it sets clock <— max(clock,t) + 1; the resulting clock value is
taken as the time of receipt of the message. (To make life easier, we assume
messages are received one at a time.)

Theorem 6.2.1. If we order all events by clock value, we get an execution
of the underlying protocol that is locally indistinguishable from the original
ezecution.

Proof. Let e <, € if e has a lower clock value than €. If e and €’ are two
events of the same process, then e <y, €. If e and ¢’ are send and receive
events of the same message, then again e <y, ¢/. So for any events e, ¢, if
ez €', then e <y, ¢/. Now apply Lemma 6.1.1. O

6.2.2 Neiger-Toueg-Welch clock

Lamport’s clock has the advantage of requiring no changes in the behavior
of the underlying protocol, but has the disadvantage that clocks are entirely
under the control of the logical-clock protocol and may as a result make
huge jumps when a message is received. If this is unacceptable—perhaps the
protocol needs to do some unskippable maintenance task every 1000 clock
ticks—then an alternative approach due to Neiger and Toueg | | and
Welch |] can be used.

Method: Each process maintains its own variable clock, which it in-
crements whenever it feels like it. To break ties, the process extends the
clock value to (clock, id, eventCount) where eventCount is a count of send and
receive events (and possibly local computation steps). As in Lamport’s clock,
each message in the underlying protocol is timestamped with the current
extended clock value. Because the protocol can’t change the clock values on
its own, when a message is received with a timestamp later than the current
extended clock value, its delivery is delayed until clock exceeds the message
timestamp, at which point the receive event is assigned the extended clock
value of the time of delivery.

CHAPTER 6. CAUSAL ORDERING AND LOGICAL CLOCKS 51

Theorem 6.2.2. If we order all events by clock value, we get an execution
of the underlying protocol that is locally indistinguishable from the original
execution.

Proof. Again, we have that (a) all events at the same process occur in
increasing order (since the event count rises even if the clock value doesn’t,
and we assume that the clock value doesn’t drop) and (b) all receive events
occur later than the corresponding send event (since we force them to). So
Lemma 6.1.1 applies. O

The advantage of the Neiger-Toueg-Welch clock is that it doesn’t impose
any assumptions on the clock values, so it is possible to make clock be a
real-time clock at each process and nonetheless have a causally-consistent
ordering of timestamps even if the local clocks are not perfectly synchronized.
If some process’s clock is too far off, it will have trouble getting its messages
delivered quickly (if its clock is ahead) or receiving messages (if its clock is
behind)—the net effect is to add a round-trip delay to that process equal
to the difference between its clock and the clock of its correspondent. But
the protocol works well when the processes’ clocks are closely synchronized,
which is a reasonable assumption in many systems thanks to the Network
Time Protocol, cheap GPS receivers, and clock synchronization mechanisms
built into most cellular phone networks.?

6.2.3 Vector clocks

Logical clocks give a superset of the happens-before relation: if e ? e/, then
e <y, € (or conversely, if e £, €/, then it is not the case that e rl €’). This

is good enough for most applications, but what if we want to compute ?

exactly?
Here we can use a vector clock, invented independently by Fidge |]
and Mattern |]. Instead of a single clock value, each event is stamped

with a vector of values, one for each process.

A process p starts with a vector t? = 0 (all components 0). When a
process executes a local event or a send event, it increments only its own
component b of the vector, and includes the updated vector clock value with
its message. When it receives a message, it increments {9 and sets ¢} for each

2As T write this, my computer reports that its clock is an estimated 289 microseconds
off from the timeserver it is synchronized to, which is less than a tenth of the round-trip
delay to machines on the same local-area network and a tiny fraction of the round-trip
delay to machines elsewhere, including the timeserver machine.

CHAPTER 6. CAUSAL ORDERING AND LOGICAL CLOCKS 52

q to the max max of its previous value and the value of ¢, piggybacked on
the message. We define VC(e) were e is an event p to be the value of ¢P at
the end of event e. We define VC(e) < VC(¢'), where VC(e) is the value of
the vector clock for e, if VC(e); < VC(¢); for all i.

Theorem 6.2.3. Fiz a schedule S; then for any e, €', VC(e) < VC(¢) if
and only if e rd e.

Proof. We’ll start by showing that for any event e at a process p, the value
of VC(e)4 for any g # p is equal to the max VC(e'), for any event ¢’ of g such
that e’ ? e, or 0 if there is no such €'.

The proof is by induction on the schedule so far.
If e is a local event or a send event, then there is either no preceding event
at the same process (and thus no event €’ of ¢ with €’ r e) and VC(e), =0

as required; or there is some preceding event e” of p. Since €’ is the only
immediate predecessor of € in ?, if there is an event ¢’ of ¢ maximizing
VCe')y such that e’ i e e ¢’ and so VC(e), = VC(e"), = VC(¢'), as
required.

Alternatively, if e is a receive event, then there is at most one immediately
preceding event e; of the same process and a send event eg of the same message
such that VC(e),; = max(VC(e1)q, VC(e2),q). Since any event e’ of ¢ with
e ? e has either ¢’ ? el ore :S> e, we can apply the induction hypothesis

to both e; and ez and then observe that VC(e), = max(VC(e1)q, VC(e2)q)
satisfies the requirements of the induction hypothesis.

Given this characterization of VC(e)y, the if part follows immediately
from the update rules for the vector clock. For events e ? ¢’ of the same

process, observe that both update rules strictly increase that process’s clock,
so VC(e) < VC(¢'). Similarly the update rule for receiving a message implies
that VC(e) < VC(¢’) when e and €’ are matching send and receive events,
with the minor issue that we do need to use the observation above to verify
that e, < e; for the receiver p.

For the only if part, suppose e does not happen-before ¢/. Then e and
¢/ are events of distinct processes p and p’. For VC(e) < VC(¢€’) to hold, we
must have VC(e), < VC(€'),; but as shown above, this can occur only if
ez €. O

CHAPTER 6. CAUSAL ORDERING AND LOGICAL CLOCKS 53

6.3 Consistent snapshots

A consistent snapshot of a message-passing computation is a description
of the states of the processes (and possibly messages in transit, but we
can reduce this down to just states by keeping logs of messages sent and
received) that gives the global configuration at some instant of a schedule
that is a consistent reordering of the real schedule (a consistent cut in
the terminology of [, §6.1.2]. Without shutting down the protocol
before taking a snapshot this is the about the best we can hope for in a
message-passing system.

Logical clocks can be used to obtain consistent snapshots: pick some
logical clock time and have each process record its state at this time (i.e.,
immediately after its last step before the time or immediately before its first
step after the time). We have already argued that the logical clock gives a
consistent reordering of the original schedule, so the set of values recorded is
just the configuration at the end of an appropriate prefix of this reordering.
In other words, it’s a consistent snapshot.

If we aren’t building logical clocks anyway, there is a simpler consistent
snapshot algorithm due to Chandy and Lamport | |. Here some central
initiator broadcasts a snap message, and each process records its state and
immediately forwards the snap message to all neighbors when it first receives
a snap message. To show that the resulting configuration is a configuration
of some consistent reordering, observe that (with FIFO channels) no process
receives a message before receiving snap that was sent after the sender sent
snap: thus causality is not violated by lining up all the pre-snap operations
before all the post-snap ones.>

The full Chandy-Lamport algorithm adds a second marker message that is
used to sweep messages in transit out of the communications channels, which
avoids the need to keep logs if we want to reconstruct what messages are in
transit (this can also be done with the logical clock version). The idea is that
when a process records its state after receiving the snap message, it issues
a marker message on each outgoing channel. For incoming channels, each
process records all messages received between the snapshot and receiving
a marker message on that channel (or nothing if it receives marker before
receiving snap). A process only reports its value when it has received a
marker on each channel. The marker and snap messages can also be combined
if the broadcast algorithm for snap resends it on all channels anyway, and a

3If FIFO channels are not available, they can be simulated in the absence of failures by
adding a sequence number to each outgoing message on a given channel, and processing
messages at the recipient only when all previous messages have been processed.

CHAPTER 6. CAUSAL ORDERING AND LOGICAL CLOCKS 54

further optimization is often to piggyback both on messages of the underlying
protocol if the underlying protocol is chatty enough.

Note that Chandy-Lamport is equivalent to the logical-time snapshot
using Lamport clocks, if the snap message is treated as a message with a
very large timestamp. For Neiger-Toueg-Welch clocks, we get an algorithm
where processes spontaneously decide to take snapshots (since Neiger-Toueg-
Welch clocks aren’t under the control of the snapshot algorithm) and delay
post-snapshot messages until the local snapshot has been taken. This can be
implemented as in Chandy-Lamport by separating pre-snapshot messages
from post-snapshot messages with a marker message, and essentially turns
into Chandy-Lamport if we insist that a process advance its clock to the
snapshot time when it receives a marker.

6.3.1 Property testing

Consistent snapshots are in principle useful for debugging (since one can
gather a consistent state of the system without being able to talk to every
process simultaneously), and in practice are mostly used for detecting stable
properties of the system. Here a stable property is some predicate on
global configurations that remains true in any successor to a configuration
in which it is true, or (bending the notion of properties a bit) functions
on configurations whose values don’t change as the protocol runs. Typical
examples are quiescence and its evil twin, deadlock. More exotic examples
include total money supply in a banking system that cannot create or destroy
money, or the fact that every process has cast an irrevocable vote in favor
of some proposal or advanced its Neiger-Toueg-Welch-style clock past some
threshold.

The reason we can test such properties using consistent snapshot is
that when the snapshot terminates with value C in some configuration C’,
even though C' may never have occurred during the actual execution of the
protocol, there is an execution which leads from C to C’. So if P holds in
C, stability means that it holds in C’.

Naturally, if P doesn’t hold in C, we can’t say much. So in this case we
re-run the snapshot protocol and hope we win next time. If P eventually
holds, we will eventually start the snapshot protocol after it holds and obtain
a configuration (which again may not correspond to any global configuration
that actually occurs) in which P holds.

Chapter 7

Synchronizers

Synchronizers simulate an execution of a failure-free synchronous system
in a failure-free asynchronous system. See [, Chapter 11] or [,
Chapter 16] for a detailed (and rigorous) presentation.

7.1 Definitions

Formally, a synchronizer sits between the underlying network and the pro-
cesses and does one of two things:

o A global synchronizer guarantees that no process receives a message
from round r until all processes have sent their messages for round r.

¢ A local synchronizer guarantees that no process receives a mes-
sage from round r until all of that process’s neighbors have sent their
messages for round r.

In both cases, the synchronizer packages all the incoming round r mes-
sages m for a single process together and delivers them as a single action
recv(p,m,r). Similarly, a process is required to hand over all of its outgoing
round-r messages to the synchronizer as a single action send(p, m, r)—this
prevents a process from changing its mind and sending an extra round-r
message or two. It is easy to see that the global synchronizer produces
executions that are effectively indistinguishable from synchronous executions,
assuming that a synchronous execution is allowed to have some variability in
exactly when within a given round each process does its thing. The local
synchronizer only guarantees an execution that is locally indistinguishable
from an execution of the global synchronizer: an individual process can’t

95

CHAPTER 7. SYNCHRONIZERS 56

tell the difference, but comparing actions at different (especially widely sepa-
rated) processes may reveal some process finishing round r + 1 while others
are still stuck in round r or earlier. Whether this is good enough depends on
what you want: it’s bad for coordinating simultaneous missile launches, but
may be just fine for adapting a synchronous message-passing algorithm (as
with distributed breadth-first search as described in §4.3) to an asynchronous
system, if we only care about the final states of the processes and not when
precisely those states are reached.

Formally, the relation between global and local synchronization is de-
scribed by the following lemma:

Lemma 7.1.1. For any schedule S of a locally synchronous execution, there
is a schedule S’ of a globally synchronous execution such that S|p = S’|p for
all processes p.

Proof. Essentially, we use the same happens-before relation as in Chapter 6,
and the fact that if a schedule S’ is a causal shuffle of another schedule S
(i.e., a permutation of T that preserves causality), then S’|p = S|p for all p
(Lemma 6.1.1).

Given a schedule S, consider a schedule S” in which the events are ordered
first by increasing round and then by putting all sends before receives. This
ordering is consistent with =, so it’s a causal shuffle of S and S’|p = S|p.

But it is globally synchronized, because no round r operation ever happens
before a round (r — 1) operation. O

7.2 Implementations

Here we describe several implementations of synchronizers. All of them give
at least local synchrony. One of them, the beta synchronizer (§7.2.2), also
gives global synchrony.

The names were chosen by their inventor, Baruch Awerbuch [.
The main difference between them is the mechanism used to determine when
round-r messages have been delivered.

In the alpha synchronizer, every node sends a message to every neigh-
bor in every round (possibly a dummy message if the underlying protocol
doesn’t send a message); this allows the receiver to detect when it’s gotten
all its round-r messages (because it expects to get a message from every
neighbor) but may produce huge blow-ups in message complexity in a dense
graph.

CHAPTER 7. SYNCHRONIZERS 57

In the beta synchronizer, messages are acknowledged by their receivers
(doubling the message complexity), so the senders can detect when all of
their messages are delivered. But now we need a centralized mechanism to
collect this information from the senders and distribute it to the receivers,
since any particular receiver doesn’t know which potential senders to wait for.
This blows up time complexity, as we essentially end up building a global
synchronizer with a central leader.

The gamma synchronizer combines the two approaches at different
levels to obtain a trade-off between messages and time that depends on the
structure of the graph and how the protocol is organized.

Details of each synchronizer are given below.

7.2.1 The alpha synchronizer

The alpha synchronizer uses local information to construct a local synchro-
nizer. In round r, the synchronizer at p sends p’s message (tagged with the
round number) to each neighbor p’ or noMsg(r) if it has no messages. When
it collects a message or noMsg from each neighbor for round r, it delivers
all the messages. It’s easy to see that this satisfies the local synchronization
specification.

This produces no change in time but may drastically increase message
complexity because of all the extra noMsg messages flying around. For a
synchronous protocol that runs in 7" rounds with M messages, the same
protocol running with the alpha synchronizer will still run in 7" time units,
but the message complexity will go up to T - | E| messages, or worse if the
original algorithm doesn’t detect termination.

7.2.2 The beta synchronizer

The beta synchronizer centralizes detection of message delivery using a rooted
directed spanning tree (previously constructed). When p’ receives a round-r
message from p, it responds with ack(r). When p collects an ack for all the
messages it sent plus an OK from all of its children, it sends OK to its parent.
When the root has all the ack and OK messages it is expecting, it broadcasts
go. Receiving go makes p deliver the queued round-r messages.

This works because in order for the root to issue go, every round-r
message has to have gotten an acknowledgment, which means that all round-
r messages are waiting in the receivers’ buffers to be delivered. For the beta
synchronizer, message complexity for one round increases slightly from M to

CHAPTER 7. SYNCHRONIZERS 58

2M + 2(n — 1), but time complexity goes up by a factor proportional to the
depth of the tree.

7.2.3 The gamma synchronizer

The gamma synchronizer combines the alpha and beta synchronizers to try
to get low blowups on both time complexity and message complexity. The
essential idea is to cover the graph with a spanning forest and run beta
within each tree and alpha between trees. Specifically:

o Every message in the underlying protocol gets acked (including mes-
sages that pass between trees).

e« When a process has collected all of its outstanding round-r acks, it
sends OK up its tree.

e When the root of a tree gets all acks and OK, it sends ready to the
roots of all adjacent trees (and itself). Two trees are adjacent if any of
their members are adjacent.

e« When the root collects ready from itself and all adjacent roots, it
broadcasts go through its own tree.

As in the alpha synchronizer, we can show that no root issues go unless it
and all its neighbors issue ready, which happens only after both all nodes in
the root’s tree and all their neighbors (some of whom might be in adjacent
trees) have received acks for all messages. This means that when a node
receives go it can safely deliver its bucket of messages.

Message complexity is comparable to the beta synchronizer assuming
there aren’t too many adjacent trees: 2M messages for sends and acks,
plus O(n) messages for in-tree communication, plus O(FEyots) messages for
root-to-root communication. Time complexity per synchronous round is
proportional to the depth of the trees: this includes both the time for in-tree
communication, and the time for root-to-root communication, which might
need to be routed through leaves.

In a particularly nice graph, the gamma synchronizer can give costs
comparable to the costs of the original synchronous algorithm. An example
in |] is a ring of k-cliques, where we build a tree in each clique and get
O(1) time blowup and O(n) added messages. This is compared to O(n/k)
time blowup for the beta synchronizer and O(k) message blowup (or worse)
for the alpha synchronizer. Other graphs may favor tuning the size of the

CHAPTER 7. SYNCHRONIZERS 59

trees in the forest toward the alpha or beta ends of the spectrum, e.g., if
the whole graph is a clique (and we didn’t worry about contention issues),
we might as well just use beta and get O(1) time blowup and O(n) added
messages.

7.3 Applications

See | , §11.3.2] or | , §16.5]. The one we have seen is distributed
breadth-first search, where the two asynchronous algorithms we described in
Chapter 4 were essentially the synchronous algorithms with the beta and
alpha synchronizers embedded in them. But what synchronizers give us in
general is the ability to forget about problems resulting from asynchrony
provided we can assume no failures (which may be a very strong assumption)
and are willing to accept a bit of overhead.

7.4 Limitations of synchronizers

Here we show some lower bounds on synchronizers, justifying our previous
claim that failures are trouble and showing that global synchronizers are
necessarily slow in a high-diameter network.

7.4.1 Impossibility with crash failures

These synchronizers all fail badly if some process crashes. In the a synchro-
nizer, the system slowly shuts down as a wave of waiting propagates out
from the dead process. In the § synchronizer, the root never gives the green
light for the next round. The ~ synchronizer, true to its hybrid nature, fails
in a way that is a hybrid of these two disasters.

This is unavoidable in the basic asynchronous model, although we don’t
have all the results we need to prove this yet. The idea is that if we are in a
synchronous system with crash failures, it’s possible to solve agreement, the
problem of getting all the processes to agree on a bit (see Chapter 9). But
it’s not possible to solve this problem in an asynchronous system with even
one crash failure (see Chapter 11). Since a synchronous-with-crash-failure
agreement protocol on top of a fault-tolerant synchronizer would give a
solution to an unsolvable problem, the element of this stack that we don’t
know an algorithm for must be the one we can’t do. Hence there are no
fault-tolerant synchronizers.

CHAPTER 7. SYNCHRONIZERS 60

We’ll see more examples of this trick of showing that a particular simula-
tion is impossible because it would allow us to violate impossibility results
later, especially when we start looking at the strength of shared-memory
objects in Chapter 19.

7.4.2 Unavoidable slowdown with global synchronization

The session problem | | gives a lower bound on the speed of a global
synchronizer, or more generally on any protocol that tries to approximate
synchrony in a certain sense. Recall that in a global synchronizer, our goal is
to produce a simulation that looks synchronous from the outside; that is, that
looks synchronous to an observer that can see the entire schedule. In contrast,
a local synchronizer produces a simulation that looks synchronous from
the inside—the resulting execution is indistinguishable from a synchronous
execution to any of the processes, but an outside observer can see that
different processes execute different rounds at different times. The global
synchronizer we’ve seen takes more time than a local synchronizer; the session
problem shows that this is necessary.

In our description, we will mostly follow | , §6.2.2].

A solution to the session problem is an asynchronous protocol in which
each process repeatedly executes some special action. Our goal is to
guarantee that these special actions group into s sessions, where a session
is an interval of time in which every process executes at least one special
action. We also want the protocol to terminate: this means that in every
execution, every process executes a finite number of special actions.

A synchronous system can solve this problem trivially in s rounds: each
process executes one special action per round. For an asynchronous system, a
lower bound of Attiya and Mavronicolas [] (based on an earlier bound
of Arjomandi, Fischer, and Lynch | |, who defined the problem in a
slightly different communication model), shows that if the diameter of the
network is D, any solution to the s-session problem takes (s — 1)D time or
more in the worst case. The argument is based on reordering events in any
synchronous execution that takes less time to produce fewer than s sessions,
using the happens-before relation described in Chapter 6.

We now give an outline of the proof that this is expensive. (See [,
§6.2.2] for the real proof.)

Fix some algorithm A for solving the s-session problem, and suppose that
its worst-case time complexity is (s — 1) D or less. Consider some synchronous
execution of A (that is, one where the adversary scheduler happens to arrange
the schedule to be synchronous) that takes (s — 1)D rounds or less. Divide

CHAPTER 7. SYNCHRONIZERS 61

this execution into two segments: an initial segment v that includes all
rounds with special actions, and a suffix § that includes any extra rounds
where the algorithm is still floundering around. We will mostly ignore §, but
we have to leave it in to allow for the possibility that whatever is happening
there is important for the algorithm to work (say, to detect termination).

We now want to perform a causal shuffle on ~ that leaves it with only
s — 1 sessions. Because causal shuffles don’t affect time complexity, this will
give us a new bad execution +'d that has only s — 1 sessions despite taking
(s —1)D time.

The first step is to chop v into s — 1 segments 1,72, . ..vs—1 of at most
D rounds each. Because a message sent in round ¢ is not delivered until
round ¢ + 1, if we have a chain of k messages, each of which triggers the next,
then if the first message is sent in round i, the last message is not delivered
until round ¢ + k. If the chain has length D, its events (including the initial
send and the final delivery) span D + 1 rounds i, + 1,...,7 + D. In this
case the initial send and final delivery are necessarily in different segments
¥ and i1

Now pick processes p and ¢ at distance D from each other. Then any
chain of messages starting at p within some segment reaches g after the end
of the segment. It follows that for any events e, of p and e, of ¢ in the same
segment y;, €, ?Y% eq. So there exists a causal shuffle of «; that puts all events

of p after all events of ¢.! By a symmetrical argument, we can similarly put
all events of ¢ in a segment after all events of p in the same segment. In
both cases the resulting schedule is indistinguishable by all processes from
the original.

So now we apply these shuffles to each of the segments ~; in alternating
order: p goes first in the odd-numbered segments and ¢ goes first in the
odd-numbered segments. Let’s write the shuffled version of ~; as «;3; for
odd ¢ and f;«; for even i; in each case, «; contains only events of p and other
processes that aren’t ¢ and (; contains only events of ¢ and other processes
that aren’t p.

When we put these alternating shuffles together, we get an execution
that looks like this example with s — 1 = 4:

aq By Bacvaais B3 84040

Now let’s count sessions. Since a session includes special actions by both

'Proof: Because e, 7% eq, we can add eq < e, for all events e, and e, in 7; and still
gt

have a partial order consistent with éé. Now apply topological sort to get the shuffle.
ad

CHAPTER 7. SYNCHRONIZERS 62

p and ¢, it can’t lie entirely within « intervals or § intervals. contains only
steps of p and other processes that aren’t ¢ or an interval that contains only
steps of ¢ and other processes that aren’t p. So any session has to span one
of the points in the schedule marked by slashes below:

ai1/B1B2/azas /B3 Ba) cuad

There is one such point for each of our original s — 1 intervals, so we get
at most s — 1 sessions.

This means that any algorithm that runs in time (s — 1) D in the worst
case (here, the original synchronous execution) can’t guarantee to give s
sessions in all cases (it fails in the shuffled asynchronous execution). Note
that this is not quite the same as saying that any execution with at least s
sessions must take (s — 1)D time. Instead, we’ve shown that algorithm that
guarantees we get at least s sessions sometimes takes more than (s — 1)D
time, even though it might sometimes use less time if it gets lucky.

Chapter 8

Coordinated attack

(See also | , §5.1].)
The Two Generals problem was the first widely-known distributed con-
sensus problem, described in 1978 by Jim Gray | , §5.8.3.3.1], although

the same problem previously appeared under a different name [].

The setup of the problem is that we have two generals on opposite sides
of an enemy army, who must choose whether to attack the army or retreat.
If only one general attacks, his troops will be slaughtered. So the generals
need to reach agreement on their strategy.

To complicate matters, the generals can only communicate by sending
messages by (unreliable) carrier pigeon. We also suppose that at some point
each general must make an irrevocable decision to attack or retreat. The
interesting property of the problem is that if carrier pigeons can become
lost, there is no protocol that guarantees agreement in all cases unless the
outcome is predetermined (e.g., the generals always attack no matter what
happens). The essential idea of the proof is that any protocol that does
guarantee agreement can be shortened by deleting the last message; iterating
this process eventually leaves a protocol with no messages.

Adding more generals turns this into the coordinated attack problem,
a variant of consensus, but it doesn’t make things any easier.

8.1 Formal description

To formalize this intuition, suppose that we have n > 2 generals in a
synchronous system with unreliable channels—the set of messages received
in round 7 + 1 is always a subset of the set sent in round 4, but it may be
a proper subset (even the empty set). Each general starts with an input 0

63

CHAPTER 8. COORDINATED ATTACK 64

(retreat) or 1 (attack) and must output O or 1 after some bounded number
of rounds. The requirements for the protocol are that, in all executions:

Agreement All processes output the same decision (0 or 1).

Validity If all processes have the same input =, and no messages are lost,
all processes produce output z. (If processes start with different inputs
or one or more messages are lost, processes can output 0 or 1 as long
as they all agree.)

Termination All processes terminate in a bounded number of rounds.'

Sadly, there is not protocol that satisfies all three conditions. We show
this in the next section.

8.2 Impossibility proof

To show coordinated attack is impossible,” we use an indistinguishability
proof.
The key steps of an indistinguishability proof usually look like this:

e Show that execution A is indistinguishable from execution B for
some process p, meaning that p sees the same things (messages or
operation results) in both executions.

e Observe that if A is indistinguishable from B for p, then because p
can’t tell which of these two possible worlds it is in, it returns the same
output in both.

So far, pretty dull. But now let’s consider a chain of hypothetical
executions A = AgA; ... Ay = B, where each A; is indistinguishable from
A1 for some process p;. Suppose also that we are trying to solve an
agreement task, where every process must output the same value. Then since
p; outputs the same value in A; and A;41, every process outputs the same

'Bounded means that there is a fixed upper bound on the length of any execution.
We could also demand merely that all processes terminate in a finite number of rounds.
In general, finite is a weaker requirement than bounded, but if the number of possible
outcomes at each step is finite (as they are in this case), they’re equivalent. The reason
is that if we build a tree of all configurations, each configuration has only finitely many
successors, and the length of each path is finite, then KOonig’s lemma (see http://en.
wikipedia.org/wiki/Konig’s_lemma) says that there are only finitely many paths. So we
can take the length of the longest of these paths as our fixed bound. | , Lemma 3.1]

2Without making additional assumptions, always a caveat when discussing impossibility.

http://en.wikipedia.org/wiki/Konig's_lemma
http://en.wikipedia.org/wiki/Konig's_lemma

CHAPTER 8. COORDINATED ATTACK 65

value in A; and A;1,. By induction on k, every process outputs the same
value in A and B, even though A and B may be very different executions.

This gives us a tool for proving impossibility results for agreement: show
that there is a path of indistinguishable executions between two executions
that are supposed to produce different output. Another way to picture this:
consider a graph whose nodes are all possible executions with an edge between
any two indistinguishable executions; then the set of output-0 executions
can’t be adjacent to the set of output-1 executions. If we prove the graph is
connected, we prove the output is the same for all executions.

For coordinated attack, we will show that no protocol satisfies all of
agreement, validity, and termination using an indistinguishability argument.
The key idea is to construct a path between the all-O-input and all-1-input
executions with no message loss via intermediate executions that are indis-
tinguishable to at least one process.

Let’s start with A = Ag being an execution in which all inputs are 1 and
all messages are delivered. We’ll build executions Aj, As, etc., by pruning
messages. Consider A; and let m be some message that is delivered in
the last round in which any message is delivered. Construct A;1; by not
delivering m. Observe that while A; is distinguishable from A;;; by the
recipient of m, on the assumption that n > 2 there is some other process
that can’t tell whether m was delivered or not (the recipient can’t let that
other process know, because no subsequent message it sends are delivered
in either execution). Continue until we reach an execution Ay in which all
inputs are 1 and no messages are sent. Next, let Agy; through Ay, be
obtained by changing one input at a time from 1 to 0; each such execution
is indistinguishable from its predecessor by any process whose input didn’t
change. Finally, construct Ay, through Ay, by adding back messages
in the reverse process used for Ay through Ag; note that this might not
result in exactly k new messages, because the number of messages might
depend on the inputs. This gets us to an execution Agy,1x in which all
processes have input 0 and no messages are lost. If agreement holds, then
the indistinguishability of adjacent executions to some process means that
the common output in Ay is the same as in Agy, 1. But validity requires
that Ap outputs 1 and Agy,4x outputs 0: so either agreement or validity is
violated in some execution.

CHAPTER 8. COORDINATED ATTACK 66

8.3 Randomized coordinated attack

So we now know that we can’t solve the coordinated attack problem. But
maybe we want to solve it anyway. The solution is to change the problem.

Randomized coordinated attack is like standard coordinated attack,
but with less coordination. Specifically, we’ll allow the processes to flip
coins to decide what to do, and assume that the communication pattern
(which messages get delivered in each round) is fixed and independent of
the coin-flips. This corresponds to assuming an oblivious adversary that
can’t see what is going on at all or perhaps a content-oblivious adversary
that can only see where messages are being sent but not the contents of the
messages. We'll also relax the agreement property to only hold with some
high probability:

Randomized agreement For any adversary A, the probability that some
process decides 0 and some other process decides 1 given A is at most
€.

Validity and termination are as before.

8.3.1 An algorithm

Here’s an algorithm that gives e = 1/r. (See | , §5.2.2] for details
or [| for the original version.) A simplifying assumption is that network
is complete, although a strongly-connected network with r greater than or
equal to the diameter also works.

e First part: tracking information levels

— Each process tracks its “information level,” initially 0. The state
of a process consists of a vector of (input, information-level) pairs
for all processes in the system. Initially this is (my-input, 0) for
itself and (L, —1) for everybody else.

— Every process sends its entire state to every other process in every
round.

— Upon receiving a message m, process ¢ stores any inputs carried in
m and, for each process j, sets level;[j] to max(level;[j], level,,[j]).
It then sets its own information level to min;(level;[j]) + 1.

e Second part: deciding the output

— Process 1 chooses a random key value uniformly in the range [1,r].

CHAPTER 8. COORDINATED ATTACK 67

— This key is distributed along with level;[1], so that every process

with level;[1] > 0 knows the key.

— A process decides 1 at round r if and only if it knows the key,

its information level is greater than or equal to the key, and all
inputs are 1.

8.3.2 Why it works

Termination Immediate from the algorithm.

Validity

o If all inputs are 0, no process sees all 1 inputs (technically
requires an invariant that processes’ non-null views are consistent
with the inputs, but that’s not hard to prove.)

If all inputs are 1 and no messages are lost, then the information
level of each process after k rounds is k (prove by induction) and
all processes learn the key and all inputs (immediate from first
round). So all processes decide 1.

Randomized Agreement « First prove a lemma: Define level![k] to

be the value of level;[k] after ¢ rounds. Then for all ¢, j, k, ¢, (1)
level;[§] < level;[j]""! and (2) [level;[k]" — level;[k]!| < 1. As

always, the proof is by induction on rounds. Part (1) is easy and
boring so we’ll skip it. For part (2), we have:

— After 0 rounds, level[k] = Ievelg[k] = —1 if neither ¢ nor j
equals k; if one of them is k, we have level?[k] = 0, which is
still close enough.

— After ¢ rounds, consider level![k] — level!™![k] and similarly
Ieve|§~ [k]— Ievel;_l [k]. It’s not hard to show that each can jump
by at most 1. If both deltas are +1 or both are 0, there’s
no change in the difference in views and we win from the
induction hypothesis. So the interesting case is when level;[£]
stays the same and level;[k] increases or vice versa.

— There are two ways for level;[k] to increase:

x If 7 # k, then j received a message from some ;' with
Ievelz-,_l[kz] > Ievelz_l[k]. From the induction hypothesis,
Ievelzfl[k] < level! ' [k] + 1 = level{[k]. So we are happy.

« If j = k, then j has Ievelé-[j] = 1+ ming; Ievelz»[k] <
1+ levelf[i] <1+ level’[i]. Again we are happy.

CHAPTER 8. COORDINATED ATTACK 68

e Note that in the preceding, the key value didn’t figure in; so
everybody’s level at round r is independent of the key.

o So now we have that level![i] is in {¢, ¢+ 1}, where ¢ is some fixed
value uncorrelated with the key. The only way to get some process
to decide 1 while others decide 0 is if £ 4+ 1 > key but ¢ < key. (If
¢ = 0, a process at this level doesn’t know key, but it can still
reason that 0 < key since key is in [1,r].) This can only occur if
key = ¢ + 1, which occurs with probability at most 1/r since key
was chosen uniformly.

8.3.3 Almost-matching lower bound

The bound on the probability of disagreement in the previous algorithm is
almost tight. Varghese and Lynch |] show that no synchronous algorithm
can get a probability of disagreement less than ﬁ, using a stronger validity
condition that requires that the processes output 0 if any input is 0. This is
a natural assumption for database commit, where we don’t want to commit

if any process wants to abort. We restate their result below:

Theorem 8.3.1. For any synchronous algorithm for randomized coordinated
attack that runs in r rounds that satisfies the additional condition that all
non-faulty processes decide 0 if any input is 0, Pr[disagreement] > 1/(r + 1).

Proof. Let € be the bound on the probability of disagreement. Define level’[k]
as in the previous algorithm (whatever the real algorithm is doing). We’ll
show Pr[i decides 1] < e - (level}[i] 4+ 1), by induction on level}[i].

o If level[[i] = 0, the real execution is indistinguishable (to ¢) from an
execution in which some other process j starts with 0 and receives no
messages at all. In that execution, j must decide 0 or risk violating
the strong validity assumption. So ¢ decides 1 with probability at most
e (from the disagreement bound).

o If leveli[i] = k > 0, the real execution is indistinguishable (to 7) from
an execution in which some other process j only reaches level k — 1
and thereafter receives no messages. From the induction hypothesis,
Pr[j decides 1] < ek in that pruned execution, and so Pr[i decides 1] <
€(k + 1) in the pruned execution. But by indistinguishability, we also
have Pr[i decides 1] < e(k + 1) in the original execution.

Now observe that in the all-1 input execution with no messages lost,
level [i] = r and Pr[i decides 1] = 1 (by validity). So 1 < ¢(r + 1), which
implies € > 1/(r + 1). O

Chapter 9

Synchronous agreement

Here we’ll consider synchronous agreement algorithm with stopping failures,
where a process stops dead at some point, sending and receiving no further
messages. We'll also consider Byzantine failures, where a process deviates
from its programming by sending arbitrary messages, but mostly just to see
how crash-failure algorithms hold up; for algorithms designed specifically for
a Byzantine model, see Chapter 10.

If the model has communication failures instead, we have the coordinated
attack problem from Chapter 8.

9.1 Problem definition

We use the usual synchronous model with n processes with binary inputs and
binary outputs. Up to f processes may fail at some point; when a process
fails, one or one or more of its outgoing messages are lost in the round of
failure and all outgoing messages are lost thereafter.

There are two variants on the problem, depending on whether we want
a useful algorithm (and so want strong conditions to make our algorithm
more useful) or a lower bound (and so want weak conditions to make our
lower bound more general). For algorithms, we will ask for these conditions
to hold:

Agreement All non-faulty processes decide the same value.

Validity If all processes start with the same input, all non-faulty processes
decide it.

Termination All non-faulty processes eventually decide.

69

CHAPTER 9. SYNCHRONOUS AGREEMENT 70

For lower bounds, we’ll replace validity with non-triviality (often called
validity in the literature):

Non-triviality There exist failure-free executions A and B that produce
different outputs.

Non-triviality follows from validity but doesn’t imply validity; for example,
a non-trivial algorithm might have the property that if all non-faulty processes
start with the same input, they all decide something else.

In §9.2, we’ll show that a simple algorithm gives agreement, termination,
and validity with f failures using f 4+ 1 rounds. We’ll then show in §9.3 that
non-triviality, agreement, and termination imply that f + 1 rounds is the
best possible. In Chapter 10, we’ll show that the agreement is still possible
in f + 1 rounds even if faulty processes can send arbitrary messages instead
of just crashing, but only if the number of faulty processes is strictly less
than n/3.

9.2 Solution using flooding

The flooding algorithm, due to Dolev and Strong | | gives a straightfor-
ward solution to synchronous agreement for the crash failure case. It runs
in f 4+ 1 rounds assuming f crash failures. The algorithm given here is a
gross simplification of Dolev and Strong’s original algorithm, which solves
the harder problem of authenticated Byzantine agreement. (This algorithm
is also described in more detail in | , §5.1.3] or | , §6.2.1].)
Each process keeps a set of (process, input) pairs, initially just {(myld, mylnput)}.

At round 7, I broadcast my set to everybody and take the union of my set
and all sets I receive. At round f + 1, I decide on f(S), where f is some
fixed function from sets of process-input pairs to outputs that picks some
input in S: for example, f might take the input with the smallest process-id
attached to it, take the max of all known input values, or take the majority
of all known input values.

Lemma 9.2.1. After f + 1 rounds, all non-faulty processes have the same
set.

Proof. Let S} be the set stored by process ¢ after » rounds. What we’ll really
show is that if there are no failures in round k, then 57 = S} = SHHL for all
i, j, and r > k. To show this, observe that no faults in round k means that
all processes that are still alive at the start of round & send their message
to all other processes. Let L be the set of live processes in round k. At the

CHAPTER 9. SYNCHRONOUS AGREEMENT 71

end of round k, for ¢ in L we have Sf“ = Ujer S;? = S. Now we’ll consider

some round r = k + 1 4+ m and show by induction on m that Serm =5; we
already did m = 0, so for larger m notice that all messages are equal to S
and so Sf+1+m is the union of a whole bunch of S’s. So in particular we
have Sif tog (since some failure-free round occurred in the preceding f + 1

rounds) and everybody decides the same value f(S). O

9.2.1 Authenticated version

Flooding depends on being able to trust second-hand descriptions of values;
it may be that process 1 fails in round 0 so that only process 2 learns its
input. If process 2 can suddenly tell 3 (but nobody else) about the input in
round f + 1—or worse, tell a different value to 3 and 4—then we may get
disagreement.

Usually we assume that we don’t have access to cryptography, but if
we include an authentication mechanism that allows processes to attach
unforgeable signatures to messages, then the full version of the Dolev-Strong
algorithm solves agreement in f + 1 even with f Byzantine faults, where a
process can send any messages it likes regardless of the protocol. The idea is
that instead of sending around unauthenticated input values, I send around
input values that are authenticated by a sequence of signatures, one for each
process that forwarded it. So a value vy that started as the input to process
p1 and reached me via processes ps and ps might arrive in a message as
(v1,123,53(52(S1(v1)))), giving the value, the path it reached me by, and a
nested sequence of signatures allowing me to verify that it did in fact travel
this path.

To avoid mischief, a process will accept in round r only a message that
appears to have traveled a path involving f+1 processes, and will only resend
values it accepts. We can limit message complexity by having each process
resend only the first copy of each value it accepts, and only to processes that
are not already listed in the history.

We now have the property that any value a non-faulty process accepts in
round f + 1 passed through f + 1 processes, including at least one non-faulty
process. That non-faulty process will have forwarded it to all non-faulty
processes. If a process accepts a value earlier than round f + 1, then it
forwards it itself. In either case, if you and I are both non-faulty, then I
know that my eventual set S is a subset of yours. Since this holds in reverse
as well, my S equals your S and so we decide the same value f(S) = f(5).

The intuition here is that if a Byzantine process can be forced to show
its work, Byzantine failures essentially reduce to omission failures, since a

CHAPTER 9. SYNCHRONOUS AGREEMENT 72

non-faulty process can discard any incoming messages that are obviously
bogus. For the most part we will not assume that we have the tools to do this,
and that catching Byzantine processes will require more careful protocols.

9.3 Lower bound on rounds

Here we show that synchronous agreement requires at least f + 1 rounds
if f processes can fail. This proof is modeled on the one in [, §6.7]
and works backwards from the final state; for a proof of the same result
that works in the opposite direction, see | , §5.1.4]. The original result
(stated for Byzantine failures) is due to Dolev and Strong |], based on
a more complicated proof due to Fischer and Lynch | |; see the chapter
notes for Chapter 5 of | | for more discussion of the history.

Note that unlike the algorithms in the preceding and following sections,
which provide validity, the lower bound applies even if we only demand
non-triviality.

Like the similar proof for coordinated attack (§8.2), the proof uses an
indistinguishability argument. But we have to construct a more complicated
chain of intermediate executions.

A crash failure at process ¢ means that (a) in some round r, some or
all of the messages sent by ¢ are not delivered, and (b) in subsequent rounds,
no messages sent by ¢ are delivered. The intuition is that ¢ keels over dead
in the middle of generating its outgoing messages for a round. Otherwise ¢
behaves perfectly correctly. A process that crashes at some point during an
execution is called faulty

We will show that if up to f processes can crash, and there are at least
f + 2 processes,' then at least f + 1 rounds are needed (in some execution)
for any algorithm that satisfies agreement, termination, and non-triviality.
In particular, we will show that if all executions run in f or fewer rounds,
then the indistinguishability graph is connected; this implies non-triviality
doesn’t hold, because (as in §8.2), two adjacent states must decide the same
value because of the agreement property.”

"With only f -+ 1 processes, we can solve agreement in f rounds using flooding. The
idea is that either (a) at most f — 1 processes crash, in which case the flooding algorithm
guarantees agreement; or (b) exactly f processes crash, in which case the one remaining
non-faulty process agrees with itself. So f + 2 processes are needed for the lower bound
to work, and we should be suspicious of any lower bound proof that does not use this
assumption.

2The same argument works with even a weaker version of non-triviality that omits the
requirement that A and B are failure-free, but we’ll keep things simple.

CHAPTER 9. SYNCHRONOUS AGREEMENT 73

Now for the proof. To simplify the argument, let’s assume that all
executions terminate in exactly f rounds (we can always have processes send
pointless chitchat to pad out short executions) and that every processes sends
a message to every other process in every round where it has not crashed
(more pointless chitchat). Formally, this means we have a sequence of rounds
0,1,2,..., f —1 where each process sends a message to every other process
(assuming no crashes), and a final round f where all processes decide on a
value (without sending any additional messages).

We now want to take any two executions A and B and show that both
produce the same output. To do this, we’ll transform A’s inputs into B’s
inputs one process at a time, crashing processes to hide the changes. The
problem is that just crashing the process whose input changed might change
the decision value—so we have to crash later witnesses carefully to maintain
indistinguishability all the way across the chain.

Let’s say that a process p crashes fully in round r if it crashes in round
r and no round-r messages from p are delivered. The communication
pattern of an execution describes which messages are delivered between
processes without considering their contents—in particular, it tells us which
processes crash and what other processes they manage to talk to in the round
in which they crash.

With these definitions, we can state and prove a rather complicated
induction hypothesis:

Lemma 9.3.1. For any f-round protocol with n > f+2 processes permitting
up to f crash failures; any process p; and any execution A in which at
most one process crashes per round in rounds 0...r — 1, p crashes fully in
round r + 1, and no other processes crash; there is a sequence of executions
A = ApAy ... Ax such that each A; is indistinguishable from A;11 by some
process, each A; has at most one crash per round, and the communication
pattern in Ay is identical to A except that p crashes fully in round r.

Proof. By induction on f —r. If r = f, we just crash p in round r and
nobody else notices. For r < f, first crash p in round r instead of r 4 1, but
deliver all of its round-r messages anyway (this is needed to make space for
some other process to crash in round r + 1). Then choose some message m
sent by p in round r, and let p’ be the recipient of m. We will show that we
can produce a chain of indistinguishable executions between any execution
in which m is delivered and the corresponding execution in which it is not.

If r = f — 1, this is easy; only p’ knows whether m has been delivered,
and since n > f + 2, there exists another non-faulty p” that can’t distinguish
between these two executions, since p’ sends no messages in round f or later.

CHAPTER 9. SYNCHRONOUS AGREEMENT 74

If r < f — 1, we have to make sure p’ doesn’t tell anybody about the missing
message.

By the induction hypothesis, there is a sequence of executions starting
with A and ending with p’ crashing fully in round r + 1, such that each
execution is indistinguishable from its predecessor. Now construct the
sequence

A — (A with p’ crashing fully in r + 1)
— (A with p’ crashing fully in r + 1 and m lost)
— (A with m lost and p’ not crashing).

The first and last step apply the induction hypothesis; the middle one yields
indistinguishable executions since only p’ can tell the difference between m
arriving or not and its lips are sealed.

We’ve shown that we can remove one message through a sequence of
executions where each pair of adjacent executions is indistinguishable to
some process. Now paste together n — 1 such sequences (one per message)
to prove the lemma. O

The rest of the proof: Crash some process fully in round 0 and then
change its input. Repeat until all inputs are changed.

9.4 Variants

So far we have described binary consensus, since all inputs are 0 or 1. We
can also allow larger input sets. With crash failures, this allows a stronger
validity condition: the output must be equal to some non-faulty process’s
input. It’s not hard to see that Dolev-Strong (§9.2) gives this stronger
condition.

Chapter 10

Byzantine agreement

Like synchronous agreement (as in Chapter 9) except that we replace crash
failures with Byzantine failures, where a faulty process can ignore its
programming and send any messages it likes. Since we are operating under
a universal quantifier, this includes the case where the Byzantine processes
appear to be colluding with each other under the control of a centralized
adversary.

10.1 Lower bounds

We’ll start by looking at lower bounds.

10.1.1 Minimum number of rounds

We've already seen an f+1 lower bound on rounds for crash failures (see §9.3).
This lower bound applies a fortiori to Byzantine failures, since Byzantine
failures can simulate crash failures.

10.1.2 Minimum number of processes

We can also show that we need n > 3f processes. For n =3 and f =1 the
intuition is that Byzantine B can play non-faulty A and C' off against each
other, telling A that C is Byzantine and C that A is Byzantine. Since A is
telling C' the same thing about B that B is saying about A, C can’t tell the
difference and doesn’t know who to believe. Unfortunately, this tragic soap
opera is not a real proof, since we haven’t actually shown that B can say
exactly the right thing to keep A and C from guessing that B is evil.

75

CHAPTER 10. BYZANTINE AGREEMENT 76

A By /Ao — Bo\
VAR

. \ /

C By — A

Figure 10.1: Three-process vs. six-process execution in Byzantine agreement
lower bound. Processes Ag and By in right-hand execution receive same
messages as in left-hand three-process execution with Byzantine C simulation
Cy through Cy. So validity forces them to decide 0. A similar argument
using Byzantine A shows the same for Cj.

Here is a real proof, which works by explicitly showing how to construct
a bad execution for any given algorithm.! Consider an artificial execution
where (non-Byzantine) A, B, and C are duplicated and then placed in a
ring AgBoCyA1B1C1, where the digits indicate inputs. We’ll still keep the
same code for n = 3 on each process, but when Ag tries to send a message
to what it thinks of as just C' we’ll send it to C7 while messages from B
will instead go to Cy. For any adjacent pair of processes (e.g. Ag and By),
the behavior of the rest of the ring could be simulated by a single Byzantine
process (é’), so each process in the 6-process ring behaves just as it does in
some 3-process execution with 1 Byzantine process. It follows that all of the
processes terminate and decide in the unholy 6-process Frankenexecution”
the same value that they would in the corresponding 3-process Byzantine
execution. So what do they decide?

Given two processes with the same input, say, Ag and By, the giant
execution is indistinguishable from an AgBoC execution where C is Byzantine
(see Figure 10.1. Validity says Ay and By must both decide 0. Since this
works for any pair of processes with the same input, we have each process
deciding its input. But now consider the execution of CoA1 B , where B is
Byzantine. In the big execution, we just proved that Cy decides 0 and A;
decides 1, but since the Co A1 B execution is indistinguishable from the big
execution to Cy and A1, they do the same thing here and violate agreement.

This shows that with n = 3 and f = 1, we can’t win. We can generalize
this to n = 3f. Suppose that there were an algorithm that solved Byzantine

1The presentation here is based on [, §5.2.3]. The original impossibility result
is due to Pease, Shostak, and Lamport []. This particular proof is due to Fischer,
Lynch, and Merritt |].

2Not a real word.

CHAPTER 10. BYZANTINE AGREEMENT 77

By
. AR
0 Ag Dy
/N /
A Dy Co
NS of
C AN >A1
— B
D,

Figure 10.2: Four-process vs. eight-process execution in Byzantine agreement
connectivity lower bound. Because Byzantine C can simulate Cy, D1, B1, A1,
and C4, good processes Ag, By and Dy must all decide 0 or risk violating
validity.

agreement with n = 3f processes. Group the processes into groups of size f,
and let each of the n = 3 processes simulate one group, with everybody in
the group getting the same input, which can only make things easier. Then
we get a protocol for n = 3 and f = 1, an impossibility.

10.1.3 Minimum connectivity

So far, we’ve been assuming a complete communication graph. If the graph is
not complete, we may not be able to tolerate as many failures. In particular,
we need the connectivity of the graph (minimum number of nodes that must
be removed to split it into two components) to be at least 2f + 1. See | ,
§6.5] for the full proof. The essential idea is that if we have an arbitrary
graph with a vertex cut of size k < 2f + 1, we can simulate it on a 4-process
graph where A is connected to B and C' (but not D), B and C are connected
to each other, and D is connected only to B and C'. Here B and C each
simulate half the processes in the size-k cut, A simulates all the processes
on one side of the cut and D all the processes on the other side. We then
construct an 8-process artificial execution with two non-faulty copies of each
of A, B, C, and D and argue that if one of B or C' can be Byzantine then
the 8-process execution is indistinguishable to the remaining processes from
a normal 4-process execution. (See Figure 10.1.)

An argument similar to the n > 3f proof then shows we violate one of
validity or agreement: if we replacing Cy, C7, and all the nodes on one side of

CHAPTER 10. BYZANTINE AGREEMENT 78

the Cy+ C cut with a single Byzantine C, we force the remaining non-faulty
nodes to decide their inputs or violate validity. But then doing the same
thing with By and B; yields an execution that violates agreement.

Conversely, if we have connectivity 2f 41, then the processes can simulate
a general graph by sending each other messages along 2f + 1 predetermined
vertex-disjoint paths and taking the majority value as the correct message.
Since the f Byzantine processes can only corrupt one path each (assuming
the non-faulty processes are careful about who they forward messages from),
we get at least f+1 good copies overwhelming the f bad copies. This reduces
the problem on a general graph with sufficiently high connectivity to the
problem on a complete graph, allowing Byzantine agreement to be solved if
the other lower bounds are met.

10.1.4 Weak Byzantine agreement

(Here we are following [, §6.6]. The original result is due to Lam-
port |)

Weak Byzantine agreement is like regular Byzantine agreement, but
validity is only required to hold if there are no faulty processes at all. If
there is a single faulty process, the non-faulty processes can output any value
regardless of their inputs (as long as they agree on it). Sadly, this weakening
doesn’t improve things much: even weak Byzantine agreement can be solved
only if n > 3f + 1.

Proof: As in the strong Byzantine agreement case, we’ll construct a many-
process Frankenexecution to figure out a strategy for a single Byzantine
process in a 3-process execution. The difference is that now the number of
processes in our synthetic execution is much larger, since we want to build
an execution where at least some of our test subjects think they are in a non-
Byzantine environment. The trick is to build a very big, highly-symmetric
ring so that at least some of the processes are so far away from the few
points of asymmetry that might clue them in to their odd condition that the
protocol terminates before they notice.

Fix some protocol that allegedly solves weak Byzantine agreement, and
let r be the number of rounds for the protocol. Construct a ring of 6r pro-
cesses AoleCOlAQQBUQCQQ PN AO?"BOTCOTA].DB].OC].O PN Aererlr, where
each Xj;; runs the code for process X in the 3-process protocol with in-
put ¢. For each adjacent pair of processes, there is a 3-process Byzantine
execution which is indistinguishable from the 67-process execution for that
pair: since agreement holds in all Byzantine executions, each adjacent pair
decides the same value in the big execution and so either everybody decides

CHAPTER 10. BYZANTINE AGREEMENT 79

0 or everybody decides 1 in the big execution.

Now we’ll show that means that validity is violated in some no-failures
3-process execution. We’ll extract this execution by looking at the execution
of processes Ag; /2B, /2C0,r/2- The argument is that up to round r, any
input-0 process that is at least r steps in the ring away from the nearest
1-input process acts like the corresponding process in the all-0 no-failures
3-process execution. Since Ay, o is 3r/2 > r hops away from A;, and
similarly for Cy /2, our 3 stooges all decide 0 by validity. But now repeat
the same argument for Ay, /5By ,/2C1,/2 and get 3 new stooges that all
decide 1. This means that somewhere in between we have two adjacent
processes where one decides 0 and one decides 1, violating agreement in the
corresponding 3-process execution where the rest of the ring is replaced by a
single Byzantine process. This concludes the proof.

This result is a little surprising: we might expect that weak Byzantine
agreement could be solved by allowing a process to return a default value if
it notices anything that might hint at a fault somewhere. But this would
allow a Byzantine process to create disagreement revealing its bad behavior
to just one other process in the very last round of an execution otherwise
headed for agreement on the non-default value. The chosen victim decides the
default value, but since it’s the last round, nobody else finds out. Even if the
algorithm is doing something more sophisticated, examining the 6r-process
execution will tell the Byzantine process exactly when and how to start
acting badly.

10.2 Upper bounds

Here we describe two upper bounds for Byzantine agreement, one of which
gets an optimal number of rounds at the cost of many large messages, and
the other of which gets smaller messages at the cost of more rounds. (We
are following §§5.2.4-5.2.5 of [| in choosing these algorithms.) Neither
of these algorithms is state-of-the-art, but they demonstrate some of the
issues in solving Byzantine agreement without the sometimes-complicated
optimizations needed to get all the parameters of the algorithm down simul-
taneously.

10.2.1 Exponential information gathering gets n =3f + 1

The idea of exponential information gathering is that each process will
do a lot of gossiping, but now its state is no longer just a flat set of inputs,
but a tree describing who it heard what from. We build this tree out of pairs

CHAPTER 10. BYZANTINE AGREEMENT 80

of the form (path,input) where path is a sequence of intermediaries with no
repetitions and input is some input. A process i’s state at each round is
just a set of such pairs, represented by the variables valpath,i = input. At
the end of f + 1 rounds of communication (necessary because of the lower
bound for crash failures), each non-faulty process i attempts to untangle the
complex web of hearsay and second-hand lies to compute the same decision
value as the other processes, by computing reconstructed values val*(path, 7)
that, we hope, will eventually converge to the same values for all processes.

This technique was used by Pease, Shostak, and Lamport |] to
show that their impossibility result is tight: there exists an algorithm for
Byzantine agreement that runs in f + 1 synchronous rounds and guarantees
agreement and validity as long as n > 3f + 1.

// Set my value to my input

val({),7) « input

for round < 0... f do

// send step for this round

for each non-repeating w, |w| = round, i ¢ w do
L Send (wi, val(w, 1)) to all processes

N =

// receive step for this round
for each non-repeating w, |w| = round do
if j sent (wj,v) then

// Record reported value
val(wj,i) v
else

// Record default value
LvaKug,U «—0

// Compute decision value
10 for each path w of length f 4+ 1 with no repeats do
11 L val*(w, i) < val(w,)
12 for ¢ < f down to 0 do
13 for each non-repeating w, |w| = ¢ do
14 L L val®(w, i) < majority g, val*(wj, 1)

15 Decide val*(() ,)

Algorithm 10.1: Exponential information gathering. Code for process
1.

CHAPTER 10. BYZANTINE AGREEMENT 81

The algorithm is given in Algorithm 10.1. The communication phase is
just gossiping, where each process starts with its only its input and forwards
any values it hears about along with their provenance to all of the other
processes. At the end of this phase, each process i has set val(path,i) to
some value value, where path spans all sequences of 0 to f + 1 distinct IDs
and value is the input value forwarded along that path.

Because we can’t trust these val(w, i) values to be an accurate description
of any process’s input if there is a Byzantine process in w, each process
computes for itself reconstructed values val*(w,?) that use majority voting
to try to get a more trustworthy picture of the original inputs.

Formally, we think of the set of paths as a tree where w is the parent of
wj for each path w and each ID j not in w. To apply EIG in the Byzantine
model, ill-formed or missing messages from j are replaced by default values,
but otherwise the data-collecting part of EIG proceeds as in the crash failure
model. However, we compute the decision value from the last-round values
recursively as follows. First, set val*(w,) for any path w with |w| = f +1
to val(w,). Then for each path w with |w| < f + 1, define val*(w,) to be
the majority value among val*(wj,) for all j. Finally, have process i decide
val*({) ,7). Note that this entire reconstruction process can be computed
locally by each process, although we haven’t yet shown that ¢’s decision value
val*(() , i) will necessarily be the same as j’s decision value val*(() , j).

The majority rule for w = () makes the decision value val*(() , %) a majority
of reconstructed inputs val*(j,4). One way to think about this is that I never
trust j to give me the correct value for wj—even when w = () and j is
claiming to report its own input—so instead I take a majority of values of
wj that j allegedly reported to other people. But since I don’t trust those
other people either, I use the same process recursively to construct those
reports, and hope that all the lies are eventually overcome by the truth.

10.2.1.1 Proof of correctness

This is just a sketch of the proof from | , §6.3.2]; essentially the same
argument appears in | , §5.2.4].

We start with a basic observation that good processes send and record
values correctly. Throughout the proof, we use val(w,) for the final value of
val(w, i) recorded by i.

Lemma 10.2.1. Ifi and j are both non-faulty, then for all w, val(wj,i) =
val(w, j).

Proof. Trivial: j sends (wj,val(w,i)) to i, and ¢ records it in val(wj,i). O

CHAPTER 10. BYZANTINE AGREEMENT 82

More involved is this lemma, which says that when we reconstruct a
value for a trustworthy process at some level, we get the same value that it
sent us. In particular this will be used to show that the reconstructed inputs
val*(j,4) are all equal to the real inputs for good processes.

Lemma 10.2.2. If i and j are non-faulty, then for all w, val*(wj,i) =
val(w, j).

Proof. By induction on f + 1 — |wj|. If |wj| = f + 1, then val*(wj,i) =
val(wj, i) = val(w, j). If |wj| < f+1, then then val*(wj, i) = majorityyg,,; val*(wjk,).
The induction hypothesis says val*(wjk, i) = val(wj, k), which equals val(w, j)
by Lemma 10.2.1. Now observe that there are at least 3f +1— |wj| > 2f +1
possible k, of which at most f are faulty, leaving a non-faulty majority all of
which have val*(wjk, i) = val(w, j). O

We call a node w common if val*(w,7) = val*(w, j) for all non-faulty
i,j. Lemma 10.2.2 implies that wk is common if k is non-faulty. We can also
show that any node whose children are all common is also common, whether
or not the last process in its label is faulty.

Lemma 10.2.3. Let wk be common for all k. Then w is common.

Proof. Recall that, for |w| < f + 1, val*(w,4) is the majority value among
all val*(wk, 7). If all wk are common, then val*(wk,7) = val*(wk, j) for all
non-faulty ¢ and j. so ¢ and j compute the same majority values and get
val*(w, i) = val*(w, 7). O

We can now prove the full result.

Theorem 10.2.4. Ezponential information gathering using f + 1 rounds
in a synchronous Byzantine system with at most f faulty processes satisfies
validity and agreement, provided n > 3f + 1.

Proof. Termination: Protocol finishes after f + 1 rounds.

Validity: Immediate application of Lemmas 10.2.1 and 10.2.2 when w = ().
We have val*(j,7) = val(j,7) = val((),j) for all non-faulty j and ¢, which
means that a majority of the val*(j,4) values equal the common input and
thus so does val*(() ,).

Agreement: Observe that every path has a common node on it, since a
path travels through f+ 1 nodes and one of them is good. If we then suppose
that the root is not common: by Lemma 10.2.3, it must have a not-common
child, that node must have a not-common child, etc. But this constructs
a path from the root to a leaf with no not-common nodes, which we just
proved can’t happen.]

CHAPTER 10. BYZANTINE AGREEMENT 83

10.2.2 Phase king gets constant-size messages

The following algorithm, based on work of Berman, Garay, and Perry |],
achieves Byzantine agreement in 2(f +1) rounds using constant-size messages,
provided n > 4f + 1. The description here is drawn from | , §5.2.5].
The original Berman-Garay-Perry paper gives somewhat better bounds, but
the algorithm and its analysis are more complicated.

10.2.2.1 The algorithm

The main idea of the algorithm is that we avoid the recursive majority voting
of EIG by running a vote in each of f + 1 phases through a phase king,
some process chosen in advance to run the phase. Since the number of phases
exceeds the number of faults, we eventually get a non-faulty phase king.
The algorithm is structured so that one non-faulty phase king is enough
to generate agreement and subsequent faulty phase kings can’t undo the
agreement.

Pseudocode appears in Algorithm 10.2. Each processes ¢ maintains an
array pref,[j], where j ranges over all process IDs. There are also utility
values majority, kingMajority and multiplicity for each process that are used
to keep track of what it hears from the other processes. Initially, pref;[i] is
just 4’s input and pref;[j] = 0 for j # 1.

The idea of the algorithm is that in each phase, everybody announces their
current preference (initially the inputs). If the majority of these preferences
is large enough (e.g., all inputs are the same), everybody adopts the majority
preference. Otherwise everybody adopts the preference of the phase king.
The majority rule means that once the processes agree, they continue to
agree despite bad phase kings. The phase king rule allows a good phase king
to end disagreement. By choosing a different king in each phase, after f + 1
phases, some king must be good. This intuitive description is justified below.

10.2.2.2 Proof of correctness

Termination is immediate from the algorithm.

For validity, suppose all inputs are v. We’ll show that all non-faulty ¢
have pref;[i] = v after every phase. In the first round of each phase, process
1 receives at least n — f messages containing v; since n > 4f + 1, we have
n—f>3f+1landn/2+ f<(4f+1)/2+ f =3f+1/2, and thus these
n — f messages exceed the n/2 4 f threshold for adopting them as the new
preference. So all non-faulty processes ignore the phase king and stick with
v, eventually deciding v after round 2(f + 1).

CHAPTER 10. BYZANTINE AGREEMENT

84

W N =

I = N N

10
11
12
13

14
15
16
17

18

pref;[i] = input
for j # i do pref;[j] =0
for k< 1to f+1do
// First round of phase k
send pref;[i] to all processes (including myself)
pref;[j] <— v;, where v; is the value received from process j
majority <— majority value in pref;
multiplicity <— number of times majority appears in pref,
// Second round of phase k
if i = k then
// I am the phase king
L send majority to all processes

if received m from phase king then
‘ kingMajority < m
else
L kingMajority < 0
if multiplicity > n/2 + f then
‘ pref;[i] = majority
else
L pref,[i] = kingMajority

return pref;|[i]

Algorithm 10.2: Byzantine agreement: phase king

CHAPTER 10. BYZANTINE AGREEMENT 85

For agreement, we’ll ignore all phases up to the first phase with a non-
faulty phase king. Let k be the first such phase, and assume that the pref
values are set arbitrarily at the start of this phase. We want to argue that
at the end of the phase, all non-faulty processes have the same preference.
There are two ways that a process can set its new preference in the second
round of the phase:

1. The process i observes a majority of more than n/2+ f identical values
v and ignores the phase king. Of these values, more than n/2 of them
were sent by non-faulty processes. So the phase king also receives these
values (even if the faulty processes change their stories) and chooses
v as its majority value. Similarly, if any other process j observes a
majority of n/2 + f identical values, the two > n/2 non-faulty parts of
the majorities overlap, and so j also chooses v.

2. The process ¢ takes its value from the phase king. We’ve already shown
that ¢ then agrees with any j that sees a big majority; but since the
phase king is non-faulty, process ¢ will agree with any process j that
also takes its new preference from the phase king.

This shows that after any phase with a non-faulty king, all processes
agree. The proof that the non-faulty processes continue to agree is the same
as for validity.

10.2.2.3 Performance of phase king

It’s not hard to see that this algorithm sends exactly (f -+ 1)(n?+n) messages
of 1 bit each (assuming 1-bit inputs). The cost is doubling the minimum
number of rounds and reducing the tolerance for Byzantine processes. As
mentioned earlier, a variant of phase-king with 3-round phases gets optimal
fault-tolerance with 3(f + 1) rounds (but 2-bit messages). Still better is
a rather complicated descendant of the EIG algorithm due to Garay and
Moses | |, which gets f 4 1 rounds with n > 3f + 1 while still having
polynomial message traffic.

Chapter 11

Impossibility of
asynchronous agreement

There’s an easy argument that says that you can’t do most things in an
asynchronous message-passing system with n/2 crash failures: partition the
processes into two subsets S and T of size n/2 each, and allow no messages
between the two sides of the partition for some long period of time. Since
the processes in each side can’t distinguish between the other side being
slow and being dead, eventually each has to take action on their own. For
many problems, we can show that this leads to a bad configuration. For
example, for agreement, we can supply each side of the partition with a
different common input value, forcing disagreement because of validity. We
can then satisfy the fairness condition that says all messages are eventually
delivered by delivering the delayed messages across the partition, but it’s
too late for the protocol.

The Fischer-Lynch-Paterson (FLP) result |] says something much
stronger: you can’t do agreement in an asynchronous message-passing system
if even one crash failure is allowed.! After its initial publication, it was quickly
generalized to other models including asynchronous shared memory |],
and indeed the presentation of the result in | , §12.2] is given for shared-
memory first, with the original result appearing in | , §17.2.3] as a
corollary of the ability of message passing to simulate shared memory. In
these notes, I'll present the original result; the dependence on the model is
surprisingly limited, and so most of the proof is the same for both shared
memory (even strong versions of shared memory that support operations

!Unless you augment the basic model in some way, say by adding randomization
(Chapter 24) or failure detectors (Chapter 13).

86

CHAPTER 11. IMPOSSIBILITY OF ASYNCHRONOUS AGREEMENTS7

like atomic snapshots?) and message passing.

Section 5.3 of | | gives a very different version of the proof, where
it is shown first for two processes in shared memory, then generalized to n
processes in shared memory by adapting the classic Borowsky-Gafni simu-
lation [] to show that two processes with one failure can simulate n
processes with one failure. This is worth looking at (it’s an excellent example
of the power of simulation arguments, and BG simulation is useful in many
other contexts) but we will stick with the original argument, which is simpler.
We will look at this again when we consider BG simulation in Chapter 28.

11.1 Agreement

Usual rules: agreement (all non-faulty processes decide the same value),
termination (all non-faulty processes eventually decide some value), valid-
ity (for each possible decision value, there an execution in which that value
is chosen). Validity can be tinkered with without affecting the proof much.

To keep things simple, we assume the only two decision values are 0 and
1.

11.2 Failures

A failure is an internal action after which all send operations are disabled.
The adversary is allowed one failure per execution. Effectively, this means
that any group of n — 1 processes must eventually decide without waiting
for the n-th, because it might have failed.

With asynchronous scheduling and required termination, this is equivalent
to a limited version of fairness in which one process is labeled as faulty and
the adversary is not required to deliver messages from that process. Having
an active failure step (as opposed to the adversary just choosing internally not
to deliver some process’s messages) mostly just lets us more easily describe
which process the adversary is doing this to.

11.3 Steps

The FLP paper uses a notion of steps that is slightly different from the
send and receive actions of the asynchronous message-passing model we’ve
been using. Essentially a step consists of receiving zero or more messages

2Chapter 20.

CHAPTER 11. IMPOSSIBILITY OF ASYNCHRONOUS AGREEMENTSS

followed by doing a finite number of sends. To fit it into the model we’ve been
using, we’ll define a step as either a pair (p, m), where p receives message
m and performs zero or more sends in response, or (p, L), where p receives
nothing and performs zero or more sends. We assume that the processes are
deterministic, so the messages sent (if any) are determined by p’s previous
state and the message received. Note that these steps do not correspond
precisely to delivery and send events or even pairs of delivery and send events,
because what message gets sent in response to a particular delivery may
change as the result of delivering some other message; but this won’t affect
the proof.

The fairness condition essentially says that if (p,m) or (p, L) is continu-
ously enabled it eventually happens. Since messages are not lost, once (p, m)
is enabled in some configuration C, it is enabled in all successor configurations
until it occurs; similarly (p, L) is always enabled. So to ensure fairness, we
have to ensure that any non-faulty process eventually performs any enabled
step.

Comment on notation: I like writing the new configuration reached by
applying a step e to C like this: Ce. The FLP paper uses e(C).

11.4 Bivalence and univalence

The core of the FLP argument is a strategy allowing the adversary (who
controls scheduling) to steer the execution away from any configuration in
which the processes reach agreement. The guidepost for this strategy is the
notion of bivalence, where a configuration C' is bivalent if there exist traces
To and T4 starting from C that lead to configurations C'Ty and C'T7 where all
processes decide 0 and 1 respectively. A configuration that is not bivalent is
univalent, or more specifically 0-valent or 1-valent depending on whether
all executions starting in the configuration produce 0 or 1 as the decision
value. (Note that bivalence or univalence are the only possibilities because of
termination.) The important fact we will use about univalent configurations
is that any successor to an z-valent configuration is also z-valent.

It’s clear that any configuration where some process has decided is not
bivalent, so if the adversary can keep the protocol in a bivalent configuration
forever, it can prevent the processes from ever deciding. The adversary’s
strategy is to start in an initial bivalent configuration Cy (which we must
prove exists) and then choose only bivalent successor configurations (which
we must prove is possible). A complication is that if the adversary is only
allowed one failure, it must eventually allow any message in transit to a

CHAPTER 11. IMPOSSIBILITY OF ASYNCHRONOUS AGREEMENTS9

non-faulty process to be received and any non-faulty process to send its
outgoing messages, so we have to show that the policy of avoiding univalent
configurations doesn’t cause problems here.

11.5 Existence of an initial bivalent configuration

We can specify an initial configuration by specifying the inputs to all processes.
If one of these initial configurations is bivalent, we are done. Otherwise,
let C and C’ be two initial configurations that differ only in the input of
one process p; by assumption, both C and C’ are univalent. Consider two
executions starting with C' and C” in which process p is faulty; we can arrange
for these executions to be indistinguishable to all the other processes, so
both decide the same value z. It follows that both C and C’ are z-valent.
But since any two initial configurations can be connected by some chain of
such indistinguishable configurations, we have that all initial configurations
are z-valent, which violations validity.

11.6 Staying in a bivalent configuration

Now start in a failure-free bivalent configuration C' with some step e = (p, m)
or e = (p, L) enabled in C. Let S be the set of configurations reachable
from C without doing e or failing any processes, and let e(.S) be the set
of configurations of the form C’e where C’ is in S. (Note that e is always
enabled in S, since once enabled the only way to get rid of it is to deliver
the message.) We want to show that e(S) contains a failure-free bivalent
configuration.

The proof is by contradiction: suppose that C’e is univalent for all C’
in S. We will show first that there are Cy and C; in S such that each Cie
is i-valent. To do so, consider any pair of i-valent A; reachable from C; if
A;isin S, let C; = A;. If A; is not in S, let C; be the last configuration
before executing e on the path from C to A; (Cje is univalent in this case by
assumption).

So now we have Cye and C1e with C;e i-valent in each case. We’ll now go
hunting for some configuration D in S and step ¢’ such that De is 0-valent
but De’e is 1-valent (or vice versa); such a pair exists because S is connected
and so some step €’ crosses the boundary between the C’e = 0-valent and
the C'e = 1-valent regions.

By a case analysis on e and ¢’ we derive a contradiction:

CHAPTER 11. IMPOSSIBILITY OF ASYNCHRONOUS AGREEMENT90

1. Suppose e and €’ are steps of different processes p and p’. Let both
steps go through in either order. Then Dee’ = De'e, since in an
asynchronous system we can’t tell which process received its message
first. But De is O-valent, which implies Dee’ is also 0-valent, which
contradicts De’e being 1-valent.

2. Now suppose e and ¢’ are steps of the same process p. Again we let both
go through in either order. It is not the case now that Dee’ = D¢é'e,
since p knows which step happened first (and may have sent messages
telling the other processes). But now we consider some finite sequence
of steps ejes ... e in which no message sent by p is delivered and some
process decides in Dee; ...e; (this occurs since the other processes
can’t distinguish Dee’ from the configuration in which p died in D, and
so have to decide without waiting for messages from p). This execution
fragment is indistinguishable to all processes except p from Deé’ee; . . . ey,
so the deciding process decides the same value i in both executions.
But Dee’ is 0-valent and De’e is 1-valent, giving a contradiction.

It follows that our assumption was false, and there is some reachable
bivalent configuration C’e.

Now to construct a fair execution that never decides, we start with a
bivalent configuration, choose the oldest enabled action and use the above
to make it happen while staying in a bivalent configuration, and repeat.

11.7 Generalization to other models

The FLP results extends to any asynchronous model where it is impossible
to tell which of two events happened first. The main idea is to replace the
definition of a step to whatever is available in the new model, and adapt
the resulting case analysis of O-valent De’e vs 1-valent Dee’ as appropriate.
For example, in asynchronous shared memory, if e and e’ are operations
on different memory locations, they commute (just like steps of different
processes), and if they are operations on the same location, either they
commute (two reads) or only one process can tell whether both happened
(with a write and a read, only the reader knows, and with two writes, only
the first writer knows). Killing the witness yields two indistinguishable
configurations with different valencies, a contradiction.

Loui and Abu-Amara |] first proved this generalization to shared
memory using standard read-write registers. Herlihy [] later provided
similar arguments for a wide variety of shared-memory primitives that may

CHAPTER 11. IMPOSSIBILITY OF ASYNCHRONOUS AGREEMENT91

provide additional operations beyond reads and writes. We will see many of
these latter arguments in Chapter 19.

Chapter 12

Paxos

The Paxos algorithm for consensus in a message-passing system was first
described by Lamport in 1990 in a tech report that was widely considered
to be a joke (see http://research.microsoft.com/users/lamport/pubs/
pubs.html#lamport-paxos for Lamport’s description of the history). The
algorithm was finally published in 1998 | |, and after the algorithm
continued to be ignored, Lamport finally gave up and translated the results
into readable English []. It is now understood to be one of the most
efficient practical algorithms for achieving consensus in a message-passing
system with failure detectors, mechanisms that allow processes to give up on
other stalled processes after some amount of time (which can’t be done in
a normal asynchronous system because giving up can be made to happen
immediately by the adversary).

We will describe the basic Paxos algorithm in §12.1. This is a one-shot
version of Paxos that solves a single agreement problem. The version that is
more typically used, called multi-Paxos, uses repeated executions of the
basic Paxos algorithm to implement a replicated state machine; we’ll describe
this in §12.7.

There are many more variants of Paxos in use. The WikiPedia article
on Paxos (http://en.wikipedia.org/wiki/Paxos_(computer_science))
gives a reasonably good survey of subsequent developments and applications.

12.1 The Paxos algorithm

The algorithm runs in a message-passing model with asynchrony and fewer
than n/2 crash failures (but not Byzantine failures, at least in the original
algorithm). As always, we want to get agreement, validity, and termination.

92

http://research.microsoft.com/users/lamport/pubs/pubs.html#lamport-paxos
http://research.microsoft.com/users/lamport/pubs/pubs.html#lamport-paxos
http://en.wikipedia.org/wiki/Paxos_(computer_science)

CHAPTER 12. PAXOS 93

The Paxos algorithm itself is mostly concerned with guaranteeing agree-
ment and validity, while allowing for the possibility of termination if there is a
long enough interval in which no process restarts the protocol. A noteworthy
feature of Paxos is that it is robust even to omission failures, in the sense
that lost messages can prevent termination, but if new messages start being
delivered again, the protocol can recover.

Processes are classified as proposers, accepters, and learners (a single
process may have all three roles). The idea is that a proposer attempts to
ratify a proposed decision value (from an arbitrary input set) by collecting
acceptances from a majority of the accepters, and this ratification is observed
by the learners. Agreement is enforced by guaranteeing that only one proposal
can get the votes of a majority of accepters, and validity follows from only
allowing input values to be proposed. The tricky part is ensuring that we
don’t get deadlock when there are more than two proposals or when some of
the processes fail. The intuition behind how this works is that any proposer
can effectively restart the protocol by issuing a new proposal (thus dealing
with lockups), and there is a procedure to release accepters from their old
votes if we can prove that the old votes were for a value that won’t be getting
a majority any time soon.

To organize this vote-release process, we attach a distinct proposal number
to each proposal. The safety properties of the algorithm don’t depend on
anything but the proposal numbers being distinct, but since higher numbers
override lower numbers, to make progress we’ll need them to increase over
time. The simplest way to do this in practice is to make the proposal number
be a timestamp with the proposer’s ID appended to break ties. We could
also have the proposer poll the other processes for the most recent proposal
number they’ve seen and add 1 to it.

The revoting mechanism now works like this: before taking a vote, a
proposer tests the waters by sending a prepare(r) message to all accepters,
where r is the proposal number. An accepter responds to this with a promise
never to accept any proposal with a number less than r (so that old proposals
don’t suddenly get ratified) together with the highest-numbered proposal
that the accepter has accepted (so that the proposer can substitute this value
for its own, in case the previous value was in fact ratified). If the proposer
receives a response from a majority of the accepters, the proposer then does
a second phase of voting where it sends accept!(r,v) to all accepters and
wins if receives a majority of votes. (The exclamation point on accept! is not
in the original paper, but has become a common convention to emphasize
that it’s a command, not a response.)

So for each proposal, the algorithm proceeds as follows:

CHAPTER 12. PAXOS 94

1. The proposer sends a message prepare(r) to all accepters. (Sending
to only a majority of the accepters is enough, assuming they will all
respond.)

2. Each accepter compares r to the highest-numbered proposal for which it
has responded to a prepare message and the highest-numbered proposal
it has accepted. If r is greater than both, it responds with ack(r,v,r,),
where v is the highest-numbered proposal it has accepted and r, is the
number of that proposal (or L and —oo if there is no such proposal).

An optimization at this point is to allow the accepter to send back
nack(r, ') where 7’ is some higher number to let the proposer know that
it’s doomed and should back off and try again with a higher proposal
number. (This keeps a confused proposer who thinks it’s the future
from locking up the protocol until 2087.)

3. The proposer waits (possibly forever) to receive ack from a majority
of accepters. If any ack contained a value, it sets v to the most recent
(in proposal number ordering) value that it received. It then sends
accept!(r,v) to all accepters (or just a majority). You should think
of accept! as a demand (“Accept!”) rather than acquiescence (“I
accept”)—the accepters still need to choose whether to accept or not.

4. Upon receiving accept!(r, v), an accepter accepts v unless it has already
received prepare(r’) for some r’ > r. If a majority of accepters accept
the value of a given proposal, that value becomes the decision value of
the protocol.

Implementing these rules require only that each accepter track r,ck, the
highest number of any proposal for which it sent an ack, and (v, 7,), the last
proposal that it accepted. Pseudocode showing the behavior of proposer and
accepters in the core Paxos protocol is given in Algorithm 12.1.

Note that acceptance is a purely local phenomenon; additional messages
are needed to detect which if any proposals have been accepted by a majority
of accepters. Typically this involves a fourth round, where accepters send
accepted(r, v) to all learners.

There is no requirement that only a single proposal is sent out (indeed,
if proposers can fail we will need to send out more to jump-start the proto-
col). The protocol guarantees agreement and validity no matter how many
proposers there are and no matter how often they start.

CHAPTER 12. PAXOS

95

[SLEN NV N

(=]

® =

10
11

12
13

14
15

16
17

18
19

20

procedure Propose(r,v)
// Issue proposal number r with value v
// Assumes r is unique
send prepare(r, v) to all accepters
wait to receive ack(r,v’,r,/) from a majority of accepters
if some v’ is not L then
L v + v with maximum r,,

send accept!(r,v) to all accepters

procedure accepter()
initially do

Tack < —0CO

v+ L

Ty $— —00

upon receiving prepare(r) from p do
if r > max(rack, ry) then
// Respond to proposal
send ack(r,v,r,) to p
Tack < T

upon receiving accept!(r,v’) do
if r > max(rack,m») then
// Accept proposal
send accepted(r, v') to all learners
if r > r, then
// Update highest accepted proposal
L (ry,v) < (r,v)

Algorithm 12.1: Paxos

CHAPTER 12. PAXOS 96

12.2 Informal analysis: how information flows be-
tween rounds

Call a round the collection of all messages labeled with some particular
proposal r. The structure of the algorithm simulates a sequential execution
in which higher-numbered rounds follow lower-numbered ones, even though
there is no guarantee that this is actually the case in a real execution.

When an accepter sends ack(r,v,), it is telling the round-r proposer
the last value preceding round r that it accepted. The rule that an accepter
only acknowledges a proposal higher than any proposal it has previously
accepted prevents it from sending information “back in time”—the round
ry in an acknowledgment is always less than r. The rule that an accepter
doesn’t accept any proposal earlier than a round it has acknowledged means
that the value v in an ack(r,v,r,) message never goes out of date—there is
no possibility that an accepter might retroactively accept some later value in
round " with r, < r’ < r. So the ack message values tell a consistent story
about the history of the protocol, even if the rounds execute out of order.

The second trick is to use overlapping majorities to make sure that any
value that is accepted is not lost. If the only way to decide on a value in round
r is to get a majority of accepters to accept it, and the only way to make
progress in round 7’ is to get acknowledgments from a majority of accepters,
these two majorities overlap. So in particular the overlapping process reports
the round-r proposal value to the proposer in round 7/, and we can show by
induction on 7’ that this round-r proposal value becomes the proposal value
in all subsequent rounds that proceed past the acknowledgment stage. So
even though it may not be possible to detect that a decision has been reached
in round r (say, because some of the accepters in the accepting majority
die without telling anybody what they did), no later round will be able to
choose a different value. This ultimately guarantees agreement.

12.3 Example execution

For Paxos to work well, proposal numbers should increase over time. But
there is no requirement that proposal numbers are increasing or even that
proposals with different proposal numbers don’t overlap. When thinking
about Paxos, it is easy to make the mistake of ignore cases where proposals
are processed concurrently or out of order. In Figure 12.1, we give an example
of an execution with three proposals running concurrently.

CHAPTER 12. PAXOS 97

b1 D2 b3 a1 a2 as
prepare(3)
prepare(2)
prepare(1)
ack(3,L,0)
ack(1, L,0)
ack(1, 1,0)
accept!(1,1)
accepted(1,1)
nack(1, 3)
ack(2,1,1)
ack(2, 1,0)
accept!(2,1)
nack(2, 3)
accepted(2,1)
ack(3,1,2)
accept!(3,1)
accepted(3,1)
accepted(3,1)

Figure 12.1: Example execution of Paxos. Time increases downward. Each
column records messages sent by one of three proposers p1, p2, and ps and
three accepters a1, as, and as. Proposer p;’s proposed value 1 is not accepted
by a majority of processes in round 1, but it is picked up by proposer ps in
round 2, and is eventually adopted and accepted in round 3.

CHAPTER 12. PAXOS 98

12.4 Safety properties

We now present a more formal analysis of the Paxos protocol. We consider
only the safety properties of the protocol, corresponding to validity and
agreement. Without additional assumptions, Paxos does not guarantee
termination.

Call a value chosen if it is accepted by a majority of accepters. The
safety properties of Paxos are:

o No value is chosen unless it is first proposed. (This gives validity.)
o No two distinct values are both chosen. (This gives agreement.)

The first property is immediate from examination of the algorithm:
every value propagated through the algorithm is ultimately a copy of some
proposer’s original input. We can formalize this observation by checking that,
for any set of values S, the property that all values contained in messages or
processes’ internal state are in S is an invariant.

For the second property, we’ll show by induction on proposal number
that a value v chosen with proposal number r is the value chosen by any
proposer p,» with proposal number r’. There are two things that make this
true:

1. Any ack(r’,v’,r,/) message received by p,» has r, < r’. Proof: Imme-
diate from the code.

2. If a majority of accepters accept a proposal with number r at some
point during the execution, and p,s receives ack(r’, —, —) messages from
a majority of accepters, then p,s receives at least one ack(r’,v’,r,)
message with 7’ > r. Proof: Let S be the set of processes that issue
accepted(r, v) and let T be the set of processes that send ack(r’, —, —) to
p’. Because S and T are both majorities, there is at least one accepter
a in SNT. Suppose p,» receives ack(r,v”,r") from a. If v < r, then
at the time a sends its ack(r,v”, r") message, it has not yet accepted a
proposal with number r. But then when it does receive accept!(r, v), it
rejects it. This contradicts a € S.

These two properties together imply that p, receives at least one ack(r, v”, r")
with » < 7" <’ and no such messages with r”” < r. So the maximum pro-
posal number it sees is " where r < r” < r. By the induction hypothesis,
the corresponding value is v. It follows that p, also chooses v.

CHAPTER 12. PAXOS 99

12.5 Learning the results

Somebody has to find out that a majority accepted a proposal in order to get
a decision value out. The usual way to do this is to have a fourth round of
messages where the accepters send accepted(v, r) to some designated learners.
These are often the processes that need to implement whatever decision was
made by the agreement protocol, but in principle could be any processes
that care about the outcome.

12.6 Liveness properties

We’d like the protocol to terminate eventually. Suppose there is a single
proposer, and that it survives long enough to collect a majority of acks
and to send out accept!s to a majority of the accepters. If everybody else
cooperates, we get termination in 4 message delays, including the time for
the learners to detect acceptance.

If there are multiple proposers, then they can step on each other. For
example, it’s enough to have two carefully-synchronized proposers alternate
sending out prepare messages to prevent any accepter from every accepting
(since an accepter promises not to accept accept!(r, v) once it has responded
to prepare(r + 1)). The solution is to ensure that there is eventually some
interval during which there is exactly one proposer who doesn’t fail. One way
to do this is to use exponential random backoff (as popularized by Ethernet):
when a proposer decides it’s not going to win a round (e.g., by receiving a
nack or by waiting long enough to realize it won’t be getting any more acks
soon), it picks some increasingly large random delay before starting a new
round. Unless something strange is going on, new rounds will eventually
start far enough apart in time that one will get done without interference.

A more abstract solution is to assume some sort of weak leader election
mechanism, which tells each accepter who the “legitimate” proposer is at
each time. The accepters then discard messages from illegitimate proposers,
which prevents conflict at the cost of possibly preventing progress. Progress
is however obtained if the mechanism eventually reaches a state where a
majority of the accepters bow to the same non-faulty proposer long enough
for the proposal to go through.

Such a weak leader election method is an example of a more general class
of mechanisms known as failure detectors, in which each process gets hints
about what other processes are faulty that eventually converge to reality.
The weak-leader-election failure detector needed for Paxos is called the €2

CHAPTER 12. PAXOS 100

failure detector |], and there is a sense in which it is the weakest
possible failure detector that can be used to solve consensus for f < n/2
using any algorithm. We will discuss failure detectors in detail in Chapter 13.

Since implementing this kind of leader election allows us to solve consensus,
the FLP result (Chapter 11) implies that we can’t build it using only the tools
available in the asynchronous message-passing model. In practice, detecting
failures and electing a non-faulty leader involves using lots of timeouts. An
example of a Paxos-like protocol that does this is the Raft protocol of Ongaro
and Osterhout [], which may be the most commonly implemented
protocol in this family.

12.7 Replicated state machines and multi-Paxos

The most common practical use of Paxos is to implement a replicated
state machine | |. The idea is to maintain many copies of some data
structure, each on a separate machine, and guarantee that each copy (or
replica) stays in sync with all the others as new operations are applied
to them. This requires some mechanism to ensure that all the different
replicas apply the same sequence of operations, or in other words that the
machines that hold the replicas solve a sequence of agreement problems to
agree on these operations. The payoff is that the state of the data structure
survives the failure of some of the machines, without having to copy the
entire structure every time it changes.

Making all copies consistent requires solving a new version of agreement
every time we want to add another operation. Paxos works well for this
because we can have the proposer simply issue a new proposal without
taking into account any lower-numbered values, assuming that it has verified
that lower-numbered values have in fact been accepted. The round-number
mechanism means that all of the accepters will switch to working on the new
proposal without any modifications to their code.

Typically for this application, we’ll have a single active proposer that is
responsible for serializing any incoming operations to the replicated state
machine. If the proposer doesn’t change very often, a further optimization
allows skipping the prepare and ack messages in between agreement protocols
for consecutive operations. This reduces the time to certify each operation
to a single round-trip for the accept! and accepted messages, which is about
the best we can reasonably hope for.

One detail is that to make this work, we need to distinguish between
consecutive proposals by the same proposer, and “new” proposals that change

CHAPTER 12. PAXOS 101

the proposer in addition to reaching agreement on some value. This is done
by splitting the proposal number into a major and minor number, with
proposals ordered lexicographically. A proposer that wins (x,0) is allowed to
make further proposals numbered (x, 1), (x,2), etc. But a different proposer
will need to increment x.

Lamport calls this optimization Paxos in [|; other authors have
called it multi-Paxos to distinguish it from the basic Paxos algorithm.

Chapter 13

Failure detectors

Failure detectors were proposed by Chandra and Toueg | | as a mech-
anism for solving consensus in an asynchronous message-passing system with
crash failures by distinguishing between slow processes and dead processes.
This involves extending the model by giving each process a failure detector
module that continuously outputs an estimate of which processes in the
system have failed. The output does not need to be correct; indeed, the
main contribution of Chandra and Toueg’s paper (and a companion paper by
Chandra, Hadzilacos, and Toueg []) is characterizing just how bogus
the output of a failure detector can be and still be useful.

We will mostly follow Chandra and Toueg in these notes; see the paper
for the full technical details.

To emphasize that the output of a failure detector is merely a hint at
the actual state of the world, a failure detector (or the process it’s attached
to) is said to suspect a process at time t if it outputs failed at that time.
Failure detectors can then be classified based on when their suspicions are
correct.

We use the usual asynchronous message-passing model, and in particular
assume that non-faulty processes execute infinitely often, get all their mes-
sages delivered, etc. From time to time we will need to talk about time, and
unless we are clearly talking about real time this just means any steadily
increasing count (e.g., of total events), and will be used only to describe the
ordering of events.

102

CHAPTER 13. FAILURE DETECTORS 103

13.1 How to build a failure detector

Failure detectors are only interesting if you can actually build them. In
a fully asynchronous system, you can’t (this follows from the FLP result
and the existence of failure-detector-based consensus protocols). But with
timeouts, it’s not hard: have each process ping each other process from
time to time, and suspect the other process if it doesn’t respond to the ping
within twice the maximum round-trip time for any previous ping. Assuming
that ping packets are never lost and there is an (unknown) upper bound on
message delay, this gives what is known as an eventually perfect failure
detector: once the max round-trip times rise enough and enough time has
elapsed for the live processes to give up on the dead ones, all and only dead
processes are suspected.

13.2 Classification of failure detectors

Chandra and Toueg define eight classes of failure detectors, based on when
they suspect faulty processes and non-faulty processes. Suspicion of faulty
processes comes under the heading of completeness; of non-faulty processes,
accuracy.

13.2.1 Degrees of completeness

Strong completeness Every faulty process is eventually permanently sus-
pected by every non-faulty process.

Weak completeness Every faulty process is eventually permanently sus-
pected by some non-faulty process.

There are two temporal logic operators embedded in these statements:
“eventually permanently” means that there is some time ty such that for
all times t > tg, the process is suspected. Note that completeness says
nothing about suspecting non-faulty processes: a paranoid failure detector
that permanently suspects everybody has strong completeness.

13.2.2 Degrees of accuracy

These describe what happens with non-faulty processes, and with faulty
processes that haven’t crashed yet.

Strong accuracy No process is suspected (by anybody) before it crashes.

CHAPTER 13. FAILURE DETECTORS 104

Weak accuracy Some non-faulty process is never suspected.

Eventual strong accuracy After some initial period of confusion, no pro-
cess is suspected before it crashes. This can be simplified to say that
no non-faulty process is suspected after some time, since we can take
end of the initial period of chaos as the time at which the last crash
occurs.

Eventual weak accuracy After some initial period of confusion, some
non-faulty process is never suspected.

Note that “strong” and “weak” mean different things for accuracy vs
completeness: for accuracy, we are quantifying over suspects, and for com-
pleteness, we are quantifying over suspectors. Even a weakly-accurate failure
detector guarantees that all processes trust the one visibly good process.

13.2.3 Boosting completeness

It turns out that any weakly-complete failure detector can be boosted to give
strong completeness. Recall that the difference between weak completeness
and strong completeness is that with weak completeness, somebody suspects
a dead process, while with strong completeness, everybody suspects it. So to
boost completeness we need to spread the suspicion around a bit. On the
other hand, we don’t want to break accuracy in the process, so there needs to
be some way to undo a premature rumor of somebody’s death. The simplest
way to do this is to let the alleged corpse speak for itself: I will suspect you
from the moment somebody else reports you dead until the moment you tell
me otherwise.
Pseudocode is given in Algorithm 13.1.

[uny

initially do

2 L suspects « ()

3 while true do

4 Let S be the set of all processes my weak detector suspects.
5 Send S to all processes.

6 upon receiving S from q do
L suspects « (suspects U S) \ {q}

BN

Algorithm 13.1: Boosting completeness

CHAPTER 13. FAILURE DETECTORS 105

It’s not hard to see that this boosts completeness: if p crashes, somebody’s
weak detector eventually suspects it, this process tells everybody else, and p
never contradicts it. So eventually everybody suspects p.

What is slightly trickier is showing that it preserves accuracy. The
essential idea is this: if there is some good-guy process p that everybody trusts
forever (as in weak accuracy), then nobody ever reports p as suspect—this
also covers strong accuracy since the only difference is that now every non-
faulty process falls into this category. For eventual weak accuracy, wait
for everybody to stop suspecting p, wait for every message ratting out p
to be delivered, and then wait for p to send a message to everybody. Now
everybody trusts p, and nobody every suspects p again. Eventual strong
accuracy is again similar.

This will justify ignoring the weakly-complete classes.

13.2.4 Failure detector classes

Two degrees of completeness times four degrees of accuracy gives eight classes
of failure detectors, each of which gets its own name. But since we can boost
weak completeness to strong completeness, we can use this as an excuse to
consider only the strongly-complete classes.

P (perfect) Strongly complete and strongly accurate: non-faulty processes
are never suspected; faulty processes are eventually suspected by ev-
erybody. Easily achieved in synchronous systems.

S (strong) Strongly complete and weakly accurate. The name is misleading
if we’ve already forgotten about weak completeness, but the correspond-
ing W (weak) class is only weakly complete and weakly accurate, so
it’s the strong completeness that the S is referring to.

QP (eventually perfect) Strongly complete and eventually strongly accu-
rate.

0S (eventually strong) Strongly complete and eventually weakly accu-
rate.

Jumping to the punch line: P can simulate any of the others, S and
QP can both simulate ¢S but can’t simulate P or each other, and (S can’t
simulate any of the others (See Figure 13.1—we’ll prove all of this later.)
Thus ¢S is the weakest class of failure detectors in this list. However, .S is
strong enough to solve consensus, and in fact any failure detector (whatever

CHAPTER 13. FAILURE DETECTORS 106

Figure 13.1: Partial order of failure detector classes. Higher classes can
simulate lower classes but not vice versa.

its properties) that can solve consensus is strong enough to simulate ¢S

(this is the result in the Chandra-Hadzilacos-Toueg paper |])—this
makes .S the “weakest failure detector for solving consensus” as advertised.
Continuing our tour through Chandra and Toueg | |, we’ll show the

simulation results and that ¢S can solve consensus, but we’ll skip the rather
involved proof of (.S’s special role from Chandra-Hadzilacos-Toueg.

13.3 Consensus with S

With the strong failure detector S, we can solve consensus for any number
of failures.

In this model, the failure detectors as applied to most processes are
completely useless. However, there is some non-faulty process ¢ that nobody
every suspects, and this is enough to solve consensus with as many as n — 1
failures.

The protocol is carried out in three phases. In the first phase, the
processes gossip about input values for n — 1 asynchronous rounds. In the
second, they exchange all the values they’ve seen and prune out any that are
not universally known. In the third, each process decides on the lowest-id
input that hasn’t been pruned (minimum input also works since at this point
everybody has the same view of the inputs).

Pseudocode is given in Algorithm 13.2

In Phase 1, each process p maintains two partial functions V,, and 9,
where V), lists all the input values (g,v,) that p has ever seen and §, lists
only those input values seen in the most recent of n — 1 asynchronous rounds.
Both V,, and §, are initialized to {(p,vp)}. In round i, p sends (,,) to all
processes. It then collects (i, d,) from each ¢ that it doesn’t suspect and sets
op to U, 04\ Vi (where ¢ ranges over the processes from which p received a

CHAPTER 13. FAILURE DETECTORS 107

1 V, < {(p,vp)} // All values known to p
2 0, < {(p,vp)} // New values p learned last round
// Phase 1: add values

gfori+1lton—-1do
4 Send (i, 6,) to all processes.
5 Wait to receive (i,dq) from all ¢ I do not suspect.

6 | G (Uyd)\ Vs
T | Vo (Ugde) UV,
// Phase 2: subtract values

8 Send (n,V},) to all processes.
9 Wait to receive (n,V;) from all ¢ I do not suspect.

10V, < (N, Vy) NV
// Phase 3: decide on something
11 return some input from V), chosen via a consistent rule.

Algorithm 13.2: Consensus with a strong failure detector

message in round 4) and sets V), to V,, U d,. In the next round, it repeats the
process. Note that each pair (g, vy) is only sent by a particular process p the
first round after p learns it: so any value that is still kicking around in round
n — 1 had to go through n — 1 processes.

In Phase 2, each process p sends (n,V,), waits to receive (n,V;) from
every process it does not suspect, and sets V), to the intersection of V,, and
all received V. At the end of this phase all V}, values will in fact be equal,
as we will show.

In Phase 3, everybody picks some input from their V), vector according
to a consistent rule.

13.3.1 Proof of correctness

Let ¢ be a non-faulty process that nobody every suspects.

The first observation is that the protocol satisfies validity, since every
V) contains v, after round 1 and each V,, can only contain input values by
examination of the protocol. Whatever it may do to the other values, taking
intersections in Phase 2 still leaves v, so all processes pick some input value
from a nonempty list in Phase 3.

To get termination we have to prove that nobody ever waits forever
for a message it wants; this basically comes down to showing that the first

CHAPTER 13. FAILURE DETECTORS 108

non-faulty process that gets stuck eventually is informed by the S-detector
that the process it is waiting for is dead.

For agreement, we must show that in Phase 3, every V), is equal; in
particular, we’ll show that every V), = V.. First it is necessary to show that
at the end of Phase 1, V. C V,, for all p. This is done by considering two
cases:

1. If (q,vq) € V. and c learns (g,v,) before round n — 1, then ¢ sends
(q,vq) to p no later than round n — 1, p waits for it (since nobody ever
suspects c), and adds it to V).

2. If (q,vq) € V. and c learns (g, v4) only in round n — 1, then (g, v,) was
previously sent through n — 1 other processes, i.e., all of them. Each
process p # ¢ thus added (g,vq) to V, before sending it and again
(q,vq) is in V},.

(The missing case where (g,v,) isn’t in V, we don’t care about.)

But now Phase 2 knocks out any extra elements in V), since V), gets set to
Vp NV, N (some other V,’s that are supersets of V;). It follows that, at the
end of Phase 2, V), = V, for all p. Finally, in Phase 3, everybody applies the
same selection rule to these identical sets and we get agreement.

13.4 Consensus with (.S and f < n/2

The consensus protocol for S depends on some process ¢ never being suspected;
if ¢ is suspected during the entire (finite) execution of the protocol—as can
happen with ¢.S—then it is possible that no process will wait to hear from
¢ (or anybody else) and the processes will all decide their own inputs. So
to solve consensus with (.S we will need to assume fewer than n/2 failures,
allowing any process to wait to hear from a majority no matter what lies its
failure detector is telling it.

The resulting protocol, known as the Chandra-Toueg consensus pro-
tocol, is structurally similar to the consensus protocol in Paxos.! The
difference is that instead of proposers blindly showing up, the protocol is
divided into rounds with a rotating coordinator p; in each round r with
r =14 (mod n). The termination proof is based on showing that in any round
where the coordinator is not faulty and nobody suspects it, the protocol
finishes.

1See Chapter 12.

CHAPTER 13. FAILURE DETECTORS 109

The consensus protocol uses as a subroutine a protocol for reliable
broadcast, which guarantees that any message that is sent is either received
by no non-faulty processes or exactly once by all non-faulty processes. Pseu-
docode for reliable broadcast is given as Algorithm 13.3. It’s easy to see that
if a process p is non-faulty and receives m, then the fact that p is non-faulty
means that is successfully sends m to everybody else, and that the other
non-faulty processes also receive the message at least once and deliver it.

1 procedure broadcast(m)
2 L send m to all processes.

3 upon receiving m do

4 if I haven’t seen m before then
5 send m to all processes
6 deliver m to myself

Algorithm 13.3: Reliable broadcast

Here’s a sketch of the actual consensus protocol:

o Each process keeps track of a preference (initially its own input) and a
timestamp, the round number in which it last updated its preference.

e The processes go through a sequence of asynchronous rounds, each
divided into four phases:

1. All processes send (round, preference, timestamp) to the coordi-
nator for the round.

2. The coordinator waits to hear from a majority of the processes
(possibly including itself). The coordinator sets its own preference
to some preference with the largest timestamp of those it receives
and sends (round, preference) to all processes.

3. Each process waits for the new proposal from the coordinator or
for the failure detector to suspect the coordinator. If it receives
a new preference, it adopts it as its own, sets timestamp to
the current round, and sends (round, ack) to the coordinator.
Otherwise, it sends (round, nack) to the coordinator.

4. The coordinator waits to receive ack or nack from a majority of
processes. If it receives ack from a majority, it announces the
current preference as the protocol decision value using reliable
broadcast.

CHAPTER 13. FAILURE DETECTORS 110

e Any process that receives a value in a reliable broadcast decides on it
immediately.

Pseudocode is in Algorithm 13.4.

1 preference + input

2 timestamp < 0

3 for round < 1...00 do

4 Send (round, preference, timestamp) to coordinator

5 if I am the coordinator then

6 Wait to receive (round, preference, timestamp) from majority of
processes.

7 Set preference to value with largest timestamp.

8 Send (round, preference) to all processes.

9 Wait to receive (round, preference’) from coordinator or to suspect

coordinator.

10 if I received (round, preference’) then

11 preference « preference’

12 timestamp < round

13 Send ack(round) to coordinator.

14 else

15 L Send nack(round) to coordinator.

16 if I am the coordinator then

17 Wait to receive ack(round) or nack(round) from a majority of
processes.

18 if I received no nack(round) messages then

19 L Broadcast preference using reliable broadcast.

Algorithm 13.4: Consensus with an eventually-strong failure detector

13.4.1 Proof of correctness

For validity, observe that the decision value is an estimate and all estimates
start out as inputs.

For termination, observe that no process gets stuck in Phase 1, 2, or 4,
because either it isn’t waiting or it is waiting for a majority of non-faulty
processes who all sent messages unless they have already decided (this is
why we need the nacks in Phase 3). The loophole here is that processes that

CHAPTER 13. FAILURE DETECTORS 111

decide stop participating in the protocol; but because any non-faulty process
retransmits the decision value in the reliable broadcast, if a process is waiting
for a response from a non-faulty process that already terminated, eventually
it will get the reliable broadcast instead and terminate itself. In Phase 3,
a process might get stuck waiting for a dead coordinator, but the strong
completeness of (.S means that it suspects the dead coordinator eventually
and escapes. So at worst we do finitely many rounds.

Now suppose that after some time ¢ there is a process ¢ that is never
suspected by any process. Then in the next round in which c is the coordi-
nator, in Phase 3 all surviving processes wait for ¢ and respond with ack, ¢
decides on the current estimate, and triggers the reliable broadcast protocol
to ensure everybody else decides on the same value. Since reliable broadcast
guarantees that everybody receives the message, everybody decides this value
or some value previously broadcast—but in either case everybody decides.

Agreement is the tricky part. It’s possible that two coordinators both
initiate a reliable broadcast and some processes choose the value from the first
and some the value from the second. But in this case the first coordinator
collected acks from a majority of processes in some round r, and all subsequent
coordinators collected estimates from an overlapping majority of processes in
some round 7’ > r. By applying the same induction argument as for Paxos,
we get that all subsequent coordinators choose the same estimate as the first
coordinator, and so we get agreement.

13.5 f < n/2 is still required even with ¢ P

We can show that with a majority of failures, we’re in trouble with just ¢ P
(and thus with (S, which is trivially simulated by QP). The reason is that
QP can lie to us for some long initial interval of the protocol, and consensus
is required to terminate eventually despite these lies. So the usual partition
argument works: start half of the processes with input 0, half with 1, and
run both halves independently with (P suspecting the other half until the
processes in both halves decide on their common inputs. We can now make
QP happy by letting it stop suspecting the processes, but it’s too late.

13.6 Relationships among the classes

It’s easy to see that P simulates S and P simulates ¢S without modification.
It’s also immediate that P simulates O P and S simulates (S (make “even-
tually” be “now”), which gives a diamond-shaped lattice structure between

CHAPTER 13. FAILURE DETECTORS 112

the classes. What is trickier is to show that this structure doesn’t collapse:
QP can’t simulate S, S can’t simulate ¢P, and .S can’t simulate any of the
other classes.

First let’s observe that O P can’t simulate S: if it could, we would get a
consensus protocol for f > n/2 failures, which we can’t do. It follows that
QP also can’t simulate P (because P can simulate S).

To show that S can’t simulate ¢ P, choose some non-faulty victim process
v and consider an execution in which S periodically suspects v (which it
is allowed to do as long as there is some other non-faulty process it never
suspects). If the { P-simulator ever responds to this by refusing to suspect v,
there is an execution in which v really is dead, and the simulator violates
strong completeness. But if not, we violate eventual strong accuracy. Note
that this also implies S' can’t simulate P, since P can simulate ¢P. It also
shows that .S can’t simulate either of 0P or P.

We are left with showing ¢S can’t simulate S. Consider a system where
p’s 0.5 detector suspects ¢ but not p from the start of the execution. Run p
until p’s S-simulator gives up and suspects ¢, which it must do eventually by
strong completeness, since this run is indistinguishable from one in which ¢
is faulty. Then wake up ¢ and crash p. Since ¢ is the only non-faulty process,
and the alleged S-simulator suspected it, we’ve violated weak accuracy.

13.7 Terminating reliable broadcast with P

If we look carefully at the arguments so far, we haven’t actually shown
anything that P is good for: we only know that S and ¢ P can’t simulate P
because neither can simulate the other. This raises the obvious question of
whether there is something we might actually want to do that requires P.

Chandra and Toueg | | give as an example of a natural problem that
can be solved only with P the problem of terminating reliable broadcast.
In this problem, a leader process ¢ sends a message m, and all processes
eventually decide on m or a no-message value L. Validity in this case says
that if £ is non-faulty, every non-faulty process decides m. Agreement says
that all non-faulty processes must decide the same value (which will be one
of m or L) whether ¢ is faulty or not. Terminating is the usual condition
that all processes eventually decide on some value.

This problem is equivalent to having the processes reach consensus on a
value that defaults to L if no message is received from ¢. Since P implements
S, we can do this using our already-known algorithm for solving consensus
for any number of failures using S. The resulting algorithm runs in two

CHAPTER 13. FAILURE DETECTORS 113

phases:

1. In the first phase, ¢ transmits m to all processes, and each process
waits to either receive m (and use m as the input to the next phase)
or suspect ¢ (and use L as the input to the next phase).

2. In the second phase, use Algorithm 13.2 to reach agreement on m or
L. (We can do this because P is also an instance of S.)

If ¢ is non-faulty, all non-faulty processes start the consensus phase with
m and end with m. Whether £ is faulty or not, all non-faulty processes end
the consensus phase with the same value. So validity and agreement are
satisfied.

It’s not hard to see that we can’t solve terminating reliable broadcast
with either S or QP. If we try to solve it using S, the weak accuracy of S
means that some non-faulty p is never suspected, but p doesn’t have to be
£. So if all the processes start off suspecting /¢, either they wait forever for
a faulty ¢ to wake up (violating termination), or they finish the protocol
and decide on the wrong value before a non-faulty ¢ wakes up (violating
validity). The same argument works for () P: during the initial period of
confusion, a non-faulty £ might be suspected by all processes, and if we wait
to decide until £ starts sending messages or becomes non-suspect, we violate
termination in the case where ¢ really is faulty.

Chapter 14

Quorum systems

Last updated 2014. Some material may be out of date.

14.1 Basics

In the past few chapters, we’ve seen many protocols that depend on the
fact that if T talk to more than n/2 processes and you talk to more than
n/2 processes, the two groups overlap. This is a special case of a quorum
system, a family of subsets of the set of processes with the property that
any two subsets in the family overlap. By choosing an appropriate family, we
may be able to achieve lower load on each system member, higher availability,
defense against Byzantine faults, etc.

The exciting thing from a theoretical perspective is that these turn
a systems problem into a combinatorial problem: this means we can ask
combinatorialists how to solve it.

14.2 Simple quorum systems
e Majority and weighted majorities

o Specialized read/write systems where write quorum is a column and
read quorum a row of some grid.

e Dynamic quorum systems: get more than half of the most recent copy.
o Crumbling walls | ,]: optimal small-quorum system for

good choice of wall sizes.

114

CHAPTER 14. QUORUM SYSTEMS 115

14.3 Goals

e Minimize quorum size.

e Minimize load, defined as the minimum over all access strategies
(probability distributions on quorums) of the maximum over all servers
of probability it gets hit.

o Maximize capacity, defined as the maximum number of quorum ac-
cesses per time unit in the limit if each quorum access ties up a quorum
member for 1 time unit (but we are allowed to stagger a quorum access
over multiple time units).

e Maximize fault-tolerance: minimum number of server failures that
blocks all quorums. Note that for standard quorum systems this is
directly opposed to minimizing quorum size, since killing the smallest
quorum stops us dead.

e Minimize failure probability = probability that every quorum con-
tains at least one bad server, assuming each server fails with independent
probability.

Naor and Wool | | describe trade-offs between these goals (some of
these were previously known, see the paper for citations):

o capacity = 1/load; this is obtained by selecting the quorums indepen-
dently at random according to the load-minimizing distribution. In
particular this means we can forget about capacity and just concentrate
on minimizing load.

o load > max(¢/n,1/c) where c is the minimum quorum size. The first
case is obvious: if every access hits ¢ nodes, spreading them out as
evenly as possible still hits each node ¢/n of the time. The second is
trickier: Naor and Wool prove it using LP duality, but the argument
essentially says that if we have some quorum @ of size ¢, then since
every other quorum @’ intersects Q in at least one place, we can show
that every Q" adds at least 1 unit of load in total to the ¢ members of
Q. So if we pick a random quorum @', the average load added to all of
Q is at least 1, so the average load added to some particular element
of @ is at least 1/|Q| = 1/c. Combining the two cases, we can’t hope
to get load better than 1/4/n, and to get this load we need quorums of
size at least \/n.

CHAPTER 14. QUORUM SYSTEMS 116

(8] @ C) &
. [. () *
e - IEETI Fe ca --------- o
» L 4 L E & L
o T SRS S c: --------- o
L L 4 L 4 i L 4 ®
A G’ """"" ©
00)e & o+ 4
6 6 6 6
Figure 14.1: Figure 2 from |]. Solid lines are G(3); dashed lines are

G*(3).

o failure probability is at least p when p > 1/2 (and optimal system is to
just pick a single leader in this case), failure probability can be made
exponentially small in size of smallest quorum when p < 1/2 (with
many quorums). These results are due to Peleg and Wool |].

14.4 Paths system

This is an optimal-load system from Naor and Wool |] with exponen-
tially low failure probability, based on percolation theory.

For this system, we build a d x d mesh-like graph where a quorum consists
of the union of a top-to-bottom path (TB path) and a left-to-right path (LR
path); this gives quorum size O(y/n) and load O(1/y/n). Note that the TB
and LR paths are not necessarily direct: they may wander around for a while
in order to get where they are going, especially if there are a lot of failures
to avoid. But the smallest quorums will have size 2d + 1 = O(y/n).

The actual mesh is a little more complicated. Figure 14.1 reproduces the
picture of the d = 3 case from the Naor and Wool paper.

Each server corresponds to a pair of intersecting edges, one from the

CHAPTER 14. QUORUM SYSTEMS 117

G(d) grid and one from the G*(d) grid (the star indicates that G*(d) is the
dual graph' of G(d). A quorum consists of a set of servers that produce an
LR path in G(d) and a TB path in G*(d). Quorums intersect, because any
LR path in G(d) must cross some TB path in G*(d) at some server (in fact,
each pair of quorums intersects in at least two places). The total number of
elements n is (d 4 1)? and the minimum size of a quorum is 2d + 1 = O(y/n).

The symmetry of the mesh gives that there exists a LR path in the
mesh if and only if there does not exist a TB path in its complement, the
graph that has an edge only if the mesh doesn’t. For a mesh with failure
probability p < 1/2, the complement is a mesh with failure probability
g =1—p > 1/2. Using results in percolation theory, it can be shown that for
failure probability g > 1/2, the probability that there exists a left-to-right
path is exponentially small in d (formally, for each p there is a constant ¢(p)
such that Pr[3LR path] < exp(—¢(p)d)). We then have

Pr[3(live quorum)| = Pr[3(TB path) A 3(LR path)]

Pr[-3(LR path in complement) V =3(TB path in complement)]
Pr[-3(LR path in complement)] + Pr[=3(TB path in complement)]
2exp(—¢(1 —p)d)

2 exp(—O(v/).

So the failure probability of this system is exponentially small for any fixed
p<1/2.
See the paper |] for more details.

14.5 Byzantine quorum systems

Standard quorum systems are great when you only have crash failures, but
with Byzantine failures you have to worry about finding a quorum that
includes a Byzantine serve who lies about the data. For this purpose you
need something stronger. Following Malkhi and Reiter [] and Malkhi et
al. | |, one can define:

o A b-disseminating quorum system guarantees |Q1 N Q2| > b+
1 for all quorums @1 and)». This guarantees that if I update a
quorum ()1 and you update a quorum Qo, and there are at most

!The dual of a graph G embedded in the plane has a vertex for each region of G, and
an edge connecting each pair of vertices corresponding to adjacent regions, where a region
is a subset of the plane that is bounded by edges of G.

CHAPTER 14. QUORUM SYSTEMS 118

b Byzantine processes, then there is some non-Byzantine process in
both our quorums. Mostly useful if data is “self-verifying,” that is,
signed with digital signatures that the Byzantine processes can’t forge.
Otherwise, I can’t tell which of the allegedly most recent data values is
the right one since the Byzantine processes lie.

o A b-masking quorum system guarantees |Q1 N Q2| > 2b + 1 for
all quorums @1 and Q2. (In other words, it’s the same as a 2b-
disseminating quorum system.) This allows me to defeat the Byzantine
processes through voting: given 2b + 1 overlapping servers, if I want
the most recent value of the data I take the one with the most recent
timestamp that appears on at least b + 1 servers, which the Byzantine
guys can’t fake.

An additional requirement in both cases is that for any set of servers B
with |B] < b, there is some quorum @ such that @ N B = (). This prevents
the Byzantine processes from stopping the system by simply refusing to
participate.

Note: these definitions are based on the assumption that there is some
fixed bound on the number of Byzantine processes. Malkhi and Reiter |]
give more complicated definitions for the case where one has an arbitrary
family {B} of potential Byzantine sets. The definitions above are actually
simplified versions from |]

The simplest way to build a b-disseminating quorum system is to use
supermajorities of size at least (n + b+ 1)/2; the overlap between any two
such supermajorities is at least (n +b+ 1) —n = b+ 1. This gives a load of

substantially more than % There are better constructions that knock the

load down to ©(y/b/n); see | .
For more on this topic in general, see the survey by by Merideth and
Reiter | l.

14.6 Probabilistic quorum systems

The problem with all standard (or strict) quorum systems is that we need big
quorums to get high fault tolerance, since the adversary can always stop us
by knocking out our smallest quorum. A probabilistic quorum system or
more specifically an e-intersecting quorum system | | improves
the fault-tolerance by relaxing the requirements. For such a system we have
not only a set system (), but also a probability distribution w supplied by

CHAPTER 14. QUORUM SYSTEMS 119

the quorum system designer, with the property that Pr[Q1 N Q2 = 0] < e
when)1 and)2 are chosen independently according to their weights.

14.6.1 Example

Let a quorum be any set of size ky/n for some k and let all quorums be
chosen uniformly at random. Pick some quorum J1; what is the probability
that a random @5 does not intersect ()17 Imagine we choose the elements
of (2 one at a time. The chance that the first element z; of Q2 misses (1
is exactly (n — ky/n)/n =1—k/y/n, and conditioning on x; through z; 1
missing ()1 the probability that x; also misses it is (n — ky/n —i+1)/(n —
i+1) < (n—kyn)/n=1-k/\/n. So taking the product over all i gives
Prlall miss Q] < (1 — k/\/n)*V" < exp(—ky/n)¥/ V") = exp(—k?). So by
setting k = O(In 1/¢), we can get our desired e-intersecting system.

14.6.2 Performance

Failure probabilities, if naively defined, can be made arbitrarily small: add
low-probability singleton quorums that are hardly ever picked unless massive
failures occur. But the resulting system is still e-intersecting.

One way to look at this is that it points out a flaw in the e-intersecting
definition: e-intersecting quorums may cease to be e-intersecting conditioned
on a particular failure pattern (e.g., when all the non-singleton quorums are
knocked out by massive failures). But Malkhi et al. | | address the
problem in a different way, by considering only survival of high quality
quorums, where a particular quorum @ is 6-high-quality if Pr[Q1 N Q2 =
0)@Q1 = Q] < ¢ and high quality if it’s \/e-high-quality. It’s not hard to show
that a random quorum is d-high-quality with probability at least €/4, so a
high quality quorum is one that fails to intersect a random quorum with
probability at most /e and a high quality quorum is picked with probability
at least 1 — /€.

We can also consider load; Malkhi et al. [| show that essentially
the same bounds on load for strict quorum systems also hold for e-intersecting
quorum systems: load(S) > max((E(|Q|)/n, (1—+/€)?/E(|Q])), where E(|Q|)
is the expected size of a quorum. The left-hand branch of the max is just
the average load applied to a uniformly-chosen server. For the right-hand
side, pick some high quality quorum @’ with size less than or equal to
(1 —/e)E(|Q|) and consider the load applied to its most loaded member by
its nonempty intersection (which occurs with probability at least 1 — /€)
with a random quorum.

CHAPTER 14. QUORUM SYSTEMS 120

14.7 Signed quorum systems

A further generalization of probabilistic quorum systems gives signed quo-
rum systems []. In these systems, a quorum consists of some set of
positive members (servers you reached) and negative members (servers you
tried to reach but couldn’t). These allow O(1)-sized quorums while tolerating
n — O(1) failures, under certain natural probabilistic assumptions. Because
the quorums are small, the load on some servers may be very high: so these
are most useful for fault-tolerance rather than load-balancing. See the paper
for more details.

Chapter 15

Permissionless systems

All of the results we have considered so far for message-passing systems have
made a critical assumption: the number of processes n is known and fixed,
so we can sensibly talk about things like majorities of processes, fewer than
n/3 Byzantine faults, and so on. This assumption is not unreasonable for
systems operated by a single organization, but it may not make sense for
large distributed systems that can in principle be joined by anybody. In this
case, to solve a problem like agreement, we need some mechanism other than
simply counting machines to produce overlapping quorums or to outvote
Byzantine coalitions.

This is particularly tricky because it is possible for a single machine on
the Internet to masquerade as many, by using routing trickery to simulate
many distinct IP addresses. This is not something we can practically remove
from the IP protocol stack, since it’s used for positive ends like allowing a
single machine to simulate multiple low-use servers or, in the other direction,
allowing a warehouse full of machines to simulate a single high-use server.
But this possibility allows for a Sybil attack [|, where an algorithm
naively implemented on the assumption that faulty processes form a small
minority is suddenly overwhelmed by a single faulty machine backed by an
army of virtual clones. This requires re-examining how (or if) we can achieve
consensus in systems that allow arbitrary participants.

The current dominant strategy for doing so is to use cryptographic mech-
anisms to substitute majorities expressed in terms of unforgeable resources
like computing power, storage, or simulated currencies for majorities ex-
pressed in mere counts of IP addresses. This is often coupled with a certified
replicated-state-machine approach that replaces agreement with weaker vari-
ous eventual consistency guarantees, all of which is encompassed by the

121

CHAPTER 15. PERMISSIONLESS SYSTEMS 122

notion of a blockchain, which has no universally-accepted formal definition,
but which we can think of roughly as a global-scale replicated-state-machine
algorithm that allows arbitrary participants and enforces consistency in the
long run using a combination of cryptographic tools and social engineering.

The blockchain world is a bit of a moving target, and constructing a
practical blockchain that will see wide adoption involves a number of political
and social issues that go beyond simply putting together the right technology.
But from a distributed-systems perspective, we can look at the systems
that people have actually built and try to learn something from them. In
this chapter, we’ll start by looking at the problem of defending against
arbitrary participants in a distributed system, and then look at how the
Bitcoin system | | appears to do so successfully even though it arguably
shouldn’t.

15.1 Sybil attacks

The idea of the Sybil attack is that one bad machine can masquerade as
many different machines using routing tricks. This defeats any distributed
algorithm based on assuming a fixed fraction of the processes are bad.
This is particularly difficult to defend against in the current Internet as
most machines are now buried behind Network Address Translation (NAT)
mechanisms to allow a single IP to be shared between multiple machines,
making it trivial for an army of bogus clones to masquerade as separate
machines behind a NAT.

Whatever the source of the bogus clones, they are a problem for any
system with open admissions, where any machine on the network can join
it. Examples of such systems are the SMTP-based mail system, the HTTP-
based World-Wide Web, and many multiplayer games. The openness of these
systems makes them inherently vulnerable to malicious actors (spammers
for SMTP, various kinds of undesirable users for HT'TP, cheaters in games),
especially if new identities can be manufactured for free.

The name "Sybil attack” was popularized by a paper by John Douceur |
in a paper that analyzes several methods for attempting to defeat them. The
term itself is credited to Brian Zill in Douceur’s paper, and is based on the
book (and later movie) Sybil | | about a psychiatric patient diagnosed
with multiple-personality disorder.

Note that Sybil attacks do not include attacks using botnets, where the
problem is that we really do have 10,000,000 bad nodes overwhelming our
system; instead, we are worrying about the case where a bad router can

CHAPTER 15. PERMISSIONLESS SYSTEMS 123

claim to have 10,000,000 bad nodes behind it but these nodes are simulated
by only a small number of machines.

15.1.1 Resource-based defenses

Douceur considers an abstract model involving interactions between entities,
which may or may not correspond to actual machines. (For consistency with
the rest of these notes, we will just call them “processes.”) The communi-
cation model is a generic broadcast channel (called a “cloud” in Douceur’s
terminology) that, unlike our usual model, does not record the source of mes-
sages. It is assumed that processes are computationally bounded, allowing
the use of public-key cryptography. In particular, an process can establish an
identity by creating a public/secret key pair and signing all of its messages
using the secret key.

Non-faulty processes will do this once, establishing a single legitimate
identity. Faulty processes will attempt to construct as many extra counter-
feit identities as they can get away with.

Assuming that there is no external agent (like a centralized certificate
authority) that prevents them from doing this, so need a mechanism to
constrain how many identities a faulty process can construct. One solu-
tion is to assume that all processes have limited access to some resource
needed to construct identities. Typically this is computational power, al-
lowing for a proof-of-work strategy where any new identity is validated by
demonstrating that the process using it has burned some minimal amount of
computational time.

This approach was first proposed by Dwork and Naor | | as a tool
for combating email spam, and is frequently reinvented. The usual approach
is to pick a cryptographically-secure hash function A that produces n bits of
output, a puzzle input z that should be unique to this instance of the problem,
and demand that the process find some value y such that h(zy) = 0; if we
assume that h acts like a random function, it should require 2" computations
of h on average to find such a y.

Proof-of-work allows for direct validation of identities: if you present me
with an identity that incorporates xy with h(zy) = 0, I can be reasonably
confident that you spent computed approximately 2™ hashes since you learned
x. The cost of checking a valid identity is relatively cheap, since I only have
to compute one hash (although the cost of checking a bogus identity might be
more expensive than generating the bogus identity). Assuming that the each
faulty process spends at most p times as much processing power than any
non-faulty process, Douceur observes that the expected number of counterfeit

CHAPTER 15. PERMISSIONLESS SYSTEMS 124

identities for each faulty process will average around p.

A key assumption here is that the proof-of-work tasks are carried out
over a bounded interval. If the faulty processes can prepare identities well in
advance, Douceur observes that a faulty process can spend as much time as
it likes to construct as many identities as it likes.

(There is a third main result in this paper, which shows that using an
initial assignment of identities to validate later identities using some sort of
vouching processes just leads the initial army of counterfeits to recruit more
counterfeits. This is mostly interesting because it was still used at the time
as a way to try to validate identities in PGP |], a popular open-source
public-key encryption system for email messages.)

15.1.2 Limitations of resource-based defenses

Douceur’s paper was interpreted by many researchers as a sign that proof-of-
work is fundamentally useless for defending against Sybil attacks, at least in
the context of problems like consensus where a constant fraction of faulty
agents can disrupt the protocol. The usual argument goes like this:'

1. For any instance of a problem to be solved using proof-of-work, non-
faulty processes need to burn resources that are a constant fraction of
the resources burned by faulty processes.

2. This resource burning needs to exceed the value of whatever target
is being defended, or the faulty processes can obtain a net profit by
burning enough resources to overwhelm the non-faulty processes.

3. The resource burning by the non-faulty processes needs to be repeated
every time the target is defended, because the non-faulty processes
only need to get lucky once. In contrast, the faulty processes can wait
and burn their resources for only one instance of the protocol.

It follows that the non-faulty processes quickly expend more resources
defending the target than the target is worth: proof-of-work can’t work.”

! As far as T can tell, this argument initially arose as a folk theorem. But see |]
for references to more serious game-theoretic analyses that are similarly pessimistic and
some reasons to be less pessimistic.

2This did not stop some of us from trying anyway. One of the earliest written examples
of attempting to use proof-of-work to solve Byzantine agreement despite Sybil attacks is
a Yale CS tech report derived from Collin Jackson’s CPSC 490 senior project []
Sadly the two co-authors who advised him on this project didn’t think it was worth trying
to publish this obviously silly idea anywhere more visible.

CHAPTER 15. PERMISSIONLESS SYSTEMS 125

The description above is a little vague about what it means to protect
a target. As a concrete example, suppose I am purchasing some real-world
good from you using a transaction that is recorded in a distributed ledger,
a replicated state machine that records payments. If I can subvert the
consensus protocol used to update the distributed ledger, I might be able
to show you a ledger that includes a payment from me to you (causing you
to turn over the valuable good), but then convince all other participants
to adopt a different update in which this transaction never happened, and
explain that you are simply a Byzantine process trying to steal my money.’

15.1.3 Alternative defenses

CAPTCHAS |] have been used in the context of web sites inter-
acting with human users, by requiring the users to complete tasks that are
hard to automate. This raises the cost of a fake identity by a bit, since a
human being needs to be involved in the process somewhere, but it’s still
fundamentally a resource-burning technique, just now the resource is human
time instead of computer time. As with proof-of work, the problem is that
non-faulty users are required to spend the same effort as faulty users, and
this adds up fast via the folk theorem. This becomes particularly annoying
when attackers can arbitrage low wage rates in some countries or even apply
man-in-the-middle attacks that get would-be visitors to one site to solve
CAPTCHASs for another site.

Some other approaches that have been proposed use physical locations or
social networks to attempt to detect counterfeit identities generated by the
same process. Bazzi and Konjevod [| proposed that a process that wants
to authenticate itself could a geometric certificate consisting of verified
ping times to a collection of standardized beacon nodes. Multiple virtual
machines located at the same physical location will end up with essentially
the same certificate, and can be treated as one (possibly corrupted) node.
Unfortunatley, so will multiple users at large institutions with a single
outgoing pipe to the rest of the network. The idea does avoid resource-
burning, but it never really caught on on practice, and if tried now could
probably be easily defeated by geographically-distributed botnets.

SybilGuard | | was proposed by Yu et al. as a defense against

3A reasonable objection is that if you demand that I sign my transactions using a
private key, I won’t be able to repudiate my payment even if you only have a private copy.
In this case what I do is show you a version of the ledger where I have plenty of funds to
pay you, and then show everybody else a version where my payment to you sadly does not
go through because I already gave all my money to my suspiciously identical twin.

CHAPTER 15. PERMISSIONLESS SYSTEMS 126

Sybil attacks based on the structure of social networks. The idea is that a
social network graph with many Sybil nodes is likely to decompose into a
subnetwork consisting mostly of legitimate nodes and a subnetwork consisting
mostly of counterfeit nodes, with the majority of links between nodes within
each subnetwork and few links between legitimate nodes and counterfeit
nodes. This approach is pretty clever, and subsequent work explored in
depth efficient algorithms for separating these two subnetworks, but it causes
trouble for users that wish to disconnect their activities from their social-
network identity, and more practically is trivially defeated if the faulty
processes can amass enough bogus social network accounts that they are not
longer an obvious disconnected minority.

15.2 Bitcoin

Since proof-of-work is too expensive, and other approaches are easily defeated,
what do we do if we really want to solve consensus in an open system? It turns
out we bite the bullet and accept the huge cost of proof-of-work. This was the
approach taken by the pseudonymous person or persons Satoshi Nakamoto
in Bitcoin |]. This system evades some of the issues in the folk theorem
by (a) convincing lots of non-faulty processes to join by including a lottery
awarding tokens to participants and (b) relying on the would-be faulty
processes not to be coordinated enough or have enough available processing
power relative to the huge horde of non-faulty lottery-ticket buyers to target
a specific round of the protocol.

Bitcoin is an implementation of a cryptocurrency, a mechanism for
exchanging cryptographic tokens between users that can be used analogously
to standard currencies. To make all transfers visible thus prevent double-
spending, it implements what is now usually called a distributed ledger
consisting of a chain (sequence) of blocks, each of which contains a set of
transactions that record transfers of tokens between participants. Participants
are identified by cryptographic keys, and a transaction must be signed by
the sender of the tokens to be valid.

A cryptographic hash of the entire ledger is updated with the addition
of each block, to prevent tampering and to construct the key for the proof-
of-work puzzle used to select the next block to be added. This technique,
which gave rise to the name blockchain for systems of this kind, was
originally developed by Haber and Stornetta [|, without the proof-of-
work consensus algorithm, as a tool for making it difficult to backdate digital
documents by storing their hashes in a centrally-maintained sequence of

CHAPTER 15. PERMISSIONLESS SYSTEMS 127

signed blocks of this type whose full hash is published from time to time in
a difficult-to-corrupt location. (Haber and Stornetta’s company Surety used
a weekly classified advertisement in the New York Times.)

Bitcoin takes this idea and adds a proof-of-work based consensus protocol
on top, while including side payments to reward participation in the protocol.
The rule for the consensus protocol is that every interested process tries to
extend the current chain as best it can, but only a process that provably solves
a cryptographic puzzle can do so. So the first process to solve the puzzle
wins, and if the majority of the computation power belongs to non-faulty
processes, this process is likely to be non-faulty. In the case of a tie (possibly
created by faulty processes that refuse to admit defeat), longer chain wins.
In this way the computationally-strong majority eventually overcomes the
computationally-weak minority, since even if the minority gets lucky a few
times they are unlikely to win the race against the more powerful faction.

To analyze this, let’s assume a synchronous message-passing system
where messages are distributed through an anonymous broadcast channel.
Synchrony is obtained by assuming roughly-synchronized clocks and setting
a very long timeout of 10 minutes for each round. Because the identities of
processes are not relevant to the protocol, there is no need to identify the
sender of a message, although the proof-of-work mechanism used to select
blocks also has the useful side effect of limiting propagation of spam updates.

In distributed computing terms, Bitcoin implements a replicated state
machine, using a probabilistic version of consensus to choose between pos-
sible extensions. Using randomization evades the Dolev-Strong [| and
FLP [] lower bounds, because the bad executions constructed in
these bounds are either (a) highly improbable or (b) require the adversary
to predict the future (we’ll come back to this idea in Chapter 24). The
Nakamoto paper does not reference the distributed computing literature,
and its definition of consensus deviates substantially from the traditional
termination-validity-agreement framework of Pease et al. | |. Instead
of guaranteeing termination and validity, the protocol attempts to provide
an eventual consistency where over time, the copies of the state machine
continuously converge to agreeing on an initial prefix of the operation history
that includes all but a few recently-added blocks.

15.2.1 Obtaining eventual consistency

In this section, we’ll describe the operation of the Bitcoin consensus protocol,
often called Nakamoto consensus. There is a somewhat heuristic analysis
of this protocol in the original Bitcoin whitepaper. We’'ll give a slightly less

CHAPTER 15. PERMISSIONLESS SYSTEMS 128

heuristic analysis that is still pretty sloppy. For a more serious analysis,
see | |, which influenced some of the less suspicious parts of the
discussion below.

Our model is already strong enough to trivially guarantee agreement
in each round: since every non-faulty process sees the same chains in the
broadcast channel, it’s enough to discard any invalid chains (which we will
define soon), and apply some consistent tie-breaking rule to choose among
the remaining valid chains. So the goal of the consensus step will be to
guarantee eventual consistency between rounds, which we will take to
mean that any block buried deep enough in the chain C) for round r also
appears in any chain C,. for v’ > r.

The mechanism for doing this is to generate each C; ;1 as an extension
of C,.. To construct an extension, a process i that wishes to add block z;
must first solve a hash puzzle by finding some y such that h(C,, z;,y) < D,
where h is a hash function that is sufficiently cryptographically secure that
we can pretend it’s a random function, and D is a difficulty parameter that
can be tuned to adjust the likelihood of finding a solution within the time
bounds associated with the round. If successful, the process can propose
an extension C, (x;,y) that is valid if it satisfies both application-specific
requirements like z; doesn’t include transactions that spend money the
spender doesn’t have after C,, and protocol-specific requirements like C)
is valid and h(C,,z;,y) < D. These conditions are easily checked by any
process.

For the tie-breaking rule, we will favor longer chains over shorter ones,
and otherwise break ties consistently. As noted previously, consistent tie-
breaking means all non-faulty processes adopt the same value C, for each
r. To replace a buried block, the faulty processes will need to supply an
alternative chain that wins the tie-breaking rule by being the same length or
longer as the chain built by the non-faulty processes.

The resulting protocol is given in Algorithm 15.1.

The main issue with this protocol is that if the faulty processes get lucky,
they can construct a chain that is longer than the chain of the non-faulty
processes, and use this to hijack the protocol. We'd like to show that when
this happens, the bad chain shares all but a small suffix with the good chain
it displaces. If we are willing to cut a few corners in the argument, this
comes down to demonstrating that the faulty processes can’t win the race to
extend their evil chain past the non-faulty processes’ preferred chain over long
sequences of rounds. We will consider the specific case where the non-faulty
and faulty processes both start off with some common C, = Cv'r, and over
the next m rounds the non-faulty processes extend C, as best they can using

CHAPTER 15. PERMISSIONLESS SYSTEMS 129

1 C < some initial chain.
// Do infinitely many synchronous rounds
2 forr <+ 0...00do
3 Let x be the block I want to add to C
// Attempt to extend C
4 fori<1...qdo
5 Choose a random value y
6 if h(C,z,y) < D then
7 C+ C{zx,y)
8 Broadcast C
9 break
// Take best valid C’
10 for each C’ received this round do
11 if C' is valid and tie-breaker favors C' over C' then
12 L L C+C

Algorithm 15.1: Nakamoto consensus

Algorithm 15.1 while the faulty processes extend C, in secret. The faulty
processes win if the resulting C’T+m is longer than the non-faulty processes’
Crim- (There is a lot of unjustified simplification sneaking in here. For a
much more sophisticated argument that doesn’t cheat, see [1)

For each process i, let p; be the expected number of puzzle solutions it
finds in a single round. If ¢ is non-faulty, this is just the probability that it
finds a solution, since non-faulty processes stop after finding one solution. If
i is faulty, ¢ can generate more than one solution, which might make p; a bit
larger than it would be for a non-faulty process with the same computational
power. If p; is very small in either case the difference will be slight.

To simplify things, we’ll assume that the set of processes and their p;
values are fixed over time. Let a be the sum of p; over all the non-faulty
processes, and 3 the sum of p; over all the faulty processes. These give the
expected number of solutions obtained in one round by all non-faulty or
faulty processes respectively.

Inclusion-exclusion says that the probability that the non-faulty processes
solve at least one puzzle in a given round is at least), p; —Z#j Dipj = a—a?.
Letting X; be the indicator for the event that the non-faulty processes add a
new block in round r +i, they add at least an expected 3" E [X;] > m(a —a?)
blocks in m rounds. We can similarly argue that the faulty processes add

CHAPTER 15. PERMISSIONLESS SYSTEMS 130

at most an expected mf = Y E[Y;] blocks in m rounds, where Y; is the
indicator variable for success of the i-th puzzle attempt by a non-faulty
process. In both cases we are looking at a sum of 0-1 random variable with
known mean, so Chernoff bounds apply and we get, for any 9,

Pr (Y X < (1 - d)m(a — a?)] < e ¥memedr?
Pr[S % > (1t 8)mp] < e

Let’s suppose 3 is less than half of a — a2, corresponding to the faulty

processes having a bit less than a third of the total computational power.
Writing k = m(a—a?) = E[Y. X;] we get E[YY;] = mfB < k/2. Set 6 = 1/3
to get

Pr |3 X < (1-d)k = (2/3)k| < 7M1
Pr[SYi> (1+0)(k/2) = (2/3)k] < e/,

This gives a total probability of at most e /18 4 ¢=k/36 — ¢=O(k) that
either the bad chain gets extended by (2/3)k or more blocks the good chain
gets extended by (2/3)k or fewer blocks. If neither of these events happen,
the good chain wins. This means that as we consider longer and longer
suffixes, it becomes exponentially more improbable that the suffix in the
chain the non-faulty processes currently agree on will suddenly be replaced
by an alternative chain prepared in secret.

This is not as good a guarantee as we get from iterating traditional
Byzantine agreement, where the output of the protocol at each step will
never be retracted, but it seems to be good enough in practice that users are
willing to tolerate it.

15.2.2 Does Bitcoin disprove the folk theorem?

The short answer is no, and a proof can be found in a paper by Leshno et
al. |] (which also gives an alternative open distributed ledger construc-
tion that is less vulnerable). And yet Bitcoin is still in use.

I’'m not really qualified to answer why Bitcoin seems to work anyway, but
I suspect that some of its survival is a result of it being uniquely huge. This
has consequences that don’t apply to a smaller system:

1. The amount of work needed for a sustained attack on Bitcoin is enor-
mous. Given that most of the proof-of-work puzzles in the Bitcoin

CHAPTER 15. PERMISSIONLESS SYSTEMS 131

as currently implemented are solved using custom parallel hardware
running off of low-cost power sources, the likelihood of any attacker
(other than a few large state actors) amassing comparable hardware in
secret is low.

2. While the volume of transactions on the Bitcoin blockchain increases
the potential rewards of a successful attack, their diversity makes the
chances of collecting that reward low. It’s much easier to imagine
convincing a single participant of a low-volume blockchain to trade
their valuable cartoon ape for a handful of virtual fairy gold that turns
into virtual dirt by dawn. It is probably much harder to do this to
every participant in a high-volume chain over a long enough interval
to make a sufficient profit.

3. Though Bitcoin was designed to be decentralized, in practice economies
of scale mean that most of the protocol is run by a small number of
organizations. A profitable attack on Bitcoin might lead these orga-
nization to simply roll back and fork the chain, erasing the attacker’s
gains. (A similar rollback happened after a 2016 attack on Etherium.)
So the political and social factors surrounding successful blockchains
aren’t taken into account in the abstract model underlying the folk
theorem.

At the same time, Bitcoin is still absurdly costly, and the guarantees it
provides are not as strong as can be obtained by running iterated Byzantine
agreement on a small number of semi-trusted parties. This may be why more
recent systems have been moving away from proof-of-work, and suggests that
Bitcoin’s unusual status as the first widely-used blockchain may, in the long
run, not save it from being outcompeted by better systems.

Perhaps the way to think about the enormous cost of proof-of-work based
systems is that they are paying a price of anarchy | | for avoiding any
kind of centralized management in the form of a privileged set of servers.
Unfortunately, much of this cost appears to be unavoidable without such
management | -

Part 11

Shared memory

132

Chapter 16

Model

Shared memory models describe the behavior of processes in a multiprocessing
system. These processes might correspond to actual physical processors or
processor cores, or might use time-sharing on a single physical processor. In
either case the assumption is that communication is through some sort of
shared data structures.

Here we describe the basic shared-memory model. See also | , §4.1].

Where shared memory differs from message passing is that processes can’t
communicate with each other directly, but instead communicate through a
pool of shared objects. These are typically registers supporting read and
write operations, but fancier objects corresponding to more sophisticated
data structures or synchronization primitives may also be included in the
model.

It is usually assumed that the shared objects do not experience faults.
This means that the shared memory can be used as a tool to prevent partitions
and other problems that can arise in message passing if the number of faults
get too high. As a result, for large numbers of processor failures, shared
memory is a more powerful model than message passing, although we will see
in Chapter 17 that both models can simulate each other provided a majority
of processes are non-faulty.

16.1 Atomic registers

An atomic register supports read and write operations. We think of
these as happening instantaneously, and think of operations of different
processes as interleaved in some sequence. Each read operation on a particular
register returns the value written by the last previous write operation. Write

133

CHAPTER 16. MODEL 134

operations return nothing.

A process is defined by giving, for each state, the operation that it would
like to do next, together with a transition function that specifies how the
state will be updated in response to the return value of that operation. A
configuration of the system consists of a vector of states for the processes
and a vector of value for the registers. A sequential execution consists of a
sequence of alternating configurations and operations Cy, w1, C1,m2,Cs . . .,
where in each triple Cj, m;11, Cit1, the configuration C;1q is the result of
applying m; 11 to configuration C;. For read operations, this means that the
state of the reading process is updated according to its transition function.
For write operations, the state of the writing process is updated, and the
state of the written register is also updated.

Pseudocode for shared-memory protocols is usually written using stan-
dard pseudocode conventions, with the register operations appearing either
as explicit subroutine calls or implicitly as references to shared variables.
Sometimes this can lead to ambiguity; for example, in the code fragment

done « leftDone A rightDone,

it is clear that the operation write(done, —) happens after read(leftDone) and
read(rightDone), but it is not clear which of read(leftDone and read(rightDone)
happens first. When the order is important, we’ll write the sequence out
explicitly:

1 leftlsDone <— read(leftDone)
2 rightlsDone +— read(rightDone)
3 write(done, leftlsDone A rightlsDone)

Here leftlsDone and rightlsDone are internal variables of the process, so
using them does not require read or write operations to the shared memory.

16.2 Single-writer versus multi-writer registers

One variation that does come up even with atomic registers is what processes
are allowed to read or write a particular register. A typical assumption is that
registers are single-writer multi-reader—there is only one process that
can write to the register (which simplifies implementation since we don’t have
to arbitrate which of two near-simultaneous writes gets in last and thus leaves
the long-term value), although it’s also common to assume multi-writer

CHAPTER 16. MODEL 135

multi-reader registers, which if not otherwise available can be built from
single-writer multi-reader registers using atomic snapshot (see Chapter 20).
Less common are single-writer single-reader registers, which act much
like message-passing channels except that the receiver has to make an explicit
effort to pick up its mail.

16.3 Fairness and crashes

From the perspective of a schedule, the fairness condition says that every
processes gets to perform an operation infinitely often, unless it enters either
a crashed or halting state where it invokes no further operations. (Note
that unlike in asynchronous message-passing, there is no way to wake up a
process once it stops doing operations, since the only way to detect that any
activity is happening is to read a register and notice it changed.) Because the
registers (at least in in multi-reader models) provide a permanent fault-free
record of past history, shared-memory systems are much less vulnerable to
crash failures than message-passing systems (though a version FLP! still
applies []); so in extreme cases, we may assume as many as n — 1
crash failures, which makes the fairness condition very weak. The n — 1
crash failures case is called the wait-free case—since no process can wait
for any other process to do anything—and has been extensively studied in
the literature.

For historical reasons, work on shared-memory systems has tended to
assume crash failures rather than Byzantine failures—possibly because Byzan-
tine failures are easier to prevent when you have several processes sitting in
the same machine than when they are spread across the network, or possibly
because in multi-writer situations a Byzantine process can do much more
damage. But the model by itself doesn’t put any constraints on the kinds of
process failures that might occur.

16.4 Concurrent executions

Often, the operations on our shared objects will be implemented using lower-
level operations. When this happens, it no longer makes sense to assume that
the high-level operations occur one at a time—although an implementation
may try to give that impression to its users. To model to possibility of
concurrency between operations, we split an operation into an invocation

'See Chapter 11.

CHAPTER 16. MODEL 136

and response, corresponding roughly to a procedure call and its return. The
user is responsible for invoking the object; the object’s implementation (or
the shared memory system, if the object is taken as a primitive) is responsible
for responding. Typically we will imagine that an operation is invoked at
the moment it becomes pending, but there may be executions in which that
does not occur. The time between the invocation and the response for an
operation is the interval of the operation.

A concurrent execution is a sequence of invocations and responses,
where after any prefix of the execution, every response corresponds to some
preceding invocation, and there is at most one invocation for each pro-
cess—always the last—that does not have a corresponding response. A
concurrent execution is complete if every invocation has a matching re-
sponse, and it is sequential if the operations don’t overlap, meaning that
there is at most one invocation without a corresponding response in any
prefix of the execution.

Sequential executions correspond to executions of a sequential object,
which doesn’t allow (or at least doesn’t experience) concurrent operations.
How a given concurrent execution may or may not relate to a sequential
execution depends on the consistency properties of the implementation, as
described below.

16.5 Consistency properties

Different shared-memory systems may provide various consistency proper-
ties, which describe how views of an object by different processes mesh with
each other. The strongest consistency property generally used is lineariz-
ability |], which says roughly that an implementation of an object is
linearizable if, for any complete concurrent execution of the object, there
is a sequential execution of the object with the same operations and return
values, where the (total) order of operations in the sequential execution is a
linearization of the (partial) order of operations in the concurrent execution.
The order in each case is defined as a <y b if the response event for opera-
tion a in execution H precedes the invoke event for operation b in the same
execution.

The actual definition is a little bit more technical, since it has to deal with
the issue of concurrent executions that may include incomplete operations
for which there is an invoke event but no response. We’d like to give the
implementation the flexibility of deciding whether these operations have taken
effect or not, so given an incomplete concurrent execution H, a linearization

CHAPTER 16. MODEL 137

of H involves three steps:

1. Extend H by adding zero or more response events, obtaining a new
execution H'.

2. Remove any invoke events in H' that don’t have a matching response
event, obtaining a new execution H”.

3. Construct a sequential S such that S meets the sequential specification
of the object, H"|p = S|p for all p, and <p»C<g.?

An execution is now linearizable if it has a linearization as defined above.

Most of the complexity of the above definition is needed only to be
able to decide if incomplete executions are linearizable. If we consider only
complete executions, we can skip the H' and H” steps, since neither changes
H. Even better, if we are asking if an implementation of an object is
linearizable—meaning that all executions of the object are linearizable—then
we can usually prove this by proving it only for complete executions, since
if the implementation has the property that any operation in progress can
eventually finish, we can extend any incomplete H to a complete H' = H” by
simply running any pending operations to completion. (If our implementation
does not have this property, we will need to use the more general definition,
but this may be the least of our problems.)

Linearization is usually proved for complete H by constructing the total
order <g explicitly, which gives S as the unique sequential execution equiva-
lent to H that assigns this order to operations. An alternative method is to
assign each operation a linearization point somewhere between when its
invocation and response, and obtain S by assuming that all operations occur
atomically at their linearization points is consistent with the specification
of the object; this is equivalent to constructing <g2O<jr since given <g we
can always find consistent linearization points. I personally find constructing
a linearization ordering easier for most implementations, but linearization
points are useful because they emphasize that to the user, it really does look
like a linearizable implementation executes all operations atomically. Using
either definition, we are given a fair bit of flexibility in how to order overlap-

2There is a subtle issue here: the original definition of linearizability by Herlihy and
Wing only required <xC<s. In some rare cases, this allows objects with strange behavior,
as observed by Sela et al. |], who proposed the fix of requiring the completion H” to
be linearizable with respect to its own observable operation ordering. The revised definition
behaves better in corner cases and is more consistent with the usual approach of proving
linearizability only for executions in which all operations are complete.

CHAPTER 16. MODEL 138

ping operations, which can sometimes be exploited by clever implementations
(or lower bounds).

A weaker condition is sequential consistency |]. This says that
for any concurrent execution of the object, there exists some sequential
execution that is indistinguishable to all processes; however, this sequential
execution might include operations that occur out of order from a global
perspective. (Essentially we are dropping the requirement <yC<g from
the linearizability definition.) For example, we could have an execution of
an atomic register where you write to it, then I read from it, but I get the
initial value that precedes your write. This is sequentially consistent but not
linearizable.

Linearizability has the useful property of being composable, in the sense
that if H|A is linearizable for any particular object A, then H is linearizable.
Sequential consistency does not generally have this property. For this reason,
we will usually ask any implementations we consider to be linearizable.
However, both linearizability and sequential consistency are much stronger
than the consistency conditions provided by real multiprocessors. For some
examples of weaker memory consistency rules, a good place to start might
be the dissertation of Kawash | .

16.6 Complexity measures
There are several complexity measures for shared-memory systems.

Time Assume that no process takes more than 1 time unit between opera-
tions (but some fast processes may take less). Assign the first operation
in the schedule time 1 and each subsequent operation the largest time
consistent with the bound. The time of the last operation is the time
complexity. This is also known as the big-step or round measure
because the time increases by 1 precisely when every non-faulty process
has taken at least one step, and a minimum interval during which this
occurs counts as a big step or a round.

Total work The total work or total step complexity is just the length
of the schedule, i.e., the number of operations. This doesn’t consider
how the work is divided among the processes, e.g., an O(n?) total
work protocol might dump all O(n?) operations on a single process
and leave the rest with almost nothing to do. There is usually not
much of a direct correspondence between total work and time. For
example, any algorithm that involves busy-waiting—where a process

CHAPTER 16. MODEL 139

repeatedly reads a register until it changes—may have unbounded total
work (because the busy-waiter might spin very fast) even though it
runs in bounded time (because the register gets written to as soon as
some slower process gets around to it). However, it is trivially the case
that the time complexity is never greater than the total work.

Per-process work The per-process work, individual work, per-process
step complexity, or individual step complexity measures the
maximum number of operations performed by any single process. Op-
timizing for per-process work produces more equitably distributed
workloads (or reveals inequitably distributed workloads). Like total
work, per-process work gives an upper bound on time, since each time
unit includes at least one operation from the longest-running process,
but time complexity might be much less than per-process work (e.g.,
in the busy-waiting case above).

Remote memory references As we’ve seen, step complexity doesn’t make
much sense for processes that busy-wait. An alternative measure is
remote memory reference complexity or RMR complexity. This
measure charges one unit for write operations and the first read op-
eration by each process following a write, but charges nothing for
subsequent read operations if there are no intervening writes (see §18.6
for details). In this measure, a busy-waiting operation is only charged
one unit. RMR complexity can be justified to a certain extent by the
cost structure of multi-processor caching | , .

Contention In multi-writer or multi-reader situations, it may be bad to
have too many processes pounding on the same register at once. The
contention measures the maximum number of pending operations on
any single register during the schedule (this is the simplest of several
definitions out there). A single-reader single-writer algorithm always
has contention at most 2, but achieving such low contention may
be harder for multi-reader multi-writer algorithms. Of course, the
contention is never worse that n, since we assume each process has at
most one pending operation at a time.

Space Just how big are those registers anyway? Much of the work in this
area assumes they are very big.® But we can ask for the maximum

3A typical justification for this assumption is that an arbitrarily-large register can be
simulated by a smaller register that holds pointers to single-use collections of registers
holding the actual values. But even using this technique there are problems for which

CHAPTER 16. MODEL 140

number of bits in any one register (width) or the total size (bit
complexity) or number (space complexity) of all registers, and will
try to minimize these quantities when possible. We can also look at
the size of the internal states of the processes for another measure of
space complexity.

16.7 Fancier registers

In addition to stock read-write registers, one can also imagine more tricked-out
registers that provide additional operations. These usually go by the name
of read-modify-write (RMW) registers, since the additional operations
consist of reading the state, applying some function to it, and writing the
state back, all as a single atomic action. Examples of RMW registers that
have appeared in real machines at various times in the past include:

Test-and-set bits A test-and-set operation sets the bit to 1 and returns
the old value.

Fetch-and-add registers A fetch-and-add operation adds some incre-
ment (typically -1 or 1) to the register and returns the old value.

Compare-and-swap registers A compare-and-swap operation writes
a new value only if the previous value is equal to a supplied test value.

These are all designed to solve various forms of mutual exclusion or
locking, where we want at most one process at a time to work on some shared
data structure.

Some more exotic read-modify-write registers that have appeared in the
literature are

Fetch-and-cons Here the contents of the register is a linked list; a fetch-
and-cons adds a new head and returns the old list.

Sticky bits (or sticky registers) With a sticky bit or sticky regis-
ter | |, once the initial empty value is overwritten, all further
writes fail. The writer is not notified that the write fails, but may
be able to detect this fact by reading the register in a subsequent
operation.

individual registers of unbounded size are necessary |]

CHAPTER 16. MODEL 141

Bank accounts Replace the write operation with deposit, which adds a
non-negative amount to the state, and withdraw, which subtracts a
non-negative amount from the state provided the result would not go
below 0; otherwise, it has no effect.

These solve problems that are hard for ordinary read/write registers under
bad conditions. Note that they all have to return something in response to
an invocation.

There are also blocking objects like locks or semaphores, but these don’t
fit into the RMW framework.

We can also consider generic read-modify-write registers that can compute
arbitrary functions (passed as an argument to the read-modify-write opera-
tion) in the modify step. Here we typically assume that the read-modify-write
operation returns the old value of the register. Generic read-modify-write
registers are not commonly found in hardware but can be easily simulated
(in the absence of failures) using mutual exclusion.*

4See Chapter 18.

Chapter 17

Distributed shared memory

In distributed shared memory, our goal is to simulate a collection of
memory locations or registers, each of which supports a read operation
that returns the current state of the register and a write operation that
updates the state. Our implementation should be linearizable [1,
meaning that read and write operations appear to occur instantaneously
(atomically) at some point in between when the operation starts and the
operation finishes; equivalently, there should be some way to order all the
operations on the registers to obtain a sequential execution consistent
with the behavior of a real register (each read returns the value of the most
recent write) while preserving the observable partial order on operations
(where 7 precedes 7y if 1 finishes before 7y starts). Implicit in this definition
is the assumption that implemented operations take place over some interval,
between an invocation that starts the operation and a response that ends
the operation and returns its value.'

In the absence of process failures, we can just assign each register to
some process, and implement both read and write operations by remote
procedure calls to the process (in fact, this works for arbitrary shared-memory
objects). With process failures, we need to make enough copies of the register
that failures can’t destroy all of them. This creates an asymmetry between
simulations of message-passing from shared-memory and vice versa; in the
former case (discussed briefly in §17.1 below), a process that fails in the
underlying shared-memory system only means that the same process fails in
the simulated message-passing system. But in the other direction, not only
does the failure of a process in the underlying message-passing system mean
that the same process fails in the simulated shared-memory system, but the

"More details on the shared-memory model are given in Chapter 16.

142

CHAPTER 17. DISTRIBUTED SHARED MEMORY 143

simulation collapses completely if a majority of processes fail.

17.1 Message passing from shared memory

We'll start with the easy direction. We can build a reliable FIFO channel
from single-writer single-reader registers using polling. The naive approach
is that for each edge uv in the message-passing system, we create a (very big)
register 74, and u writes the entire sequence of every message it has ever
sent to v to ry, every time it wants to do a new send. To receive messages,
v polls all of its incoming registers periodically and delivers any messages in
the histories that it hasn’t processed yet.?

The ludicrous register width can be reduced by adding in an acknowl-
edgment mechanism in a separate register ack,,; the idea is that u will only
write one message at a time to ry,, and will queue subsequent messages until
v writes in ack,, that the message in r,, has been received. With some
tinkering, it is possible to knock r,, down to only three possible states (send-
ing 0, sending 1, and reset) and ack,,, down to a single bit (value-received,
reset-received), but that’s probably overkill for most applications.

Process failures don’t affect any of these protocols, except that a dead
process stops sending and receiving.

17.2 Shared memory from message passing: the
Attiya-Bar-Noy-Dolev algorithm

Here we show how to implement shared memory from message passing. We’ll
assume that our system is asynchronous, that the network is complete, and
that we are only dealing with f < n/2 crash failures. We’ll also assume we
only want to build single-writer registers, just to keep things simple; we can
extend to multi-writer registers later.

Here’s the algorithm, which is due to Attiya, Bar-Noy, and Dolev | I;
see also | , §17.1.3]. (Section 9.3 of |] gives an equivalent algorithm,
but the details are buried in an implementation of totally-ordered broadcast).
We’ll make n copies of the register, one on each process. Each process’s copy
will hold a pair (value, timestamp) where timestamps are (unbounded) integer
values. Initially, everybody starts with (_L,0). A process updates its copy

2If we are really cheap about using registers, and are willing to accept even more
absurdity in the register size, we can just have u write every message it ever sends to r,,
and have each v poll all the r, and filter out any messages intended for other processes.

CHAPTER 17. DISTRIBUTED SHARED MEMORY 144

with new values (v,t) upon receiving write(v,t) from any other process p,
provided t is greater than the process’s current timestamp. It then responds
to p with ack(v,t), whether or not it updated its local copy. A process will
also respond to a message read(u) with a response ack(value, timestamp, u);
here u is a nonce® used to distinguish between different read operations so
that a process can’t be confused by out-of-date acknowledgments.

To write a value, the writer increments its timestamp, updates its value
and sends write(value, timestamp) to all other processes. The write operation
terminates when the writer has received acknowledgments containing the
new timestamp value from a majority of processes.

To read a value, a reader does two steps:

1. It sends read(u) to all processes (where u is any value it hasn’t used
before) and waits to receive acknowledgments from a majority of the
processes. It takes the value v associated with the maximum timestamp
t as its return value (no matter how many processes sent it).

2. Tt then sends write(v, t) to all processes, and waits for response ack(v, t)
from a majority of the processes. Only then does it return.

(Any extra messages, messages with the wrong nonce, etc., are discarded.)

Both reads and writes cost ©(n) messages (O(1) per process).

Intuition: Nobody can return from a write or a read until they are sure
that subsequent reads will return the same (or a later) value. A process
can only be sure of this if it knows that the values collected by a read will
include at least one copy of the value written or read. But since majorities
overlap, if a majority of the processes have a current copy of v, then the
majority read quorum will include it. Sending write(v,t) to all processes
and waiting for acknowledgments from a majority is just a way of ensuring
that a majority do in fact have timestamps that are at least ¢.

If we omit the write stage of a read operation, we may violate lineariz-
ability. An example would be a situation where two values (1 and 2, say),
have been written to exactly one process each, with the rest still holding the
initial value L. A reader that observes 1 and (n—1)/2 copies of L will return
1, while a reader that observes 2 and (n — 1)/2 copies of L will return 2. In
the absence of the write stage, we could have an arbitrarily long sequence
of readers return 1, 2, 1, 2, ..., all with no concurrency. This would not be

3 A nonce is any value that is guaranteed to be used at most once (the term originally
comes from cryptography, which in turn got it from linguistics). In practice, a reader will
most likely generate a nonce by combining its process ID with a local timestamp.

CHAPTER 17. DISTRIBUTED SHARED MEMORY 145

consistent with any sequential execution in which 1 and 2 are only written
once.

17.3 Proof of linearizability

Our intuition may be strong, but we still need a proof the algorithm works. In
particular, we want to show that for any trace T of the ABD protocol, there
is an trace of an atomic register object that gives the same sequence of invoke
and response events. The usual way to do this is to find a linearization
of the read and write operations: a total order that extends the observed
order in 7" where m; < w9 in T if and only if m; ends before mo starts.
Sometimes it’s hard to construct such an order, but in this case it’s easy:
we can just use the timestamps associated with the values written or read
in each operation. Specifically, we define the timestamp of a write or read
operation as the timestamp used in the write(v,t) messages sent out during
the implementation of that operation, and we put m; before my if:

1. 1 has a lower timestamp than s, or

2. w1 has the same timestamp as mo, 71 is a write, and w9 is a read, or
3. m1 has the same timestamp as 7w and m; <7 w9, or

4. none of the other cases applies, and we feel like putting m; first.

The intent is that we pick some total ordering that is consistent with both
<7 and the timestamp ordering (with writes before reads when timestamps
are equal). To make this work we have to show (a) that these two orderings
are in fact consistent, and (b) that the resulting ordering produces values
consistent with an atomic register: in particular, that each read returns the
value of the last preceding write.

Part (b) is easy: since timestamps only increase in response to writes,
each write is followed by precisely those reads with the same timestamp,
which are precisely those that returned the value written.

For part (a), suppose that m; <p ma. The first case is when 7y is a read.
Then before the end of 71, a set S of more than n/2 processes send the
process an ack(vl,t;) message. Since local timestamps only increase, from
this point on any ack(ve, t2,u) message sent by a process in S has to > t;.
Let S’ be the set of processes sending ack(vg, ta, u) messages processed by
mo. Since |S| > n/2 and |S’| > n/2, we have SN S is nonempty and so S’
includes a process that sent ack(vgy,t2) with to > ¢1. So 7o is serialized after

CHAPTER 17. DISTRIBUTED SHARED MEMORY 146

1. The second case is when 79 is a write; but then m; returns a timestamp
that precedes the writer’s increment in w9, and so again is serialized first.

17.4 Proof that f < n/2 is necessary

This is pretty much the standard partition argument that f < n/2 is necessary
to do anything useful in a message-passing system. Split the processes into
two sets S and S’ of size n/2 each. Suppose the writer is in S. Consider an
execution where the writer does a write operation, but all messages between
S and S’ are delayed. Since the writer can’t tell if the S” processes are slow
or dead, it eventually returns. Now let some reader in S” attempt to read
the simulated register, again delaying all messages between S and S’; now
the reader is forced to return some value without knowing whether the S
processes are slow or dead. If the reader doesn’t return the value written,
we lose. If by some miracle it does, then we lose in the execution where the
write didn’t happen and all the processes in S really were dead.

17.5 Multiple writers

So far we have assumed a single writer. The main advantage of this approach
is that we don’t have to do much to manage timestamps: the single writer
can just keep track of its own. With multiple writers we can use essentially
the same algorithm, but each write needs to perform an initial round of
gathering timestamps so that it can pick a new timestamp bigger than those
that have come before. We also extend the timestamps to be of the form
(count, id), lexicographically ordered, so that two timestamps with the same
count field are ordered by process ID. The modified write algorithm is:

1. Send read(u) to all processes and wait to receive acknowledgments
from a majority of the processes.

2. Set my timestamp to ¢ = (max, count, + 1,id) where the max is taken
over all processes g that sent me an acknowledgment. Note that this is
a two-field timestamp that is compared lexicographically, with the id
field used only to prevent duplicate timestamps.

3. Send write(v,t) to all processes, and wait for a response ack(v,t) from
a majority of processes.

This increases the cost of a write by a constant factor, but in the end we
still have only a linear number of messages. The proof of linearizability is

CHAPTER 17. DISTRIBUTED SHARED MEMORY 147

essentially the same as for the single-writer algorithm, except now we must
consider the case of two write operations by different processes. Here we have
that if m; <p w9, then 7 gets acknowledgments of its write with timestamp
t1 from a majority of processes before ms starts its initial phase to compute
count. Since mo waits for acknowledgments from a majority of processes as
well, these majorities overlap, so m’s timestamp to must exceed ¢;. So the
linearization ordering previously defined still works.

17.6 Other operations

The basic ABD framework can be extended to support other operations.

One such operation is a collect | |, where we read n registers in
parallel with no guarantee that they are read at the same time. This can
trivially be implemented by running n copies of ABD in parallel, and can
be implemented with the same time and message complexity as ABD for a
single register by combining the messages from the parallel executions into
single (possibly very large) messages.

The ABD algorithm can also be used to implement a max register, which
is a register that returns the largest value ever written to it instead of the
most recent value (see Chapter 22). The idea is that the multi-writer version
of ABD already implements a max register for timestamps. So we can discard
the value field entirely and just set each timestamp to a writer’s input, and
have each reader return the largest timestamp it sees.

17.7 Byzantine failures

With effort, it is possible to adapt the ABD algorithm |] to handle
Byzantine failures. Because a Byzantine writer can overwrite a simulated
register with garbage, this mostly makes sense for SWMR registers, where
we can limit the damage done by a Byzantine process to the contents of its
own simulated register.

Mostéfaoui et al. | | give an ABD-like algorithm that simulates a
SWMR register in an asynchronous message-passing system with ¢t < n/3
Byzantine faults, without resorting to cryptography. The main change is to
replace the broadcast done by the writer with a Byzantine reliable broadcast
due to Bracha []. This has the unfortunate side-effect of increasing the
message complexity of a write operation to O(n?). Fortunately, the authors
are able to show that read operations can skip the reliable broadcast and

CHAPTER 17. DISTRIBUTED SHARED MEMORY 148

still run in O(n) messages. The details are messy enough that we will not
attempt to reproduce them here; see the cited paper if you are interested.

Chapter 18

Mutual exclusion

For more details see | , Chapter 4] or | , Chapter 10].

18.1 The problem

The goal is to share some critical resource between processes without more
than one using it at a time—this is the fundamental problem in time-sharing
systems.

The solution is to only allow access while in a specially-marked block of
code called a critical section, and only allow one process at a time to be
in a critical section.

A mutual exclusion protocol guarantees this, usually in an asyn-
chronous shared-memory model.

Formally: We want a process to cycle between states trying (trying to
get into critical section), critical (in critical section), exiting (cleaning up
so that other processes can enter their critical sections), and remainder
(everything else—essentially just going about its non-critical business). Only
in the trying and exiting states does the process run the mutual exclusion
protocol to decide when to switch to the next state; in the critical or remainder
states it switches to the next state on its own.

The ultimate payoff is that mutual exclusion solves for systems without
failures what consensus solves for systems with failures: if the only way to
update a data structure is to hold a lock on it, we are guaranteed to get
a nice clean sequence of atomic-looking updates. Of course, once we allow
failures back in, mutex becomes less useful, as our faulty processes start
crashing without releasing their locks, and with the data structure in some

149

CHAPTER 18. MUTUAL EXCLUSION 150

broken, half-updated state.’

18.2 Goals

(See also | , §4.2], [, §10.2].)
Core mutual exclusion requirements:

Mutual exclusion At most one process is in the critical state at a time.

No deadlock (progress) If there is at least one process in a trying state,
then eventually some process enters a critical state; similarly for exiting
and remainder states.

Note that the protocol is not required to guarantee that processes leave
the critical or remainder state, but we generally have to insist that the
processes at least leave the critical state on their own to make progress.

An additional useful property (not satisfied by all mutual exclusion
protocols; see | , §10.4)):

No lockout (lockout-freedom): If there is a particular process in a trying
or exiting state, that process eventually leaves that state. This means
that I don’t starve because somebody else keeps jumping past me and
seizing the critical resource before I can.

Stronger starvation guarantees include explicit time bounds (how many
rounds can go by before I get in) or bounded bypass (nobody gets in more
than k times before I do). Each of these imply lockout-freedom assuming no
deadlock.

18.3 Mutual exclusion using strong primitives

See | , §4.3] or | , 10.9]. The idea is that we will use some sort of
read-modify-write register, where the RMW operation computes a new
value based on the old value of the register and writes it back as a single
atomic operation, usually returning the old value to the caller as well.

n principle, if we can detect that a process has failed, we can work around this problem
by allowing some other process to bypass the lock and clean up. This may require that
the original process leaves behind notes about what it was trying to do, or perhaps copies
the data it is going to modify somewhere else before modifying it. But even this doesn’t
work if some zombie process can suddenly lurch to life and scribble its ancient out-of-date
values all over our shiny modern data structure.

CHAPTER 18. MUTUAL EXCLUSION 151

18.3.1 Test and set

A test-and-set operation does the following sequence of actions atomically:

1 oldValue « read(bit)
2 write(bit, 1)
3 return oldValue

Typically there is also a second reset operation for setting the bit back
to zero. For some implementations, this reset operation may only be used
safely by the last process to get 0 from the test-and-set bit.

Because a test-and-set operation is atomic, if two processes both try to
perform test-and-set on the same bit, only one of them will see a return value
of 0. This is not true if each process simply executes the above code on a
stock atomic register: there is an execution in which both processes read
0, then both write 1, then both return 0 to whatever called the non-atomic
test-and-set subroutine.

Test-and-set provides a trivial implementation of mutual exclusion, shown
in Algorithm 18.1.

1 while true do

// trying

2 while TAS(lock) = 1 do nothing
// critical

3 (do critical section stuff)
// exiting

4 reset(lock)
// remainder

5 (do remainder stuff)

Algorithm 18.1: Mutual exclusion using test-and-set

It is easy to see that this code provides mutual exclusion, as once one
process gets a 0 out of lock, no other can escape the inner while loop until
that process calls the reset operation in its exiting state. It also provides
progress (assuming the lock is initially set to 0); the only part of the code
that is not straight-line code (which gets executed eventually by the fairness
condition) is the inner loop, and if lock is 0, some process escapes it, while if
lock is 1, some process is in the region between the TAS call and the reset

CHAPTER 18. MUTUAL EXCLUSION 152

call, and so it eventually gets to reset and lets the next process in (or itself,
if it is very fast).

The algorithm does mnot provide lockout-freedom: nothing prevents a
single fast process from scooping up the lock bit every time it goes through
the outer loop, while the other processes ineffectually grab at it just after it
is taken away. Lockout-freedom requires a more sophisticated turn-taking
strategy.

18.3.2 A lockout-free algorithm using an atomic queue

Basic idea: In the trying phase, each process enqueues itself on the end of a
shared queue (assumed to be an atomic operation). When a process comes
to the head of the queue, it enters the critical section, and when exiting it
dequeues itself. So the code would look something like Algorithm 18.2.
Note that this requires a queue that supports a peek operation that
returns the head of the queue. Not all implementations of queues have this

property.

1 while true do

// trying

enq(q, myld)

while peek(q) # myld do nothing
// critical

4 (do critical section stuff)
// exiting

5 | deq(q)
// remainder

6 (do remainder stuff)

Algorithm 18.2: Mutual exclusion using a queue

Here the proof of mutual exclusion is that only the process whose ID is at
the head of the queue can enter its critical section. Formally, we maintain an
invariant that any process whose program counter is between the inner while
loop and the call to deq(q) must be at the head of the queue; this invariant
is easy to show because a process can’t leave the while loop unless the test
fails (i.e., it is already at the head of the queue), no enq operation changes
the head value (if the queue is nonempty), and the deq operation (which
does change the head value) can only be executed by a process already at
the head (from the invariant).

CHAPTER 18. MUTUAL EXCLUSION 153

Deadlock-freedom follows from proving a similar invariant that every
element of the queue is the ID of some process in the trying, critical, or
exiting states, so eventually the process at the head of the queue passes the
inner loop, executes its critical section, and dequeues its ID.

Lockout-freedom follows from the fact that once a process is at position
k in the queue, every execution of a critical section reduces its position
by 1; when it reaches the front of the queue (after some finite number of
critical sections), it gets the critical section itself. Alternatively, we can argue
lockout-freedom by showing bounded bypass: once I am in the queue, no
process can execute two critical sections before I do, because once it leaves
its first critical section, it enqueues behind me.

18.3.2.1 Replacing the queue with RMW

Following | , §4.3.2], we can give an implementation of this algorithm
using a single read-modify-write (RMW) register instead of a queue; this
drastically reduces the (shared) space needed by the algorithm. The reason
this works is because we don’t really need to keep track of the position of
each process in the queue itself; instead, we can hand out numerical tickets
to each process and have the process take responsibility for remembering
where its place in line is.

The RMW register has two fields, first and last, both initially 0. In-
crementing last simulates an enqueue, while incrementing first simulates a
dequeue. The trick is that instead of testing if it is at the head of the queue,
a process simply remembers the value of the last field when it “enqueued”
itself, and waits for the first field to equal it.

Algorithm 18.3 shows the code from Algorithm 18.2 rewritten to use this
technique. The way to read the RMW operations is that the first argument
specifies the variable to update and the second specifies an expression for
computing the new value. Each RMW operation returns the old state of the
object, before the update.

In practice, this algorithm is usually implemented using two objects, one
of which implements a fetch-and-increment operation that increments a
register and returns the value before the increment, and one of which is an
ordinary atomic register. As in Algorithm 18.3, a process takes a position in
line by calling the fetch-and-increment, and the head of the line is marked
by the second register, which can only be incremented by a process in the
exiting section. This implementation has the same properties of mutual
exclusion and starvation-freedom as the single-RMW version.

CHAPTER 18. MUTUAL EXCLUSION 154

1 while true do

// trying

2 position <— RMW(V/, (V first, V.last + 1))

// enqueue

while RMW(V,V).first # position.last do
L nothing

// critical

5 (do critical section stuff)
// exiting

6 RMW(V, (V. first + 1, Vilast))
// dequeue

// remainder

7 (do remainder stuff)

Algorithm 18.3: Mutual exclusion using read-modify-write

18.4 Mutual exclusion and linearizability

Beyond controlling access to shared resources, mutual exclusion can instantly
give us a linearizable implementation of any object for which we have a
sequential implementation. The reason is that we can use a mutex to guard
access to the shared data structure implementing the object.

Formally, we imagine that we have a read-modify-write object of some
sort and an implementation from atomic registers that works for sequential
executions. The simplest way to model this is to imagine that we have a single
register r that contains the entire state of the object. A read-modify-write
operation reads an old state ¢ from r, computes a new state f(q) and writes
it back to r, and finally returns the old value ¢q. This works as long as we
don’t have two or more processes executing operations concurrently. But we
can enforce this with a mutex, as in Algorithm 18.4.

1 procedure RMW(f)

2 Enter critical section.
3 qr

4 | r< fla)

5 Leave critical section.
6 return q

Algorithm 18.4: Building a concurrent RMW object using mutex

CHAPTER 18. MUTUAL EXCLUSION 155

To show that this implementation is linearizable, observe that for any
concurrent history H we can construct a sequential history S by assigning the
invoke/respond times for each operation to when that operation enters and
leaves the critical section. This gives a total order <g since no process can
enter the critical section until the previous one leaves. Since the processes
carry out the same operations on 7 in both H and S, both produce identical
views. Given two operations a <gy b, a leaves its critical section before b
enters its critical section, so <gC<g. We thus have a linearization of any
given H.

18.5 Mutual exclusion using only atomic registers

While mutual exclusion is easier using powerful primitives, we can also solve
the problem using only registers.

18.5.1 Peterson’s algorithm

Algorithm 18.5 shows Peterson’s lockout-free mutual exclusion protocol for
two processes po and p; |] (see also | , §4.4.2] or | , §10.5.1]).
It uses only atomic registers.

This uses three bits to communicate: present[0] and present[1] indicate
which of py and p; are participating, and waiting enforces turn-taking. The
protocol requires that waiting be multi-writer, but it’s OK for present[0] and
present[1] to be single-writer.

In the description of the protocol, we write Lines 8 and 10 as two separate
lines because they include two separate read operations, and the order of
these reads is important.

18.5.1.1 Correctness of Peterson’s protocol

Intuitively, let’s consider all the different ways that the entry code of the two
processes could interact. There are basically two things that each process
does: it sets its own present variable in Line 5 and grabs the waiting variable
in Line 6. Here’s a typical case where one process gets in first:

1. po sets present[0] < 1
2. po sets waiting < 0

3. po reads present[1] = 0 and enters critical section

CHAPTER 18. MUTUAL EXCLUSION

156

AW N =

© ®w N O w;

10
11

12

13

14

shared data:

waiting, initially arbitrary
present[i] for i € {0, 1}, initially O
Code for process i:

while true do

// trying
present[i] < 1
waiting < ¢
while true do
if present[—i] = 0 then
L break

if waiting # i then
L break

// critical

(do critical section stuff)
// exiting

present[i] = 0

// remainder

(do remainder stuff)

Algorithm 18.5: Peterson’s mutual exclusion algorithm for two pro-

cesses

CHAPTER 18. MUTUAL EXCLUSION 157

4. p; sets present[1] + 1

5. p1 sets waiting < 1

6. p1 reads present[0] = 1 and waiting = 1 and loops

7. po sets present[0] + 0

8. pp reads present[0] = 0 and enters critical section

The idea is that if I see a 0 in your present variable, I know that you
aren’t playing, and can just go in.

Here’s a more interleaved execution where the waiting variable decides
the winner:

1. po sets present[0] <— 1

2.

10.

- W

A R

DPo

b1

b1

DPo

b1

DPo

b1

DPo

b1

sets waiting < 0

sets present[1] + 1

sets waiting < 1

reads present[l] = 1

reads present[0] = 1

reads waiting = 1 and enters critical section
reads present[0] = 1 and waiting = 1 and loops
sets present[0] < 0

reads present[0] = 0 and enters critical section

Note that it’s the process that set the waiting variable last (and thus sees
its own value) that stalls. This is necessary because the earlier process might
long since have entered the critical section.

Sadly, examples are not proofs, so to show that this works in general,
we need to formally verify each of mutual exclusion and lockout-freedom.
Mutual exclusion is a safety property, so we expect to prove it using invariants.
The proof in [] is based on translating the pseudocode directly into
automata (including explicit program counter variables); we’ll do essentially
the same proof but without doing the full translation to automata. Below,
we write that p; is at line k if it the operation in line k is enabled but has
not occurred yet.

CHAPTER 18. MUTUAL EXCLUSION 158

Lemma 18.5.1. If present[i] = 0, then p; is at Line 5 or 1.
Proof. Immediate from the code. O

Lemma 18.5.2. If p; is at Line 12, and p—; is at Line 8, 10, or 12, then
waiting = —1.

Proof. We'll do the case i = 0; the other case is symmetric. The proof is by
induction on the schedule. We need to check that any event that makes the
left-hand side of the invariant true or the right-hand side false also makes
the whole invariant true. The relevant events are:

o Transitions by pg from Line 8 to Line 12. These occur only if present[1] =
0, implying p; is at Line 5 or 14 by Lemma 18.5.1. In this case the
second part of the left-hand side is false.

o Transitions by po from Line 10 to Line 12. These occur only if waiting #
0, so the right-hand side is true.

o Transitions by p; from Line 6 to Line 8. These set waiting to 1, making
the right-hand side true.

e Transitions that set waiting to 0. These are transitions by pg from
Line 6 to Line 10, making the left-hand side false.

O]

We can now read mutual exclusion directly off of Lemma 18.5.2: if
both pg and p; are at Line 12, then we get waiting = 1 and waiting = 0, a
contradiction.

To show progress, observe that the only place where both processes can
get stuck forever is in the loop at Lines 8 and 10. But then waiting isn’t
changing, and so some process ¢ reads waiting = —¢ and leaves. To show
lockout-freedom, observe that if pg is stuck in the loop while p; enters the
critical section, then after p; leaves it sets present[1] to 0 in Line 13 (which
lets po in if po reads present[l] in time), but even if it then sets present[1]
back to 1 in Line 5, it still sets waiting to 1 in Line 6, which lets pg into
the critical section. With some more tinkering this argument shows that p;
enters the critical section at most twice while pg is in the trying state, giving
2-bounded bypass; see | , Lemma 10.12]. With even more tinkering we
get a constant time bound on the waiting time for process ¢ to enter the
critical section, assuming the other process never spends more than O(1)
time inside the critical section.

CHAPTER 18. MUTUAL EXCLUSION 159

18.5.1.2 GGeneralization to n processes

(See also | , §4.4.3].)

The easiest way to generalize Peterson’s two-process algorithm to n
processes is to organize a tournament in the form of log-depth binary tree;
this method was invented by Peterson and Fischer |]. At each node
of the tree, the roles of the two processes are taken by the winners of the
subtrees, i.e., the processes who have entered their critical sections in the
two-process algorithms corresponding to the child nodes. The winner of
the tournament as a whole enters the real critical section, and afterwards
walks back down the tree unlocking all the nodes it won in reverse order.
It’s easy to see that this satisfies mutual exclusion, and not much harder
to show that it satisfies lockout-freedom—in the latter case, the essential
idea is that if a winner at some node reaches the root infinitely often, then
lockout-freedom at that node means that a winner of each child node reaches
the root infinitely often.

The most natural way to implement the nodes is to have present[0] and
present[1] at each node be multi-writer variables that can be written to by
any process in the appropriate subtree. Because the present variables don’t
do much, we can also implement them as the OR of many single-writer
variables (this is what is done in | , §10.5.3]), but there is no immediate
payoff to doing this since the waiting variables are still multi-writer.

Nice properties of this algorithm are that it uses only bits and that it’s
very fast: O(logn) time in the absence of contention.

18.5.2 Fast mutual exclusion

With a bit of extra work, we can reduce the no-contention cost of mutual
exclusion to O(1), while keeping whatever performance we previously had
in the high-contention case. The trick (due to Lamport []) is to put
an object at the entrance to the protocol that diverts a solo process onto a
“fast path” that lets it bypass the n-process mutex that everybody else ends
up on.

Our presentation mostly follows [|[§4.4.5], which uses the splitter
abstraction of Moir and Anderson [| to separate out the mechanism
for diverting a lone process.? Code for a splitter is given in Algorithm 18.6.

A gplitter assigns to each processes that arrives at it the value right, down,
or stop. The useful properties of splitters are that if at least one process

2Moir and Anderson call these things one-time building blocks, but the name
splitter has become standard in subsequent work.

CHAPTER 18. MUTUAL EXCLUSION 160

shared data:
1 atomic register race, big enough to hold an ID, initially L

2 atomic register door, big enough to hold a bit, initially open
3 procedure splitter(id)

4 race < id

5 if door = closed then

6 L return right

7 door < closed

8 if race = id then
9 ‘ return stop
10 else

11 L return down

Algorithm 18.6: Implementation of a splitter

arrives at a splitter, then (a) at least one process returns right or stop; and
(b) at least one process returns down or stop; (c) at most one process returns
stop; and (d) any process that runs by itself returns stop. The first two
properties will be useful when we consider the problem of renaming in
Chapter 25; we will prove them there. The last two properties are what we
want for mutual exclusion.

The names of the variables race and door follow the presentation in
[, §4.4.5]; Moir and Anderson |], following Lamport [1,
call these X and Y. Asin | |, we separate out the right and down
outcomes—even though they are equivalent for mutex—because we will need
them later for other applications.

The intuition behind Algorithm 18.6 is that setting door to closed closes
the door to new entrants, and the last entrant to write its ID to race wins
(it’s a slow race), assuming nobody else writes race and messes things up.
The added cost of the splitter is always O(1), since there are no loops.

To reset the splitter, write open to door. This allows new processes to
enter the splitter and possibly return stop.

Lemma 18.5.3. After each time that door is set to open, at most one process
running Algorithm 18.6 returns stop.

Proof. To simplify the argument, we assume that each process calls splitter
at most once.

Let t be some time at which door is set to open (—oo in the case of the
initial value). Let S; be the set of processes that read open from door after

CHAPTER 18. MUTUAL EXCLUSION 161

time ¢ and before the next time at which some process writes closed to door,
and that later return stop by reaching Line 9.

Then every process in Sy reads door before any process in S; writes door.
It follows that every process in Sy writes race before any process in Sy reads
race. If some process p is not the last process in Sy to write race, it will not
see its own ID, and will not return stop. But only one process can be the
last process in S; to write race.’]

Lemma 18.5.4. If a process runs Algorithm 18.6 by itself starting from a
configuration in which door = open, it returns stop.

Proof. Follows from examining a solo execution: the process sets race to id,
reads open from door, then reads id from race. This causes it to return stop
as claimed. O

To turn this into an n-process mutex algorithm, we use the splitter to
separate out at most one process (the one that gets stop) onto a fast path
that bypasses the slow path taken by the rest of the processes. The slow-
path process first fight among themselves to get through an n-process mutex;
the winner then fights in a 2-process mutex with the process (if any) on the
fast path.

Releasing the mutex is the reverse of acquiring it. If I followed the fast
path, I release the 2-process mutex first then reset the splitter. If I followed
the slow path, I release the 2-process mutex first then the n-process mutex.
This gives mutual exclusion with O(1) cost for any process that arrives before
there is any contention (O(1) for the splitter plus O(1) for the 2-process
mutex).

A complication is that if nobody wins the splitter, there is no fast-path
process to reset it. If we don’t want to accept that the fast path just breaks
forever in this case, we have to include a mechanism for a slow-path process
to reset the splitter if it can be assured that there is no fast-path process
left in the system. The simplest way to do this is to have each process mark
a bit in an array to show it is present, and have each slow-path process,
while still holding all the mutexes, check on its way out if the door bit is set
and no processes claim to be present. If it sees all zeros (except for itself)
after seeing door = closed, it can safely conclude that there is no fast-path
process and reset the splitter itself. The argument then is that the last
slow-path process to leave will do this, re-enabling the fast path once there is

3It’s worth noting that this last process still might not return stop, because some later
process—not in S;—might overwrite race. This can happen even if nobody ever resets the
splitter.

CHAPTER 18. MUTUAL EXCLUSION 162

no contention again. This approach is taken implicitly in Lamport’s original
algorithm, which combines the splitter and the mutex algorithms into a
single miraculous blob.

18.5.3 Lamport’s Bakery algorithm

See | , §4.4.1] or | , §10.7] for some textbook presentations; the
original algorithm is found in [].

This is a lockout-free mutual exclusion algorithm that uses only single-
writer registers (although some of the registers may end up holding arbitrarily
large values). Code for the Bakery algorithm is given as Algorithm 18.7.

shared data:
choosingli], an atomic bit for each 4, initially 0
numberli], an unbounded atomic register, initially 0
Code for process :
while true do
// trying
choosing|i] < 1
number[i] < 1 + max;; number|j]
choosing[i] < 0
for j #i do
loop until choosing[j] = 0
L loop until number[j] = 0 or (numberli],) < (number[j], j)

N N

© 0w N O w;

10

// critical

11 (do critical section stuff)
// exiting

12 number[i] < 0

// remainder

13 (do remainder stuff)

Algorithm 18.7: Lamport’s Bakery algorithm

Note that several of these lines are actually loops; this is obvious for
Lines 9 and 10, but is also true for Line 6, which includes an implicit loop to
read all n — 1 values of number][j].

Intuition for mutual exclusion is that if you have a lower number than
I do, then I block waiting for you; for lockout-freedom, eventually I have
the smallest number. (There are some additional complications involving
the choosing bits that we are sweeping under the rug here.) For a real proof

CHAPTER 18. MUTUAL EXCLUSION 163

see | , §4.4.1] or | , §10.7].

Selling point is a strong near-FIFO guarantee and the use of only single-
writer registers (which need not even be atomic—it’s enough that they return
correct values when no write is in progress). Weak point is unbounded
registers.

18.6 RMR complexity

It’s not hard to see that we can’t build a shared-memory mutex without
busy-waiting: any process that is waiting can’t detect that the critical section
is safe to enter without reading a register, but if that register tells it that it
should keep waiting, it is back where it started and has to read it again. This
makes our standard step-counting complexity measures useless for describe
the worst-case complexity of a mutual exclusion algorithm.

However, the same argument that suggests we can ignore local computa-
tion in a message-passing model suggests that we can ignore local operations
on registers in a shared-memory model. Real multiprocessors have memory
hierarchies where memory that is close to the CPU (or one of the CPUs)
is generally much faster than memory that is more distant. This suggests
charging only for remote memory references, or RMRs, where each
register is local to one of the processes and only operations on non-local
registers are expensive. This has the advantage of more accurately modeling
real costs [,], and allowing us to build busy-waiting mutual
exclusion algorithms with costs we can actually analyze.

As usual, there is a bit of a divergence here between theory and practice.
Practically, we are interested in algorithms with good real-time performance,
and RMR complexity becomes a heuristic for choosing how to assign memory
locations. This gives rise to very efficient mutual exclusion algorithms for
real machines, of which the most widely used is the beautiful MCS algorithm
of Mellor-Crummey and Scott |]. Theoretically, we are interested in
the question of how efficiently we can solve mutual exclusion in our formal
model, and RMR complexity becomes just another complexity measure, one
that happens to allow busy-waiting on local variables.

18.6.1 Cache-coherence vs. distributed shared memory

The basic idea of RMR complexity is that a process doesn’t pay for operations
on local registers. But what determines which operations are local?

In the cache-coherent model (CC for short), once a process reads a
register it retains a local copy as long as nobody updates it. So if I do a

CHAPTER 18. MUTUAL EXCLUSION 164

sequence of read operations with no intervening operations by other processes,
I may pay an RMR for the first one (if my cache is out of date), but the rest
are free. The assumption is that each process can cache registers, and there
is some cache-coherence protocol that guarantees that all the caches stay up
to date. We may or may not pay RMRs for write operations or other read
operations, depending on the details of the cache-coherence protocol, but for
upper bounds it is safest to assume that we do.

In the distributed shared memory model (DSM), each register is
assigned permanently to a single process. Other processes can read or write
the register, but only the owner gets to do so without paying an RMR. Here
memory locations are nailed down to specific processes.

In general, we expect the cache-coherent model to be cheaper than the
distributed shared-memory model, if we ignore constant factors. The reason
is that if we run a DSM algorithm in a CC model, then the process p to
which a register r is assigned incurs an RMR only if some other process
q accesses p since p’s last access. But then we can amortize p’s RMR by
charging g double. Since ¢ incurs an RMR in the CC model, this tells us that
we pay at most twice as many RMRs in DSM as in CC for any algorithm.

The converse is not true: there are (mildly exotic) problems for which it
is known that CC algorithms are asymptotically more efficient than DSM
algorithms [,]

18.6.2 RMR complexity of Peterson’s algorithm

As a warm-up, let’s look at the RMR complexity of Peterson’s two-process
mutual exclusion algorithm (Algorithm 18.5). Acquiring the mutex requires
going through mostly straight-line code, except for the loop that tests
present[—i] and waiting.

In the DSM model, spinning on present[—i] is not a problem (we can
make it a local variable of process 7). But waiting is trouble. Whichever
process we don’t assign it to will pay an RMR every time it looks at it. So
Peterson’s algorithm behaves badly by the RMR measure in this model.

Things are better in the CC model. Now process ¢ may pay RMRs for its
first reads of present|[—i] and waiting, but any subsequent reads are free unless
process —i changes one of them. But any change to either of the variables
causes process 7 to leave the loop. It follows that process ¢ pays at most 3
RMRs to get through the busy-waiting loop, giving an RMR complexity of
o(1).

RMR complexities for parts of a protocol that access different registers
add just like step complexities, so the Peterson-Fischer tree construction

CHAPTER 18. MUTUAL EXCLUSION 165

described in §18.5.1.2 works here too. The result is O(logn) RMRs per
critical section access, but only in the CC model.

18.6.3 Mutual exclusion in the DSM model

Yang and Anderson |] give a mutual exclusion algorithm for the DSM
model that requires ©(logn) RMRs to reach the critical section. This is now
known to be optimal for deterministic algorithms |]. The core of the
algorithm is a 2-process mutex similar to Peterson’s, with some tweaks so
that each process spins only on its own registers. Pseudocode is given in
Algorithm 18.8; this is adapted from | , Figure 1].

Clside(i)] < i
T <+
P[i] + 0
rival «<— C[—side(i)]
if rival # 1 and T =i then
if P[rival] = 0 then
L Plrival] =1
while P[i] = 0 do spin
if T =i then
10 L while P[i] <1 do spin

N O ok W N

© o

// critical section goes here
11 C[side(i)] « L
12 rival < T
13 if rival # i then
14 | P[rival] + 2

Algorithm 18.8: Yang-Anderson mutex for two processes

The algorithm is designed to be used in a tree construction where a
process with ID in the range {1...n/2} first fights with all other processes
in this range, and similarly for processes in the range {n/2+1...n}. The
function side(i) is O for the first group of processes and 1 for the second.
The variables C[0] and C[1] are used to record which process is the winner
for each side, and also take the place of the present variables in Peterson’s
algorithm. Each process has its own variable P[i] that it spins on when
blocked; this variable is initially 0 and ranges over {0, 1,2}; this is used to
signal a process that it is safe to proceed, and tests on P substitute for tests

CHAPTER 18. MUTUAL EXCLUSION 166

on the non-local variables in Peterson’s algorithm. Finally, the variable T is
used (like waiting in Peterson’s algorithm) to break ties: when T' = i, it’s i’s
turn to wait.

Initially, C[0] = C[1] = L and P[i] = 0 for all i.

When I want to enter my critical section, I first set C[side(i)] so you can
find me; this also has the same effect as setting present[side(i)] in Peterson’s
algorithm. I then point T to myself and look for you. I’ll block if I see
C[—side(i)] # L and T' = 4. This can occur in two ways: one is that I really
write T" after you did, but the other is that you only wrote C[—side(7)] but
haven’t written T yet. In the latter case, you will signal to me that 7" may
have changed by setting P[i] to 1. I have to check T" again (because maybe I
really did write 7" later), and if it is still ¢, then I know that you are ahead of
me and will succeed in entering your critical section. In this case I can safely
spin on P[i] waiting for it to become 2, which signals that you have left.

There is a proof that this actually works in | |, but it’s 27 pages
of very meticulously-demonstrated invariants (in fairness, this includes the
entire algorithm, including the tree parts that we omitted here). For intuition,
this is not much more helpful than having a program mechanically check all
the transitions, since the algorithm for two processes is effectively finite-state
if we ignore the issue with different processes i jumping into the role of
side(q).

A slightly less rigorous but more human-accessible proof would be analo-
gous to the proof of Peterson’s algorithm. We need to show two things: first,
that no two processes ever both enter the critical section, and second, that
no process gets stuck.

For the first part, consider two processes i and j, where side(i) = 0 and
side(j) = 1. We can’t have both i and j skip the loops, because whichever
one writes T last sees itself in T'. Suppose that this is process ¢ and that
j skips the loops. Then T' = i and P[i] = 0 as long as j is in the critical
section, so i blocks. Alternatively, suppose ¢ writes T' last but does so after
j first reads 7. Now i and j both enter the loops. But again ¢ sees T' =i on
its second test and blocks on the second loop until j sets P[i] to 2, which
doesn’t happen until after j finishes its critical section.

Now let us show that ¢ doesn’t get stuck. Again we’ll assume that ¢ wrote
T second.

If 7 skips the loops, then j sets P[i] = 2 on its way out as long as T = i;
this falsifies both loop tests. If this happens after i first sets P[i] to 0, only
i can set P[i] back to 0, so i escapes its first loop, and any j’ that enters
from the 1 side will see P[i] = 2 before attempting to set P[i] to 1, so P[i]
remains at 2 until ¢ comes back around again. If j sets P[i] to 2 before i sets

CHAPTER 18. MUTUAL EXCLUSION 167

PJi] to 0 (or doesn’t set it at all because T = j, then C[side(j)] is set to L
before ¢ reads it, so ¢ skips the loops.

If j doesn’t skip the loops, then P[i] and P[j] are both set to 1 after 4
and j enter the loopy part. Because j waits for P[j] # 0, when it looks at
T the second time it will see T' =1 # j and will skip the second loop. This
causes it to eventually set P[i] to 2 or set C[side(j)] to L before ¢ reads it
as in the previous case, so again ¢ eventually reaches its critical section.

Since the only operations inside a loop are on local variables, the algorithm
has O(1) RMR complexity. For the full tree this becomes O(logn).

18.6.4 Lower bounds

For deterministic algorithms, there is a lower bound due to Attiya, Hendler,
and Woelfel [| that shows that any one-shot mutual exclusion algo-
rithm for n processes incurs ©(nlogn) total RMRs in either the CC or DSM
models (which implies that some single process incurs Q(logn) RMRs). This
is based on an earlier breakthrough lower bound of Fan and Lynch |]
that proved the same lower bound for the number of times a register changes
state. Both bounds are information-theoretic: a family of n! executions
is constructed containing all possible orders in which the processes enter
the critical section, and it is shown that each RMR or state change only
contributes O(1) bits to choosing between them.

For randomized algorithms, Hendler and Woelfel [] have an al-
gorithm that uses O(logn/loglogn) expected RMRs against an adaptive
adversary, beating the deterministic lower bound. This is the best possible
for an adaptive adversary, due to a matching lower bound of Giakkoupis and
Woelfel [] that holds even for systems that provide compare-and-swap
objects.

For an oblivious adversary, an algorithm of Giakkoupis and Woelfel |]
achieves O(1) expected RMRs using compare-and-swap in the DSM model.
A more recent algorithm of Giakkoupis and Woelfel | | gives the same
O(1) expected RMRs in the CC model; this also uses compare-and-swap.
Curiously, there also exist linearizable O(1)-RMR implementations of CAS
from registers in this model |]; however, it is not clear that these
implementations can be combined with the Giakkoupis-Woelfel algorithm to
give O(1) expected RMRs using registers, because variations in scheduling
of randomized implementations may produce subtle conditioning that gives
different behavior from actual atomic objects in the context of a randomized
algorithm [.

CHAPTER 18. MUTUAL EXCLUSION 168

18.7 Space complexity

There is a famous result due to Burns and Lynch | | that any mutual
exclusion protocol using only read/write registers requires at least n of
them. Details are in [, §10.8]. A slightly different version of the
argument is given in | , §4.4.4]. The proof is another nice example of an
indistinguishability proof, where we use the fact that if a group of processes
can’t tell the difference between two executions, they behave the same in
both.

Assumptions: We have a protocol that guarantees mutual exclusion and
progress. Our base objects are all atomic registers.

Key idea: In order for some process p to enter the critical section, it has
to do at least one write to let the other processes know it is doing so. If
not, they can’t tell if p ever showed up at all, so eventually either some p’
will enter the critical section and violate mutual exclusion or (in the no-p
execution) nobody enters the critical section and we violate progress. Now
suppose we can park a process p; on each register r; with a pending write to
i; in this case we say that p; covers r;. If every register is so covered, we
can let p go ahead and do whatever writes it likes and then deliver all the
covering writes at once, wiping out anything p did. Now the other processes
again don’t know if p exists or not. So we can say something stronger: before
some process p can enter a critical section, it has to write to an uncovered
register.

The hard part is showing that we can cover all the registers without
letting p know that there are other processes waiting—if p can see that other
processes are waiting, it can just sit back and wait for them to go through
the critical section and make progress that way. So our goal is to produce
states in which (a) processes pj ..., px (for some k) between them cover k
registers, and (b) the resulting configuration is indistinguishable from an idle
configuration to pyy1...pn, where an idle configuration is one in which
every process is in its remainder section.

Lemma 18.7.1. Starting from any idle configuration C, there exists an exe-
cution in which only processes p1 ... pi take steps that leads to a configuration
C’" such that (a) C' is indistinguishable by any of pxi1 -..pn from some idle
configuration C" and (b) k distinct registers are covered by p; ...py in C'.

Proof. The proof is by induction on k. For kK =0, let C" = C' = C.

For larger k, the essential idea is that starting from C, we first run
to a configuration C; where py...pg_1 cover k — 1 registers and C is
indistinguishable from an idle configuration by the remaining processes, and

CHAPTER 18. MUTUAL EXCLUSION 169

then run pg until it covers one more register. If we let p;...pr_1 go, they
overwrite anything pg wrote. Unfortunately, they may not come back to
covering the same registers as before if we rerun the induction hypothesis
(and in particular might cover the same register that py does). So we have
to look for a particular configuration Cy that not only covers k — 1 registers
but also has an extension that covers the same k — 1 registers.

Here’s how we find it: Start in C'. Run the induction hypothesis to get
C'; here there is a set Wy of k — 1 registers covered in C';. Now let processes
p1 through pi_1 do their pending writes, then each enter the critical section,
leave it, and finish, and rerun the induction hypothesis to get to a state Ca,
indistinguishable from an idle configuration by p; and up, in which k£ — 1
registers in Wy are covered. Repeat to get sets W3, Wy, etc. Since this
sequence is unbounded, and there are only (kil) distinct sets of registers to
cover (where r is the number of registers), eventually we have W; = W for
some ¢ # j. The configurations C; and C; are now our desired configurations
covering the same k — 1 registers.

Now that we have C; and C}, we run until we get to C;. We now run py,
until it is about to write some register not covered by C; (it must do so, or
otherwise we can wipe out all of its writes while it’s in the critical section and
then go on to violate mutual exclusion). Then we let the rest of p; through
pr—1 do all their writes (which immediately destroys any evidence that pg
ran at all) and run the execution that gets them to C;. We now have k — 1
registers covered by p; through pi_1 and a k-th register covered by pg, in a
configuration that is indistinguishable from idle: this proves the induction
step.]

The final result follows by the fact that when k& = n we cover n registers;
this implies that there are n registers to cover.

It’s worth noting that the execution constructed in this proof might be
very, very long. It’s not clear what happens if we consider executions in
which, say, the critical section is only entered a polynomial number of times.
If we are willing to accept a small probability of failure over polynomially-
many entries, there is a randomized mutual exclusion protocol that uses
O(logn) space | |, at the cost of O(n) amortized RMR complexity
in the cache-coherent model. It is still open whether it is possible to reduce
the space complexity below O(n) for polynomial-length executions without
allowing for a small probability of failure or without having such high RMR
complexity.

Chapter 19

The wait-free hierarchy

In a shared memory model, it may be possible to solve some problems
using wait-free protocols, in which any process can finish the protocol in a
bounded number of steps, no matter what the other processes are doing (see
Chapter 27 for more on this and some variants).

The wait-free hierarchy &}, classifies asynchronous shared-memory
object types T by consensus number, where a type T has consensus
number n if with objects of type T and atomic registers (all initialized to
appropriate values') it is possible to solve wait-free consensus (i.e., agreement,
validity, wait-free termination) for n processes but not for n + 1 processes.
The consensus number of any type is at least 1, since 1-process consensus
requires no interaction, and may range up to oo for particularly powerful
objects.

The general idea is that a type 7" with consensus number ¢ can’t simulate
at type T” with a higher consensus number ¢/, because then we could use
the simulation to convert a ¢/-process consensus protocol using 7" into a
c-process consensus protocol using 7. The converse claim, that objects
with the same or higher consensus numbers can simulate those with lower

L The justification for assuming that the objects can be initialized to an arbitrary state
is a little tricky. The idea is that if we are trying to implement consensus from objects of
type 1" that are themselves implemented in terms of objects of type .S, then it’s natural to
assume that we initialize our simulated type-T' objects to whatever states are convenient.
Conversely, if we are using the ability of type-T objects to solve n-process consensus to
show that they can’t be implemented from type-S objects (which can’t solve n-process
consensus), then for both the type-T and type-S objects we want these claims to hold no
matter how they are initialized.

If we don’t like the convenient initialization assumption, we can also use the algorithm
of Borowsky et al. |] to enforce initialization to any reachable state. See §19.1.2 for
a discussion of how this works.

170

CHAPTER 19. THE WAIT-FREE HIERARCHY 171

ones, is not necessarily true: even though n-process consensus can implement
any object for n processes (see §19.3), it may be that for more than n
processes there is some object that has consensus number n but that cannot
be implemented from an arbitrary n-consensus object.?

The wait-free hierarchy was suggested by work by Maurice Herlihy |]
that classified many common (and some uncommon) shared-memory objects
by consensus number, and showed that an unbounded collection of objects
with consensus number n together with atomic registers gives a wait-free
implementation of any object in an n-process system.

19.1 Formal version

Various subsequent authors noticed that this did not give a robust hierar-
chy in the sense that combining two types of objects with consensus number
n could solve wait-free consensus for larger n, and the hierarchy h], was
proposed by Prasad Jayanti | | as a way of classifying objects that might
be robust: an object is at level n of the A7, hierarchy if having unboundedly
many objects plus unboundedly many registers solves n-process wait-free
consensus but not (n + 1)-process wait-free consensus.?

There is some flexibility in what assumptions we make about initialization
and what version of consensus we solve. This is discussed below in §§19.1.2
and 19.1.3.

19.1.1 Robustness

Whether or not the resulting hierarchy is in fact robust for arbitrary de-
terministic objects is still open, but Ruppert | | subsequently showed
that it is robust for RMW registers and objects with a read operation that
returns the current state, and there is a paper by Borowsky, Gafni, and
Afek | | that sketches a proof based on a topological characterization
of computability* that h” is robust for deterministic objects that don’t
discriminate between processes (unlike, say, single-writer registers). So for
well-behaved shared-memory objects (deterministic, symmetrically accessible,

2The existence of such objects was eventually demonstrated by Afek, Ellen, and
Gafni []

3The r in k7, stands for the registers, the m for having many objects of the given type.
Jayanti [] also defines a hierarchy hf where you only get finitely many objects. The
h stands for “hierarchy,” or, more specifically, h(T') stands for the level of the hierarchy at
which T" appears |].

4See Chapter 29.

CHAPTER 19. THE WAIT-FREE HIERARCHY 172

with read operations, etc.), consensus number appears to give a real classi-
fication that allows us to say for example that any collection of read-write
registers (consensus number 1), fetch-and-increments (2), test-and-set bits
(2), and queues (2) is not enough to build a compare-and-swap (c0).”

We won’t attempt to do the robustness proofs of Borowsky et al.]
or Ruppert [|. Instead, we’ll concentrate (in §19.2) on Herlihy’s original
results and show that specific objects have specific consensus numbers when
used in isolation. The procedure in each case will be to show an upper
bound on the consensus number using a variant of Fischer-Lynch-Paterson
(made easier because we are wait-free and don’t have to worry about fairness)
and then show a matching lower bound (for non-trivial upper bounds) by
exhibiting an n-process consensus protocol for some n. Most of what we
show below is taken directly from Herlihy’s paper [|, so reading that
may make more sense than reading these notes.

19.1.2 Initialization

Another useful result from the Borowsky et al.paper [| mentioned
above is that the consensus number is not generally dependent on what
assumptions we make about the initial state of the objects. Specifically,
[, Lemma 3.2] states that as long as there is some sequence of oper-
ations that takes an object from a fixed initial state to a desirable initial
state for consensus, then we can safely assume that the object is in the
desirable state. The core idea of the proof is that each process can initialize
its own copy of the object and then announce that it is ready; each process
will then participate in a sequence of consensus protocols using the objects
that they observe are ready, with the output of each protocol used as the
input to the next. Because the first object .S; to be announced as initialized
will be visible to all processes, they will all do consensus using S;. Any
subsequent protocols that may be used by only a subset of the processes will
not change the common agreed output from the S; protocol.’ This justifies
our assumption that objects can be initialized to any desired value.

SRuppert’s paper is particularly handy because it gives an algorithm for computing
the consensus number of the objects it considers. However, for infinite-state objects, this
requires solving the halting problem (as previously shown by Jayanti and Toueg [D.

5The result in the paper is stated for a consensus protocol that uses a single copy of the
object, but it generalizes in the obvious way to those that use multiple copies of the object.

CHAPTER 19. THE WAIT-FREE HIERARCHY 173

19.1.3 Output value of the consensus protocol

Depending on what we are interested in, we can imagine several different
conventions for the output of a consensus protocol. These correspond to
different choices for the validity condition:

1. Binary consensus outputs a value 0 or 1 that is equal to the input
of some participating process.

2. Id consensus outputs the id of some participating process.

3. Multivalued consensusconsensus!multivalued outputs a value that
is equal to the input of some participating process. Unlike binary
consensus, the range of inputs and outputs is arbitrary.

It is trivial to show that multivalued consensus can implement both
binary consensus and id consensus.

In the other direction, if we have id consensus, we can implement multi-
valued consensus using a standard trick: have each process ¢ write its input
to a register r; not used by the id-consensus protocol. Then each process
that learns a winner j from the id-consensus protocol can read r; to obtain
7’s value.

The tricky case is going from binary consensus to id-consensus. Here the
idea is to perform a tournament similar to Peterson-Fischer [|. Build
a binary tree whose internal nodes are binary-consensus protocols Cj, each
indexed by a binary string of length equal to its depth. Each process starts
at a leaf determined by the binary expansion of its id and fights its way to
the top. Unlike mutual exclusion, a process continues to fight on behalf of
its subtree even if it loses. Once the outcome at the root Cyy is determined,
we can work backwards to figure out which leaf is the actual winner. (See
Algorithm 19.1.)

A complication here is that this may require processes that didn’t partic-
ipate in a particular subtree on the way up to be able to detect the outcome
of the consensus protocol for that subtree on the way down. Fortunately,
since we only do this after the winner of the subtree is determined, it’s safe
for a curious process to just join the subtree’s consensus protocol with a
default input value, since this default input won’t change the outcome. We’ll
leave the actual proof of correctness as an exercise.

19.1.4 Multiple objects vs multiple operations

When considering multiple objects, the usual assumption is that objects are
combined by putting them next to each other. If we can combine two objects

CHAPTER 19. THE WAIT-FREE HIERARCHY 174

// Returns the id of a participating process

1 procedure idConsensus|()
2 Let x1...xy = binary expansion of my id
for i + ¢ —1 down to 0 do
// Cy, . 4, , is a binary consensus object
4 L le...mi_l(xi)

// Reconstruct winning sequence
5 for i <~ 0to ¢ —1do
L// Get previously decided output
Yit1 = Oy (0)

7 | returnyi...y,

Algorithm 19.1: Id consensus from binary consensus

by constructing a single object with operations of both—which is essentially
what happens when we apply different machine language instructions to the
same memory location—then the object with both operations may have a
higher consensus number than the object with either operation individually.
This was observed by Ellen et al. |]. A simple example would be
a register than supports increment (+1) and doubling (x2) operations. A
register with only one of these operations is equivalent to a counter and
has consensus number 1. But a register with both operations has consensus
number at least 2, since if it is initialized to 2, we can tell which of the two
operations went first by looking at the final value: 3 =2+1,4=2x2,5=
(2x2)+1,6=(2+1) x2.

19.2 Classification by consensus number

Here we show the position of various types in the wait-free hierarchy. The
quick description is shown in Table 19.1; more details (mostly adapted
from | |) are given below.

19.2.1 Level 1: atomic registers, counters, other interfering
RMW registers that don’t return the old value

First observe that any type has consensus number at least 1, since 1-process
consensus is trivial.
We’ll argue that a large class of particularly weak objects has consensus

CHAPTER 19. THE WAIT-FREE HIERARCHY 175

Consensus Defining Examples

number characteristic

1 Read with Registers, counters,
interfering generalized counters, max registers,
no-return atomic snapshots.
RMW.

2 Interfering Test-and-set, fetch-and-add, queues,
RMW:; queue- process-to-memory swap.
like structures.

m First of < m m-process consensus objects, m-sliding
write-like oper- window registers.
ations wins

2m — 2 Atomic m-register write.

00 First write-like Queue with peek, fetch-and-cons,

sticky bits, compare-and-swap,
memory-to-memory swap, memory-to-
memory copy.

operation wins.

Table 19.1: Position of various types in the wait-free hierarchy

number exactly 1, by running FLP with 2 processes. Recall from Chap-
ter 11 that in the Fischer-Lynch-Paterson | | proof we classify states
as bivalent or univalent depending on whether both decision values are still
possible, and that with at least one failure we can always start in a bivalent
state (this doesn’t depend on what objects we are using, since it depends
only on having invisible inputs). Since the system is wait-free there is no
constraint on adversary scheduling, and so if any bivalent state has a bivalent
successor we can just do it. So to solve consensus we have to reach a bivalent
configuration C that has only univalent successors, and in particular has a
0-valent and a 1-valent successor produced by applying operations x and y
of processes p, and p,.

Assuming objects don’t interact with each other behind the scenes, x
and y must be operations of the same object. Otherwise Cxy = Cyzx and we
get a contradiction.

Now let’s suppose we are looking at atomic registers, and consider cases:

e x and y are both reads, Then x and y commute: Czxy = Cyx, and we
get a contradiction.

e xis aread and y is a write. Then p, can’t tell the difference between

CHAPTER 19. THE WAIT-FREE HIERARCHY 176

Cyz and Czxy, so running p, to completion gives the same decision
value from both Cyz and Cxy, another contradiction.

o x and y are both writes. Now p, can’t tell the difference between Czy
and C'y, so we get the same decision value for both, again contradicting
that C'z is 0-valent and Cy is 1-valent.

There’s a pattern to these cases that generalizes to other objects. Suppose
that an object has a read operation that returns its state and one or more
read-modify-write operations that don’t return anything (perhaps we could
call them “modify-write” operations). We’ll say that the MW operations are
interfering if, for any two operations x and y, either:

e z and y commute: Czy = Cyz.
e One of x and y overwrites the other: Cxy = Cy or Cyx = Cxz.

Then no pair of read or modify-write operations can get us out of a
bivalent state, because (a) reads commute; (b) for a read and MW, the
non-reader can’t tell which operation happened first; (¢) and for any two
MW operations, either they commute or the overwriter can’t detect that the
first operation happened. So any MW object with uninformative, interfering
MW operations has consensus number 1.

For example, consider a counter that supports operations read, increment,
decrement, and write: a write overwrites any other operation, and increments
and decrements commute with each other, so the counter has consensus
number 1. The same applies to a generalized counter that supports an
atomic x <— = + a operation; as long as this operation doesn’t return the old
value, it still commutes with other atomic increments.

Max registers | |, which have read operations that return the
largest value previously written, also have commutative updates, so they also
have consensus number 1. This gives an example of an object not invented
at the time of Herlihy’s paper that is still covered by Herlihy’s argument.

19.2.2 Level 2: interfering RMW objects that return the old
value, queues (without peek)

Suppose now that we have a RMW object that returns the old value, and
suppose that it is non-trivial in the sense that it has at least one RMW
operation where the embedded function f that determines the new value is
not the identity (otherwise RMW is just read). Then there is some value v
such that f(v) # v. To solve two-process consensus, have each process p; first

CHAPTER 19. THE WAIT-FREE HIERARCHY 177

write its preferred value to a register r;, then execute the non-trivial RMW
operation on the RMW object initialized to v. The first process to execute
its operation sees v and decides its own value. The second process sees f(v)
and decides the first process’s value (which it reads from the register).” It
follows that a non-trivial RMW object has consensus number at least 2.

In many cases, this is all we get. Suppose that the operations of some
RMW type T are non-interfering in a way analogous to the previous definition,
where now we say that x and y commute if they leave the object in the same
state (regardless of what values are returned) and that y overwrites z if the
object is always in the same state after both x and zy (again regardless
of what is returned). The two processes p, and p, that carry out z and y
know what happened, but a third process p, doesn’t. So if we run p, to
completion we get the same decision value after both C'x and Cy, which
means that Cx and C'y can’t be 0-valent and 1-valent. It follows that no
collection of RMW registers with interfering operations can solve 3-process
consensus, and thus all such objects have consensus number 2. Examples
of these objects include test-and-set bits, fetch-and-add registers, and
swap registers that support an operation swap that writes a new value and
returns the previous value.

There are some other objects with consensus number 2 that don’t fit this
pattern. Define a wait-free queue as an object with enqueue and dequeue
operations (like normal queues), where dequeue returns L if the queue is
empty (instead of blocking). To solve 2-process consensus with a wait-free
queue, initialize the queue with a single value (it doesn’t matter what the
value is). We can then treat the queue as a non-trivial RMW register where
a process wins if it successfully dequeues the initial value and loses if it gets
empty.8

However, enqueue operations are non-interfering: if p, enqueues v, and
py enqueues vy, then any third process can detect which happened first;
similarly we can distinguish enq(z)deq() from deq()eng(z). So to show we
can’t do three process consensus we do something sneakier: given a bivalent
state C' with allegedly O- and 1-valent successors Cenq(x) and Cenq(y),

"The extra registers are just implementing the standard construction of multivalued
consensus from id-consensus; see §19.1.3.
8But wait! What if the queue starts empty?

This turns out to be a surprisingly annoying problem, and was one of the motivating
examples for h;, as opposed to Herlihy’s vaguer initial definition.

With one empty queue and nothing else, Jayanti and Toueg [, Theorem 7] show that
there is no solution to consensus for two processes. This is also true for stacks (Theorem 8
from the same paper). But adding a register (Theorem 9) lets you do it. A second empty
queue also works.

CHAPTER 19. THE WAIT-FREE HIERARCHY 178

consider both Ceng(x)enq(y) and Cenqg(y)enq(z) and run p, until it does
a deq() (which it must, because otherwise it can’t tell what to decide) and
then stop it. Now run p, until it also does a deq() and then stop it. We've
now destroyed the evidence of the split and poor hapless p, is stuck. In the
case of C'deq()enq(z) and Ceng(x)deq() on a non-empty queue we can kill
the initial dequeuer immediately and then kill whoever dequeues x or the
value it replaced, and if the queue is empty only the dequeuer knows. In
either case we reach indistinguishable states after killing only 2 witnesses,
and the queue has consensus number at most 2.

Similar arguments work on stacks, deques, and so forth—these all have
consensus number exactly 2.

19.2.3 Level co: objects where the first write wins

These are objects that can solve consensus for any number of processes. Here
are a bunch of level-oc objects:

Queue with peek Has operations enq(x) and peek(), which returns the
first value enqueued. (Maybe also deq(), but we don’t need it for
consensus). Protocol is to enqueue my input and then peek and return
the first value in the queue.

Fetch-and-cons Returns old cdr and adds new car on to the head of a list.
Use preceding protocol where peek() = tail(car :: cdr).

Sticky bit Has a write operation that has no effect unless register is in the
initial L state. Whether the write succeeds or fails, it returns nothing.
The consensus protocol is to write my input and then return result of
a read.

Compare-and-swap Has CAS(old, new) operation that writes new only if
previous value is old. Use it to build a sticky bit.

Load-linked /store-conditional Like compare-and-swap split into two op-
erations. The operation reads a memory location and marks it. The
operation succeeds only if the location has not been changed since the
preceding load-linked by the same process. Can be used to build a
sticky bit.

Memory-to-memory swap Has swap(r;, ;) operation that atomically
swaps contents of r; with r;, as well as the usual read and write
operations for all registers. Use to implement fetch-and-cons. Alterna-
tively, use two registers input[i] and victory[i| for each process i, where

CHAPTER 19. THE WAIT-FREE HIERARCHY 179

victory[i] is initialized to 0, and a single central register prize, initialized
to 1. To execute consensus, write your input to input[i], then swap
victory[i] with prize. The winning value is obtained by scanning all
the victory registers for the one that contains a 1, then returning the
corresponding input value.)

Memory-to-memory copy Has a copy(r;, rj) operation that copies r; to
r;j atomically. Use the same trick as for memory-to-memory swap,
where a process copies prize to victory[i]. But now we have a process
follow up by writing 0 to prize. As soon as this happens, the victory
values are now fixed; take the leftmost 1 as the winner.”

Herlihy [| gives a slightly more complicated version of this
procedure, where there is a separate prize[i] register for each i, and
after doing its copy a process writes 0 to all of the prize registers. This
shows that memory-to-memory copy solves consensus for arbitrarily
many processes even if we insist that copy operations can never overlap.
The same trick also works for memory-to-memory swap, since we can
treat a memory-to-memory swap as a memory-to-memory copy given
that we don’t care what value it puts in the prize[i] register.

Bank accounts A bank account object stores a non-negative integer,
and supports a read operation that returns the current value and a
withdraw(k) operation that reduces the value by k, unless this would
reduce the value below 0, in which case it has no effect.

To solve (binary) consensus with a bank account, start it with 3, and
have each process with input b attempt to withdraw 3 — b from the
account. After the first withdrawal, the object will hold either 0 or 1,
and no further withdrawals will have any effect. So the bank account
acts exactly like a sticky bit where 3 represents L.

For many years, I assumed that this example demonstrated why cryp-
tocurrencies all seem to use embedded consensus protocols of some
sort. However, it turns out that there is a critical assumption needed
for this proof, which is that more than one process can spend from the
same account. Without this assumption, it has been shown by Guer-
raoui et al. | | that the consensus number of a single-spender

90r use any other rule that all processes apply consistently.

107f you have more money, you can extend this construction to any fixed set of values.
For example, to choose among values v in 0...m — 1, start with 2m and have a process
with input v subtract 2m — v.

CHAPTER 19. THE WAIT-FREE HIERARCHY 180

bank account is 1, and more generally that the consensus number of a
k-spender bank account is exactly k.

19.2.4 Level 2m — 2: simultaneous m-register write

Here we have a (large) collection of atomic registers augmented by an m-
register write operation that performs all the writes simultaneously. The
intuition for why this is helpful is that if p; writes r; and rshareq While po
writes 9 and Tspared then any process can look at the state of r1, ro and
Tshared and tell which write happened first. Code for this procedure is given
in Algorithm 19.2; note that up to 4 reads may be necessary to determine
the winner because of timing issues.'!
The workings of Algorithm 19.2 are straightforward:

o If the process reads r1 = ro = L, then we don’t care which went first,
because the reader (or somebody else) already won.

o If the process reads r; = 1 and then ro = 1, then p; went first.

o If the process reads ro = 2 and then r; = L, then py went first. (This
requires at least one more read after checking the first case.)

e Otherwise the process saw 71 = 1 and ro = 2. Now read Tspareq: if it’s
1, po went first; if it’s 2, p; went first.

Algorithm 19.2 requires 2-register writes, and will give us a protocol for 2
processes (since the reader above has to participate somewhere to make the
first case work). For m processes, we can do the same thing with m-register
writes. We have a register r,; = 74, for each pair of distinct processes p
and ¢, plus a register r,, for each p; this gives a total of (7;) +m = O(m?)
registers. All registers are initialized to L. Process p then writes its initial
preference to some single-writer register pref,, and then simultaneously writes
p to rpq for all ¢ (including rpy,). It then attempts to figure out the first
writer by applying the above test for each g to rp, (standing in for rehared),
rpp (r1) and 74q (r2). If it won against all the other processes, it decides its
own value. If not, it repeats the test recursively for some p’ that beat it until

"'The main issue is that processes can only read the registers one at a time. An
alternative to running Algorithm 19.2 is to use a double-collect snapshot (see §20.1) to
simulate reading all three registers at once. However, this might require as many as twelve
read operations, since a process doing a snapshot has to re-read all three registers if any of
them change.

CHAPTER 19. THE WAIT-FREE HIERARCHY

181

V1 T

V2 < T2

if v7 =v9 = 1 then
L return no winner

B W N =

5 if v1 =1 and v = L then
// p1 went first
return 1

// read 7] again
7 V] 1
8 if v9 =2 and v} = L then
// ps went first
L return 2

// both p; and ps wrote
10 if 7shareq = 1 then
11 ‘ return 2
12 else
13 L return 1

Algorithm 19.2: Determining the winner of a race between 2-register
writes. The assumption is that p; and ps each wrote their own IDs
to 7; and Tshared Simultaneously. This code can be executed by any
process (including but not limited to p; or p2) to determine which of
these 2-register writes happened first.

CHAPTER 19. THE WAIT-FREE HIERARCHY 182

it finds a process that beat everybody, and returns its value. So m-register
writes solve m-process wait-free consensus.

A further tweak gets 2m —2: run two copies of an (m—1)-process protocol
using separate arrays of registers to decide a winner for each group. Then add
a second phase where processes contend across the groups. This involves each
process p from group 1 writing the winning ID for its group simultaneously
into s, and sy, for each ¢ in the other group. The first process to do this will
be the only process that wins against every process in the other group, so
we can pick a winning group by looking for some such process. We can then
return the input value for whichever process won within the winning group.

One thing to note about the second phase is that, unlike mutex, we can’t
just have the winners of the two groups fight each other, since this would
not give the wait-free property for non-winners. Instead, we have to allow a
non-winner p to pick up the slack for a slow winner and fight on behalf of
the entire group. This requires an m-process write operation to write s, and
all s, at once.

19.2.4.1 Matching impossibility result

It might seem that the technique used to boost from m-process consensus to
(2m — 2)-process consensus could be repeated to get up to at least ©(m?), but
this turns out not to be the case. The essential idea is to show that in order
to escape bivalence, we have to get to a configuration C' where every process
is about to do an m-register write leading to a univalent configuration (since
reads don’t help for the usual reasons, and normal writes can be simulated
by m-register writes with an extra m — 1 dummy registers), and then argue
that these writes can’t overlap too much. So suppose we are in such a
configuration, and suppose that Cz is 0-valent and Cy is 1-valent, and
we also have many other operations z; ... z; that lead to univalent states.
Following Herlihy | |, we argue in two steps:

1. There is some register that is written to by z alone out of all the
pending operations. Proof: Suppose not. Then the 0-valent configura-
tion C'zyz1 ...z is indistinguishable from the 1-valent configuration
Cyz ...z, by any process except p,, and we're in trouble.

2. There is some register that is written to by x and y but not by any of
the z;. Proof:: Suppose not. The each register is written by at most
one of x and y, making it useless for telling which went first; or it is
overwritten by some z;, hiding the value that tells which went first.

CHAPTER 19. THE WAIT-FREE HIERARCHY 183

So C'zyzy ... zx is indistinguishable from Cyzz; ... z; for any process
other than p, and p,, and we're still in trouble.

Now suppose we have 2m — 1 processes. The first part says that each of
the pending operations (z, y, all of the z;) writes to 1 single-writer register
and at least k two-writer registers where k is the number of processes leading
to a different univalent value. This gives k + 1 total registers simultaneously
written by this operation. Now observe that with 2m — 1 process, there is
some set of m processes whose operations all lead to a b-valent state; so
for any process to get to a (—b)-valent state, it must write m + 1 registers
simultaneously. It follows that with only m simultaneous writes we can only
do (2m — 2)-consensus.

Curiously, we can see the last bivalent configuration in the algorithm
given earlier: as long as we have not had any process contend with the
processes in the other group, it is still possible for the winner of either group
to win the overall protocol. If we run each process until it is about to do its
final m-register write, we get exactly the situation where the processes in one
group give exactly m — 1 pending writes that lead to 0-valent configurations
and the processes in the other group give exactly m — 1 pending writes that
lead to 1-valent configurations, with all of these pending writes overlapping
in exactly the way required by the impossibility argument. In principle this
happens for any consensus implementation that is subject to this kind of
bivalence argument, but it is nice to see the structure of the upper bound
and lower bound matching up so directly in this case.

19.2.5 Level m: m-process consensus objects, m-sliding win-
dow registers

An m-process consensus object has a single consensus operation that,
the first m times it is called, returns the input value in the first operation,
and thereafter returns only L. Clearly this solves m-process consensus. To
show that it doesn’t solve (m + 1)-process consensus even when augmented
with registers, run a bivalent initial configuration to a configuration C where
any further operation yields a univalent state. By an argument similar to
the m-register write case, we can show that the pending operations in C
must all be consensus operations on the same consensus object (anything
else commutes or overwrites). Now run Czyz; ... zpn—1 and Cyxz; ... 2pm—1,
where x and y lead to 0-valent and 1-valent states, and observe that the
process that did z,,—1 can’t distinguish the resulting configurations because
all it got was L. (Note: this works even if the consensus object isn’t in

CHAPTER 19. THE WAIT-FREE HIERARCHY 184

its initial state, since we know that before x or y the configuration is still
bivalent.)

So the m-process consensus object has consensus number m. This shows
that A7, is nonempty at each level.

A natural question at this point is whether the inability of m-process
consensus objects to solve (m+ 1)-process consensus implies robustness of the
hierarchy. One might consider the following argument: given any object at
level m, we can simulate it with an m-process consensus object, and since we
can’t combine m-process consensus objects to boost the consensus number,
we can’t combine any objects they can simulate either. The problem here is
that while m-process consensus objects can simulate any object in a system
with m processes (see below), it may be that some objects can do more in a
system with m + 1 objects while still not solving (m + 1)-process consensus.
A simple way to see this would be to imagine a variant of the m-process
consensus object that doesn’t fail completely after m operations; for example,
it might return one of the first two inputs given to it instead of L. This
doesn’t help with solving consensus, but it might (or might not) make it too
powerful to implement using standard m-process consensus objects.

An m-process consensus object is arguably a very artificial way to populate
all levels of the consensus hierarchy. Mostefaoui et al. | | proposed
m-sliding window registers as a more natural class of objects that has
this property. An m-sliding window register RW,,, possesses a write operation
and a read operation that returns the last m values written to the register
in the order they were written.'?

It’s easy to solve m-process consensus using this object. We assume that
the initial state of the register does not contain any process IDs, and have
each contending process write its ID to the register. The first writer wins.

The proof that an m-sliding window register can’t solve consensus for
m + 1 processes is similar to that for m-process consensus objects. Given
a system consisting of read-write registers and RW,,, objects, choosing the
bivalent successor of any configuration either works forever or eventually
reaches a configuration C' with only univalent successors. By the usual
argument, the m 4+ 1 pending operations in C' must all be operations on the
same m-sliding window register.

We can easily show that none of these operations can be read operations.
Suppose x is a read operation such that Cz is b-valent, and let y be any

12This particular class of objects has been independently invented on at least three
occasions. Ellen et al. | | define a b-buffer object that is essentially equivalent, as
is the ring buffer object that once appeared on a final exam in this course (see §1.2.2).

CHAPTER 19. THE WAIT-FREE HIERARCHY 185

operation such that C'y is —b-valent. Then C'zy and C'y are indistinguishable
to the n — 1 processes that do not execute x, giving a contradiction.

Now let x and y be write operations where Cz is O-valent and Cy is
1-valent. Let z1,...,2,—1 be the remaining operations enabled in C'. Then
Cxyzi...z2m—1 and Cyzy . .. zm,—1 apply the same last m writes to the sliding
window register, leaving the resulting configurations indistinguishable to all
processes if the process carrying out = takes no more steps.

Mostefaoui et al.observe that taking this argument to the limit shows that
a unbounded distributed ledger has infinite consensus number, which is not
entirely surprising given that such an object is equivalent to fetch-and-cons
(§19.2.3).

19.3 Universality of consensus

Universality of consensus says that any type that can implement n-
process consensus can, together with atomic registers, give a wait-free im-
plementation of any object in a system with n processes. That consensus
is universal was shown by Herlihy [| and Plotkin |]. Both of
these papers spend a lot of effort on making sure that both the cost of each
operation and the amount of space used is bounded. But if we ignore these
constraints, the same result can be shown using a mechanism similar to the
replicated state machines of §12.7.

Here the processes repeatedly use consensus to decide between candidate
histories of the simulated object, and a process successfully completes an
operation when its operation (tagged to distinguish it from other similar
operations) appears in a winning history. A round structure avoids too much
confusion.

Details are given in Algorithm 19.3.

There are some subtleties to this algorithm. The first time that a process
calls consensus (on ¢[r]), it may supply a dummy input; the idea is that it is
only using the consensus object to obtain the agreed-upon history from a
round it missed. It’s safe to do this, because no process writes r to its round
register until ¢[r| is complete, so the dummy input can’t be accidentally
chosen as the correct value.

It’s not hard to see that whatever h,1 is chosen in ¢[r+1] is an extension
of h, (it is constructed by appending operations to h,), and that all processes
agree on it (by the agreement property of the consensus object c[r + 1]. So
this gives us an increasing sequence of consistent histories. We also need to
show that these histories are linearizable. The obvious linearization is just

CHAPTER 19. THE WAIT-FREE HIERARCHY 186

1 procedure apply(m)
// announce my intended operation
opli] < 7
while true do
// find a recent round
4 7 <= max; round|[j]
// obtain the history as of that round
if h, = 1 then
L hy < consensus(c[r|, L)

if 7 € h, then

8 L return value 7w returns in A,
// else attempt to advance

9 h «— h,

10 for each j do

11 if op[j] € h' then

12 L append op[j] to b’

13 hy41 < consensus(c[r + 1], 1)

14 | round[i] <=7 +1

Algorithm 19.3: A universal construction based on consensus

CHAPTER 19. THE WAIT-FREE HIERARCHY 187

the most recent version of h,. Suppose some call to apply(m) finishes before
a call to apply(ma) starts. Then 7 is contained in some h, when apply(m)
finishes, and since 7o can only enter h by being appended at the end, we get
71 linearized before 5.

Finally, we need to show termination. The algorithm is written with a
loop, so in principle it could run forever. But we can argue that no process
after executes the loop more than twice. The reason is that a process p puts
its operation in op[p] before it calculates r; so any process that writes r' > r
to round sees p’s operation before the next round. It follows that p’s value
gets included in the history no later than round r + 2. (We'll see this sort of
thing again when we do atomic snapshots in Chapter 20.)

A minor complication with this construction is that it assumes consensus
over arbitrary inputs, while some objects directly implement only binary
consensus. Fortunately there is a straightforward reduction of general con-
sensus to a tree of binary consensus protocols. Assign a register to the root
of each subtree (including leaves representing the individual processes). To
do consensus, I first write my input to my leaf. I then fight my way up
through the tree solving binary consensus at each node, with input equal
to the side (left or right) I am coming from. Whichever value wins a node,
each process participating in the node will copy the winning value from the
appropriate subtree to the register for that node. Eventually a single value
prevails at the root.

Building a consistent shared history is easier with some particular objects
that solve consensus. For example, a fetch-and-cons object that supplies
an operation that pushes a new head onto a linked list and returns the old
head trivially implements the common history above without the need for
helping. One way to implement fetch-and-cons is with memory-to-memory
swap; to add a new element to the list, create a cell with its next pointer
pointing to itself, then swap the next field with the head pointer for the entire
list.

The solutions we’ve described here have a number of deficiencies that
make them impractical in a real system (even more so than many of the
algorithms we’ve described). If we store entire histories in a register, the
register will need to be very, very wide. If we store entire histories as a linked
list, it will take an unbounded amount of time to read the list. For solutions
to these problems, see [, 15.3] or the papers of Herlihy |] and
Plotkin |]

Chapter 20

Atomic snapshots

We’ve seen in the previous chapter that there are a lot of things we can’t
make wait-free with just registers. But there are a lot of things we can.
Atomic snapshots are a tool that let us do a lot of these things easily.

An atomic snapshot object acts like a collection of n single-writer
multi-reader atomic registers with a special snapshot operation that returns
(what appears to be) the state of all n registers at the same time. This
is easy without failures: we simply lock the whole register file, read them
all, and unlock them to let all the starving writers in. But it gets harder if
we want a protocol that is wait-free, where any process can finish its own
snapshot or write even if all the others lock up.

We’'ll give the usual sketchy description of a couple of snapshot algo-
rithms. More details on early snapshot results can be found in | , §10.3]
or | , §13.3]. There is also a reasonably recent survey by Fich on upper
and lower bounds for the problem [].

20.1 The basic trick: two identical collects equals
a snapshot

Let’s tag any value written with a sequence number, so that each value
written has a seqno field attached to it that increases over time. We can
now detect if a new write has occurred between two reads of the same
variable. Suppose now that we repeatedly perform collects—reads of all
n registers—until two successive collects return exactly the same vector of
values and sequence numbers. We can then conclude that precisely these
values were present in the registers at some time in between the two collects.
This gives us a very simple algorithm for snapshot. Unfortunately, it doesn’t

188

CHAPTER 20. ATOMIC SNAPSHOTS 189

terminate if there are a lot of writers around.! So we need some way to slow
the writers down, or at least get them to do snapshots for us.

20.2 Snapshots using double collects with helping

This is the approach taken by Afek and his five illustrious co-authors |]
(see also [, §10.3] or | , §13.3.2]): before a process can write to its
register, it first has to complete a snapshot and leave the results behind with
its write.? This means that if some slow process (including a slow writer,
since now writers need to do snapshots too) is prevented from doing the
two-collect snapshot because too much writing is going on, eventually it can
just grab and return some pre-packaged snapshot gathered by one of the
many successful writers.

Specifically, if a process executing a single snapshot operation o sees
values written by a single process ¢ with three different sequence numbers
s1, s3 and sz, then it can be assured that the snapshot o3 gathered with
sequence number sz started no earlier than sy was written (and thus no
earlier than o started, since o read s; after it started) and ended no later
than o ended (because o saw it). It follows that the snapshot can safely
return o3, since that represents the value of the registers at some time inside
o3’s interval, which is contained completely within ¢’s interval.

So a snapshot repeatedly does collects until either (a) it gets two identical
collects, in which case it can return the results (a direct scan, or (b) it sees
three different values from the same process, in which case it can take the
snapshot collected by the second write (an indirect scan). See pseudocode
in Algorithm 20.1.

Amazingly, despite the fact that updates keep coming and everybody is
trying to do snapshots all the time, a snapshot operation of a single process
is guaranteed to terminate after at most n + 1 collects. The reason is that

LThis isn’t always a problem, since there may be external factors that keep the writers
from showing up too much. Maurice Herlihy and I got away with using exactly this
snapshot algorithm in an ancient, pre-snapshot paper on randomized consensus [].
The reread-until-no-change idea was used as early as 1977 by Lamport |].

2The algorithm is usually called the AADGMS algorithm by people who can remember
all the names—or at least the initials—of the team of superheroes who came up with
it (Afek, Attiya, Dolev, Gafni, Merritt, and Shavit). Historically, this was one of three
independent solutions to the problem that appeared at about the same time. A similar
algorithm for composite registers was given by James Anderson |] and a somewhat
different algorithm for consistent scan was given by Aspnes and Herlihy |]. The
Afek et al. algorithm had the advantage of using bounded registers (in its full version),
and so it and its name for atomic snapshot prevailed over its competitors.

CHAPTER 20. ATOMIC SNAPSHOTS 190

in order to prevent case (a) from holding, the adversary has to supply at
least one new value in each collect after the first. But it can only supply one
new value for each of the n — 1 processes that aren’t doing collects before
case (b) is triggered (it’s triggered by the first process that shows up with a
second new value). Adding up all the collects gives 1 + (n —1)+1=n+1
collects before one of the cases holds. Since each collect takes n — 1 read
operations (assuming the process is smart enough not to read its own register),
a snapshot operation terminates after at most n? — 1 reads.

Ju—

procedure update, (A, v)

2 s < scan(A)

3 Ali] + (Alé].count + 1, v, s)

4 procedure scan(A)

5 initial <— collect(A)

6 previous < initial while true do

7 s < collect(A)

8 if s = previous then
// Two identical collects

9 return s

10 else if 35 : s[j].count > initial[j].count + 2 do
// Three different counts from j

11 return s[j].snapshot

12 else
// Nothing useful, try again

13 previous <— s

Algorithm 20.1: Snapshot of |] using unbounded registers

For a write operation, a process first performs a snapshot, then writes
the new value, the new sequence number, and the result of the snapshot
to its register (these are very wide registers). The total cost is n? — 1 read
operations for the snapshot plus 1 write operation.

20.2.1 Linearizability

We now need to argue that the snapshot vectors returned by the Afek et al.
algorithm really work, that is, that between each matching invoke-snapshot
and respond-snapshot there was some actual time where the registers in the
array contained precisely the values returned in the respond-snapshot action.

CHAPTER 20. ATOMIC SNAPSHOTS 191

We do so by assigning a linearization point to each snapshot vector, a time
at which it appears in the registers (which for correctness of the protocol had
better lie within the interval between the snapshot invocation and response).
For snapshots obtained through case (a), take any time between the two
collects. For snapshots obtained through case (b), take the linearization point
already assigned to the snapshot vector provided by the third write. In the
latter case we argue by induction on termination times that the linearization
point lies inside the snapshot’s interval.

Note that this means that all snapshots were ultimately collected by two
successive collects returning identical values, since any case-(b) snapshot
sits on top of a finite regression of case-(b) snapshots that must end with a
case-(a) snapshot. This means that any snapshot corresponds to an actual
global state of the registers at some point in the execution, which is not true
of all snapshot algorithms. It also means that we can replace the registers in
the snapshot array with other objects that allow us to detect updates (say,
counters or max registers) and still get snapshots.

In an actual execution, the fact that we are waiting for double collects
with no intervening updates means that if there are many writers, eventually
all of them will stall waiting for a case-(a) snapshot to complete. So that
snapshot will complete because all the writers are stuck. In a sense, requiring
writers to do snapshots first almost gives us a form of locking, but without
the vulnerability to failures of a real lock.

20.2.2 Using bounded registers

The simple version of the Afek et al. algorithm requires unbounded registers
(since sequence numbers may grow forever). One of the reasons why this
algorithm required so many smart people was to get rid of this assumption:
the paper describes a (rather elaborate) mechanism for recycling sequence
numbers that prevents unbounded growth (see also | , 13.3.3]). In
practice, unbounded registers are probably not really an issue once one
has accepted very large registers, but getting rid of them is an interesting
theoretical problem.

It turns out that with a little cleverness we can drop the sequence numbers
entirely. The idea is that we just need a mechanism to detect when somebody
has done a lot of writes while a snapshot is in progress. A naive approach
would be to have sequence numbers wrap around mod m for some small
constant modulus m; this fails because if enough snapshots happen between
two of my collects, I may notice none of them because all the sequence
numbers wrapped around all the way. But we can augment mod-m sequence

CHAPTER 20. ATOMIC SNAPSHOTS 192

numbers with a second handshaking mechanism that detects when a large
enough number of snapshots have occurred; this acts like the guard bit on
an automobile odometer, than signals when the odometer has overflowed
to prevent odometer fraud by just running the odometer forward an extra
million miles or so.

The result is the full version of Afek et al. |]. (Our presentation
here follows | , 10.3].) The key mechanism for detecting odometer fraud
is a handshake, a pair of single-writer bits used by two processes to signal
each other that they have done something. Call the processes S (for same)
and D (for different), and supposed we have handshake bits hg and hp. We
then provide operations tryHandshake (signal that something is happening)
and checkHandshake (check if something happened) for each process; these
operations are asymmetric. The code is:

tryHandshake(S): hg < hp (make the two bits the same)
tryHandshake(D): hp < —hg (make the two bits different)
checkHandshake(S): return hg # hp (return true if D changed its bit)

checkHandshake(D): return hg = hp (return true if S changed its bit)

The intent is that checkHandshake returns true if the other process
called tryHandshake after I did. The situation is a bit messy, however, since
tryHandshake involves two register operations (reading the other bit and
then writing my own). So in fact we have to look at the ordering of these
read and write events. Let’s assume that checkHandshake is called by S (so
it returns true if and only if it sees different values). Then we have two cases:

1. checkHandshake(S) returns true. Then S reads a different value in
hp from the value it read during its previous call to tryHandshake(S).
It follows that D executed a write as part of a tryHandshake(D)
operation in between S’s previous read and its current read.

2. checkHandshake(S) returns false. Then S reads the same value in hp
as it read previously. This does not necessarily mean that D didn’t
write hp during this interval—it is possible that D is just very out
of date, and did a write that didn’t change the register value—but it
does mean that D didn’t perform both a read and a write since S’s
previous read.

How do we use this in a snapshot algorithm? The idea is that before
performing my two collects, I will execute tryHandshake on my end of a

CHAPTER 20. ATOMIC SNAPSHOTS 193

pair of handshake bits for every other process. After performing my two
collects, I'll execute checkHandshake. I will also assume each update (after
performing a snapshot) toggles a mod-2 sequence number bit on the value
stored in its segment of the snapshot array. The hope is that between the
toggle and the handshake, I detect any changes. (See | , Algorithm 30]
for the actual code.)

Does this work? Let’s look at cases:

1. The toggle bit for some process ¢ is unchanged between the two snap-
shots taken by p. Since the bit is toggled with each update, this means
that an even number of updates to ¢’s segment occurred during the
interval between p’s writes. If this even number is 0, we are happy: no
updates means no call to tryHandshake by ¢, which means we don’t
see any change in ¢’s segment, which is good, because there wasn’t any.
If this even number is 2 or more, then we observe that each of these
events precedes the following one:

e p’s call to tryHandshake.

e p’s first read.

e ¢’s first write.

e ¢’s call to tryHandshake at the start of its second scan.
e (’s second write.

e p’s second read.

e p’s call to checkHandshake.

It follows that ¢ both reads and writes the handshake bits in between
p’s calls to tryHandshake and checkHandshake, so p correctly sees
that ¢ has updated its segment.

2. The toggle bit for ¢ has changed. Then ¢ did an odd number of updates
(i.e., at least one), and p correctly detects this fact.

What does p do with this information? Each time it sees that ¢ has done
a scan, it updates a count for ¢. If the count reaches 3, then p can determine
that ¢’s last scanned value is from a scan that is contained completely within
the time interval of p’s scan. Either this is a direct scan, where ¢ actually
performs two collects with no changes between them, or it’s an indirect
scan, where ¢ got its value from some other scan completely contained within
q’s scan. In the first case p is immediately happy; in the second, we observe
that this other scan is also contained within the interval of p’s scan, and so

CHAPTER 20. ATOMIC SNAPSHOTS 194

(after chasing down a chain of at most n — 1 indirect scans) we eventually
reach a direct scan contained within it that provided the actual value. In
either case p returns the value of pair of adjacent collects with no changes
between them that occurred during the execution of its scan operation, which
gives us linearizability.

20.3 Faster snapshots using lattice agreement

The Afek et al. algorithm and its contemporaries all require O(n?) operations
for each snapshot. It is possible to get this bound down to O(n) using a
more clever algorithm, | | which is the best we can reasonably hope
for in the worst case given that (a) even a collect (which doesn’t guarantee
anything about linearizability) requires ©(n) operations when implemented
in the obvious way, and (b) there is a linear lower bound, due to Jayanti,

Tan, and Toueg | |, on a large class of wait-free objects that includes
snapshot.?
The first step, due to Attiya, Herlihy, and Rachman |], is a

reduction to a related problem called lattice agreement.

20.3.1 Lattice agreement

A lattice is a partial order in which every pair of elements x, y has a least
upper bound z V y called the join of z and y and a greatest lower bound
x Ay called the meet of x and y. For example, we can make a lattice out
of sets by letting join be union and meet be intersection; or we can make a
lattice out of integers by making join be max and meet be min.

In the lattice agreement problem, each process starts with an input x;
and produces an output y;, where both are elements of some lattice. The
requirements of the problem are:

Comparability For all 4, j, y; <y; or y; < ;.
Downward validity For all 7, x; < y;.
Upward validity For all ¢, y; <z Vaa VsV ... Vx,.

These requirements are analogous to the requirements for consensus. Com-
parability acts like agreement: the views returned by the lattice-agreement
protocol are totally ordered. Downward validity says that each process will

3But see §22.6 for a faster alternative if we allow either randomization or limits on the
number of times the array is updated.

CHAPTER 20. ATOMIC SNAPSHOTS 195

include its own input in its output. Upward validity acts like validity: an
output can’t include anything that didn’t show up in some input.

For the snapshot algorithm, we also demand wait-freedom: each process
terminates after a bounded number of its own steps, even if other processes
fail.

Note that if we are really picky, we can observe that we don’t actually
need meets; a semi-lattice that provides only joins is enough. In practice
we almost always end up with a full-blown lattice, because (a) we are working
with finite sets, and (b) we generally want to include a bottom element L
that is less than all the other elements, to represent the “empty” state of
our data structure. But any finite join-semi-lattice with a bottom element
turns out to be a lattice, since we can define x A y as the join of all elements
z such that z < z and z < y. We don’t use the fact that we are in a lattice
anywhere, but it does save us two syllables not to have to say “semi-lattice
agreement.”

20.3.2 Connection to vector clocks

The first step in reducing snapshot to lattice agreement is to have each writer
generate a sequence of increasing timestamps r1,72,..., and a snapshot
corresponds to some vector of timestamps (t1,ta...t,), where ¢; indicates
the most recent write by p; that is included in the snapshot (in other words,
we are using vector clocks again; see §6.2.3). Now define v < v’ if v; < v} for
all 7; the resulting partial order is a lattice, and in particular we can compute
x V y by the rule (z Vy); = x; V y;.

Suppose now that we have a bunch of snapshots that satisfy the com-
parability requirement. This means they are totally ordered. Then we can
construct a sequential execution by ordering the snapshots in increasing order
with each update operation placed before the first snapshot that includes
it. This sequential execution is not necessarily a linearization of the original
execution, and a single lattice agreement object won’t support more than one
operation for each process, but the idea is that we can nonetheless use lattice
agreement objects to enforce comparability between concurrent executions
of snapshot, while doing some other tricks (exploiting, among other things,
the validity properties of the lattice agreement objects) to get linearizability
over the full execution.

CHAPTER 20. ATOMIC SNAPSHOTS 196

20.3.3 The full reduction

The Attiya-Herlihy-Rachman algorithm is given as Algorithm 20.2. It uses
an array of registers R; to hold round numbers (timestamps); an array S;
to hold values to scan; an unboundedly humongous array V;, to hold views
obtained by each process in some round; and a collection of lattice-agreement
objects LA,., one for each round.

1 procedure scan|()

2 for attempt + 1 to 2 do

3 R+ r<+ max(R;...Ry; R; + 1)

4 collect + read(Sy...Sy)

5 view < LA, (collect)

// max computation requires a collect

6 if max(R;...R,) < R; then
7 Vir < view
8 L return Vj,
// finding nonempty Vj, also requires a collect
9 Vir <= some nonempty Vj,
10 return V,

Algorithm 20.2: Lattice agreement snapshot

The algorithm makes two attempts to obtain a snapshot. In both cases,
the algorithm advances to the most recent round it sees (or its previous
round plus one, if nobody else has reached this round yet), attempts a collect,
and then runs lattice-agreement to try to get a consistent view. If after
getting its first view it finds that some other process has already advanced
to a later round, it makes a second attempt at a new, higher round r’ and
uses some view that it obtains in this second round, either directly from
lattice agreement, or (if it discovers that it has again fallen behind), it uses
an indirect view from some speedier process.

The reason why I throw away my view if I find out you have advanced to
a later round is not because the view is bad for me but because it’s bad for
you: I might have included some late values in my view that you didn’t see,
breaking consistency between rounds. But I don’t have to do this more than
once; if the same thing happens on my second attempt, I can use an indirect
view as in [], knowing that it is safe to do so because any collect
that went into this indirect view started after I did.

The update operation is the usual update-and-scan procedure; for com-

CHAPTER 20. ATOMIC SNAPSHOTS 197

pleteness this is given as Algorithm 20.3. To make it easier to reason about
the algorithm, we assume that an update returns the result of the embedded
scan.

1 procedure update;(v)
2 S; < (S;.seqno + 1, v)
3 return scan()

Algorithm 20.3: Update for lattice agreement snapshot

20.3.4 Why this works

We need to show three facts:

1. All views returned by the scan operation are comparable; that is, there
exists a total order on the set of views (which can be extended to a
total order on scan operations by breaking ties using the execution
order).

2. The view returned by an update operation includes the update (this
implies that future views will also include the update, giving the correct
behavior for snapshot).

3. The total order on views respects the execution order: if 71 and 7o are
scan operations that return v; and wvs, then m <g me implies v; < vs.
(This gives us linearization.)

Let’s start with comparability. First observe that any view returned
is either a direct view (obtained from LA,) or an indirect view (obtained
from Vj, for some other process j). In the latter case, following the chain of
indirect views eventually reaches some direct view. So all views returned for
a given round are ultimately outputs of LA, and thus satisfy comparability.

But what happens with views from different rounds? The lattice-
agreement objects only operate within each round, so we need to ensure that
any view returned in round 7 is included in any subsequent rounds. This is
where checking round numbers after calling LA, comes in.

Suppose some process ¢ returns a direct view; that is, it sees no higher
round number in either its first attempt or its second attempt. Then at
the time it starts checking the round number in Line 6, no process has yet
written a round number higher than the round number of i’s view (otherwise

CHAPTER 20. ATOMIC SNAPSHOTS 198

i would have seen it). So no process with a higher round number has yet
executed the corresponding collect operation. When such a process does
S0, it obtains values that are at least as large as those fed into LA,, and i’s
round-r view is less than or equal to the vector of these values by upward
validity of LA,, and thus less than or equal to the vector of values returned
by LA, for ' > r, by downward validity of LA, . So we have comparability
of all direct views, which implies comparability of all indirect views as well.

To show that each view returned by a scan includes any preceding update,
we observe that either a process returns its first-try scan (which includes
the update by downward validity) or it returns the results of a scan in the
second-try round (which includes the update by downward validity in the
later round, since any collect in the second-try round starts after the update
occurs). So no updates are missed.

Now let’s consider two scan operations m; and my where | precedes mo
in the execution. We want to show that, for the views v; and vy that these
scans return, vy < vg. Pick some time between when 7 finishes and o
starts, and let s be the contents of the registers at this time. Then v; < s by
upward validity, since any input fed to a lattice agreement object before m;
finishes was collected from a register whose value was no greater than it is in
s. Similarly, s < v by downward validity, because v is at least as large as
the collect value read by w9, and this is at least as large as s. So v; < s < va.

20.3.5 Implementing lattice agreement

There are several known algorithms for implementing lattice agreement,
including the original algorithm of Attiya, Herlihy, and Rachman []
and an adaptive algorithm of Attiya and Fouren []. The best of them
(assuming multi-writer registers) is Inoue et al.’s linear-time lattice agreement
protocol |].

The intuition behind this protocol is to implement lattice agreement
using divide-and-conquer. The processes are organized into a tree, with each
leaf in the tree corresponding to some process’s input. Internal nodes of
the tree hold data structures that will report increasingly large subsets of
the inputs under them as they become available. At each internal node, a
double-collect snapshot is used to ensure that the value stored at that node
is always the union of two values that appear in its children at the same time.
This is used to guarantee that, so long as each child stores an increasing
sequence of sets of inputs, the parent does so also.

Each process ascends the tree updating nodes as it goes to ensure that
its value is included in the final result. A clever data structure is used to

CHAPTER 20. ATOMIC SNAPSHOTS 199

ensure that out-of-date smaller sets don’t overwrite larger ones at any node,
and the cost of using this data structure and carrying out the double-collect
snapshot at a node with m leaves below it is shown to be O(m). So the total
cost of a snapshot is O(n+n/2+n/4+...1) = O(n), giving the linear time
bound.

Let’s now look at the details of this protocol. There are two main
components: the Union algorithm used to compute a new value for each
node of the tree, and the ReadSet and WriteSet operations used to store the
data in the node. These are both rather specialized algorithms and depend
on the details of the other, so it is not trivial to describe them in isolation
from each other; but with a little effort we can describe exactly what each
component demands from the other, and show that it gets it.

The Union algorithm does the usual two-collects-without change trick to
get the values of the children and then stores the result. In slightly more
detail:

1. Perform ReadSet on both children. This returns a set of leaf values.
2. Perform ReadSet on both children again.

3. If the values obtained are the same in both collects, call WriteSet on
the current node to store the union of the two sets and proceed to the
parent node. Otherwise repeat the preceding step.

The requirement of the Union algorithm is that calling ReadSet on a
given node returns a non-decreasing sequence of sets of values; that is, if
ReadSet returns some set S at a particular time and later returns S’, then
S C S’. We also require that the set returned by ReadSet is a superset
of any set written by a WriteSet that precedes it, and that it is equal to
some such set. This last property only works if we guarantee that the values
stored by WriteSet are all comparable (which is shown by induction on the
behavior of Union at lower levels of the tree).

Suppose that all these conditions hold; we want to show that the values
written by successive calls to Union are all comparable, that is, for any values
S, S" written by union we have S C S’ or S’ C S. Observe that S=LUR
and S’ = L'’ U R where L, R and L', R’ are sets read from the children.
Suppose that the Union operation producing S completes its snapshot before
the operation producing S’. Then L C L' (by the induction hypothesis) and
R C R/, giving S C §'.

We now show how to implement the ReadSet and WriteSet operations.
The main thing we want to avoid is the possibility that some large set gets

CHAPTER 20. ATOMIC SNAPSHOTS 200

overwritten by a smaller, older one. The solution is to have m registers
a[l...m], and write a set of size s to every register in a[l ... s] (each register
gets a copy of the entire set). Because register a[s] gets only sets of size s or
larger, there is no possibility that our set is overwritten by a smaller one. If
we are clever about how we organize this, we can guarantee that the total
cost of all calls to ReadSet by a particular process is O(m), as is the cost of
the single call to WriteSet in Union.

Pseudocode for both is given as Algorithm 20.4. This is a simplified

version of the original algorithm from |], which does the writes in
increasing order and thus forces readers to finish incomplete writes that they
observe, as in Attiya-Bar-Noy-Dolev [| (see also Chapter 17).

shared data: array a[l...m] of sets, initially
local data: index p, initially 0

procedure WriteSet(S)
for i < |S| down to 1 do
L afi] < S

N =

'y

procedure ReadSet()
// update p to last nonempty position
while true do
s < alp]
if p=m or alp+ 1] = 0 then
‘ break
else
10 L p+—p+1

© o N O !

11 return s

Algorithm 20.4: Increasing set data structure

Naively, one might think that we could just write directly to a[|S|] and
skip the previous ones, but this makes it harder for a reader to detect that
a[|S|] is occupied. By writing all the previous registers, we make it easy to
tell if there is a set of size |S| or bigger in the sequence, and so a reader can
start at the beginning and scan forward until it reaches an empty register,
secure in the knowledge that no larger value has been written.* Since we

4This trick of reading in one direction and writing in another dates back to a paper by
Lamport from 1977 []

CHAPTER 20. ATOMIC SNAPSHOTS 201

want to guarantee that no reader every spends more that O(m) operations
on an array of m registers (even if it does multiple calls to ReadSet), we also
have it remember the last location read in each call to ReadSet and start
there again on its next call. For WriteSet, because we only call it once, we
don’t have to be so clever, and can just have it write all |S| < m registers.

We need to show linearizability. We’ll do so by assigning a specific
linearization point to each high-level operation. Linearize each call to ReadSet
at the last time that it reads a[p]. Linearize each call to WriteSet(S) at the
first time at which a[|S|] = S and a[i] # 0 for every i < |S| (in other words,
at the first time that some reader might be able to find and return S); if
there is no such time, linearize the call at the time at which it returns. Since
every linearization point is inside its call’s interval, this gives a linearization
that is consistent with the actual execution. But we have to argue that it
is also consistent with a sequential execution, which means that we need
to show that every ReadSet operation returns the largest set among those
whose corresponding WriteSet operations are linearized earlier.

Let R be a call to ReadSet and W a call to WriteSet(S). If R returns S,
then at the time that R reads S from a[|S|], we have that (a) every register
ali] with i < |S| is non-empty (otherwise R would have stopped earlier), and
(b) |S| = m or a[|S] + 1] = 0 (as otherwise R would have kept going after
later reading a[|S|+ 1]. From the rule for when WriteSet calls are linearized,
we see that the linearization point of W precedes this time and that the
linearization point of any call to WriteSet with a larger set follows it. So
the return value of R is consistent.

The payoff: unless we do more updates than snapshots, don’t want to
assume multi-writer registers, are worried about unbounded space, have a
beef with huge registers, or care about constant factors, it costs no more
time to do a snapshot than a collect. So in theory we can get away with
assuming snapshots pretty much wherever we need them.

20.4 Practical snapshots using LL/SC

Though atomic registers are enough for snapshots, it is possible to get
a much more efficient snapshot algorithm using stronger synchronization
primitives. An algorithm of Riany, Shavit, and Touitou [| uses load-
linked /store-conditional objects to build an atomic snapshot protocol
with linear-time snapshots and constant-time updates using small registers.
We’ll give a sketch of this algorithm here.

The RST algorithm involves two basic ideas: the first is a snapshot

CHAPTER 20. ATOMIC SNAPSHOTS 202

algorithm for a single scanner (i.e., only one process can do snapshots) in
which each updater maintains two copies of its segment, a high copy (that
may be more recent than the current scan) and a low copy (that is guaranteed
to be no more recent than the current scan). The idea is that when a scan is
in progress, updaters ensure that the values in memory at the start of the
scan are not overwritten before the scan is completed, by copying them to
the low registers, while the high registers allow new values to be written
without waiting for the scan to complete. Unbounded sequence numbers,
generated by the scanner, are used to tell which values are recent or not.

As long as there is only one scanner, nothing needs to be done to ensure
that all scans are consistent, and indeed the single-scanner algorithm can be
implemented using only atomic registers. But extending the algorithm to
multiple scanners is tricky. A simple approach would be to keep a separate
low register for each concurrent scan—however, this would require up to n
low registers and greatly increase the cost of an update. Instead, the authors
devise a mechanism, called a coordinated collect, that allows the scanners
collectively to implement a sequence of virtual scans that do not overlap.
Each virtual scan is implemented using the single-scanner algorithm, with its
output written to a common view array that is protected from inconsistent
updates using LL/SC operations (CAS also works). A scanner participates
in virtual scans until it obtains a virtual scan that is useful to it (this means
that the virtual scan has to take place entirely within the interval of the
process’s actual scan operation); the simplest way to arrange this is to have
each scanner perform two virtual scans and return the value obtained by the
second one.

The paper puts a fair bit of work into ensuring that only O(n) view
arrays are needed, which requires handling some extra special cases where
particularly slow processes don’t manage to grab a view before it is reallocated
for a later virtual scan. We avoid this complication by simply assuming an
unbounded collection of view arrays; see the paper for how to do this right.

A more recent paper by Fatourou and Kallimanis |] gives improved
time and space complexity using the same basic technique.

20.4.1 Details of the single-scanner snapshot

The single-scanner snapshot is implemented using a shared currSeq variable
(incremented by the scanner but used by all processes) and an array memory of
n snapshot segments, each of which is divided into a high and low component
consisting of a value and a timestamp. Initially, currSeq is 0, and all memory
locations are initialized to (L, 0). This part of the algorithm does not require

CHAPTER 20. ATOMIC SNAPSHOTS 203

LL/SC.

A call to scan copies the first of memory][j].high or memory[j].low that
has a sequence number less than the current sequence number. Pseudocode
is given as Algorithm 20.5.

1 procedure scan|()

2 currSeq < currSeq + 1

3 for j <~ 0ton—1do

4 h < memory[j].high

5 if h.seq < currSeq then

6 | view[j] < h.value

7 else

8 L view[j] <= memory|j].low.value

Algorithm 20.5: Single-scanner snapshot: scan

The update operation for process i cooperates by copying memory|[i].high
to memory([i].low if it’s old.

The update operation always writes its value to memoryli].high, but
preserves the previous value in memory/[i].low if its sequence number indicates
that it may have been present at the start of the most recent call to scan.
This means that scan can get the old value if the new value is too recent.
Pseudocode is given in Algorithm 20.6.

1 procedure update()

2 seq < currSeq

3 h < memory[i].high

4 if h.seq # seq then

5 L memory|i].low < h

6 | memoryli].high < (value, seq)

Algorithm 20.6: Single-scanner snapshot: update

To show this actually works, we need to show that there is a linearization
of the scans and updates that has each scan return precisely those values
whose corresponding updates are linearized before it. The ordering is based
on when each scan operation S increments currSeq and when each update
operation U reads it; specifically:

e If U reads currSeq after S increments it, then S < U.

CHAPTER 20. ATOMIC SNAPSHOTS 204

o If U reads currSeq before S increments it and S reads memory[i].high
(where i is the process carrying out U) before U writes it, then S < U.

o If U reads currSeq before S increments it, but S reads memory[i].high
after U writes it, then U < S.

Updates are ordered based on intervening scans (i.e., U3 < Uy if Uy < S
and S < Uy by the above rules), or by the order in which they read currSeq
if there is no intervening scan.

To show this is a linearization, we need first to show that it extends the
ordering between operations in the original schedule. Each of the above rules
has 1 < w9 only if some low-level operation of m; precedes some low-level
operation of my, with the exception of the transitive ordering of two update
events with an intervening scan. But in this last case we observe that if
Uy < S, then U; writes memory|[i].high before S reads it, so if U; precedes
Us in the actual execution, Us must write memory[i].high after S reads it,
implying S < Us.

Now we show that the values returned by scan are consistent with the
linearization ordering; that, is, for each i, scan copies to view[i] the value in
the last update by process ¢ in the linearization. Examining the code for scan,
we see that a scan operation S takes memory[i].high if its sequence number
is less than currSeq, i.e., if the update operation U that wrote it read currSeq
before S incremented it and wrote memory[i].high before S read it; this gives
U < S. Alternatively, if scan takes memory[i].low, then memory[i].low was
copied by some update operation U’ from the value written to memory|i].high
by some update U that read currSeq before S incremented it. Here U’ must
have written memory/[i].high before S read it (otherwise S would have taken
the old value left by U) and since U precedes U’ (being an operation of the
same process) it must therefor also have written memory|[i].high before S read
it. So again we get the first case of the linearization ordering and U < S.

So far we have shown only that S obtains values that were linearized
before it, but not that it ignores values that were linearized after it. So now
let’s consider some U with S < U. Then one of two cases holds:

e U reads currSeq after S increments it. Then U writes a sequence
number in memory[i].high that is greater than or equal to the currSeq
value used by S; so S returns memory|i].low instead, which can’t have
a sequence number equal to currSeq and thus can’t be U’s value either.

o U reads currSeq before S increments it but writes memory|i].high after
S reads it. Now S won'’t return U’s value from memory[i].high (it didn’t

CHAPTER 20. ATOMIC SNAPSHOTS 205

read it), and won’t get it from memory[i].low either (because the value
that s in memory|i].high will have seq < currSeq, and so S will take
that instead).

So in either case, if S < U, then S doesn’t return U’s value. This
concludes the proof of correctness.

20.4.2 Extension to multiple scanners

See the paper for details.

The essential idea: view now represents a wvirtual scan view, generated
cooperatively by all the scanners working together in some asynchronous
round 7. To avoid conflicts, we update view, using LL/SC or compare-and-
swap (so that only the first scanner to write wins), and pretend that reads
of memory[i] by losers didn’t happen. When view,. is full, start a new virtual
scan and advance to the next round (and thus the next view, 7).

20.5 Applications

Here we describe a few things we can do with snapshots.

20.5.1 Multi-writer registers from single-writer registers

One application of atomic snapshot is building multi-writer registers from
single-writer registers. The idea is straightforward: to perform a write, a
process does a snapshot to obtain the maximum sequence number, tags its
own value with this sequence number plus one, and then writes it. A read
consists of a snapshot followed by returning the value associated with the
largest sequence number (breaking ties by process ID). (See | , §13.5]
for a proof that this actually works.) This requires using a snapshot that
doesn’t use multi-writer registers, and turns out to be overkill in practice;
there are simpler algorithms that give O(n) cost for reads and writes based
on timestamps (see | , 10.2.3]).

With additional work, it is even possible to eliminate the requirement
of multi-reader registers, and get a simulation of multi-writer multi-reader
registers that goes all the way down to single-writer single-read registers, or
even single-writer single-reader bits. See | , §§10.2.1-10.2.2] or | ,
§13.4] for details.

CHAPTER 20. ATOMIC SNAPSHOTS 206

20.5.2 Counters

Given atomic snapshots, it’s easy to build a counter (supporting increment,
decrement, and read operations); or, in more generality, a generalized counter
(supporting increments by arbitrary amounts); or, in even more generality,
an object supporting any collection of commutative and associative update
operations (as long as these operations don’t return anything). The idea
is that each process stores in its segment the total of all operations it has
performed so far, and a read operation is implemented using a snapshot
followed by summing the results. This is a case where it is reasonable
to consider multi-writer registers in building the snapshot implementation,
because there is not necessarily any circularity in doing so.

20.5.3 Resilient snapshot objects

The previous examples can be generalized to objects with operations that
either read the current state of the object but don’t update it or update the
state but return nothing, provided the update operations either overwrite each
other (so that Czy = Cy or Cyx = Cz) or commute (so that Czy = Cyzx).

This was shown by Aspnes and Herlihy [| and improved on by
Anderson and Moir |] by eliminating unbounded space usage. An-
derson and Moir also defined the terms snapshot objects for those with
separate read and update operations and resilience for the property that
all operations commute or overwrite. The basic idea underneath both of
these papers is to use the multi-writer register construction given above, but
break ties among operations with the same sequence numbers by first placing
overwritten operations before overwriting operations and only then using
process IDs.

This almost shows that snapshots can implement any object with con-
sensus number 1 where update operations return nothing, because an object
that is not resilient violates the commute-or-overwrite condition in some
configuration has consensus number at least 2 (see §19.2.2)—in Herlihy’s
terminology, non-resilient objects have interfering operations. It doesn’t quite
work (as observed in the Anderson-Moir paper), because the tie-breaking
procedure assumes a static ordering on which operations overwrite each
other, so that given operations x and y where y overwrites z, y overwrites
x in any configuration. But there may be objects with a dynamic ordering
to how operations interfere, where y overwrites x in some configuration, x
overwrites y in another, and perhaps even the two operations commute in
yet another. This prevents us from achieving consensus, but also breaks the

CHAPTER 20. ATOMIC SNAPSHOTS 207

tie-breaking technique. So it may be possible that there are objects with
consensus number 1 and no-return updates that we still can’t implement

using only registers.

Chapter 21

Lower bounds on
perturbable objects

Being able to do snapshots in linear time means that we can build linearizable
counters, generalized counters, max registers, and so on, in linear time, by
having each reader take a snapshot and combine the contributions of each
updater using the appropriate commutative and associative operation. A
natural question is whether we can do better by exploiting the particular
features of these objects.

Unfortunately, the Jayanti-Tan-Toueg [| lower bound for per-
turbable objects says each of these objects requires n — 1 space and n — 1
steps for a read operation in the worst case, for any solo-terminating deter-
ministic implementation from historyless objects. Like Burns-Lynch, this
is a worst-case bound based on a covering argument, so it may be possible
to evade it in some cases using either randomization or a restriction on the
length of an execution (see Chapter 22).

Perturbable means that the object has a particular property that makes
the proof work, essentially that the outcome of certain special executions
can be changed by stuffing lots of extra update operations in the middle (see
below for details).

Solo-terminating means that a process finishes its current operation
in a finite number of steps if no other process takes steps in between; it is a
much weaker condition, for example, than wait-freedom.

Historyless objects are those for which any operation either never
changes the state (like a read, but it could be weaker) or always sets the
state to a value that depends only on the operation and not the previous
value (like a write, but it may also return some information about the old

208

CHAPTER 21. LOWER BOUNDS ON PERTURBABLE OBJECTS 209

state). The point of historyless objects is that covering arguments work for
them: if there is a process with a pending update operations on some object,
the adversary can use it at any time to wipe out the state of the object and
hide any previous operations from any process except the updater (who, in
a typical covering argument, is quietly killed to keep it from telling anybody
what it saw).

Atomic registers are a common example of a historyless object: the read
never changes the state, and the write always replaces it. Swap objects
(with a swap operation that writes a new state while returning the old state)
are the canonical example, since they can implement any other historyless
object (and even have consensus number 2, showing that even extra consensus
power doesn’t necessarily help here). Test-and-sets (which are basically one-
bit swap objects where you can only swap in 1) are also historyless. In
contrast, anything that looks like a counter or similar object where the new
state is a combination of the old state and the operation is not historyless.
This is important because many of these objects turn out to be perturbable,
and if they were also historyless, we’d get a contradiction.

Below is a sketch of the proof. See the original paper |] for more
details.

The basic idea is to build a sequence of executions of the form ApX .7,
where A is a preamble consisting of various complete update operations and
k incomplete update operations by processes p; through p,_1, > delivers k
delayed writes from the incomplete operations in Ay, and 7 is a operation
by p, that returns some information about the object that is affected by
previous operations. To make our life easier, we’ll assume that © performs
only read steps.!

We'll expand AgXj to Agi13k11 by inserting new operations in between
Ay and Xj, and argue that because those operations can change the value
returned by 7, one of them must write an object not covered in ¥, which
will (after some more work) allow us to cover yet another object.

In order for these covered objects to keep accumulating, the reader has
to keep looking at them. To a first approximation, this means that we want
the first k£ reads done by 7 to be from objects written in >: since the

!The idea is that if 7 does anything else, then the return values of other steps can
be simulated by doing a read in place of the first step and using the property of being
historyless to compute the return values of subsequent steps. There is still a possible
objection that we might have some historyless objects that don’t even provide read steps.
The easiest way to work around this is to assume that our objects do in fact provide a read
step, because taking the read step away isn’t going to make implementing the candidate
perturbable object any easier.

CHAPTER 21. LOWER BOUNDS ON PERTURBABLE OBJECTS 210

values seen by the reader for these objects never change, the (deterministic)
reader will continue to read them even as we add more operations before .
Unfortunately, this does not quite match all possible cases, because it may
be that 7 performs useless reads of objects that aren’t covered in ¥j; but
that aren’t written to by anybody anyway. So we have the more technical
condition that 7 has an initial prefix that only includes covered reads and
useless reads: formally, there is a prefix 7’ of 7 that includes at least one read
operation of every object covered by ¥, such that any other read operation
in 7’ reads an object whose state cannot be changed by any step that can be
performed by any sequence of operations by processes p; through p,_1 that
can be inserted between A and Y.

The induction hypothesis is that an execution AxY; with these properties
exists for each &k <n — 1.

For the base case, AgXo = (). This covers 0 reads by 7.

For the induction step, we start with AgpX;, and look for a partial
execution vy that we can insert in between Ay and X; that changes what m
returns in AgyXm from what it returned in Agy>y.

This is where perturbability comes in: an object is defined to be per-
turbable if such a partial execution v always exists.

Some examples of :

e For a snapshot object, let v write to a component that is not written
to by any of the operations in Y.

o For a max register, let v include a bigger write than all the others.

o For a counter, let «y include at least n increments. We need n increments,
because with fewer increments, we can make 7 return the same value
by being sneaky about when the partial increments represented in X
are linearized. The same choice works for a mod-m counter if m is
at least 2n, and similarly we can argue that a fetch-and-increment or
fetch-and-add is perturbable by a -+ that includes at least n fetch-and-
increments.

In contrast, historyless objects (including atomic registers) are not per-
turbable: if ¥, includes a write that sets the value of the object, no set of
operations inserted before it will change this value. This is good, because we
know that it only takes one atomic register to implement an atomic register.

Assuming that our object is perturbable, now we want to use the existence
of v to generate our bigger execution Ag11Xk11. As in the Burns-Lynch
mutex bound |], we will be arguing that v must include a write to an

CHAPTER 21. LOWER BOUNDS ON PERTURBABLE OBJECTS 211

object that is not covered by the k delayed writes. Also as in Burns-Lynch,
it turns out that it is not enough just to delay this particular write, because
it might not cover the specific object we want.

Instead, we look for an alternative 4’ that changes the value of the earliest
object read by 7 that can be changed. We know that some such +/ exists,
because v writes to some such object, so there must be a first place in the
execution of m where the output of an object can change, and there must be
some 7/ that makes that change. Note however that 7/ that hits that earliest
object need not be the same as the v used to demonstrate perturbability,
and indeed it may be that 7/ is very different from y—in particular, it may
be much longer.

So now we expand v/ = a3, where (3 is the magic write to the uncovered
object, and let Ag11 = Agad’ and X = B3, where ¢’ consists of running
all incomplete operations in « except the one that includes 8 to completion.
We’ve now covered k + 1 distinct objects in 3, and have no incomplete
operations in Agiq except the k + 1 operations that cover these objects.
It remains only to show that the technical condition that any uncovered
object that 7 reads before reading all the covered objects can’t have its value
changed by inserting additional operations.

Suppose that there is a sequence of operations & such that Ayy1x changes
one of these forbidden uncovered objects. But Axi1k = Apak, and so
~" = ak changes an object that either (a) can’t be changed because of the
technical condition in the induction hypothesis for k, or (b) changes an object
that 7 reads before the object covered by 3. In the second case, this 7"
changes an earlier object that 7/, contradicting the choice of +'.

It follows that we do in fact manage to cover k+ 1 objects while satisfying
the technical condition, and the induction hypothesis holds for k + 1.

We can repeat this step until we’ve covered n — 1 objects. This implies
that there are at least n — 1 objects (the space lower bound), and in the
worst case some reader reads all of them (the step complexity lower bound).

Chapter 22

Restricted-use objects

The Jayanti-Tan-Toueg bound puts a hard floor under the worst-case com-
plexity of almost anything interesting we’d like to implement with solo
termination in a system that provides only historyless objects as primitives.
As with the consensus hierarchy lower bounds, we could interpret this as a
reason to demand stronger primivitives. Or we could look for ways to bypass
the JTT bound.

One approach is to modify our target objects so that they are no longer
perturbable. This can be done by limiting their use: a counter or max register
that can only change its value a limited number of times is not perturbable,
because once we hit the limit, there is no perturbing sequence of operations
that we can insert between Ay and X in the JTT execution that changes
the value returned by the eventual reader. This observation motivated a
line of work on restricted-use max registers | | and restricted-use
snapshots | | that have polylogarithmic worst-case individual step
complexity assuming a polynomial limit on updates. While restricted-use
objects might not be all that exciting on their own, they in turn have served
as building blocks for implementations of snapshots with polylogarithmic
polylogarithmic amortized individual step complexity |].

In this chapter, we will concentrate on the original restricted-use max
register construction of Aspnes, Attiya, and Censor-Hillel | |, and
its extension to give restricted-use snapshots by Aspnes et al. |].

22.1 Max registers

We will start by implementing a restricted-use max register |], for
which read operation returns the largest value previously written, as opposed

212

CHAPTER 22. RESTRICTED-USE OBJECTS 213

to the last value previously written. So after writes of 0, 3, 5, 2, 6, 11, 7, 1,
9, a read operation will return 11.

In general, max registers are perturbable objects in the sense of the
Jayanti-Tan-Toueg bound, so in the worst case a max-register read will have
to read at least n — 1 distinct atomic registers, giving an n — 1 lower bound on
both step complexity and space. But we can get around this by considering
bounded max registers, which only hold values in some range 0...m — 1.
These are not perturbable because once we hit the upper bound we can no
longer insert new operations to change the value returned by a read. This
allows for a much more efficient implementation (at least in terms of step
complexity) when m is not too big.

22.2 Implementing bounded max registers

This implementation is from a paper by Aspnes, Attiya, and Censor-Hillel [
The same paper shows that it is in a certain sense the only possible imple-
mentation of a wait-free restricted max register (see §22.5).

For m = 1, the implementation is trivial: write does nothing and read
always returns 0.

For larger m, we’ll show how to paste together two max registers left and
right with mg and m; values together to get a max register r with mgy + m;
values. We’'ll think of each value stored in the max register as a bit-vector,
with bit-vectors ordered lexicographically. In addition to left and right, we
will need a 1-bit atomic register switch used to choose between them. The
read procedure is straightforward and is shown in Algorithm 22.1; essentially
we just look at switch, read the appropriate register, and prepend the value
of switch to what we get.

1 procedure read(r)

2 if switch = 0 then

3 ‘ return 0 : read(left)
4 else

5 L return 1 : read(right)

Algorithm 22.1: Max register read operation

For write operations, we have two somewhat asymmetrical cases depend-
ing on whether the value we are writing starts with a 0 bit or a 1 bit. These
are shown in Algorithm 22.2.

CHAPTER 22. RESTRICTED-USE OBJECTS 214

procedure write(r, 0z)
if switch = 0 then
L write(left, z)

[

4 procedure write(r, 1)
5 write(right, z)
6 switch <1

Algorithm 22.2: Max register write operations

The intuition is that the max register is really a big tree of switch
variables, and we store a particular bit-vector in the max register by setting
to 1 the switches needed to make read follow the path corresponding to
that bit-vector. The procedure for writing Ox tests switch first, because once
switch gets set to 1, any Ox values are smaller than the largest value, and we
don’t want them getting written to left where they might confuse particularly
slow readers into returning a value we can’t linearize. The procedure for
writing 1o sets switch second, because (a) it doesn’t need to test switch, since
1z always beats Oz, and (b) it’s not safe to send a reader down into right
until some value has actually been written there.

It’s easy to see that read and write operations both require exactly
one operation per bit of the value read or written. To show that we get
linearizability, we give an explicit linearization ordering (see the paper for a
full proof that this works):

1. All operations that read 0 from switch go in the first pile.

(a) Within this pile, we sort operations using the linearization ordering
for left.

2. All operations that read 1 from switch or write 1 to switch go in the
second pile, which is ordered after the first pile.

(a) Within this pile, operations that touch right are ordered using
the linearization ordering for right. Operations that don’t (which
are the “do nothing” writes for Ox values) are placed consistently
with the actual execution order.

To show that this gives a valid linearization, we have to argue first that
any read operation returns the largest earlier write argument and that we
don’t put any non-concurrent operations out of order.

CHAPTER 22. RESTRICTED-USE OBJECTS 215

For the first part, any read in the 0 pile returns 0 : read(left), and
read(left) returns (assuming left is a linearizable max register) the largest
value previously written to left, which will be the largest value linearized
before the read, or the all-0 vector if there is no such value. In either case
we are happy. Any read in the 1 pile returns 1 : read(right). Here we have
to guard against the possibility of getting an all-0 vector from read(right)
if no write operations linearize before the read. But any write operation
that writes 1o doesn’t set switch to 1 until after it writes to right, so no read
operation ever starts read(right) until after at least one write to right has
completed, implying that that write to right linearizes before the read from
right. So in all the second-pile operations linearize as well.

22.3 Encoding the set of values

If we structure our max register as a balanced tree of depth k, we are
essentially encoding the values 0. .. 2% —1 in binary, and the cost of performing
a read or write operation on an m-valued register is exactly k = [lgm]|. But
if we are willing to build an unbalanced tree, any prefix code will work.
The paper describes a method of building a max register where the cost
of each operation that writes or reads a value v is O(logv). The essential
idea is to build a tree consisting of a rightward path with increasingly large
left subtrees hanging off of it, where each of these left subtrees is twice as big
as the previous. This means that after following a path encoded as 1%0, we
hit a 2F-valued max register. The value returned after reading some v’ from
this max register is v’ 4 (2¥ — 1), where the 2¥ — 1 term takes into account all
the values represented by earlier max registers in the chain. Formally, this is
equivalent to encoding values using an Elias gamma code |], tweaked
slightly by changing the prefixes from 0*1 to 10 to get the ordering right.

22.4 Unbounded max registers

While the unbalanced-tree construction could be used to get an unbounded
max register, it is possible that read operations might not terminate (if
enough writes keep setting 1 bits on the right path before the read gets to
them) and for very large values the cost even of terminating reads becomes
higher than what we can get out of a snapshot.

Here is the snapshot-based method: if each process writes its own contri-
bution to the max register to a single-writer register, then we can read the
max register by taking a snapshot and returning the maximum value. (It is

CHAPTER 22. RESTRICTED-USE OBJECTS 216

not hard to show that this is linearizable.) This gives an unbounded max
register with read and write cost O(n). So by choosing this in preference
to the balanced tree when m is large, the cost of either operation on a max
register is min ([lgm],O(n)).

We can combine this with the unbalanced tree by terminating the right
path with a snapshot-based max register. This gives a cost for reads and
writes of values v of O(min(logv,n)).

22.5 Lower bound

The min([lgm],O(n)) cost of a max register read turns out to be exactly
optimal, at least for the [lgm] part; there is a lower bound |] of
min([lgm],n — 1). Intuitively, we can show by a covering argument that
once some process attempts to write to a particular atomic register, then
any subsequent writes convey no additional information (because they can
be overwritten by the first delayed write). So in effect, no algorithm can
use get more than one bit of information out of each atomic register, and
any max register read ends up looking like chasing a path through a tree of
switches. But as always, turning this intuition into an actual proof requires
a bit more work.

We will consider solo-terminating executions in which n — 1 writers do
any number of max-register writes in some initial prefix A, followed by a
single max-register read 7 by process p,. Let T'(m,n) be the optimal reader
cost for executions with this structure with m values, and let r be the first
register read by process p,, assuming it is running an algorithm optimized
for this class of executions (we do not even require it to be correct for other
executions).

We are now going split up our set of values based on which will cause a
write operation to write to r. Let Sy be the set of all sequences of writes that
only write values < k. Let t be the smallest value such that some execution
in Sy writes to r (there must be some such ¢, or our reader can omit reading
r, which contradicts the assumption that it is optimal).

Case 1 Since t is smallest, no execution in S;_1 writes to r. If we restrict
writes to values < ¢t — 1, we can omit reading r, giving T(t,n) <
T(m,n) — 1, from which T'(m,n) > T(t,n) + 1.

Case 2 Let o be some execution in S; that writes to r.

o Split a as a/63 where § is the first write to 7 by some process p;.

CHAPTER 22. RESTRICTED-USE OBJECTS 217

o Construct a new execution a’n by letting all the max-register
writes except the one performing d finish.

o Now consider any execution o'nyd, where v is any sequence of
max-register writes with values > ¢ that excludes p; and p,. Then
pn always sees the same value in r following these executions,
but otherwise (starting after a’'n) we have an (n — 1)-process
max-register with values ¢ through m — 1.

o Omit the read of r again to get T'(m,n) > T(m —t,n —1) + 1.

We’ve shown the recurrence T'(m, n) > ming(max(T'(t,n), T(m—t,n)))+1,
with base cases T'(1,n) = 0 and T'(m, 1) = 0. The solution to this recurrence
is exactly min([lgm],n — 1), which is the same, except for a constant factor
on n, as the upper bound we got by choosing between a balanced tree for
small m and a snapshot for m > 2”1, For small m, the recursive split we
get is also the same as in the tree-based algorithm: call the r register switch
and you can extract a tree from whatever algorithm somebody gives you. So
this says that the tree-based algorithm is (up to choice of the tree) essentially
the unique optimal bounded max register implementation for m < 2771,

It is also possible to show lower bounds on randomized implementations
of max registers and other restricted-use objects. See [, ,

| for examples.

22.6 Max-register snapshots

With some tinkering, it’s possible to extend the max-register construction
to get an array of max registers that supports snapshots. The description
in this section follows |], with some updates to fix a bug noted in
the original paper in an erratum published by the authors |].

Formally, a max array is an object a that supports an operation
write(a[i],v) that sets a[i] < max(v, a[i]), and an operation read(a) that
returns a snapshot of all components of the array. The first step in building
this beast is to do it for two components. The resulting 2-component max
array can then be used as a building block for larger max arrays and for
fast restricted-used snapshots in general.

A k x £ max array a is one that permits values in the range 0...%k — 1
in a[0] and 0...¢ — 1 in a[l]. We think of a[0] as the head of the max array
and a[1] as the tail. We’ll show how to construct such an object recursively
from smaller objects of the same type, analogous to the construction of an
m-valued max register (which we can think of as a m x 1 max array). The

CHAPTER 22. RESTRICTED-USE OBJECTS 218

idea is to split head into two pieces left and right as before, while representing
tail as a master copy stored in a max register at the top of the tree plus
cached copies at every internal node. These cached copies are updated by
readers at times carefully chosen to ensure linearizability.

The base of the construction is an ¢-valued max register r, used directly
as a 1 x £ max array; this is the case where the head component is trivial and
we only need to store a.tail = r. Here calling write(a[0],v) does nothing,
while write(a[l],v) maps to write(r,v), and read(a) returns (0, read(r)).

For larger values of k, paste a kjere X £ max array left and a Kyighe X £ max
array right together to get a (Kieft + kright) X £ max array. This construction
uses a switch variable as in the basic construction, along with an ¢-valued
max register tail that is used to store the value of a[l].

Calls to write(a[0],v) and read(a) follow the structure of the correspond-
ing operations for a simple max register, with some extra work in read to
make sure that the value in tail propagates into left and right as needed to
ensure the correct value is returned.

A call to write(a[l],v) operation writes tail directly, and then calls
read(a) to propagate the new value as well.!

Pseudocode is given in Algorithm 22.3.

The individual step complexity of each operation is easily computed.
Assuming a balanced tree, write(a[0],v) takes exactly [lgk] steps, while
write(a[l],v) costs exactly [lg/] steps plus the cost of read(a). Read
operations are more complicated. In the worst case, we have two reads of
a.tail and a write to a.right[1] at each level, plus up to two operations on
a.switch, for a total cost of at most (3[lgk] — 1)([lg?] +2) = O(log klog ¥)
steps. This dominates other costs in write(a[l],v), so the asymptotic cost
of both write and read operations is O(log klog¥{).

In the special case where k = £, both writes and reads have their step
complexities squared compared to a single-component k-valued max register.

22.6.1 Linearizability

In broad outline, the proof of linearizability follows the proof for a simple
max register. But as with snapshots, we have to show that the ordering of
the head and tail components are consistent.

The key observation is the following lemma.

This call to read(a) was omitted in the original published version of the algo-
rithm [], but was added in an erratum by the authors []. Without it,
the implementation can violate linearizability in some executions.

CHAPTER 22. RESTRICTED-USE OBJECTS

219

12
13
14
15
16
17
18
19
20

procedure write(a[i],v)

if =0 then
if v < kjefy then
if a.switch = 0 then

L write(a.left[0],v)
else
write(a.right[0],v — Kieft)
a.switch < 1

else
write(a.tail, v)
| read(a)

procedure read(a)

x < read(a.tail)
if a.switch = 0 then
write(a.left[1], x)
return read(a.left)
else
x < read(a.tail)
write(a.right[1], x)
return (kies, 0) + read(a.right)

Algorithm 22.3: Recursive construction of a 2-component max array

CHAPTER 22. RESTRICTED-USE OBJECTS 220

Lemma 22.6.1. Fiz some execution of a max array a implemented as in
Algorithm 22.3. Suppose this execution contains a read(a) operation Tief
that returns viere from a.left and a read(a) operation Tyighe that returns vright
from a.right. Then vieg[1] < vright[1].

Proof. Both viert[1] and vyight[1] are values that were previously written to
their respective max arrays by read(a) operations (such writes necessarily
exist because any process that reads a.left or a.right writes a.left[1] or a.right[1]
first). From examining the code, we have that any value written to a.left[1]
was read from a.tail before a.switch was set to 1, while any value written to
a.right[1] was read from a.tail after a.switch was set to 1. Since max-register
reads are non-decreasing, we have than any value written to a.left[1] is less
than or equal to any value written to a.right[1], proving the claim. O

The rest of the proof is tedious but straightforward: we linearize the
read(a) and write(a[0]) operations as in the max-register proof, then fit
the write(a[l]) operations in based on the tail values of the reads. The full
result is:

Theorem 22.6.2. If a.left and a.right are linearizable mazx arrays, and a.tail
s a linearizable mazx register, then Algorithm 22.3 implements a linearizable
max array.

It’s worth noting that the same unbalanced-tree construction used in
§§22.3 and 22.4 can be used here as well. This makes the step complexity for
read(a) scale as O(log v[0] log v[1]), where v is the value returned. For writes
the step complexity may depend in a complicated way on what values are
being written and to which side, but in the worst case, it is O(log v[0] log v[1]),
where v is the value in the register when the write finishes. (This is a
consequence of the embedded read(a) in write(a,1,v).)

22.7 Restricted-use snapshots

To build an ordinary snapshot object from 2-component max arrays, we
construct a balanced binary tree in which each leaves holds a pointer to
an individual snapshot element and each internal node holds a pointer to a
partial snapshot containing all of the elements in the subtree of which it is
the root. The pointers themselves are non-decreasing indices into arrays of
values that consist of ordinary (although possibly very wide) atomic registers.

When a process writes a new value to its component of the snapshot
object, it increases the pointer value in its leaf and then propagates the new

CHAPTER 22. RESTRICTED-USE OBJECTS 221

value up the tree by combining together partial snapshots at each step, using
2-component max arrays to ensure linearizability. The resulting algorithm
is similar in many ways to the lattice agreement procedure of Inoue et
al. |] (see §20.3.5), except that it uses a more contention-tolerant
snapshot algorithm than double collects and we allow processes to update
their values more than once. It is also similar to the f-array construction
of Jayanti [] for efficient computation of array aggregates (sum, min,
max, etc.) using LL/SC, the main difference being that because the index
values are non-decreasing, max arrays can substitute for LL/SC.

Each node in the tree except the root is represented by one component
of a 2-component max array that we can think of as being owned by its
parent, with the other component being the node’s sibling in the tree. To
propagate a value up the tree, at each level the process takes a snapshot
of the two children of the node and writes the sum of the indices to the
node’s component in its parent’s max array (or to an ordinary max register
if we are at the root). Before doing this last write, a process will combine
the partial snapshots from the two child nodes and write the result into
a separate array indexed by the sum. In this way any process that reads
the node’s component can obtain the corresponding partial snapshot in a
single register operation. At the root this means that the cost of obtaining
a complete snapshot is dominated by the cost of the max-register read, at
O(logv), where v is the number of updates ever performed.

A picture of this structure, adapted from the proceedings version of |
appears in Figure 22.1. The figure depicts an update in progress, with red
values being the new values written as part of the update. Only some of the
tables associated with the nodes are shown.

The cost of an update is dominated by the O(logn) max-array operations
needed to propagate the new value to the root. This takes O(log? vlogn)
steps. Here v can be taken to be the number of update operations, which
controls the maximum value on either side of the 2-component max arrays.

The linearizability proof is trivial: linearize each update by the time at
which a snapshot containing its value is written to the root (which necessarily
occurs within the interval of the update, since we don’t let an update finish
until it has propagated its value to the top), and linearize reads by when
they read the root. This immediately gives us an O(log3 n) implementa-
tion—as long as we only want to use it polynomially many times—of anything
we can build from snapshot, including counters, generalized counters, and
(by [)]) any other object whose operations all commute with or
overwrite each other in a static pattern.

CHAPTER 22. RESTRICTED-USE OBJECTS 222

cms

m rCImr

bmr

Figure 22.1: Snapshot from max arrays; taken from | , Fig. 2]

22.7.1 Randomized and amortized snapshots

Aspnes and Censor-Hillel |] claimed to give an unrestricted, ran-
domized snapshot with O(log®n) This claimed result is somewhat suspect
because (a) it is based on the original, uncorrected version of the max array
from [|, (b) the paper incorrectly computes the running time of
the algorithm, and (c¢) the claim is supported by a rather rococo proof of
linearizability that is dubious in various additional ways. So it is not clear
that this algorithm actually works.

Fortunately, this result is largely dominated by a much less questionable
result by Ahad Baig et al. | | that gives a deterministic snapshot
implementation with O(log® n) amortized individual step complexity.

As in the restricted-use case, the Ahad Baig et al. snapshot assumes
arbitrarily-wide registers. An alternative suggested by Bashari and Woelfel |
is to implement an adaptive partial snapshot where a scan effectively
returns a sensibly-sized index from which individual values can be extracted
using a separate observe operation. Bashari and Woelfel show that such
snapshots can be implemented in O(logn) steps using fetch-and-add and
compare-and-swap primitives. Whether it is possible to improve on the
O(log®n) bound of Ahad Baig et al.without using stronger primitives is still
open.

CHAPTER 22. RESTRICTED-USE OBJECTS 223

Neither of these algorithms contradict the JTT lower bound: in the worst
case, each will have operations that take Q(n) steps. But the hope is that
these operations are rare, and in the amortized case, paid for by many cheap
operations. Also, even though we may beat JTT most of the time, other
lower bounds may still apply; see for example [,].

Chapter 23

Common2

Last updated 2019. Some material may be out of date.

The common?2 class, defined by Afek, Weisberger, and Weisman |
consists of all read-modify-write objects where the modify functions either (a)
all commute with each other or (b) all overwrite each other. We can think of it
as the union of two simpler classes, the set of read-modify-write objects where

all update operations commute, called commuting objects |]; and
the set of read-modify-write objects where all updates produce a value that
doesn’t depend on the previous state, called historyless objects |).

From §19.2.2, we know that both commuting objects and historyless
objects have consensus number at most 2, and that these objects have con-
sensus number exactly 2 provided they supply at least one non-trivial update
operation. The main result of Afek et al. |] is that commuting and
historyless objects can all be implemented from any object with consensus
number 2, even in systems with more than 2 processes. This gives a com-
pleteness result analogous to completeness results in complexity theory: any
non-trivial common2 object can be used to implement any other common2
object.

The common2 conjecture was that common2 objects could also im-
plement any object with consensus number 2, This is now known to be
false [].

The main result in the paper has two parts, reflecting the two parts of the
common?2 class: a proof that 2-process consensus plus registers is enough to
implement all commuting objects (which essentially comes down to building
a generalized fetch-and-add that returns an unordered list of all preceding
operations); and a proof that 2-process consensus plus registers is enough to
implement all overwriting objects (which is equivalent to showing that we can

224

CHAPTER 23. COMMON?2 225

implement swap objects). The construction of the generalized fetch-and-add
is pretty nasty, so we’ll concentrate on the implementation of swap objects.

We will also skip the swap implementation in | |, and instead describe,
in §§23.3 and 23.4, a simpler (though possibly less efficient) algorithm from
a later paper by Afek, Morrison, and Wertheim [|. Before we do

this, we’ll start with some easier results from the older paper, including an
implementation of n-process test-and-set from 2-process consensus. This
will show that anything we can do with test-and-set we can do with any
common?2 object.

23.1 Test-and-set and swap for two processes

The first step is to get test-and-set.

Algorithm 23.1 shows how to turn 2-process consensus into 2-process
test-and-set. The idea is that whoever wins the consensus protocol wins the
test-and-set. This is linearizable, because if I run TAS2 before you do, I win
the consensus protocol by validity.

1 procedure TAS2()
2 if Consensus2(myld) = myld then
3 ‘ return 0
4 else

5 L return 1

Algorithm 23.1: Building 2-process TAS from 2-process consensus

Once we have test-and-set for two processes, we can easily get one-shot
swap for two processes. The trick is that a one-shot swap object always
returns L to the first process to access it and returns the other process’s value
to the second process. We can distinguish these two roles using test-and-set
and add a register to send the value across. Pseudocode is in Algorithm 23.2.

23.2 Building n-process TAS from 2-process TAS

To turn the TAS2 into full-blown n-process TAS, start by staging a tournament
along the lines of |] (§18.5.1.2). Each process walks up a tree of nodes,
and at each node it attempts to beat every process from the other subtree
using a TASy object (we can’t just have it fight one process, because we
don’t know which one process will have won the other subtree, and our TASs

CHAPTER 23. COMMON?2 226

1 procedure swap(v)
2 a[myld] = v

3 if TAS2() = 0 then
4 ‘ return |
5 else

6 L return a[-myld]

Algorithm 23.2: Two-process one-shot swap from TAS

objects may only work for two specific processes). A process drops out if
it ever sees a 1. We can easily show that at most one process leaves each
subtree with all zeros, including the whole tree itself.

Unfortunately, this process does not give a linearizable test-and-set object.
It is possible that p; loses early to pa, but then p3 starts (elsewhere in the
tree) after py finishes, and races to the top, beating out ps. To avoid this,
we can follow [] and add a gate bit that locks out latecomers.!

The resulting construction looks something like Algorithm 23.3. This
gives a slightly different interface from straight TAS; instead of returning 0
for winning and 1 for losing, the algorithm returns L if you win and the id
of some process that beats you if you lose.? It’s not hard to see that this
gives a linearizable test-and-set after translating the values back to 0 and 1
(the trick for linearizability is that any process that wins saw an empty gate,
and so started before any other process finished). It also sorts the processes
into a rooted tree, with each process linearizing after its parent (this latter
claim is a little trickier, but basically comes down to a loser linearizing after
the process that defeated it either on gate or on one of the TAS2 objects).

This algorithm is kind of expensive: the losers that drop out early are
relatively lucky, but the winning process has to win a TAS2 against everybody,
for a total of ©(n) TAS operations. We can reduce the cost to O(logn) if
our TAS2 objects allow arbitrary processes to execute them. This is done,
for example, in the RatRace test-and-set implementation of Alistarh et

al. | |, using a randomized implementation of TAS2 due to Tromp
and Vitanyi |] (see §25.5.2).
!The original version of this trick is from an earlier paper |], where the gate

bit is implemented as an array of single-writer registers.

2Note that this process may also be a loser, just one that made it further up the tree
than you did. We can’t expect to learn the ID of the ultimate winner, because that would
solve n-process consensus.

CHAPTER 23. COMMON?2 227

1 procedure compete(i)
// check the gate
if gate # | then

L return gate

4 gate < ¢
// Do tournament, returning id of whoever I lose to
node < leaf for ¢
while node # root do
for each j whose leaf is below sibling of node do
if TAS2(t[i,j]) =1 then
L return j

© 0w N O w;

10 node < node.parent

// I win!
11 return L

Algorithm 23.3: Tournament algorithm with gate

23.3 Obstruction-free swap from test-and-set

We'll start by describing the “strawman algorithm” from the AMW paper.
This is presented by the authors as a stepping-stone to their real algorithm,
which we will describe below in §23.4.

The code is given in Algorithm 23.4. This implements a swap object that
is linearizable but not wait-free.

This algorithm uses two infinite arrays s and t of test-and-set objects
and an infinite array r of atomic registers. The s; objects are essentially
being used to implement a fetch-and-increment, and if we have a fetch-and-
increment lying around we can replace the loop at Line 4 with an operation
on that object instead. The r; registers record values to return. The t;
registers implement a block/pass mechanism where a later process can force
an earlier process to try again if it didn’t record its value in time. This
solves the problem of a process going to sleep after acquiring a particular
slot ¢ from the fetch-and-increment but before writing down a value that
somebody else can use.

The algorithm is obstruction-free, because in any reachable configuration,
only finitely many test-and-sets have been accessed, so there is some value ¢
with s; =t; = 0 for all j > 4. A process running in isolation will eventually
hit one of these slots, win both test-and-sets, and return.

CHAPTER 23. COMMON?2

228

N =

10

11
12

procedure swap(v)

1+ 0
while true do

// Look for a starting point
while TAS(s;) =1 do
| i+l
Vi <0
// Check if we’ve been blocked
if TAS(¢;) =0 then
// We win, find our predecessor
for j <~ ¢—1 down to 0 do

if TAS(t;) =1 then

// Use this value
L return v;

// Didn’t find anybody, we are first
return L

else

L // Pick a new start and try again

Algorithm 23.4: Obstruction-free swap from test-and-set

CHAPTER 23. COMMON?2 229

For linearizability, the value of ¢ when each operation returns gives an
obvious linearization ordering. This ordering is consistent with the observed
history, because if I finish with value i1 before you start, then at the time
that I finish all s; for j < ¢; have s; = 1. So you can’t win any of them, and
get a slot i > i;. But we still have to show that the return values make
sense.

Consider some swap operation 7.

Suppose that 7 starts at position 7 and wins every ¢; down to position
k, where it loses. Then no other operation wins any t; with k < j <1, so
there is no process that leaves with any slot between k£ and i. In addition,
the operation 7’that did win ¢; must have taken slot k in Line 7, because
any other process would have needed to win ¢, 1 before attempting to win
tx. So 7 linearizes immediately before 7, which is good, because 7 returns
the value vy that 7’ wrote before it won #.

Alternatively, suppose that 7 never loses ¢; for any j < ¢. Then no other
operation takes a slot less than i, and 7 linearizes first. In this case, it must
return |, which it does.

23.4 Wait-free swap from test-and-set

Now we want to make the strawman algorithm wait-free. The basic idea
is similar: we will have an ordered collection of test-and-set objects, and a
process will move right until it can capture one that determines its place
in the linearization ordering, and then it will move left to block any other
processes from taking an earlier place unless they have already written out
their values. To avoid starvation, we assign a disjoint collection of test-and-
set objects to each operation, so that every operation eventually wins one of
its own test-and-sets. Unfortunately this only works if we make the ordering
dense, so that between each pair of test-and-sets there are infinitely many
other test-and-sets.

AMW do this in terms of a binary tree, but I find it easier to think of the
test-and-sets as being indexed by dyadic rationals strictly between 0 and 1.
The idea is that the i-th operation to start executing the swap object will use
test-and-sets t, where ¢ = k/2 for all odd k in the range 1...2° —1. In order
to avoid having to check the infinitely many possible values smaller than ¢,
we will use two auxiliary objects: a readable fetch-and-increment maxDepth
that hands out denominators and tracks the largest denominator used so far,

3The two representations are isomorphic: make each value k/2% be the parent of
k/29 +£1/29F

CHAPTER 23. COMMON?2 230

and a max register accessed that keeps track of the largest position accessed
so far.

AMW implement accessed using a snapshot, which we will do as well to
avoid complications from trying to build a max register out of an infinitely
deep tree.* Note that AMW don’t call this data structure a max register,
but we will, because we like max registers.

Code for the swap procedure is given in Algorithm 23.5.

To show Algorithm 23.5 works, we need the following technical lemma,
which, among other things, implies that node 1 — 29¢Pth is always available
to be captured by the process at depth depth. This is essentially just a
restatement of Lemma 1 from |].

Lemma 23.4.1. For any x = k/29, where k is odd, no process attempts to
capture any y € [x,x + 1/27) before some process writes x to accessed.

Proof. Suppose that the lemma fails, let y = ¢/2" be the first node captured
in violation of the lemma, and let x = k/2¢ be such that y € [z, + 1/29)
but z has not been written to accessed when y is captured. Let p be the
process that captures y.

Now consider ¢y = x — 1/2", the last node to the left of x at the same
depth as y. Why didn’t p capture 3/?

One possibility is that some other process p’ blocked 3’ during its return
phase. This p’ must have captured a node z > ¢/. If 2 > y, then p’ would
have blocked y first, preventing p from capturing it. So 3/ < 2z < y.

The other possibility is that p never tried to capture 3, because some
other process p’ wrote some value z > 1/ to accessed first. This value z must
also be less than y (or else p would not have tried to capture y).

In both cases, there is a process p’ that captures a value z with ¢/ < z < v,
before p captures y and thus before anybody writes x to accessed.

Since v’ < x and ' < z, either iy < 2 < x or ¢y < x < z. In the first case,
z €[y, y +1/2") is captured before y' is written to accessed. In the second
case z € [x,x + 1/29) is captured before x is written to accessed. Either
way, ¥ is not the first capture to violate the lemma, contradicting our initial
assumption.]

Using Lemma 23.4.1, it is straightforward to show that Algorithm 23.5 is
wait-free. If I get ¢ for my value of depth, then no process will attempt to

4The issue is not so much that we can’t store arbitrary dyadics, since we can encode them
using an order-preserving prefix-free code, but that, without some sort of helping mechanism,
a read running concurrently with endlessly increasing writes (e.g. 1/2,3/4,7/8,...) might
not be wait-free. Plus as soon as the denominator exceeds 2", which happens after only n
calls to swap, O(n)-step snapshots are cheaper anyway.

CHAPTER 23. COMMON?2 231

1 procedure swap(v)

// Pick a new row just for me

2 depth < fetchAndIncrement(maxDepth)

// Capture phase

3 repeat

// Pick leftmost node in my row greater than accessed

4 cap ¢ min {a; ‘ x = k/29¢P* for odd k,z > accessed}
// Post my value

5 reg[cap| «+ v
// Try to capture the test-and-set

6 win <— TAS(tst[cap]) =0

writeMax(accessed, cap)

until win

// Return phase

// Max depth reached by anybody left of cap

9 maxPreviousDepth +— read(maxDepth)

10 ret <— cap

// Block previous nodes until we find one we can take
11 repeat

12 ret < max {z = k/27 | ¢ < maxPreviousDepth, k odd, z < ret}
13 if ret <0 then
14 L return L

15 until TAS(tst[ret]) =1
16 return reg|ret]

Algorithm 23.5: Wait-free swap from test-and-set |]

CHAPTER 23. COMMON?2 232

capture any y in [1 — 27, 1) before I write 1 — 29 to accessed. But this means
that nobody can block me from capturing 1 — 29, because processes can only
block values smaller than the one they already captured. I also can’t get
stuck in the return phase, because there are only finitely many values with
denominator less than 2maxPreviousDepth

It remains to show that the implementation is linearizable. The obvious
linearization ordering is given by sorting each operation i by its captured
node cap. Linearizability requires then that if we imagine a directed graph
containing an edge ¢j for each pair of operations ¢ and j such that ¢ captures
cap; and returns regcap,], then this graph forms a path that corresponds to
this linearization ordering.

Since each process only returns one value, it trivially holds that each
node in the graph has out-degree at most 1. For the in-degree, suppose that
we have operations i, j, and k with cap; < cap; < cap;, such that j and k
both return reglcap;]. Before k reaches tst[cap,], it must first capture all
the test-and-sets between cap, and cap, that have depth less than or equal
to maxPreviousDepth,. This will include tst[cap,], because j must write to
maxDepth before doing anything, and this must occur before k starts the
return phase if j sees a value of accessed that is less that capy.

A similar argument show that there is at most one process that returns
L; this implies that there is at most one process with out-degree 0.

So now we have a directed graph where every process has in-degree and
out-degree at most one, which implies that each weakly-connected component
will be a path. But each component will also have exactly one terminal
node with out-degree 0. Since there is only one such node, there is only one
component, and the entire graph is a single path. This concludes the proof
of linearizability.

23.5 Implementations using stronger base objects

The terrible step complexity of known wait-free implementations of Com-
mon2 objects like swap or fetchAndIncrement from 2-process consensus
objects and registers has led to work on finding better implementations
assuming stronger base objects. Using load-linked/store-conditional, Ellen
and Woelfel | | provide implementations of several Common2 objects, in-
cluding fetchAndIncrement, fetchAndAdd, and swap that all have O(logn)
individual step complexity.” This is know to be optimal due to a lower bound

®What they actually implement is the ability to do fetch-and-f, where f is any binary
associative function, using an object they call an aggregator. Each of these objects is

CHAPTER 23. COMMON?2 233

of Jayanti |]
The lower bound applies a fortiori to the case where we don’t have

LL/SC or CAS and have to rely on 2-process consensus objects. But it’s not
out of the question that there is a matching upper bound in this case.

obtained by choosing an appropriate f.

Chapter 24

Randomized consensus and
test-and-set

We’ve seen that we can’t solve consensus in an asynchronous system message-
passing or shared-memory system with one crash failure [, 1,
but that the problem becomes solvable using failure detectors | |. An
alternative that also allows us to solve consensus is to allow the processes
to use randomization, by providing each process with a local coin that can
generate random values that are immediately visible only to that process.
The resulting randomized consensus problem replaces the termination
requirement with probabilistic termination: all processes terminate with
probability 1. The agreement and validity requirements remain the same.

In this chapter, we will describe how randomization interacts with the
adversary, give a bit of history of randomized consensus, and then concen-
trate on recent algorithms for randomized consensus and the closely-related
problem of randomized test-and-set. Much of the material in this chapter is
adapted from notes for a previous course on randomized algorithms |]
and a few of my own papers | , ,].

24.1 Role of the adversary in randomized algo-
rithms

Because randomized processes are unpredictable, we need to become a
little more sophisticated in our handling of the adversary. As in previous
asynchronous protocols, we assume that the adversary has control over
timing, which we model by allowing the adversary to choose at each step
which process performs the next operation. But now the adversary may do

234

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET235

so based on knowledge of the state of the protocol and its past evolution.
How much knowledge we give the adversary affects its power. Several classes
of adversaries have been considered in the literature; ranging from strongest
to weakest, we have:

1. An adaptive adversary. This adversary is a function from the state
of the system to the set of processes; it can see everything that has
happened so far (including coin-flips internal to processes that have not
yet been revealed to anybody else), but can’t predict the future. It’s
known that an adaptive adversary can force any randomized consensus
protocol to take ©(n?) total steps |]. The adaptive adversary
is also called a strong adversary following a foundational paper of
Abrahamson |].

2. An intermediate adversary or weak adversary |] is one
that limits the adversary’s ability to observe or control the system
in some way, without completely eliminating it. For example, a
content-oblivious adversary | | or value-oblivious adver-
sary | | is restricted from seeing the values contained in registers
or pending write operations and from observing the internal states
of processes directly. A location-oblivious adversary | | can
distinguish between values and the types of pending operations, but
can’t discriminate between pending operations based one which register
they are operating on. These classes of adversaries are modeled by
imposing an equivalence relation on partial executions and insisting
that the adversary make the same choice of processes to go next in
equivalent situations. Typically they arise because somebody invented
a consensus protocol for the oblivious adversary (described below) and
then looked for the next most powerful adversary that still let the
protocol work.

Weak adversaries often allow much faster consensus protocols than
adaptive adversaries. Each of the above adversaries permits consensus
to be achieved in O(logn) expected individual work using an appropri-
ate algorithm. But from a mathematical standpoint, weak adversaries
are a bit messy, and once you start combining algorithms designed for
different weak adversaries, it’s natural to move all the way down to the
weakest reasonable adversary, the oblivious adversary.

3. A oblivious adversary has no ability to observe the system at all;
instead, it fixes a sequence of process IDs in advance, and at each step
the next process in the sequence runs.

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET236

We will describe below a protocol that guarantees O(loglogn) expected
individual work for an oblivious adversary. It is not known whether
this is optimal; in fact, is is consistent with the best known lower bound
(due to Attiya and Censor [|) that consensus can be solved in
O(1) expected individual steps against an oblivious adversary.

Each of these adversaries is defined based on choosing steps of particular
objects, with particular constraints on knowledge based on the states of those
objects. This interacts badly with abstractions like linearizability: an adver-
sary might be able to play games with the internals of an implementation
of an object that allows it more power than it would have with an actual
sequential version of the object. So even though linearizable implementations
are indistinguishable from sequential objects for deterministic protocols, for
randomized protocols they can give very different results for both adaptive
and oblivious adversaries |]; and in the specific case of consensus,
it can be shown that there are randomized consensus protocols that termi-
nate with probability 1 against an adaptive adversary when implemented
with atomic registers, but fail to terminate with nonzero probability when
implemented using an arbitrary linearizable implementation | l.

These results don’t necessarily imply the failure of any specific consensus
protocol implemented using a specific atomic register simulation, but they
do justify suspicion. The easiest way to deal with this suspicion is to assume
that our atomic registers are, in fact, atomic, so that’s what we will do here.

24.2 History

The use of randomization to solve consensus in an asynchronous system
with crash failures was proposed by Ben-Or | | for a message-passing
model. Chor, Israeli, and Li |] gave the first wait-free consensus
protocol for a shared-memory system, which assumed a particular kind of
weak adversary. Abrahamson | | defined strong and weak adversaries
and gave the first wait-free consensus protocol for a strong adversary; its
expected step complexity was © (2”2). After failing to show that exponential

time was necessary, Aspnes and Herlihy | | showed how to do consensus
in O(n*) total step complexity, a value that was soon reduced to O(n?logn)
by Bracha and Rachman []. This remained the best known bound for
the strong-adversary model until Attiya and Censor [| showed matching
©(n?) upper and lower bounds on total step complexity. A later paper by
Aspnes and Censor [] showed that it was also possible to get an O(n)
bound on individual step complexity.

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET237

For weak adversaries, the best known upper bound on individual step

complexity was O(logn) for a long time | , , |, with
an O(n) bound on total step complexity for some models |]. More
recent work has lowered the individual step complexity bound to O(loglogn),
under the assumption of an oblivious adversary | |. No non-trivial

lower bound on expected individual step complexity is known, although
there is a known lower bound on the distribution of the individual step
complexity [].

In the following sections, we will concentrate on the more recent weak-
adversary algorithms. These have the advantage of being fast enough that
one might reasonably consider using them in practice, assuming that the
weak-adversary assumption does not create trouble, and they are also require
less probabilistic machinery to analyze than the strong-adversary algorithms.

24.3 Reduction to simpler primitives

To show how to solve consensus using randomization, it helps to split the
problem in two: we will first see how to detect when we’ve achieved agreement,
and then look at how to achieve agreement.

24.3.1 Adopt-commit objects

Most known randomized consensus protocols have a round-based structure
that alternates between generating and detecting agreement. Gafni |]
proposed adopt-commit protocols as a tool for detecting agreement, and
these protocols were later abstracted as adopt-commit objects | ,

|. The version described here is largely taken from | |, which
shows bounds on the complexity of adopt-commit objects.

An adopt-commit object supports a single operation, AdoptCommit(u),
where wu is an input from a set of m values. The result of this operation is an
output of the form (commit,v) or (adopt,v), where the second component is
a value from this set and the first component is a decision bit that indicates
whether the process should decide value v immediately or adopt it as its
preferred value in later rounds of the protocol.

The requirements for an adopt-commit object are the usual requirements
of validity and termination, plus:

1. Coherence. If the output of some operation is (commit, v), then every
output is either (adopt,v) or (commit, v).

2. Convergence. If all inputs are v, all outputs are (commit, v).

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET238

These last two requirement replace the agreement property of consensus.
They are also strictly weaker than consensus, which means that a consensus
object (with all its output labeled commit) is also an adopt-commit object.

The reason we like adopt-commit objects is that they allow the simple
consensus protocol shown in Algorithm 24.1.

preference < input
forr<1...00do
(b, preference) <— AdoptCommit(AC|r], preference)
if b = commit then
‘ return preference
else
L do something to generate a new preference

N O Ok W

Algorithm 24.1: Consensus using adopt-commit

The idea is that the adopt-commit takes care of ensuring that once
somebody returns a value (after receiving commit), everybody else who
doesn’t return adopts the same value (follows from coherence). Conversely,
if everybody already has the same value, everybody returns it (follows from
convergence). The only missing piece is the part where we try to shake all
the processes into agreement. For this we need a separate object called a
conciliator.

24.3.2 Conciliators

Conciliators are a weakened version of randomized consensus that replace
agreement with probabilistic agreement: the processes can disagree some-
times, but must agree with constant probability despite interference by the
adversary. An algorithm that satisfies termination, validity, and probabilistic
agreement is called a conciliator.!

The important feature of conciliators is that if we plug a conciliator that
guarantees agreement with probability at least § into Algorithm 24.1, then
on average we only have to execute the loop 1/6 times before every process
agrees. This gives an expected cost equal to 1/§ times the total cost of
AdoptCommit and the conciliator. Typically we will aim for constant d.

"Warning: This name has not really caught on in the general theory-of-distributed-
computing community, and so far only appears in papers that have a particular researcher
as a co-author [, , ,]. Unfortunately, there doesn’t seem to
be a better name for the same object that has caught on. So we are stuck with it for now.

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET239

24.4 Implementing an adopt-commit object

What’s nice about adopt-commit objects is that they can be implemented
deterministically. Here we’ll give a simple adopt-commit object for two values,
0 and 1. Optimal (under certain assumptions) constructions of m-valued
adopt-commits can be found in | -

Pseudocode is given in Algorithm 24.2.

shared data: a[0], a[l], initially 0; proposal, initially L
1 procedure AdoptCommit(v)
2 afv] <1

3 if proposal = L then
4 ‘ proposal «+ v

5 else

6 L v ¢ proposal

7 if a[-v] =0 then

8 ‘ return (commit, v)
9 else

10 L return (adopt, v)

Algorithm 24.2: A 2-valued adopt-commit object

Structurally, this is pretty similar to a splitter (see §18.5.2), except that
we use values instead of process IDs.

We now show correctness. Termination and validity are trivial. For
coherence, observe that if I return (commit, v) I must have read a[-v] =0
before any process with —v writes a[—w]; it follows that all such processes
will see proposal # L and return (adopt,v). For convergence, observe that
if all processes have the same input v, they all write it to proposal and all
observe a[—w] = 0, causing them all to return (commit, v).

24.5 Conciliators and shared coins

For an adaptive adversary, the usual way to implement a conciliator is
from a weak shared coin |], which is basically a non-cryptographic
version of the common coin | | found in many cryptographic Byzantine
agreement protocols. Formally, a weak shared coin is an object that has
no inputs and returns either 0 or 1 to all processes with some minimum
probability 4. By itself this does not give validity, so converting a weak

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET240

shared coin into a conciliator requires extra machinery to bypass the coin if
the processes that have accessed the conciliator so far are all in agreement;
see Algorithm 24.3. The intuition is that having some processes (who all
agree with each other) skip the shared coin is not a problem, because with
probability ¢ the remaining processes will agree with them as well.

shared data:
binary registers rg and rq, initially 0;
weak shared coin sharedCoin

1 procedure coinCoinciliator()

2 ry — 1

3 if r—, =1 then

4 ‘ return sharedCoin()

5 else

6 L return v

Algorithm 24.3: Shared coin conciliator from |]

This still leaves the problem of how to build a shared coin. In the
message-passing literature, the usual approach is to use cryptography,” but
because we are assuming an arbitrarily powerful adversary, we can’t use
cryptography.

If we don’t care how small § gets, we could just have each process flip its
own local coin and hope that they all come up the same. (This is more or
less what was done by Abrahamson | |.) But that might take a while. If
we aren’t willing to wait exponentially long, a better approach is to combine
many individual local coins using some sort of voting.

A version of this approach, based on a random walk, was used by Aspnes

and Herlihy |] to get consensus in (bad) polynomial expected time
against an adaptive adversary. A better version was developed by Bracha
and Rachman | |. In their version, each process repeatedly generates a

random +1 vote and adds it to a common pool (which just means writing the
sum and count of all its votes so far out to a single-writer register). Every
©(n/logn) votes, the process does a collect (giving an overhead of ©(logn)
operations per vote) and checks to see if the total number of votes is greater
than a ©(n?) threshold. If it is, the process returns the sign of the total vote.

Bracha and Rachman showed that despite processes seeing different
combinations of votes (due to the collects running at possibly very different

2For example, Canetti and Rabin [| solved Byzantine agreement in O(1) time by
building a shared coin on top of secret sharing.

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET241

speeds), the difference between what each process sees and the actual sum of
all votes ever generated is at most O(n) with high probability. This means
that if the total vote is more than c¢n from 0 for some ¢, which occurs with
constant probability, then every processes is likely to return the same value.
This gives a weak shared coin with constant bias, and thus also a consensus
protocol, that runs in O(n?logn) expected total steps.

This remained the best known protocol for many years, leaving an
annoying gap between the upper bound and the best known lower bound
of Q(n?/log?n) [|. Eventually, Attiya and Censor [| produced
an entirely new argument to bring the lower bound up to (n?) and at the
same time gave a simple tweak to the Bracha-Rachman protocol to bring
the upper bound down to O(n?), completely settling (up to constant factors)
the asymptotic expected total step complexity of strong-adversary consensus.
But the question of how quickly one could solve weak-adversary adversary
consensus remained (and still remains) open.

24.6 A one-register conciliator for an oblivious ad-
versary

shared data: register r, initially L
k<0
while » = | do
with probability 2 do
‘ write v to r
else
L do a dummy operation

7 %k:<—l<:+1

S R W =

8 return r

Algorithm 24.4: Impatient first-mover conciliator from |]

Algorithm 24.4 implements a conciliator for an oblivious adversary® using
a single register. This particular construction is taken from |], and
is based on an earlier algorithm of Chor, Israeli, and Li []. The cost
of this algorithm is expected O(n) total work and O(logn) individual work.
Later (§24.7.2), we will see a different algorithm [] that reduces the

30r any adversary weak enough not to be able to block the write based on how the
coin-flip turned out.

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET242

individual work to O(loglogn), although the total work for that algorithm
may be O(nloglogn).

The basic idea is that processes alternate between reading a register r
and (maybe) writing to the register; if a process reads a non-null value from
the register, it returns it. Any other process that reads the same non-null
value will agree with the first process; the only way that this can’t happen is
if some process writes a different value to the register before it notices the
first write.

The random choice of whether to write the register or not avoids this
problem. The idea is that even though the adversary can schedule a write at
a particular time, because it’s oblivious, it won’t be able to tell if the process
wrote (or was about to write) or did a no-op instead.

The basic version of this algorithm, due to Chor, Israeli, and Li | 1,
uses a fixed % probability of writing to the register. So once some process
writes to the register, the chance that any of the remaining n — 1 processes
write to it before noticing that it’s non-null is at most "T_nl < 1/2. It’s also
not hard to see that this algorithm uses O(n) total operations, although it
may be that one single process running by itself has to go through the loop
2n times before it finally writes the register and escapes.

Using increasing probabilities avoids this problem, because any process
that executes the main loop [lgn] + 1 times will write the register. This
establishes the O(logn) per-process bound on operations. At the same time,
an O(n) bound on total operations still holds, since each write has at least
a % chance of succeeding. The price we pay for the improvement is that
we increase the chance that an initial value written to the register gets
overwritten by some high-probability write. But the intuition is that the
probabilities can’t grow too much, because the probability that I write on
my next write is close to the sum of the probabilities that I wrote on my
previous writes—suggesting that if I have a high probability of writing next
time, I should have done a write already.

Formalizing this intuition requires a little bit of work. Fix the schedule,
and let p; be the probability that the i-th write operation in this schedule
succeeds. Let t be the least value for which Y>¢_; p; > 1/4. We're going to
argue that with constant probability one of the first ¢ writes succeeds, and
that the next n — 1 writes by different processes all fail.

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET243

The probability that none of the first ¢ writes succeed is

t

t
[[a—p)<][e™
=1 =1
eofs)
=1

< 6_1/4.

Now observe that if some process p writes at or before the t-th write,
then any process ¢ with a pending write either did no writes previously, or
its last write was among the first ¢t — 1 writes, whose probabilities sum to
less than 1/4. In either case, ¢ has a Zz‘eSq pi + ﬁ chance of writing on
its pending attempt, where S; is the set of indices in 1...¢ — 1 where ¢
previously attempted to write.

Summing up these probabilities over all processes gives a total of %=t +

2n
>q 2ies, Pi < 1/2+1/4 = 3/4. So with probability at least e V4(1-3/4) =

e~ 1/4/4, we get agreement.

24.7 Sifters

A faster conciliator can be obtained using a sifter, which is a mechanism for
rapidly discarding processes using randomization | | while keeping at
least one process around. The simplest sifter has each process either write a
register (with low probability) or read it (with high probability); all writers
and all readers that see 1 continue to the next stage of the protocol, while
all readers who see a non-null value drop out. If the probability of writing
is tuned carefully, this will reduce n processes to at most 2y/n processes on
average; by iterating this mechanism, the expected number of remaining
processes can be reduced to 1+ € after O(loglogn + log(1/€)) phases.

As with previous implementations of test-and-set (see Algorithm 23.3),
it’s often helpful to have a sifter return not only that a process lost but which
process it lost to. This gives the implementation shown in Algorithm 24.5.

To use a sifter effectively, p should be tuned to match the number of
processes that are likely to use it. This is because of the following lemma:;:

Lemma 24.7.1. Fix p, and let X processes executed a sifter with parameter
p. Let'Y be the number of processes for which the sifter returns L. Then

1
E[X | Y] <pX +-. (24.7.1)
p

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET244

1 procedure sifter(p,r)
2 with probability p do
3 r < id

4 return |
5 else

6 L return r

Algorithm 24.5: A sifter

Proof. In order to return L, a process must either (a) write to r, which
occurs with probability p, or (b) read r before any other process writes to
it. The expected number of writers, conditioned on X, is exactly pX. The
expected number of readers before the first write has a geometric distribution
truncated by X. Removing the truncation gives exactly % expected readers,
which is an upper bound on the correct value. O

For n initial processes, the choice of p that minimizes the bound in
(24.7.1) is ﬁ, giving at most 2y/n expected survivors. Iterating this process

with optimal p at each step gives a sequence of at most n, 2y/n, 21/2y/n,
etc., expected survivors after each sifter. The twos are a little annoying, but
a straightforward induction bounds the expected survivors after ¢ rounds
by 4-n?"". In particular, we get at most 8 expected survivors after [lglgn]
rounds.

At this point it makes sense to switch to a fixed p and a different analysis.
For p = 1/2, the first process to access r always survives, and each subsequent
process survives with probability at most 3/4 (because it leaves if the first
process writes and it reads). So the number of “excess” processes drops
as (3/4), and an additional [logy/3(7/€)] rounds are enough to reduce the
expected number of survivors from 1 + 7 to 1 + ¢ for any fixed e.*

It follows that

Theorem 24.7.2. An initial set of n processes can be reduced to 1 with
probability at least 1 — € using O(loglogn + log(1/€)) rounds of sifters.

Proof. Let X be the number of survivors after [lglgn]+ [log,/3(7/€)] rounds
of sifters, with probabilities tuned as described above. We’ve shown that
E[X]<1+4¢€ s0oE[X —1] <e Since X —1 >0, from Markov’s inequality
we have Pr(X >2]=Pr[X —-1>1]<E[X —-1]/1<e O

4This argument essentially follows the proof of | , Theorem 2], which, because of
neglecting to subtract off a 1 at one point, ends up with 8/¢ instead of 7/e.

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET245

24.7.1 Test-and-set using sifters

Sifters were initially designed to be used for test-and-set. For this purpose,
we treat a return value of 1 as “keep going” and anything else as “leave with
value 1.7 Using O(loglogn) rounds of sifters, we can get down to one process
that hasn’t left with probability at least 1 — log™¢n for any fixed constant
c. We then need a fall-back TAS to handle the log™¢n chance that we get
more than one such survivor.

Alistarh and Aspnes | | used the RatRace algorithm of Alistarh et
al. |] for this purpose. This is an adaptive randomized test-and-set
built from splitters and two-process consensus objects that runs in O(log k)
expected time, where k is the number of processes that access the test-and-set;
a sketch of this algorithm is given in §25.5.2. If we want to avoid appealing
to this algorithm, a somewhat simpler approach is to use an approach similar
to the Lamport’s fast-path mutual exclusion algorithm (described in §18.5.2):
any process that survives the sifters tries to rush to a two-process TAS at the
top of a tree of two-processes TASes by winning a splitter, and if it doesn’t
win the splitter, it enters at a leaf and pays O(logn) expected steps. By
setting € = 1/logn, the overall expected cost of this final stage is O(1).

This algorithm does not guarantee linearizability. I might lose a sifter
early on only to have a later process win all the sifters (say, by writing to
each one) and return 0. A gate bit as in Algorithm 23.3 solves this problem.
The full code is given in Algorithm 24.6.

24.7.2 Consensus using sifters

With some trickery, the sifter mechanism can be adapted to solve consensus,
still in O(loglogn) expected individual work [|. The main difficulty
is that a process can no longer drop out as soon as it knows that it lost: it
still needs to figure out who won, and possible help that winner over the
finish line.

The basic idea is that when a process p loses a sifter to some other process
q, p will act like a clone of g from that point on. In order to make this work,
each process writes down at the start of the protocol all of the coin-flips it
intends to use to decide whether to read or write at each round of sifting.
Together with its input, these coin-flips make up the process’s persona.
In analyzing the progress of the sifter, we count surviving personae (with
multiple copies of the same persona counting as one) instead of surviving
processes.

Pseudocode for this algorithm is given in Algorithm 24.7. Note that the

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET246

1 if gate # 1 then

2 ‘ return 1

3 else

4 gate < myld

5 for i <—1...[loglogn] + [log,/3(7logn)] do
6 with probability min (1/2, 21_27”1) do
7 ‘ r; < myld

8 else

9 W <1

10 if w # 1L then

11 L return 1

12 if splitter() = stop then
13 ‘ return 0

14 else

15 | return AWWTASQ)

Algorithm 24.6: Test-and-set in O(loglogn) expected time

loop body is essentially the same as the code in Algorithm 24.5, except that
the random choice is replaced by a lookup in persona.chooseWrite.

To show that this works, we need to argue that having multiple copies
of a persona around doesn’t change the behavior of the sifter. In each
round, we will call the first process with a given persona p to access r;
the representative of p, and argue that a persona survives round ¢ in
this algorithm precisely when its representative would survive round 7 in
a corresponding test-and-set sifter with the schedule restricted only to the
representatives.

There are three cases:

1. The representative of p writes. Then at least one copy of p survives.

2. The representative of p reads a null value. Again at least one copy of
p survives.

3. The representative of p reads a non-null value. Then no copy of p
survives: all subsequent reads by processes carrying p also read a
non-null value and discard p, and since no process with p writes, no
other process adopts p.

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET247

[uny

procedure conciliator(input)
2 Let R = [loglogn] + [logy/3(7/€)]
Let chooseWrite be a vector of R independent random Boolean
variables with Pr[chooseWrite[i] = 1] = p;, where
pi =227 ()2 for i < [loglogn] and p; = 1/2 for larger i.
persona < (input, chooseWrite, myld)

fori<1...R do
if persona.chooseWrite[i] = 1 then

‘ i <— persona
else

VT

10 if v # 1 then
11 L persona < v

© 0 N o o

12 return persona.input

Algorithm 24.7: Sifting conciliator (from |)

From the preceding analysis for test-and-set, we have that after O(loglog n+
log 1/¢€) rounds with appropriate probabilities of writing, at most 1+ € values
survive on average. This gives a probability of at most € of disagreement. By
alternating these conciliators with adopt-commit objects, we get agreement
in O(loglogn + logm/loglogm) expected time, where m is the number of
possible input values.

I don’t think the O(loglogn) part of this expression is optimal, but I
don’t know how to do better.

24.7.3 A better sifter for test-and-set

A more sophisticated sifter due to Giakkoupis and Woelfel |] removes
all but O(logn) processes, on average, using two operations for each process.
Iterating this sifter reduces the expected survivors to O(1) in O(log* n)
rounds. A particularly nice feature of the Giakkoupis-Woelfel algorithm is
that (if you don’t care about space) it doesn’t have any parameters that
require tuning to n: this means that exactly the same structure can be used
in each round. An unfortunate feature is that it’s not possible to guarantee
that every process that leaves learns the identity of a process that stays: this
means that it can’t adapted into a consensus protocol using the persona trick
described in §24.7.2.

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET248

Pseudocode is given in Algorithm 24.8. In this simplified version, we
assume an infinitely long array A[l...], so that we don’t need to worry
about n. Truncating the array at logn also works, but the analysis requires
handling the last position as a special case, which I am too lazy to do here.

1 Choose r € Z* such that Pr[r =] =27¢
2 Alr] «+ 1

3 if Alr + 1] =0 then

4 ‘ stay

5 else

6 L leave

Algorithm 24.8: Giakkoupis-Woelfel sifter |]

Lemma 24.7.3. In any execution of Algorithm 24.8 with an oblivious ad-
versary and n processes, at least one process stays, and the expected number
of processes that stay is O(logn).

Proof. For the first part, observe that any process that picks the largest
value of r among all processes will survive; since the number of processes is
finite, there is at least one such survivor.

For the second part, let X; be the number of survivors with » = 7. Then
E [X;] is bounded by n - 27, since no process survives with r = i without
first choosing r = i. But we can also argue that E[X;] < 3 for any value of
n, by considering the sequence of write operations in the execution.

Because the adversary is oblivious, the location of these writes is uncor-
related with their ordering. If we assume that the adversary is trying to
maximize the number of survivors, its best strategy is to allow each process
to read immediately after writing, as delaying this read can only increase the
probability that A[r + 1] is nonzero. So in computing X;, we are counting
the number of writes to A[i] before the first write to A[i + 1]. Let’s ignore
all writes to other registers; then the j-th write to either of A[i] or Afi + 1]
has a conditional probability of 2/3 of landing on A[i] and 1/3 on A[i + 1].
We are thus looking at a geometric distribution with parameter 1/3, which
has expectation 3.

Combining these two bounds gives E [X;] < min(3,27%). So then

o0
E [survivors] < Y min(3,n-27")
i=1
=3lgn+ O(1),

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET249

because once n - 27" drops below 3, the remaining terms form a geometric
series.]

Like square root, logarithm is concave, so Jensen’s inequality applies here
as well. So O(log*n) rounds of Algorithm 24.8 reduces us to an expected
constant number of survivors, which can then be fed to RatRace.

With an adaptive adversary, all of the sifter-based test-and-sets fail badly:
in this particular case, an adaptive adversary can sort the processes in order
of increasing write location so that every process survives. The best known
n-process test-and-set for an adaptive adversary is still a tree of 2-process
randomized test-and-sets, as in the Afek et al. | | algorithm described
in §23.2. Whether O(logn) expected steps is in fact necessary is still open
(as is the exact complexity of test-and-set with an oblivious adversary).

24.8 Space bounds

A classic result of Fich, Herlihy, and Shavit [| showed that Q(y/n)
registers are needed to solve consensus even under the very weak require-
ment of nondeterministic solo termination, which says that for every
reachable configuration and every process p, there exists some continuation
of the execution in which the protocol terminates with only p running. The
best known upper bound is the trivial bound of n—one single-writer register
per process—since any algorithm that uses multi-writer registers can be
translated into one that uses only single-writer registers, and (assuming wide
enough registers) multiple registers of a single process can be combined into
one.

For many years, there was very little progress in closing the gap between
these two bounds. In 2013, we got a hint that FHS might be tight when
Giakkoupis et al. | | gave a surprising O(y/n)-space algorithm for
the closely related problem of obstruction-free one-shot test-and-set.

But then Gelashvili | | showed an n/20 space lower bound for con-
sensus for anonymous processes, and Zhu quickly followed this with a lower
bound for non-anonymous processes | |, showing that at least n — 1
registers are required, using a clever combination of bivalence and covering
arguments. Around the same time, Giakkoupis et al. | | further
improved the space complexity of obstruction-free test-and-set to O(logn),
using a deterministic obstruction-free implementation of a sifter. So the brief
coincidence of the Q(y/n) lower bound on consensus and the O(y/n) upper
bound on test-and-set turned out to be an accident.

CHAPTER 24. RANDOMIZED CONSENSUS AND TEST-AND-SET250

For consensus, there is still a gap, but it’s a very small gap. Whether
the actual space needed is n — 1 or n remains open.

Chapter 25

Renaming

We will start by following the presentation in [, §16.3]. This mostly
describes results of the original paper of Attiya et al. |] that defined
the renaming problem and gave a solution for message-passing; however, it’s
now more common to treat renaming in the context of shared-memory, so we
will follow Attiya and Welch’s translation of these results to a shared-memory
setting.

25.1 Renaming

In the renaming problem, we have n processes, each starts with a name
from some huge namespace, and we’d like to assign them each unique names
from a much smaller namespace. The main application is allowing us to run
algorithms that assume that the processes are given contiguous numbers,
e.g., the various collect or atomic snapshot algorithms in which each process
is assigned a unique register and we have to read all of the registers. With
renaming, instead of reading a huge pile of registers in order to find the few
that are actually used, we can map the processes down to a much smaller
set.

Formally, we have a decision problem where each process has input x;
(its original name) and output y;, with the requirements:

Termination Every nonfaulty process eventually decides.
Uniqueness If p; # p;, then y; # y;.

Anonymity The code executed by any process depends only on its input
x;: for any execution of processes pj ...p, with inputs z;...x,, and

251

CHAPTER 25. RENAMING 252

any permutation 7 of [1...n], there is a corresponding execution of
ProcCesses Pr(1) - - - Pr(n) With inputs z1...xz, in which pr) performs
exactly the same operations as p; and obtains the same output y;.

The last condition is like non-triviality for consensus: it excludes algo-
rithms where p; just returns ¢ in all executions. Typically we do not have
to do much to prove anonymity other than observing that all processes are
running the same code.

We will be considering renaming in a shared-memory system, where we
only have atomic registers to work with.

25.2 Performance
Conventions on counting processes:

e N = number of possible original names.
e n = maximum number of processes.

e k = number of processes that actually execute the algorithm.

Ideally, we’d like any performance measures we get to depend on k alone
if possible (giving an adaptive algorithm). Next best would be something
polynomial in n and k. Anything involving IV is bad.

We’d also like to minimize the size of the output namespace. How well
we can do this depends on what assumptions we make. For deterministic
algorithms using only read-write registers, a lower bound due to Herlihy and
Shavit [] shows that we can’t get fewer than 2n — 1 names for general
n.! Our target thus will be exactly 2n — 1 output names if possible, or 2k — 1
if we are trying to be adaptive. For randomized algorithms, it is possible to
solve strong or tight renaming, where the size of the namespace is exactly
k; we’ll see how to do this in §25.5.

A small note on bounds: There is a lot of variation in the literature on
how bounds on the size of the output namespace are stated. The original
Herlihy-Shavit lower bound | | says that there is no general renaming
algorithm that uses 2n names for n 4+ 1 processes; in other words, any n-
process algorithm uses at least 2n — 1 names. Many subsequent papers

!This lower bound was further refined by Castafieda and Rajsbaum |], who show
that 2n — 2 (but no less!) is possible for certain special values of n; all of these lower
bounds make extensive use of combinatorial topology, so we won'’t try to present them
here.

CHAPTER 25. RENAMING 253

discussing lower bounds on the namespace follow the approach of Herlihy and
Shavit and quote lower bounds that are generally 2 higher than the minimum
number of names needed for n processes. This requires a certain amount of
translation when comparing these lower bounds with upper bounds, which
use the more natural convention.

25.3 Order-preserving renaming

Before we jump into upper bounds, let’s do an easy lower bound from
the Attiya et al. paper []. This bound works on a variant of
renaming called order-preserving renaming, where we require that y; <
y; whenever z; < x;. Unfortunately, this requires a very large output
namespace: with ¢ failures, any asynchronous algorithm for order-preserving
renaming requires 2/(n —t + 1) — 1 possible output names. This lower bound
applies regardless of the model, as long as some processes may start after
other processes have already been assigned names.

For the wait-free case, we have t = n — 1, and the bound becomes just
2™ —1. This is a simpler case than the general ¢t-failure case, but the essential
idea is the same: if I've only seen a few of the processes, I need to leave room
for the others.

Theorem 25.3.1. There is no order-preserving renaming algorithm for n
processes using fewer than 2™ — 1 names.

Proof. By induction on n. For n = 1, we use 2! — 1 = 1 names; this is the
base case. For larger n, suppose we use m names, and consider an execution
in which one process p,, runs to completion first. This consumes one name
yn and leaves k names less than y,, and m — k — 1 names greater than y,. By
setting all the inputs z; for ¢ < n either less than x,, or greater than z,, we
can force the remaining processes to choose from the remaining &k or m—k—1
names. Applying the induction hypothesis, this gives & > 2"~! — 1 and
m—k—1>2""1-1 som=k+(m—-k-1)+1>22"'-1)+1=2"-1. O

25.4 Deterministic renaming

In deterministic renaming, we can’t use randomization, and may or may
not have any primitives stronger than atomic registers. With just atomic
registers, we can only solve loose renaming; with test-and-set, we can solve
tight renaming. In this section, we describe some basic algorithms for
deterministic renaming.

CHAPTER 25. RENAMING 254

25.4.1 Wait-free renaming with 2n — 1 names

Here we use Algorithm 55 from | |, which is an adaptation to shared
memory of the message-passing renaming algorithm of |]. One odd
feature of the algorithm is that, as written, it is not anonymous: processes
communicate using an atomic snapshot object and use their process IDs to
select which component of the snapshot array to write to. But if we think of
the process IDs used in the algorithm as the inputs z; rather than the actual
process IDs i, then everything works. The version given in Algorithm 25.1
makes this substitution explicit, by treating the original name ¢ as the input.

1 procedure getName(7)

2 s 1

3 while true do

4 ali] < s

5 view < snapshot(a)

6 if view[j] = s for some j then

7 r < [{j : view[j] # L A j < i}

8 s < r-th positive integer not in
{view[j] : 7 # i A view[j] = L}

9 else

10 L return s

Algorithm 25.1: Wait-free deterministic renaming

The array a holds proposed names for each process (indexed by the
original names), or L for processes that have not proposed a name yet. If a
process proposes a name and finds that no other process has proposed the
same name, it takes it; otherwise it chooses a new name by first computing
its id’s rank r among the active processes and then choosing the r-th smallest
name that hasn’t been proposed by another process. Because the rank is at
most n and there are at most n — 1 names proposed by the other processes,
this always gives proposed names in the range [1...2n — 1]. We also have
anonymity, since every process runs the same code (with the only difference
in behavior resulting from the input name 7).

To show uniqueness, consider two process with original names ¢ and j.
Suppose that i and j both decide on s. Then i sees a view in which ali] = s
and a[j] # s, after which it no longer updates a[i]. Similarly, j sees a view in
which a[j] = s and a[i] # s, after which it no longer updates alj]. If i’s view
is obtained first, then j can’t see a[i] # s, but the same holds if j’s view is

CHAPTER 25. RENAMING 255

obtained first. So in either case we get a contradiction, proving uniqueness.

Termination is a bit trickier. Here we argue that no process can run
forever without returning a name, by showing that if we have a set of processes
that are doing this, the one with smallest input name eventually returns an
output name, contradicting the assumption that they all run forever.

Imagine some execution in which processes with input names p; < ps <
-+ < pi take infinitely many steps, while the remaining processes with input
names ¢; do not. Observe that the rank » computed by each p; eventually
stabilizes, since it can only change if p; observes a new non-null entry a[j] for
j < pi, and this can only happen a finite number of times. Suppose that we
wait both for these ranks to stabilize and for all the processes g; to perform
their last operations.

At this point, any name that appears in a[g;] for some ¢; is no longer
available any process p;, either because ¢; has already returned it (if we are
lucky) or because ¢; has stopped (and thus won’t change a[q;] again). Let
21 < 23 < ... Zm be the names that do not appear in ag;| for any g; after all
alg;] have stabilized. Let r; be the final, stable rank of process p;. Then we
can argue that after ranks and the a[g;] have stabilized, p; never picks a new
name from {zj,..., 2.1}, because it picks the r;-th smallest name among
those not already taken in its view, and these names are all smaller.

We would like to argue that this means that z,, is eventually returned by
p1 (which will contradict the supposition that p; runs forever). This may not
happen immediately, because even though zi, ..., 2,, are not covered by any
alg;], they may be covered by alp;] for some p; # p1. But any such p; takes
infinitely many steps, so it eventually chooses a new name not in zy,..., z-_1.
Once all the p; have picked names outside this range, z,, becomes the ri-th
smallest available name, so p; chooses it, sees no conflict, and returns.

Note that we haven’t proved any complexity bounds on this algorithm at
all, but we know that the snapshot alone takes at least (V) time and space.
With some tinkering this can be reduced. Brodksy et al. | | cite a
paper of Bar-Noy and Dolev | | as giving a shared-memory version
of | | with complexity O(n - 4™); they also give algorithms and
pointers to algorithms with much better complexity.

25.4.2 Long-lived renaming

In long-lived renaming a process can release a name for later use by other
processes (or the same process, if it happens to run choose-name again).
Now the bound on the number of names needed is 2k — 1, where k is the
maximum number of concurrently active processes. Algorithm 25.1 can be

CHAPTER 25. RENAMING 256

converted to a long-lived renaming algorithm by adding the releaseName
procedure given in Algorithm 25.2. This just erases the process’s proposed
name, so that some other process can claim it.

1 procedure releaseName()
2 L ali] <+ L

Algorithm 25.2: Releasing a name

Here the termination requirement is weakened slightly, to say that some
process always makes progress in getName. It may be, however, that there
is some process that never successfully obtains a name, because it keeps
getting stepped on by other processes zipping in and out of getName and
releaseName.

25.4.3 Renaming without snapshots

Moir and Anderson | | give a renaming protocol that is somewhat easier
to understand and doesn’t require taking snapshots over huge arrays. A
downside is that the basic version requires k(k + 1)/2 names to handle k
active processes.

25.4.3.1 Splitters

The Moir-Anderson renaming protocol uses a network of splitters, which
we last saw providing a fast path for mutual exclusion in §18.5.2. Each
splitter is a widget, built from a pair of atomic registers, that assigns to
each processes that arrives at it the value right, down, or stop. As discussed
previously, the useful properties of splitters are that if at least one process
arrives at a splitter, then (a) at least one process returns right or stop; and
(b) at least one process returns down or stop; (¢) at most one process returns
stop; and (d) any process that runs by itself returns stop.

We proved the last two properties in §18.5.2; we’ll prove the first two here.
Another way of describing these properties is that of all the processes that
arrive at a splitter, some process doesn’t go down and some process doesn’t
go right. By arranging splitters in a grid, this property guarantees that every
row or column that gets at least one process gets to keep it—which means
that with k processes, no process reaches row k + 1 or column k + 1.

Algorithm 25.3 gives the implementation of a splitter (it’s identical to
Algorithm 18.6, but it will be convenient to have another copy here).

CHAPTER 25. RENAMING 257

shared data:
1 atomic register race, big enough to hold an ID, initially L

2 atomic register door, big enough to hold a bit, initially open
3 procedure splitter(id)

4 race < id

5 if door = closed then

6 L return right

7 door < closed

8 if race = id then
9 ‘ return stop
10 else
11 L return down

Algorithm 25.3: Implementation of a splitter

Lemma 25.4.1. If at least one process completes the splitter, at least one
process returns stop or right.

Proof. Suppose no process returns right; then every process sees open in
door, which means that every process writes its ID to race before any process
closes the door. Some process writes its ID last: this process will see its own
ID in race and return stop. O

Lemma 25.4.2. If at least one process completes the splitter, at least one
process returns stop or down.

Proof. First observe that if no process ever writes to door, then no process
completes the splitter, because the only way a process can finish the splitter
without writing to door is if it sees closed when it reads door (which must
have been written by some other process). So if at least one process finishes,
at least one process writes to door. Let p be any such process. From the
code, having written door, it has already passed up the chance to return
right; thus it either returns stop or down. O

25.4.3.2 Splitters in a grid

Now build an m-by-m triangular grid of splitters, arranged as rows 0...m—1
and columns 0...m — 1, where a splitter appears in each position (7, ¢) with
r+c < m—1 (see Figure 25.1 for an example; this figure is taken from | D).

Assign a distinct name to each of the (%) splitters in this grid. To obtain

CHAPTER 25. RENAMING 258

Figure 25.1: A 6 x 6 Moir-Anderson grid (From | 1)

a name, a process starts at (r,c) = (0,0), and repeatedly executes the
splitter at its current position (r,c). If the splitter returns right, it moves
to (r,c+ 1); if down, it moves to (r + 1, ¢); if stop, it stops, and returns the
name of its current splitter. This gives each name to at most one process
(by Lemma 18.5.3); we also have to show that if at most m processes enter
the grid, every process stops at some splitter.

The argument for this is simple. Suppose some process p leaves the
grid on one of the 2m output wires. Look at the path it takes to get there
(see Figure 25.2; also taken from |]). Each splitter on this path must
handle at least two processes (or p would have stopped at that splitter, by
Lemma 18.5.4). So some other process leaves on the other output wire, either
right or down. If we draw a path from each of these wires that continues
right or down to the end of the grid, then at every step along this path
we either have a process stop or continue in this same direction as long as
there is a process left to do so. This means that on each of these m disjoint
paths, either some splitter stops a process, or some process reaches a final
output wire, each of which is at a distinct splitter. But this gives m distinct
processes in addition to p, for a total of m + 1 processes. It follows that:

Theorem 25.4.3. An m x m Moir-Anderson grid solves renaming for up
to m processes.

The time complexity of the algorithm is O(m): Each process spends at
most 4 operations on each splitter, and no process goes through more than

CHAPTER 25. RENAMING 259

LI LT
1 H s

Inl
} \

y

!—\‘!—\E!—\!—\T
o
LT‘

<

Figure 25.2: Path taken by a single process through a 6 x 6 Moir-Anderson
grid (heavy path), and the 6 disjoint paths it spawns (dashed paths).
(From | 8]

2m splitters. In general, any splitter network will take at least n steps to
stop n processes, because the adversary can run them all together in a horde
that drops only one process at each splitter.

If we don’t know k in advance, we can still guarantee names of size O(k?)
by carefully arranging them so that each k-by-k subgrid contains the first (g)
names. This gives an adaptive renaming algorithm (although the namespace
size is pretty high). We still have to choose our grid to be large enough for
the largest k we might actually encounter; the resulting space complexity is

O(n?).
With a slightly more clever arrangement of the splitters, it is possible to
reduce the space complexity to O(n?/?) | |. Whether further reductions

are possible is an open problem. Note however that linear time complexity
makes splitter networks uncompetitive with much faster randomized algo-
rithms (as we’ll see in §25.5), so this may not be a very important open
problem.

25.4.4 Getting to 2n — 1 names in polynomial space

From before, we have an algorithm that will get 2n — 1 names for n processes
out of N possible processes when run using O(N) space (for the enormous
snapshots). To turn this into a bounded-space algorithm, run Moir-Anderson

CHAPTER 25. RENAMING 260

first to get down to ©(k?) names, then run the previous algorithm (in ©(n?)
space) using these new names as the original names.

Since we didn’t prove anything about time complexity of the humongous-
snapshot algorithm, we can’t say much about the time complexity of this
combined one. Moir and Anderson suggest instead using an O(Nk?) algo-
rithm of Borowsky and Gafni to get O(k*) time for the combined algorithm.

This is close to the best known: a later paper by Afek and Merritt |]
holds the current record for deterministic adaptive renaming into 2k — 1
names at O(k?) individual steps. On the lower bound side, it is known that
Q(k) is a lower bound on the individual steps of any renaming protocol with
a polynomial output namespace | .

25.4.5 Renaming with test-and-set

Moir and Anderson give a simple renaming algorithm based on test-and-set
that is strong (k processes are assigned exactly the names 1...k), adaptive
(the time complexity to acquire a name is O(k)), and long-lived, which
means that a process can release its name and the name will be available to
processes that arrive later. In fact, the resulting algorithm gives long-lived
strong renaming, meaning that the set of names in use will always be no
larger than the set of processes that have started to acquire a name and not
yet finished releasing one; this is a little stronger than just saying that the
algorithm is strong and that it is long-lived separately.

The algorithm is simple: we have a line of test-and-set bits T[1]...T[n].
To acquire a name, a process starts at T'[1] and attempts to win each test-
and-set until it succeeds; whichever T[] it wins gives it name i. To release a
name, a process releases the test-and-set.

Without the releases, the same mechanism gives fetch-and-increment |
Fetch-and-increment by itself solves tight renaming (although not long-lived
renaming, since there is no way to release a name).

25.5 Randomized renaming

With randomization, we can beat both the 2k — 1 lower bound on the size of
the output namespace from | | and the Q(k) lower bound on individual
work from | |, achieving strong renaming with O(log k) expected
individual work [].

The basic idea is that we can use randomization for load balancing,
where we avoid the problem of having an army of processes marching together
with only a few peeling off at a time (as in splitter networks) by having the

CHAPTER 25. RENAMING 261

processes split up based on random choices. For example, if each process
generates a random name consisting of 2[lgn| bits, then it is reasonably
likely that every process gets a unique name in a namespace of size O(n?)
(we can’t hope for less than O(n?) because of the birthday paradox). But
we want all processes to be guaranteed to have unique names, so we need
some more machinery.

We also need the processes to have initial names; if they don’t, there is al-
ways some nonzero probability that two identical processes will flip their coins
in exactly the same way and end up with the same name. This observation
was formalized by Buhrman, Panconesi, Silvestri, and Vitdnyi [].

25.5.1 Randomized splitters

Attiya et al. | | suggested the use of randomized splitters in the
context of another problem (adaptive collect) that is closely related to
renaming.

A randomized splitter is just like a regular splitter, except that if a process
doesn’t stop it flips a coin to decide whether to go right or down. Randomized
splitters are nice because they usually split better than deterministic splitters:
if k processes reach a randomized splitter, with high probability no more
than k/2 + O(v/klog k) will leave on either output wire.

It’s not hard to show that a binary tree of these things of depth 2[lgn|
stops all but a constant expected number of processes on average;’ processes
that don’t stop can be dropped into a backup renaming algorithm (Moir-
Anderson, for example) with only a constant increase in expected individual
work.

Furthermore, the binary tree of randomized splitters is adaptive; if only
k processes show up, we only need O(log k) levels levels on average to split
them up. This gives renaming into a namespace with expected size O(k?) in
O(log k) expected individual steps.

25.5.2 Randomized test-and-set plus sampling

Subsequent work by Alistarh et al. | | showed how some of the same
ideas could be used to get strong renaming, where the output namespace has
size exactly n (note this is not adaptive; another result in the same paper

2The proof is to consider the expected number of pairs of processes that flip their coins
the same way for all 2[lgn] steps. This is at most (;) n~? < 1/2, so on average at most 1
process escapes the tree, giving (by symmetry) at most a 1/n chance that any particular
process escapes. Making the tree deeper can give any polynomial fraction of escapees while
still keeping O(log n) layers.

CHAPTER 25. RENAMING 262

gives adaptive renaming, but it’s not strong). There are two pieces to this
result: an implementation of randomized test-and-set called RatRace, and a
sampling procedure for getting names called ReShuffle.

The RatRace protocol implements a randomized test-and-set with O(log k)
expected individual work. The essential idea is to use a tree of randomized
splitters to assign names, then have processes walk back up the same tree
attempting to win a 3-process randomized test-and-set at each node (there
are 3 processes, because in addition to the winners of each subtree, we
may also have a process that stopped on that node in the renaming step);
this test-and-set is just a very small binary tree of 2-process test-and-sets
implemented using the algorithm of Tromp and Vitanyi |]. A gate bit
is added at the top as in the test-and-set protocol of Afek et al. |]
to get linearizability.

Once we have test-and-set, we could get strong renaming using a linear
array of test-and-sets as suggested by Moir and Anderson [|, but it’s
more efficient to use the randomization to spread the processes out. In
the ReShuffle protocol, each process chooses a name in the range [1...n]
uniformly at random, and attempts to win a test-and-set guarding that name.
If it doesn’t work, it tries again. Alistarh et al. show that this method
produces unique names for everybody in O(n log® n) total steps with high
probability. The individual step complexity of this algorithm, however, is
not very good: there is likely to be some unlucky process that needs £2(n)
probes (at an expected cost of O(logn) steps each) to find an empty slot.

25.5.3 Renaming with sorting networks

A later paper by Alistarh et al. |] reduces the cost of renaming still
further, getting O(log k) expected individual step complexity for acquiring a
name. The resulting algorithm is both adaptive and strong: with k processes,
only names 1 through k are used. We’ll describe the non-adaptive version
here.

The basic idea is to build a sorting network out of test-and-sets; the
resulting structure, called a renaming network, routes each process through
a sequence of test-and-sets to a unique output wire. Unlike a splitter network,
a renaming network uses the stronger properties of test-and-set to guarantee
that (once the dust settles) only the lowest-numbered output wires are chosen;
this gives strong renaming.

CHAPTER 25. RENAMING 263

Figure 25.3: A sorting network

25.5.3.1 Sorting networks

A sorting network is a kind of parallel sorting algorithm that proceeds in
synchronous rounds, where in each round the elements of an array at certain
fixed positions are paired off and swapped if they are out of order. The main
difference between a sorting network and a standard comparison-based sort
is that the choice of which positions to compare at each step is static, and
doesn’t depend on the outcome of previous comparisons; also, the only effect
of a comparison is possibly swapping the two values that were compared.

Sorting networks are drawn as in Figure 25.3. Each horizontal line or wire
corresponds to a position in the array. The vertical lines are comparators
that compare two values coming in from the left and swap the larger value to
the bottom. A network of comparators is a sorting network if the sequences
of output values is always sorted no matter what the order of values on the
inputs is.

The depth of a sorting network is the maximum number of comparators
on any path from an input to an output. The width is the number of wires;
equivalently, the number of values the network can sort. The sorting network
in Figure 25.3 has depth 3 and width 4.

Explicit constructions of sorting networks with width n and depth
O(log?n) are known |]. It is also known that sorting networks with
depth O(logn) exist |], but no explicit construction of such a network
is known.

CHAPTER 25. RENAMING 264

25.5.3.2 Renaming networks

To turn a sorting network into a renaming network, we replace the compara-
tors with test-and-set bits, and allow processes to walk through the network
asynchronously. This is similar to an earlier mechanism called a counting
network [], which used certain special classes of sorting networks as
counters, but here any sorting network works.

Each process starts on a separate input wire, and we maintain the
invariant that at most one process ever traverses a wire. It follows that each
test-and-set bit is only used by two processes. The first process to reach the
test-and-set bit is sent out the lower output, while the second is sent out the
upper output. If we imagine each process that participates in the protocol
as a one and each process that doesn’t as a zero, the test-and-set bit acts
as a comparator: if no processes show up on either input (two zeros), no
processes leave (two zeros again); if processes show up on both inputs (two
ones), processes leave on both (two ones again); and if only one process ever
shows up (a zero and a one), it leaves on the bottom output (zero and one,
sorted). Because the original sorting network sorts all the ones to the bottom
output wires, the corresponding renaming network sorts all the processes
that arrive to the bottom outputs. Label these outputs starting at 1 at the
bottom to get renaming.

Since each test-and-set involves at most two processes, we can carry them
out in O(1) expected register operations using, for example, the protocol
of Tromp and Vitanyi | |. The expected cost for a process to acquire
a name is then O(logn) (using an AKS | | sorting network). A more
complicated construction in the Alistarh et al. paper shows how to make
this adaptive, giving an expected cost of O(log k) instead.

The problem with using an AKS network is that the AKS result is
non-constructive: what Ajtai, Komlds, and Szemerédi show is that there
is a particular randomized construction of candidate sorting networks that
succeeds in producing a correct sorting network with nonzero (but very small)
probability. Other disturbing features of this result are that we have no
efficient way to test candidate sorting networks (determining if a network of
comparators is in fact a sorting network is co-NP-hard), and the constant
in the big-O for AKS is quite spectacularly huge. So it probably makes
more sense to think of renaming networks as giving renaming in O(log?n)
time, since this is the most efficient practical sorting network we currently
know about. This has led to efforts to produce O(log k)-work tight renaming
algorithms that don’t depend on AKS. So far this has not worked out in the

CHAPTER 25. RENAMING 265

standard shared-memory model, even allowing test-and-sets.’

The use of test-and-sets to route processes to particular names is similar to
the line of test-and-sets proposed by Moir and Anderson | | as described
in §25.4.5. Some differences between that protocol and renaming networks
is that renaming networks do not by themselves give fetch-and-increment
(although Alistarh et al. show how to build fetch-and-increment on top of
renaming networks at a small additional cost), and renaming networks do
not provide any mechanism for releasing names. The question of whether it
is possible to get cheap long-lived strong renaming is still open.

25.5.4 Randomized loose renaming

Loose renaming should be easier than strong renaming, and using a random-
ized algorithm it essentially reduces to randomized load balancing. A basic
approach is to use 2n names, and guard each with a test-and-set; because
less than half of the names are taken at any given time, each process gets a
name after O(1) tries and the most expensive renaming operation over all n
processes takes O(logn) expected steps.

A more sophisticated version of this strategy, which appears in |],
uses n(1 4 €) output names to get O(log log n) maximum steps. The intuition
for why this works is if n processes independently choose one of cn names
uniformly at random, then the expected number of collisions—pairs of
processes that choose the same name—is (3)/cn, or about n/2c. This may
seem like only a constant-factor improvement, but if we instead look at the
ratio between the survivors n/2c and the number of allocated names cn, we
have now moved from 1/c to 1/2¢2. The 2 gives us some room to reduce the
number of names in the next round, to cn/2, say, while still keeping a 1/c?
ratio of survivors to names.

So the actual renaming algorithm consists of allocating cn/2¢ names to
round ¢, and squaring the ratio of survivors to names in each rounds. It only
takes O(loglogn) rounds to knock the ratio of survivors to names below
1/n, so at this point it is likely that all processes will have finished. At the
same time, the sum over all rounds of the allocated names forms a geometric
series, so only O(n) names are needed altogether.

3The closest to this so far is an algorithm of Berenbrink et al. [], who use an
extended model that incorporates an extra primitive called a T7-register, which is basically
a collection of 2logn test-and-set objects that are restricted so that at most 7 < 2logn of
them can be set at a time. Adding this primitive to the model is not entirely cheating, as
the authors make a case that it could be plausibly implemented in hardware. But it does
mean that we don’t know what happens if we don’t have this additional primitive.

CHAPTER 25. RENAMING 266

Swept under the carpet here is a lot of careful analysis of the probabilities.
Unlike what happens with sifters (see §24.7), Jensen’s inequality goes the
wrong way here, so some additional technical tricks are needed (see the paper
for details). But the result is that only O(loglogn) rounds are to assign
every process a name with high probability, which is the best value currently
known.

There is a rather weak lower bound in the Alistarh et al. paper that shows
that Q(loglogn) steps are needed for some process in the worst case, under
the assumption that the renaming algorithm uses only test-and-set objects
and that a process acquires a name as soon as it wins some test-and-set
object. This does not give a lower bound on the problem in general, and
indeed the renaming-network based algorithms discussed previously do not
have this property. So the question of the exact complexity of randomized
loose renaming is still open.

Chapter 26

Software transactional
memory

Last updated 2011. Some material may be out of date. If you are interested
in software transactional memory from a theoretical perspective, there is a
more recent survey on this material by Attiya [/, available at http:
//www. eatcs. org/ images/bulletin/beatcsii2. pdf.

Software transactional memory, or STM for short, goes back to
Shavit and Touitou |] based on earlier proposals for hardware support
for transactions by Herlihy and Moss |]. Recently very popular in
programming language circles. We’ll give a high-level description of the
Shavit and Touitou results; for full details see the actual paper.

We start with the basic idea of a transaction. In a transaction, I read a
bunch of registers and update their values, and all of these operations appear
to be atomic, in the sense that the transaction either happens completely
or not at all, and serializes with other transactions as if each occurred
instantaneously. Our goal is to implement this with minimal hardware
support, and use it for everything.

Generally we only consider static transactions where the set of memory
locations accessed is known in advance, as opposed to dynamic transac-
tions where it may vary depending on what we read (for example, maybe
we have to follow pointers through some data structure). Static transactions
are easier because we can treat them as multi-word read-modify-write.

Implementations are usually non-blocking: some infinite stream of
transactions succeed, but not necessarily yours. This excludes the simplest
method based on acquiring locks, since we have to keep going even if a

267

http://www.eatcs.org/images/bulletin/beatcs112.pdf
http://www.eatcs.org/images/bulletin/beatcs112.pdf

CHAPTER 26. SOFTWARE TRANSACTIONAL MEMORY 268

lock-holder crashes, but is weaker than wait-freedom since we can have
starvation.

26.1 Motivation

Some selling points for software transactional memory:

1. We get atomic operations without having to use our brains much.
Unlike hand-coded atomic snapshots, counters, queues, etc., we have a
universal construction that converts any sequential data structure built
on top of ordinary memory into a concurrent data structure. This is
useful since most programmers don’t have very big brains. We also
avoid burdening the programmer with having to remember to lock
things.

2. We can build large shared data structures with the possibility of
concurrent access. For example, we can implement atomic snapshots so
that concurrent updates don’t interfere with each other, or an atomic
queue where enqueues and dequeues can happen concurrently so long
as the queue always has a few elements in it to separate the enqueuers
and dequeuers.

3. We can execute atomic operations that span multiple data structures,
even if the data structures weren’t originally designed to work together,
provided they are all implemented using the STM mechanism. This
is handy in classic database-like settings, as when we want to take $5
from my bank account and put it in yours.

On the other hand, we now have to deal with the possibility that opera-
tions may fail. There is a price to everything.

26.2 Basic approaches

o Locking (not non-blocking). Acquire either a single lock for all of
memory (doesn’t allow much concurrency) or a separate lock for each
memory location accessed. The second approach can lead to deadlock
if we aren’t careful, but we can prove that if every transaction acquires
locks in the same order (e.g., by increasing memory address), then
we never get stuck: we can order the processes by the highest lock
acquired, and somebody comes out on top. Note that acquiring locks in

CHAPTER 26. SOFTWARE TRANSACTIONAL MEMORY 269

increasing order means that I have to know which locks I want before
I acquire any of them, which may rule out dynamic transactions.

o Single-pointer compare-and-swap (called "Herlihy’s method” in [1,
because of its earlier use for constructing concurrent data structures
by Herlihy |). All access to the data structure goes through
a pointer in a CAS. To execute a transaction, I make my own copy
of the data structure, update it, and then attempt to redirect the
pointer. Advantages: trivial to prove that the result is linearizable (the
pointer swing is an atomic action) and non-blocking (somebody wins
the CAS); also, the method allows dynamic transactions (since you can
do anything you want to your copy). Disadvantages: There’s a high
overhead of the many copies,' and the single-pointer bottleneck limits
concurrency even when two transactions use disjoint parts of memory.

e Multiword RMW: This is the approach suggested by Shavit and Touitou,
which most subsequent work follows. As usually implemented, it only
works for static transactions. The idea is that I write down what
registers I plan to update and what I plan to do to them. I then
attempt to acquire all the registers. If I succeed, I update all the values,
store the old values, and go home. If I fail, it’s because somebody else
already acquired one of the registers. Since I need to make sure that
somebody makes progress (I may be the only process left alive), I'll
help that other process finish its transaction if possible. Advantages:
allows concurrency between disjoint transactions. Disadvantages: re-
quires implementing multi-word RMW—in particular, requires that
any process be able to understand and simulate any other process’s
transactions. Subsequent work often simplifies this to implementing
multi-word CAS, which is sufficient to do non-blocking multi-word
RMW since I can read all the registers I need (without any locking)
and then do a CAS to update them (which fails only if somebody else
succeeded).

26.3 Implementing multi-word RMW

We'll give a sketchy description of Shavit and Touitou’s method | 1,
which essentially follows the locking approach but allows other processes to
help dead ones so that locks are always released.

1 This overhead can be reduced in many cases by sharing components, a subject that
has seen much work in the functional programming literature. See for example []

CHAPTER 26. SOFTWARE TRANSACTIONAL MEMORY 270

The synchronization primitive used is LL/SC: LL (load-linked) reads
a register and leaves our ID attached to it, SC (store-conditional) writes a
register only if our ID is still attached, and clears any other IDs that might
also be attached. It’s easy to build a 1-register CAS (CAS1) out of this,
though Shavit and Touitou exploit some additional power of LL/SC.

26.3.1 Overlapping LL/SC

The particular trick that gets used in the Shavit-Touitou protocol is to
use two overlapping LL/SC pairs to do a CAS-like update on one memory
location while checking that another memory location hasn’t changed. The
purpose of this is to allow multiple processes to work on the same transaction
(which requires the first CAS to avoid conflicts with other transactions) while
making sure that slow processes don’t cause trouble by trying to complete
transactions that have already finished (the second check).

To see this in action, suppose we have a register r that we want to do
a CAS on, while checking that a second register status is L (as opposed to
success or failure). If we execute the code fragment in Algorithm 26.1, it will
succeed only if nobody writes to status between its LL and SC and similarly
for r; if this occurs, then at the time of LL(r), we know that status = L, and
we can linearize the write to r at this time if we restrict all access to r to go
through LL/SC.

1 if LL(status) = L then
if LL(r) = oldValue then

if SC(status, 1) = true then
L L SC(r, newValue)

B W N

Algorithm 26.1: Overlapping LL/SC

26.3.2 Representing a transaction

Transactions are represented by records rec. Each such record consists of a
status component that describes how far the transaction has gotten (needed
to coordinate cooperating processes), a version component that distinguishes
between versions that may reuse the same space (and that is used to shut
down the transaction when complete), a stable component that indicates
when the initialization is complete, an Op component that describes the
RMW to be performance, an array addresses[] of pointers to the arguments

CHAPTER 26. SOFTWARE TRANSACTIONAL MEMORY 271

to the RMW, and an array oldValues|] of old values at these addresses (for
the R part of the RMW). These are all initialized by the initiator of the
transaction, who will be the only process working on the transaction until it
starts acquiring locks.

26.3.3 Executing a transaction

Here we give an overview of a transaction execution:

1. Initialize the record rec for the transaction. (Only the initiator does
this.)

2. Attempt to acquire ownership of registers in addresses[]. See the
AcquireOwnerships code in the paper for details. The essential idea is
that we want to set the field owner[r| for each memory location r that
we need to lock; this is done using an overlapping LL/SC as described
above so that we only set owner|r] if (a) r is currently unowned, and
(b) nothing has happened to rec.status or rec.version. Ownership is
acquired in order of increasing memory address; if we fail to acquire
ownership for some r, our transaction fails. In case of failure, we set
rec.status to failure and release all the locks we’ve acquired (checking
rec.version in the middle of each LL/SC so we don’t release locks for
a later version using the same record). If we are the initiator of this
transaction, we will also go on to attempt to complete the transaction
that got in our way.

3. Do a LL on rec.status to see if AcquireOwnerships succeeded. If so,
update the memory, store the old results in oldValues, and release the
ownerships. If it failed, release ownership and help the next transaction
as described above.

Note that only an initiator helps; this avoids a long chain of helping and
limits the cost of each attempted transaction to the cost of doing two full
transactions, while (as shown below) still allowing some transaction to finish.

26.3.4 Proof of linearizability
Intuition is:

e Linearizability follows from the linearizability of the locking protocol:
acquiring ownership is equivalent to grabbing a lock, and updates occur
only when all registers are locked.

CHAPTER 26. SOFTWARE TRANSACTIONAL MEMORY 272

o Complications come from (a) two or more processes trying to complete
the same transaction and (b) some process trying to complete an old
transaction that has already terminated. For the first part we just
make sure that the processes don’t interfere with each other, e.g. I am
happy when trying to acquire a location if somebody else acquires it for
the same transaction. For the second part we have to check rec.status
and rec.version before doing just about anything. See the pseudocode
in the paper for details on how this is done.

26.3.5 Proof of non-blockingness

To show that the protocol is non-blocking we must show that if an unbounded
number of transactions are attempted, one eventually succeeds. First observe
that in order to fail, a transaction must be blocked by another transaction
that acquired ownership of a higher-address location than it did; eventually
we run out of higher-address locations, so there is some transaction that
doesn’t fail. Of course, this transaction may not succeed (e.g., if its initiator
dies), but either (a) it blocks some other transaction, and that transaction’s
initiator will complete it or die trying, or (b) it blocks no future transactions.
In the second case we can repeat the argument for the n — 1 surviving
processes to show that some of them complete transactions, ignoring the
stalled transaction from case (b).

26.4 Improvements

One downside of the Shavit and Touitou protocol is that it uses LL/SC very
aggressively (e.g., with overlapping LL/SC operations) and uses non-trivial
(though bounded, if you ignore the ever-increasing version numbers) amounts
of extra space. Subsequent work has aimed at knocking these down; for
example a paper by Harris, Fraser, and Pratt | | builds multi-register
CAS out of single-register CAS with O(1) extra bits per register. The proof
of these later results can be quite involved; Harris et al., for example, base
their algorithm on an implementation of 2-register CAS whose correctness
has been verified only by machine (which may be a plus in some views).

26.5 Limitations

There has been a lot of practical work on STM designed to reduce overhead
on real hardware, but there’s still a fair bit of overhead. On the theory side,

CHAPTER 26. SOFTWARE TRANSACTIONAL MEMORY 273

a lower bound of Attiya, Hillel, and Milani | | shows that any STM
system that guarantees non-interference between non-overlapping RMW
transactions has the undesirable property of making read-only transactions
as expensive as RMW transactions: this conflicts with the stated goals
of many practical STM implementations, where it is assumed that most
transactions will be read-only (and hopefully cheap). So there is quite a bit
of continuing research on finding the right trade-offs.

Chapter 27

Obstruction-freedom

Last updated 2011. Some material may be out of date. In particular: §27.3 has

not been updated to include some more recent results [, /;
and §27.4 mostly follows the conference version | | of the Ellen-Hendler-
Shavit paper and omits stronger results from the journal version [/.

The gold standard for shared-memory objects is wait-freedom: I can
finish my operation in a bounded number of steps no matter what anybody
else does. Like the gold standard in real life, this can be overly constraining.
So researchers have developed several weaker progress guarantees that are
nonetheless useful. The main ones are:

Lock-freedom An implementation is lock-free if infinitely many opera-
tions finish in any infinite execution. In simpler terms, somebody always
makes progress, but maybe not you. (Also called non-blocking.)

Obstruction-freedom An implementation is obstruction-free if, starting
from any reachable configuration, any process can finish in a bounded
number of steps if all of the other processes stop. This definition was
proposed in 2003 by Herlihy, Luchangco, and Moir | |. In lower
bounds (e.g., the Jayanti-Tan-Toueg bound described in Chapter 21)
essentially the same property is often called solo-terminating.

Both of these properties exclude traditional lock-based algorithms, where
some process grabs a lock, updates the data structure, and then release the
lock; if this process halts, no more operations finish. Both properties are
also weaker than wait-freedom. It is not hard to show that lock-freedom is a

274

CHAPTER 27. OBSTRUCTION-FREEDOM 275

stronger condition that obstruction-freedom: given a lock-free implementa-
tion, if we can keep some single process running forever in isolation, we get
an infinite execution with only finitely many completed operations. So we
have a hierarchy: wait-free > lock-free > obstruction-free > locking.

27.1 Why build obstruction-free algorithms?

The pitch is similar to the pitch for building locking algorithms: an obstruction-
free algorithm might be simpler to design, implement, and reason about
than a more sophisticated algorithm with stronger properties. Unlike locking
algorithms, an obstruction-free algorithm won’t fail because some process
dies holding the lock; instead, it fails if more than one process runs the
algorithm at the same time. This possibility may be something we can
avoid by building a contention manager, a high-level protocol that detects
contention and delays some processes to avoid it (say, using randomized
exponential back-off).

27.2 Examples

27.2.1 Lock-free implementations

Pretty much anything built using compare-and-swap or LL/SC ends up
being lock-free. A simple example would be a counter, where an increment
operation does

1 x <+ LL(C)
2 SC(C,z+1)

This is lock-free (the only way to prevent a store-conditional from suc-
ceeding is if some other store-conditional succeeds, giving infinitely many
successful increments) but not wait-free (I can starve). It’s also obstruction-
free, but since it’s already lock-free we don’t care about that.

27.2.2 Double-collect snapshots

Similarly, suppose we are doing atomic snapshots. We know that there
exist wait-free implementations of atomic snapshots, but they are subtle and
confusing. So we want to do something simpler, and hope that we at least
get obstruction-freedom.

CHAPTER 27. OBSTRUCTION-FREEDOM 276

If we do double-collects, that is, we have updates just write to a register
and have snapshots repeatedly collect until they get two collects in a row
with the same values, then any snapshot that finishes is correct (assuming no
updaters ever write the same value twice, which we can enforce with nonces).
This isn’t wait-free, because we can keep a snapshot going forever by doing
a lot of updates. It is lock-free, because we have to keep doing updates to
make this happen.

We can make this merely obstruction-free if we work hard (there is no rea-
son to do this, but it illustrates the difference between lock-freedom—good—and
obstruction-freedom—mnot so good). Suppose that every process keeps a count
of how many collects it has done in a register that is included in other pro-
cess’s collects (but not its own). Then two concurrent scans can stall each
other forever (the implementation is not lock-free), but if only one is running
it completes two collects in O(n) operations without seeing any changes (it
is obstruction-free).

27.2.3 Software transactional memory

Similar things happen with software transactional memory (see Chapter 26).
Suppose that I have an implementation of multiword compare-and-swap, and
I want to carry out a transaction. I read all the values I need, then execute
an MCAS operation that only updates if these values have not changed. The
resulting algorithm is lock-free (if my transaction fails, it’s because some
update succeeded). If however I am not very clever and allow some values to
get written outside of transactions, then I might only be obstruction-free.

27.2.4 Obstruction-free test-and-set

Algorithm 27.1 gives an implementation of 2-process test-and-set from atomic
registers that is obstruction-free; this demonstrates that obstruction-freedom
lets us evade the wait-free impossibility results implied by the consensus
hierarchy ([|, discussed in Chapter 19).

The basic idea goes back to the racing counters technique used in
consensus protocols starting with Chor, Israeli, and Li | |, and there is
some similarity to a classic randomized wait-free test-and-set due to Tromp
and Vitanyi [|. Each process keeps a position x in memory that it also
stores from time to time in its register a[i]. If a process gets 2 steps ahead
of the other process (as observed by comparing = to a[i — 1], it wins the
test-and-set; if a process falls one or more steps behind, it (eventually) loses.
To keep space down and guarantee termination in bounded time, all values

CHAPTER 27. OBSTRUCTION-FREEDOM 277

are tracked modulo 5.

z <+ 0
while true do
d+—x—all —1
if 0 =2 (mod 5) then
‘ return 0
else if § = —1 (mod 5) do
‘ return 1
else
x4+ (x+1) mod 5
ali] + x

© 0w N O oA W N

fun
o

Algorithm 27.1: Obstruction-free 2-process test-and-set

Why this works: observe that whenever a process computes 4, x is equal
to afi]; so 0 is always an instantaneous snapshot of a[i] —a[l —i|. If I observe
0 = 2 and return 0, your next read will either show you d = =2 or § = —1
(depending on whether you increment a[l — ¢] after my read). In the latter
case, you return 1 immediately; in the former, you return after one more
increment (and more importantly, you can’t return 0). Alternatively, if I ever
observe § = —1, your next read will show you either 6 = 1 or § = 2; in either
case, you will eventually return 0. (We chose 5 as a modulus because this is
the smallest value that makes the cases 6 = 2 and § = —2 distinguishable.)

We can even show that this is linearizable, by considering a solo execution
in which the lone process takes two steps and returns 0 (with two processes,
solo executions are the only interesting case for linearizability).

However, Algorithm 27.1 is not wait-free or even lock-free: if both
processes run in lockstep, they will see § = 0 forever. But it is obstruction-
free. If I run by myself, then whatever value of d I start with, I will see —1
or 2 after at most 6 operations.’

This gives an obstruction-free step complexity of 6, where the
obstruction-free step complexity is defined as the maximum number of
operations any process can take after all other processes stop. Note that our
usual wait-free measures of step complexity don’t make a lot of sense for
obstruction-free algorithms, as we can expect a sufficiently cruel adversary
to be able to run them up to whatever value he likes.

I The worst case is where an increment by my fellow process leaves § = —1 just before
my increment.

CHAPTER 27. OBSTRUCTION-FREEDOM 278

Building a tree of these objects as in §23.2 gives n-process test-and-set
with obstruction-free step complexity O(logn).

27.2.5 An obstruction-free deque

(We probably aren’t going to do this in class.)

So far we don’t have any good examples of why we would want to be
obstruction-free if our algorithm is based on CAS. So let’s describe the case
Herlihy et al. suggested.

A deque is a generalized queue that supports push and pop at both ends
(thus it can be used as either a queue or a stack, or both). A classic problem
in shared-memory objects is to build a deque where operations at one end of
the deque don’t interfere with operations at the other end. While there exist
lock-free implementation with this property, there is a particularly simple
implementation using CAS that is only obstruction-free.

Here’s the idea: we represent the deque as an infinitely-long array of
compare-and-swap registers (this is a simplification from the paper, which
gives a bounded implementation of a bounded deque). The middle of the
deque holds the actual contents. To the right of this region is an infinite
sequence of right null (RN) values, which are assumed never to appear
as a pushed value. To the left is a similar infinite sequence of left null
(LN) values. Some magical external mechanism (called an oracle in the
paper) allows processes to quickly find the first null value at either end of
the non-null region; the correctness of the protocol does not depend on the
properties of the oracle, except that it has to point to the right place at least
some of the time in a solo execution. We also assume that each cell holds a
version number whose only purpose is to detect when somebody has fiddled
with the cell while we aren’t looking (if we use LL/SC, we can drop this).

Code for rightPush and rightPop is given in Algorithm 27.2 (the code
for leftPush and leftPop is symmetric).

It’s easy to see that in a solo execution, if the oracle doesn’t lie, either
operation finishes and returns a plausible value after O(1) operations. So
the implementation is obstruction-free. But is it also correct?

To show that it is, we need to show that any execution leaves the deque
in a sane state, in particular that it preserves the invariant that the deque
consists of left-nulls followed by zero or more values followed by right-nulls,
and that the sequence of values in the queue is what it should be.

This requires a detailed case analysis of which operations interfere with
each other, which can be found in the original paper. But we can give some
intuition here. The two CAS operations in rightPush or rightPop succeed

CHAPTER 27. OBSTRUCTION-FREEDOM 279

1 procedure rightPush(v)

2 while true do

3 k < oracle(right)

4 prev <— alk — 1]

5 next < alk|

6 if prev.value # RN and next.value = RN then

7 if CAS(a[k — 1], prev, [prev.value, prev.version + 1]) then
8 if CAS(a[k], next, [v, next.version + 1]) then

9 L we win, go home

10 procedure rightPop()

11 while true do

12 k < oracle(right)

13 cur < alk — 1]

14 next <— alk|

15 if cur.value # RN and next.value = RN then

16 if cur.value = LN and A[k — 1] = cur then

17 ‘ return empty

18 else if CAS(a[k], next, [RN, next.version 4 1]) do
19 if CAS(alk — 1], cur, [RN, cur.version + 1]) then
20 L return cur.value

Algorithm 27.2: Obstruction-free deque

CHAPTER 27. OBSTRUCTION-FREEDOM 280

only if neither register was modified between the preceding read and the
CAS. If both registers are unmodified at the time of the second CAS, then
the two CAS operations act like a single two-word CAS, which replaces the
previous values (top, RN) with (top, value) in rightPush or (top, value) with
(top, RN) in rightPop; in either case the operation preserves the invariant.
So the only way we get into trouble is if, for example, a rightPush does a
CAS on alk — 1] (verifying that it is unmodified and incrementing the version
number), but then some other operation changes a[k — 1] before the CAS on
alk]. If this other operation is also a rightPush, we are happy, because it
must have the same value for k (otherwise it would have failed when it saw
a non-null in a[k — 1]), and only one of the two right-pushes will succeed
in applying the CAS to a[k]. If the other operation is a rightPop, then it
can only change a[k — 1] after updating a[k]; but in this case the update to
alk] prevents the original right-push from changing a[k]. With some more
tedious effort we can similarly show that any interference from leftPush or
leftPop either causes the interfering operation or the original operation to
fail. This covers 4 of the 16 cases we need to consider. The remaining cases
will be brushed under the carpet to avoid further suffering.

27.3 Boosting obstruction-freedom to wait-freedom

Naturally, having an obstruction-free implementation of some object is
not very helpful if we can’t guarantee that some process eventually gets
its unobstructed solo execution. In general, we can’t expect to be able
to do this without additional assumptions; for example, if we could, we
could solve consensus using a long sequence of adopt-commit objects with
no randomization at all.” So we need to make some sort of assumption
about timing, or find somebody else who has already figured out the right
assumption to make.

Those somebodies turn out to be Faith Ellen Fich, Victor Luchangco,
Mark Moir, and Nir Shavit, who give an algorithm for boosting obstruction-
freedom to wait-freedom []. The timing assumption is unknown-
bound semisynchrony, which means that in any execution there is some
maximum ratio R between the shortest and longest time interval between
any two consecutive steps of the same non-faulty process, but the processes

2This fact was observed by Herlihy et al. [] in their original obstruction-free
paper; it also implies that there exists a universal obstruction-free implementation of
anything based on Herlihy’s universal construction.

CHAPTER 27. OBSTRUCTION-FREEDOM 281

don’t know what this ratio is.> In particular, if I can execute more than R
steps without you doing anything, I can reasonably conclude that you are
dead—the semisynchrony assumption thus acts as a failure detector.

The fact that R is unknown might seem to be an impediment to using
this failure detector, but we can get around this. The idea is to start with
a small guess for R; if a process is suspected but then wakes up again, we
increment the guess. Eventually, the guessed value is larger than the correct
value, so no live process will be falsely suspected after this point. Formally,
this gives an eventually perfect (¢ P) failure detector, although the algorithm
does not specifically use the failure detector abstraction.

To arrange for a solo execution, when a process detects a conflict (because
its operation didn’t finish quickly), it enters into a “panic mode” where pro-
cesses take turns trying to finish unmolested. A fetch-and-increment register
is used as a timestamp generator, and only the process with the smallest
timestamp gets to proceed. However, if this process is too sluggish, other
processes may give up and overwrite its low timestamp with oo, temporarily
ending its turn. If the sluggish process is in fact alive, it can restore its low
timestamp and kill everybody else, allowing it to make progress until some
other process declares it dead again.

The simulation works because eventually the mechanism for detecting
dead processes stops suspecting live ones (using the technique described
above), so the live process with the winning timestamp finishes its operation
without interference. This allows the next process to proceed, and eventually
all live processes complete any operation they start, giving the wait-free
property.

The actual code is in Algorithm 27.3. It’s a rather long algorithm but
most of the details are just bookkeeping.

The preamble before entering PANIC mode is a fast-path computation
that allows a process that actually is running in isolation to skip testing
any timestamps or doing any extra work (except for the one register read of
PANIC). The assumption is that the constant B is set high enough that any
process generally will finish its operation in B steps without interference. If
there is interference, then the timestamp-based mechanism kicks in: we grab
a timestamp out of the convenient fetch-and-add register and start slugging
it out with the other processes.

(A side note: while the algorithm as presented in the paper assumes
a fetch-and-add register, any timestamp generator that delivers increasing

3This is a much older model, which goes back to a famous paper of Dwork, Lynch, and
Stockmeyer [].

CHAPTER 27. OBSTRUCTION-FREEDOM

282

W N =

© W N, Tk

= e e e e e
o A W N = O

17
18
19
20
21
22
23
24
25
26

27

28
29
30
31
32
33
34

if -PANIC then
execute up to B steps of the underlying algorithm
if we are done then return

PANIC < true // enter panic mode

myTimestamp < fetchAndIncrement()

Ali] <~ 1 // reset my activity counter

while true do

Ti] < myTimestamp

minTimestamp < myTimestamp; winner < i

for j«<1...n,5#1ido

otherTimestamp « T'[J]

if otherTimestamp < minTimestamp then
T'|winner| < oo // not looking so winning any more
minTimestamp < otherTimestamp; winner < j

else if otherTimestamp < co do

| Tl < o

if i = winner then
repeat
execute up to B steps of the underlying algorithm
if we are done then
Ti] + oo
PANIC <« false
return
else
Ali] + Ali] + 1
PANIC <« true
until 7Ti] = oo
repeat

a < Alwinner]
wait a steps
winnerTimestamp < T'[winner]

until @ = A[winner] or winnerTimestamp # minTimestamp
if winnerTimestamp = minTimestamp then
L T'|winner] < oo // kill winner for inactivity

Algorithm 27.3: Obstruction-freedom booster from |]

CHAPTER 27. OBSTRUCTION-FREEDOM 283

values over time will work. So if we want to limit ourselves to atomic registers,
we could generate timestamps by taking snapshots of previous timestamps,
adding 1, and appending process IDs for tie-breaking.)

Once I have a timestamp, I try to knock all the higher-timestamp processes
out of the way (by writing co to their timestamp registers). If I see a smaller
timestamp than my own, I'll drop out myself (T'[i] +— 00), and fight on behalf
of its owner instead. At the end of the j loop, either I've decided I am the
winner, in which case I try to finish my operation (periodically checking 7'[i]
to see if I've been booted), or I've decided somebody else is the winner, in
which case I watch them closely and try to shut them down if they are too
slow (T'[winner] <— c0). I detect slow processes by inactivity in A[winner];
similarly, I signal my own activity by incrementing A[i]. The value in A[i]
is also used as an increasing guess for the time between increments of Ali];
eventually this exceeds the R(B + O(1)) operations that I execute between
incrementing it.

We still need to prove that this all works. The essential idea is to show
that whatever process has the lowest timestamp finishes in a bounded number
of steps. To do so, we need to show that other processes won’t be fighting it
in the underlying algorithm. Call a process active if it is in the loop guarded
by the “if i = winner” statement. Lemma 1 from the paper states:

Lemma 27.3.1 (| , Lemma 1]). If processes i and j are both active,
then T[i] = oo or T[j] = oo.

Proof. Assume without loss of generality that ¢ last set T'[i] to myTimestamp
in the main loop after j last set T'[j]. In order to reach the active loop, 4
must read T'[j]. Either T'[j] = oo at this time (and we are done, since only j
can set T'[j] < 00), or T'[j] is greater than i’s timestamp (or else ¢ wouldn’t
think it’s the winner). In the second case, i sets T[j] = oo before entering
the active loop, and again the claim holds.]

The next step is to show that if there is some process ¢ with a minimum
timestamp that executes infinitely many operations, it increments A[i] in-
finitely often (thus eventually making the failure detector stop suspecting it).
This gives us Lemma 2 from the paper:

Lemma 27.3.2 (] , Lemma 2]). Consider the set of all processes that
execute infinitely many operations without completing an operation. Suppose
this set is non-empty, and let i hold the minimum timestamp of all these
processes. Then i is not active infinitely often.

CHAPTER 27. OBSTRUCTION-FREEDOM 284

Proof. Suppose that from some time on, ¢ is active forever, i.e., it never
leaves the active loop. Then T[i] < co throughout this interval (or else 4
leaves the loop), so for any active j, T[j] = oo by the preceding lemma. It
follows that any active T'[j] leaves the active loop after B + O(1) steps of j
(and thus at most R(B + O(1)) steps of 7). Can j re-enter? If j’s timestamp
is less than 4’s, then j will set T'[i] = oo, contradicting our assumption. But
if j’s timestamp is greater than i’s, j will not decide it’s the winner and
will not re-enter the active loop. So now we have ¢ alone in the active loop.
It may still be fighting with processes in the initial fast path, but since ¢
sets PANIC every time it goes through the loop, and no other process resets
PANIC (since no other process is active), no process enters the fast path after
some bounded number of ¢’s steps, and every process in the fast path leaves
after at most R(B + O(1)) of i’s steps. So eventually i is in the loop alone
forever—and obstruction-freedom means that it finishes its operation and
leaves. This contradicts our initial assumption that ¢ is active forever. [J

So now we want to argue that our previous assumption that there exists
a bad process that runs forever without winning leads to a contradiction, by
showing that the particular ¢ from Lemma 27.3.2 actually finishes (note that
Lemma 27.3.2 doesn’t quite do this—we only show that ¢ finishes if it stays
active long enough, but maybe it doesn’t stay active).

Suppose i is as in Lemma 27.3.2. Then 4 leaves the active loop infinitely
often. So in particular it increments A[i] infinitely often. After some finite
number of steps, A[i] exceeds the limit R(B+ O(1)) on how many steps some
other process can take between increments of A[i]. For each other process j,
either j has a lower timestamp than ¢, and thus finishes in a finite number of
steps (from the premise of the choice of 7), or j has a higher timestamp than
i. Once we have cleared out all the lower-timestamp processes, we follow the
same logic as in the proof of Lemma 27.3.2 to show that eventually (a) i sets
Ti] < oo and PANIC = true, (b) each remaining j observes T'[i] < co and
PANIC = true and reaches the waiting loop, (c) all such j wait long enough
(since A[i] is now very big) that ¢ can finish its operation. This contradicts
the assumption that ¢ never finishes the operation and completes the proof.

27.3.1 Cost

If the parameters are badly tuned, the potential cost of this construction is
quite bad. For example, the slow increment process for A[i] means that the
time a process spends in the active loop even after it has defeated all other
processes can be as much as the square of the time it would normally take

CHAPTER 27. OBSTRUCTION-FREEDOM 285

to complete an operation alone—and every other process may pay R times
this cost waiting. This can be mitigated to some extent by setting B high
enough that a winning process is likely to finish in its first unmolested pass
through the loop (recall that it doesn’t detect that the other processes have
reset T'[i] until after it makes its attempt to finish). An alternative might
be to double A[i] instead of incrementing it at each pass through the loop.
However, it is worth noting (as the authors do in the paper) that nothing
prevents the underlying algorithm from incorporating its own contention
management scheme to ensure that most operations complete in B steps
and PANIC mode is rarely entered. So we can think of the real function of
the construction as serving as a backstop to some more efficient heuristic
approach that doesn’t necessarily guarantee wait-free behavior in the worst
case.

27.4 Lower bounds for lock-free protocols

So far we have seen that obstruction-freedom buys us an escape from the
impossibility results that plague wait-free constructions, while still allowing
practical implementations of useful objects under plausible timing assump-
tions. Yet all is not perfect: it is still possible to show non-trivial lower
bounds on the costs of these implementations in the right model. We will
present one of these lower bounds, the linear-contention lower bound of Ellen,
Hendler, and Shavit [].* First we have to define what is meant by
contention.

27.4.1 Contention

A limitation of real shared-memory systems is that physics generally won’t
permit more than one process to do something useful to a shared object
at a time. This limitation is often ignored in computing the complexity of
a shared-memory distributed algorithm (and one can make arguments for
ignoring it in systems where communication costs dominate update costs in
the shared-memory implementation), but it is useful to recognize it if we
can’t prove lower bounds otherwise. Complexity measures that take the cost
of simultaneous access into account go by the name of contention.

The particular notion of contention used in the Ellen et al. paper is an
adaptation of the contention measure of Dwork, Herlihy, and Waarts |].

4The result first appeared in FOCS in 2005 |], with a small but easily fixed bug in
the definition of the class of objects the proof applies to. We’ll use the corrected definition
from the journal version.

CHAPTER 27. OBSTRUCTION-FREEDOM 286

The idea is that if I access some shared object, I pay a price in memory
stalls for all the other processes that are trying to access it at the same time
but got in first. In the original definition, given an execution of the form
Ad1¢s ... prpA’, where all operations ¢; are applied to the same object as ¢,
and the last operation in A is not, then ¢ incurs £ memory stalls. Ellen et
al. modify this to only count sequences of non-trivial operations, where an
operation is non-trivial if it changes the state of the object in some states
(e.g., writes, increments, compare-and-swap—but not reads). Note that this
change only strengthens the bound they eventually prove, which shows that
in the worst case, obstruction-free implementations of operations on objects
in a certain class incur a linear number of memory stalls (possibly spread
across multiple base objects).

27.4.2 The class G

The Ellen et al. bound is designed to be as general as possible, so the
authors define a class G of objects to which it applies. As is often the case
in mathematics, the underlying meaning of G is “a reasonably large class
of objects for which this particular proof works,” but the formal definition
is given in terms of when certain operations of the implemented object are
affected by the presence or absence of other operations—or in other words,
when those other operations need to act on some base object in order to let
later operations know they occurred.

An object is in class G if it has some operation Op and initial state s
such that for any two processes p and ¢ and every sequence of operations

ApA’, where
1. ¢ is an instance of Op executed by p,
2. no operation in A or A’ is executed by p,
3. no operation in A’ is executed by ¢, and
4. no two operations in A’ are executed by the same process;

then there exists a sequence of operations) by ¢ such that for every sequence
H¢H' where

1. HH' is an interleaving of @ and the sequences AA’|r for each process
T?

2. H’ contains no operations of ¢, and

CHAPTER 27. OBSTRUCTION-FREEDOM 287

3. no two operations in H' are executed by the same process;

then the return value of ¢ to p changes depending on whether it occurs after
A¢ or Ho.

This is where “makes the proof work” starts looking like a much simpler
definition. The intuition is that deep in the guts of the proof, we are going to
be injecting some operations of ¢ into an existing execution (hence adding Q),
and we want to do it in a way that forces g to operate on some object that p
is looking at (hence the need for A¢ to return a different value from H¢),
without breaking anything else that is going on (all the rest of the conditions).
The reason for pulling all of these conditions out of the proof into a separate
definition is that we also want to be able to show that particular classes of
real objects satisfy the conditions required by the proof, without having to
put a lot of special cases into the proof itself.

Lemma 27.4.1. A mod-m fetch-and-increment object, with m > n, is in G.

Proof. This is a classic proof-by-unpacking-the-definition. Pick some ex-
ecution A¢A’ satisfying all the conditions, and let a be the number of
fetch-and-increments in A and a’ the number in A’. Note a’ < n — 2, since
all operations in A’ are by different processes.

Now let @Q be a sequence of n — a’ — 1 fetch-and-increments by ¢, and let
HH' be an interleaving of) and the sequences AA’|r for each r, where H'
includes no two operation of the same process and no operations at all of
q. Let h, i/ be the number of fetch-and-increments in H, H’, respectively.
Then h+h =a+d +(n—ad —-1)=n+a—1and b <n—2 (since H'
contains at most one fetch-and-increment for each process other than p and
q). This givesh> (n4+a+1)—(n—2)=a+1and h <n+a—1, and the
return value of ¢ after H¢ is somewhere in this range mod m. But none of
these values is equal to a mod m (that’s why we specified m > n, although
as it turns out m > n — 1 would have been enough), so we get a different
return value from H¢ than from Ag. O

As a corollary, we also get stock fetch-and-increment registers, since we
can build mod-m registers from them by taking the results mod m.
A second class of class-G objects is obtained from snapshot:

Lemma 27.4.2. Single-writer snapshot objects are in G.°

SFor the purposes of this lemma, “single-writer” means that each segment can be
written to by only one process, not that there is only one process that can execute update
operations.

CHAPTER 27. OBSTRUCTION-FREEDOM 288

Proof. Let AgpA’ be as in the definition, where ¢ is a scan operation. Let Q
consist of a single update operation by ¢ that changes its segment. Then
in the interleaved sequence HH’, this update doesn’t appear in H' (it’s
forbidden), so it must be in H. Nobody can overwrite the result of the
update (single-writer!), so it follows that H¢ returns a different snapshot
from Ag. O

27.4.3 The lower bound proof

Theorem 27.4.3 ([, Theorem 5.2]). For any obstruction-free imple-
mentation of some object in class G from RMW base objects, there is an
execution in which some operation incurs n — 1 stalls.

We can’t do better than n — 1, because it is easy to come up with
implementations of counters (for example) that incur at most n — 1 stalls.
Curiously, we can even spread the stalls out in a fairly arbitrary way over
multiple objects, while still incurring at most n — 1 stalls. For example, a
counter implemented using a single counter (which is a RMW object) gets
exactly n — 1 stalls if n — 1 processes try to increment it at the same time,
delaying the remaining process. At the other extreme, a counter implemented
by doing a collect over n — 1 single-writer registers (also RMW objects) gets
at least n — 1 stalls—distributed as one per register—if each register has a
write delivered to it while the reader waiting to read it during its collect. So
we have to allow for the possibility that stalls are concentrated or scattered
or something in between, as long as the total number adds up at least n — 1.

The proof supposes that the theorem is not true and then shows how to
boost an execution with a maximum number k£ < n — 1 stalls to an execution
with & + 1 stalls, giving a contradiction. (Alternatively, we can read the
proof as giving a mechanism for generating an (n — 1)-stall execution by
repeated boosting, starting from the empty execution.)

This is pretty much the usual trick: we assume that there is a class of
bad executions, then look for an extreme member of this class, and show that
it isn’t as extreme as we thought. In doing so, we can restrict our attention
to particularly convenient bad executions, so long as the existence of some
bad execution implies the existence of a convenient bad execution.

Formally, the authors define a k-stall execution for process p as an
execution Foq ...o0; where E and o; are sequence of operations such that:

1. p does nothing in F,

2. Sets of processes Sj, j = 1...4, whose union S = U§:1 S; has size k, are
each covering objects O; after E with pending non-trivial operations,

CHAPTER 27. OBSTRUCTION-FREEDOM 289

3. Each o; consists of p applying events by itself until it is about to apply
an event to O;, after which each process in S; accesses Oj, after which
p accesses ;.

4. All processes not in S are idle after E,

5. p starts at most one operation of the implemented object in o7 ... oy,
and

6. In every extension of F in which p and the processes in S don’t take
steps, no process applies a non-trivial event to any base object accessed
in o;...0;. (We will call this the weird condition below.)

So this definition includes both the fact that p incurs k stalls and some
other technical details that make the proof go through. The fact that p
incurs k stalls follows from observing that it incurs |S}| stalls in each segment
oj, since all processes in S; access O; just before p does.

Note that the empty execution is a 0-stall execution (with ¢ = 0) by the
definition. This shows that a k-stall execution exists for some k.

Note also that the weird condition is pretty strong: it claims not only
that there are no non-trivial operation on O1... Qi in 7, but also that there
are no non-trivial operations on any objects accessed in o7 ... o;, which may
include many more objects accessed by p.%

We’ll now show that if a k-stall execution exists, for £ < n — 2, then a
(k+E)-stall execution exists for some k' > 0. Iterating this process eventually
produces an (n — 1)-stall execution.

Start with some k-stall execution Eo; ...o;. Extend this execution by
a sequence of operations ¢ in which p runs in isolation until it finishes its
operation ¢ (which it may start in o if it hasn’t done so already), then each
process in S runs in isolation until it completes its operation. Now linearize
the high-level operations completed in Eo; ...o0;0 and factor them as A¢pA’
as in the definition of class G.

Let g be some process not equal to p or contained in any S; (this is where
we use the assumption k < n —2). Then there is some sequence of high-level
operations @) of g such that H¢ does not return the same value as A¢ for
any interleaving H H' of (Q with the sequences of operations in AA’ satisfying
the conditions in the definition. We want to use this fact to shove at least
one more memory stall into Eo ...o;0, without breaking any of the other
conditions that would make the resulting execution a (k + k)-stall execution.

6And here is where I screwed up in class on 2011-11-14, by writing the condition as the
weaker requirement that nobody touches O ... O;.

CHAPTER 27. OBSTRUCTION-FREEDOM 290

Consider the extension 7 of E where ¢ runs alone until it finishes every
operation in . Then 7 applies no nontrivial events to any base object
accessed in o7 . ..o, (from the weird condition on k-stall executions) and
the value of each of these base objects is the same after ' and E7, and thus
is also the same after Foq...0, and EToq ... 0.

Now let o’ be the extension of EToy...0, defined analogously to o:
p finishes, then each process in each S; finishes. Let H¢H' factor the
linearization of EToy...0;0". Observe that HH' is an interleaving of @ and
the high-level operations in AA’, that H’' contains no operations by ¢ (they
all finished in 7, before ¢ started), and that H’ contains no two operations by
the same process (no new high-level operations start after ¢ finishes, so there
is at most one pending operation per process in S that can be linearized
after ¢).

Now observe that ¢ does some non-trivial operation in 7 to some base
object accessed by p in o. If not, then p sees the same responses in ¢’ and in
o, and returns the same value, contradicting the definition of class G.

So does ¢’s operation in 7 cause a stall in ¢? Not necessarily: there
may be other operations in between. Instead, we’ll use the existence of ¢’s
operation to demonstrate the existence of at least one operation, possibly by
some other process we haven’t even encountered yet, that does cause a stall.
We do this by considering the set F' of all finite extensions of F that are free
of p and S operations, and look for an operation that stalls p somewhere in
this infinitely large haystack.

Let O;41 be the first base object accessed by p in ¢ that is also accessed
by some non-trivial event in some sequence in F'. We will show two things:
first, that O;41 exists, and second, that 0,1 is distinct from the objects
O1...0;. The first part follows from the fact that 7 is in F', and we have
just shown that 7 contains a non-trivial operation (by ¢) on a base object
accessed by p in ¢. For the second part, we use the weird condition on k-stall
executions again: since every extension of F in F'is ({p} U S)-free, no process
applies a non-trivial event to any base object accessed in o7 ...0;, which
includes all the objects Oy ... O;.

You’ve probably guessed that we are going to put our stalls in on O;41.
We choose some extension X from F' that maximizes the number of processes
with simultaneous pending non-trivial operations on O;11 (we’ll call this set
of processes S;11 and let |S;11| be the number &’ > 0 we’ve been waiting for),
and let £’ be the minimum prefix of X such that these pending operations
are still pending after EE’.

We now look at the properties of EE’. We have:

CHAPTER 27. OBSTRUCTION-FREEDOM 291

o EF'is p-free (follows from E being p-free and E’ € F, since everything
in F is p-free).

« Each process in S; has a pending operation on O; after EE’ (it did
after E, and didn’t do anything in E’).

This means that we can construct an execution EFE’oq ...0;0,11 that
includes k + k' memory stalls, by sending in the same sequences o7 ...o; as
before, then appending a new sequence of events where (a) p does all of its
operations in o up to its first operation on O;;1; then (b) all the processes in
the set S;;1 of processes with pending events on O;41 execute their pending
events on O;11; then (c) p does its first access to O; 41 from o. Note that in
addition to giving us k + k' memory stalls, 0,11 also has the right structure
for a (k + k)-stall execution. But there is one thing missing: we have to
show that the weird condition on further extensions still holds.

Specifically, letting S” = SUS, 11, we need to show that any ({p}US’)-free
extension « of FE' includes a non-trivial access to a base object accessed
in 01...0;41. Observe first that since a is ({p} U S’)-free, then F'a is
({p} U S)-free, and so it’s in F: so by the weird condition on Eo; ...0;, F'«
doesn’t have any non-trivial accesses to any object with a non-trivial access
in 1 ...0;. So we only need to squint very closely at ¢;4+1 to make sure it
doesn’t get any objects in there either.

Recall that 0,41 consists of (a) a sequence of accesses by p to objects
already accessed in o7 ...0; (already excluded); (b) an access of p to O;41;
and (c) a bunch of accesses by processes in S; ;1 to O;11. So we only need
to show that « includes no non-trivial accesses to O;11. Suppose that it
does: then there is some process that eventually has a pending non-trivial
operation on O;11 somewhere in «. If we stop after this initial prefix o/ of «,
we get k' + 1 processes with pending operations on O;,1 in EE'a’. But then
E’a’ is an extension of E with k' + 1 processes with a simultaneous pending
operation on O; 1. This contradicts the choice of X to maximize k’. So if
our previous choice was in fact maximal, the weird condition still holds, and
we have just constructed a (k + k’)-stall execution. This concludes the proof.

27.4.4 Consequences

We’ve just shown that counters and snapshots have (n — 1)-stall executions,
because they are in the class G. A further, rather messy argument (given in
the Ellen et al. paper) extends the result to stacks and queues, obtaining a
slightly weaker bound of n total stalls and operations for some process in

CHAPTER 27. OBSTRUCTION-FREEDOM 292

the worst case.” In both cases, we can’t expect to get a sublinear worst-case
bound on time under the reasonable assumption that both a memory stall
and an actual operation takes at least one time unit. This puts an inherent
bound on how well we can handle hot spots for many practical objects, and
means that in an asynchronous system, we can’t solve contention at the
object level in the worst case (though we may be able to avoid it in our

applications).
But there might be a way out for some restricted classes of objects. We saw
in Chapter 22 that we could escape from the Jayanti-Tan-Toueg [| lower

bound by considering bounded objects. Something similar may happen here:
the Fich-Herlihy-Shavit bound on fetch-and-increments requires executions
with n(n — 1)¢ 4+ n increments to show n — 1 stalls for some fetch-and-
increment if each fetch-and-increment only touches d objects, and even for
d = logn this is already superpolynomial. The max-register construction
of a counter [| doesn’t help here, since everybody hits the switch
bit at the top of the max register, giving n — 1 stalls if they all hit it at the
same time. But there might be some better construction that avoids this.

27.4.5 More lower bounds

There are many more lower bounds one can prove on lock-free implementa-
tions, many of which are based on previous lower bounds for stronger models.
We won’t present these in class, but if you are interested, a good place to
start is | .

27.5 Practical considerations

Also beyond the scope of what we can do, there is a paper by Fraser
and Harris | | that gives some nice examples of the practical trade-
offs in choosing between multi-register CAS and various forms of software
transactional memory in implementing lock-free data structures.

"This is out of date: Theorem 6.2 of [] gives a stronger result than what’s in

[I

Chapter 28

BG simulation

The Borowsky-Gafni simulation [|, or BG simulation for short, is
a deterministic, wait-free algorithm that allows ¢ + 1 processes to collectively
construct a simulated execution of a system of n > ¢ processes of which ¢t may
crash. For both the simulating and simulated system, the underlying shared-
memory primitives are atomic snapshots; these can be replaced by atomic
registers using any standard snapshot algorithm. The main consequence
of the BG simulation is that the question of what decision tasks can be
computed deterministically by an asynchronous shared-memory system that
tolerates t crash failures reduces to the question of what can be computed by
a wait-free system with exactly ¢+ 1 processes. This is an easier problem, and
in principle can be solved exactly using the topological approach described
in Chapter 29.

The intuition for how this works is that the ¢ 4+ 1 simulating processes
solve a sequence of agreement problems to decide what the n simulated
processes are doing; these agreement problems are structured so that the
failure of a simulator stops at most one agreement. So if at most ¢ of the
simulating processes can fail, only ¢ simulated processes get stuck as well.

We’ll describe here a version of the BG simulation that appears in a follow-
up paper by Borowsky, Gafni, Lynch, and Rajsbaum | |. This gives a
more rigorous presentation of the mechanisms of the original Borowsky-Gafni
paper, and includes a few simplifications.

28.1 High-level strategy

To avoid having to simulate specific choices of operations, the BG simulation
assumes that all simulated processes alternate between taking snapshots and

293

CHAPTER 28. BG SIMULATION 294

doing updates. This assumption is not very restrictive, because two snapshots
with no intervening update are equivalent to two snapshots separated by an
update that doesn’t change anything, and two updates with no intervening
snapshot can be replaced by just the second update, since the adversary
could choose to schedule them back-to-back anyway:.

This approach means that we can determine the actions of some simulated
process by determining the sequence of snapshots that it receives. So the
goal will be to allow any of the real processes to take a snapshot on behalf
of any of the simulated processes, and then coordinate these snapshots via
weak consensus objects to enforce consistency if more than one real process
tries to simulate a step of the same simulated process. The key tool for doing
this is a safe agreement object, described in §28.2.

28.2 Safe agreement

A naive approach to simulate n processes using f 4+ 1 processes would be
to lock each simulated process behind a mutex, and have the real processes
take turns grabbing a lock, simulating a step, and releasing the lock. If
we could somehow guarantee that processes never get stuck waiting for a
particular mutex just because some process died holding the lock, then we
could treat any blocked simulated process as dead, and charge its death to
the dead process holding the lock. This would give the mapping of at most
f simulated failures to f real failures we are hoping for. But this depends
on a lot of subtleties in how we implement the mutexes, so the standard BG
simulation goes through a weakening of consensus instead.

The safe agreement mechanism performs agreement without running
into the FLP bound, by providing a weaker termination condition. It is
guaranteed to terminate only if there are no failures by any process during
an initial, bounded, unsafe section of its execution, but if a process fails
later, it can prevent termination. Processes can detect when they leave the
unsafe section and have to wait for other processes only in the safe section.
This means that they can dovetail spinning in the safe sections of multiple
safe agreement objects without getting stuck entirely, even if dead processes
in the unsafe sections are blocking some of the objects.

Each process i starts the agreement protocol with a propose;(v) event
for its input value v. At some point during the execution of the protocol, the
process receives a notification safe;, followed later (if the protocol finishes)
by a second notification agree,(v’) for some output value v’. It is guaranteed
that the protocol terminates as long as all processes continue to take steps

CHAPTER 28. BG SIMULATION 295

until they receive the safe notification, and that the usual validity (all
outputs equal some input) and agreement (all outputs equal each other)
conditions hold. There is also a wait-free progress condition that the safe;
notices do eventually arrive for any process that doesn’t fail, no matter what
the other processes do (so nobody gets stuck in their unsafe section).

Pseudocode for a safe agreement object is given in Algorithm 28.1. This
is a translation of the description of the algorithm in | |, which is
specified at a lower level using I/O automata.’

// propose,;(v)

Alt] < (v,1)

2 if snapshot(A) contains (j,2) for some j # i then
// Back off

Ju—

Ali] + (v,0)
4 else
// Advance
L Ali] + (v,2)
// safe;
6 repeat
‘ s < snapshot(A)
8 until s does not contain (j,1) for any j
// agree;
9 return s[j].value where j is smallest index with s[j].level = 2

Algorithm 28.1: Safe agreement (adapted from | D

The communication mechanism is a snapshot object containing a pair
Ali] = (value;, level;) for each process 4, initially (L,0). When a process
carries out propose;(v), it sets A[i] to (v, 1), advancing to level 1. It then
looks around to see if anybody else is at level 2; if so, it backs off to 0, and if
not, it advances to 2. In either case it then spins until it sees a snapshot with
nobody at level 1, and agrees on the level-2 value with the smallest index 1.

The safe; transition occurs when the process leaves level 1 (no matter
which way it goes). This satisfies the progress condition, since there is no
loop before this, and guarantees termination if all processes leave their unsafe
interval, because no process can then wait forever for the last 1 to disappear.

To show agreement, observe that at least one process advances to level 2
(because the only way a process doesn’t is if some other process has already

!The I/O automaton model is described in Appendix J.

CHAPTER 28. BG SIMULATION 296

advanced to level 2), so any process i that terminates observes a snapshot s
that contains at least one level-2 tuple and no level-1 tuples. This means
that any process j whose value is not already at level 2 in s can at worst
reach level 1 after s is taken. But then j sees a level-2 tuples and backs
off. Tt follows that any other process i’ that takes a later snapshot s’ that
includes no level-1 tuples sees the same level-2 tuples as i, and computes the
same return value. (Validity also holds, for the usual trivial reasons.)

28.3 The basic simulation algorithm

The basic BG simulation uses a single snapshot object A with t+1 components
and an infinite array of safe agreement objects Sj;.

Each component A[i] of A belongs to one of the ¢+ 1 simulating processes,
and is a vector of values A[i][j] that process i believes process j will have
written at some point during the simulated execution. These values are
tagged with round numbers: each A[i][j] holds a tuple (v, r) representing the
value v that process ¢ determines process j would have written after taking
r snapshots.

The contents of these snapshots are obtained from the S, objects. The
inputs to S, are simulated snapshots, and the output sj. of S, represents
the value of the r-th snapshot performed by simulated process j.

Each simulating process i cycles through all simulated processes j. Simu-
lating one round of a particular process j involves four phases:

1. Make an initial guess for sj. by taking a snapshot of A and taking the
value with the largest round number for each component A[—][k].

2. Initiate the safe agreement protocol S;, using this guess. It continues
to run Sy, until it leaves the unsafe interval.

3. Attempt to finish S;,, by performing one iteration of the loop from
Algorithm 28.1. If this iteration doesn’t succeed, move on to simulating
j + 1 (but come back to this phase for j eventually).

4. If Sj, terminates, compute a new value vj, for j to write based on the
simulated snapshot returned by S;,, and update A[i][j] with (v, 7).

Actually implementing this while maintaining an abstraction barrier
around safe agreement is tricky. One approach might be to have each process
1 manage a separate thread for each simulated process j, and wrap the unsafe
part of the safe agreement protocol inside a mutex just for threads of i. This

CHAPTER 28. BG SIMULATION 297

guarantees that ¢ enters the unsafe part of any safe agreement object on
behalf of only one simulated j at a time, while preventing delays in the safe
part of S, from blocking it from finishing some other Sj/,.

28.4 Effect of failures

So now what happens if a simulating process i fails? This won’t stop any
other process i’ from taking snapshots on behalf of j, or from generating its
own values to put in A['][j]. What it may do is prevent some safe agreement
object S, from terminating. The termination property of Sj, means that
this can only occur if the failure occurs while 7 is in the unsafe interval for
Sjr—Dbut since 7 is only in the unsafe interval for at most one Sj, at a time,
this stalls only one simulated process j. It doesn’t block any 7', because any
other ¢’ is guaranteed to leave its own unsafe interval for S}, after finitely
many steps, and though it may waste some effort waiting for S, to finish,
once it is in the safe interval it doesn’t actually wait for it before moving on
to other simulated 7’.

It follows that each failure of a simulating process knocks out at most
one simulated process. So a wait-free system with ¢ + 1 processes—and thus
at most ¢ failures in the executions we care about—will produces at most ¢
failures inside the simulation.

28.5 Inputs and outputs

Two details not specified in the description above are how ¢ determines
j’s initial input and how ¢ determines its own outputs from the outputs
of the simulated processes. For the basic BG simulation, this is pretty
straightforward: we use the safe agreement objects S;o to agree on j’s input,
after each i proposes its own input vector for all j based on its own input to
the simulator protocol. For outputs, 7 waits for at least n — ¢ of the simulated
processes to finish, and computes its own output based on what it sees.
One issue that arises here is that we can only use the simulation to
solve colorless tasks, which are decision problems where any process can
return the output of any other process without causing trouble.? This works
for consensus or k-set agreement, but fails pretty badly for renaming. The
extended BG simulation, due to Gafni |], solves this problem by

2The term “colorless” here comes from use of colors to represent process IDs in the
topological approach described in Chapter 29. These colors aren’t really colors, but
topologists like coloring nodes better than assigning them IDs.

CHAPTER 28. BG SIMULATION 298

mapping each simulating process p to a specific simulated process ¢,, and
using a more sophisticated simulation algorithm to guarantee that g, doesn’t
crash unless p does; details can be found in Gafni’s paper. There is also a
later paper by Imbs and Raynal | | that simplifies some details of the
construction. Here, we will limit ourselves to the basic BG simulation.

28.6 Correctness of the simulation

To show that the simulation works, observe that we can extract a simulated
execution by applying the following rules:

1. The round-r write operation of j is represented by the first writ