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Abstract

We consider a scenario in which anonymous, finite-state sensing devices are deployed in
an ad-hoc communication network of arbitrary size and unknown topology, and explore what
properties of the network graph can be stably computed by the devices. We show that they
can detect whether the network has degree bounded by a constantd, and, if so, organize a
computation that achieves asymptotically optimal linear memory use. We define a model of
stabilizing inputs to such devices and show that a large class of predicates of the multiset of
final input values are stably computable in any weakly-connected network. We also show that
nondeterminism in the transition function does not increase the class of stably computable
predicates.

1 Introduction

In some applications, a large number of sensors will be deployed without fine control of their
locations and communication patterns in the target environment. To enable the distributed gather-
ing and processing of information, the sensors must constitute themselves into an ad-hoc network
and use it effectively. A fundamental question in this context is whether there are protocols that
determine enough about the topological properties of this network to exploit its full potential for
distributed computation, when sensors are severely limited in their computational power.

We consider a model introduced in [2] in which communication is represented by pairwise
interactions of anonymous finite-state devices in networks of finite but unbounded size. These
systems correspond to sensor networks with intermittent two-way communications between nearby
nodes. Acommunication graph describes which pairs of nodes are close enough to eventually
interact. Our goal is to explore what graph-theoretic properties of the communication graph are
stably computable, where a property is stably computable if all sensors eventually converge to
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the correct answer. The model assumes that the devices have no identifiers and only a few bits
of memory each. Because each device is so limited, their collective ability to achieve nontrivial
computation must be based on their capacity to organize a distributed computation in the network.

In this setting, the structure of the network has a profound influence on its computational poten-
tial. If n is the number of vertices in the communication graph, previous results show thatO(log n)
bits of memory are sufficient for a nondeterministic Turing machine to simulate any protocol in the
all-pairs communication graph, in which every pair of vertices is joined by an edge [2]. In contrast,
we give a protocol that can determine whether the communication graph is a directed cycle and if
so, use it as a linear memory ofO(n) bits, which is asymptotically optimal in terms of memory
capacity. More generally, we show that for everyd there is a protocol that can organize any com-
munication graph of maximum degreed into a linear memory ofO(n) bits, also asymptotically
optimal.

For general communication graphs, we show that any property that is determined by the exis-
tence of a fixed finite subgraph is stably computable, as are Boolean combinations of such prop-
erties. In addition, there are protocols to compute the following graph properties: whether the
communication graphG is a directed star, whetherG is a directed arborescence, whetherG con-
tains a directed cycle, and whetherG contains a directed cycle of odd length. Furthermore, for
any positive integerd, there is a protocol that stabilizes to a properd-coloring of anyd-colorable
graph, but does not stabilize if the graph is notd-colorable.

In the model of [2], the sensor readings were all assumed to be available as inputs at the start
of the computation. In this paper, we extend the model to allow for a more realistic scenario of
stabilizing inputs, that may change finitely many times before attaining a final value. In addition to
allowing fluctuations in the inputs, these results allow composition of stabilizing protocols: a pro-
tocol that works with stabilizing inputs can use the stabilizing outputs of another protocol. We gen-
eralize two fundamental theorems to the case of stabilizing inputs: all thePresburger-definable
predicates are stably computable in the all-pairs graph, and any predicate stably computable in
the all-pairs graph is stably computable in any weakly connected graph with the same number of
nodes.

Another powerful tool for the design of protocols is to permit a nondeterministic transition
function; we give a simulation to show that this does not increase the class of stably computable
predicates.

1.1 Other related work

Population protocols and similar models as defined in [1,2,7] have connections to a wide range of
theoretical models and problems involving automata of various kinds, including Petri nets [3,8,9,
19], semilinear sets and Presburger expressions [11], vector addition systems [13], the Chemical
Abstract Machine [4,14] and other models of communicating automata [5,20]. See [2] for a more
complete discussion of these connections.

The potential for distributed computation during aggregation of sensor data is studied in [15,
18], and distributed computation strategies for conserving resources in tracking targets in [10,22].
Issues of random mobility in a wireless packet network are considered in [12].
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Passively mobile sensor networks have been studied in several practical application contexts.
Thesmart dust project [6, 17] designed a cloud of tiny wireless microelectromechanical sensors
(MEMS) with wireless communication capacity, where each sensor or “mote” contains sensing
units, computing circuits, bidirectional wireless capacity, and a power supply, while being inex-
pensive enough to deploy massively. More recently, Thorstensenet al. [21] introduced a low-cost,
wireless communication network system called theElectronic Shepherd, used to monitor the
state of a flock of sheep using short-hop communication between sensors augmented by the flock-
ing behavior of the sheep. This work, focused on actual deployment rather than theoretical results,
demonstrates the practicality of a passively-mobile communications model.

2 The model of stable computation

We represent a network communication graph by a directed graphG = (V, E) with n vertices
numbered1 throughn and no multi-edges or self-loops. Each vertex represents a finite-state sens-
ing device, and an edge(u, v) indicates the possibility of a communication betweenu andv in
which u is the initiator andv is the responder.1 We assumeG is weakly connected, that is, be-
tween any pair of nodes there is a path (disregarding the direction of the edges in the path). The
all-pairs graph contains all edges(u, v) such thatu 6= v.

We first define protocols without inputs, which is sufficient for our initial results on graph
properties, and extend the definition to allow stabilizing inputs in Section 4.

A protocol consists of a finite set ofstatesQ, an initial state q0 ∈ Q, anoutput function
O : Q → Y , whereY is a finite set of output symbols, and atransition function δ that maps every
pair of states(p, q) to a nonempty set of pairs of states. If(p′, q′) ∈ δ(p, q), we call(p, q) 7→ (p′, q′)
a transition .

The transition function, and the protocol, isdeterministic if δ(p, q) always contains just one
pair of states. In this case we writeδ(p, q) = (p′, q′) and defineδ1(p, q) = p′ andδ2(p, q) = q′.

A configuration is a mappingC : V → Q specifying the state of each device in the network.
We assume that there is a global start signal transmitted simultaneously to all the devices, e.g.,
from a base station, that puts them all in the initial state and starts the computation. Theinitial
configuration assigns the initial stateq0 to every device.

Let C and C ′ be configurations, and letu, v be distinct nodes. We say thatC goes toC ′

via pair e = (u, v), denotedC
e→ C ′, if the pair (C ′(u), C ′(v)) is in δ(C(u), C(v)) and for all

w ∈ V −{u, v} we haveC ′(w) = C(w). We say thatC can go toC ′ in one step, denotedC → C ′,
if C

e→ C ′ for some edgee ∈ E. We write C
∗→ C ′ if there is a sequence of configurations

C = C0, C1, . . . , Ck = C ′, such thatCi → Ci+1 for all i, 0 ≤ i < k, in which case we say thatC ′

is reachablefrom C.
A computation is a finite or infinite sequence of population configurationsC0, C1, . . . such that

for eachi, Ci → Ci+1. An infinite computation isfair if for every pair of population configurations
C andC ′ such thatC → C ′, if C occurs infinitely often in the computation, thenC ′ also occurs

1The distinct roles of the two devices in an interaction is a fundamental assumption of asymmetry in our model;
symmetry-breaking therefore does not arise as a problem within the model.
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infinitely often in the computation. We remark that by induction, ifC
∗→ C ′ andC occurs infinitely

often in a fair computation, thenC ′ also occurs infinitely often in a fair computation.

2.1 Leader election

As an example, we define a simple deterministic leader election protocol that succeeds in any
network communication graph. The states of the protocol are{1, 0} where1 is the initial state.
The transitions are defined by

(1) (1, 1) 7→ (0, 1)
(2) (1, 0) 7→ (0, 1)
(3) (0, 1) 7→ (1, 0)
(4) (0, 0) 7→ (0, 0)

We think of 1 as the leader mark. In every infinite fair computation of this protocol starting
with the initial configuration in any communication graph, after some finite initial segment of the
computation, every configuration has just one vertex labeled1 (the leader), and every vertex has
label 1 in infinitely many different configurations of the computation. Thus, eventually there is
one “leader” mark that hops incessantly around the graph, somewhat like an ancient English king
visiting the castles of his lords. Note that in general the devices have no way of knowing whether
a configuration with just one leader mark has been reached yet.

2.2 The output of a computation

Our protocols are not designed to halt, so there is no obvious fixed time at which to view the output
of the computation. Rather, we say that the output of the computation stabilizes if it reaches a point
after which no device can subsequently change its output value, no matter how the computation
proceeds thereafter. Stability is a global property of the graph configuration, so individual devices
in general do not know when stability has been reached.2

We define anoutput assignmenty as a mapping fromV to the output symbolsY . We extend
the output mapO to take a configurationC and produce an output assignmentO(C) defined by
O(C)(v) = O(C(v)). A configurationC is said to beoutput-stable if O(C ′) = O(C) for all C ′

reachable fromC. Note that we do not require thatC = C ′, only that their output assignments
be equal. An infinite computationoutput-stabilizes if it contains an output-stable configuration
C, in which case we say that itstabilizes to output assignmenty = O(C). Clearly an infinite
computation stabilizes to at most one output assignment.

The output of a finite computation is the output assignment of its last configuration. The output
of an infinite computation that stabilizes to output assignmenty is y; the output is undefined if the
computation does not stabilize to any output assignment. Because of the nondeterminism inherent
in the choice of encounters, the same initial configuration may lead to different computations that
stabilize to different output assignments.

2With suitable stochastic assumptions on the rate at which interactions occur, it is possible to bound the expected
number of interactions until the output stabilizes, a direction explored in [2].
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2.3 Graph properties

We are interested in what properties of the network communication graph can be stably computed
by protocols in this model. Agraph property is a functionP from graphsG to the set{0, 1}where
P (G) = 1 if and only if G has the corresponding property. We are interested in families of graphs,
G1,G2, . . ., whereGn is a set of network graphs withn vertices. Theunrestricted family of graphs
contains all possible network communication graphs. Theall-pairs family of graphs contains for
eachn just the all-pairs graph withn vertices. For everyd, the family of d degree-bounded
graphs contains all the network communication graphs in which the in-degree and out-degree of
each vertex is bounded byd. Similarly, the family ofd colorable graphs contains all the network
communication graphs properly colorable with at mostd colors.

We say that a protocolA stably computes the graph propertyP in the family of graphs
G1,G2, . . . if for every graphG in the family, every infinite fair computation ofA in G starting
with the initial configuration stabilizes to the constant output assignment equal toP (G). Thus the
output of every device stabilizes to the correct value ofP (G).

3 Example: isG a directed cycle?

In this section, we show that the property ofG being a directed cycle is stably computable in
the unrestricted family of graphs. Once a directed cycle is recognized, it can be organized (using
leader-election techniques) to simulate a Turing machine tape ofn cells for the processing of
inputs, which vastly increases the computational power over the original finite-state devices, and
is optimal with respect to the memory capacity of the network.

Theorem 1 WhetherG is a directed cycle is stably computable in the unrestricted family of
graphs.

Proof sketch: A weakly connected directed graphG is a directed cycle if and only if the
in-degree and out-degree of each vertex is1.

Lemma 2 WhetherG has a vertex of in-degree greater than1 is stably computable in the unre-
stricted family of graphs.

We give a protocol to determine whether some vertex inG has in-degree at least2. The protocol
is deterministic and has 4 states:{−, I, R, Y }, where− is the initial state,I andR stand for
“initiator” and “responder” andY indicates that there is a vertex of in-degree at least2 in the
graph. The transitions as follows, wherex is any state and unspecified transitions do not change
their inputs:

(1) (−,−) 7→ (I, R)
(2) (I, R) 7→ (−,−)
(3) (−, R) 7→ (Y, Y )
(4) (Y, x) 7→ (Y, Y )
(5) (x, Y ) 7→ (Y, Y )
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The output map takesY to 1 and the other states to0. StateY is contagious, spreading to all
states if it ever occurs. If every vertex has in-degree at most1 then only transitions of types (1)
and (2) can occur, and if some vertex has in-degree at least2, then in any fair computation some
transition of type (3) must eventually occur.

An analogous four-state protocol detects whether any vertex has out-degree at least2. We must
also guarantee that every vertex has positive in-degree and out-degree.

Lemma 3 WhetherG has a vertex of in-degree0 is stably computable in the unrestricted family
of graphs.

There is a deterministic eight-state protocol for this predicate, which we omit for space reasons.
The following deterministic two-state protocol stably labels each vertex withZ if it has in-degree
0 andP if it has in-degree greater than0. The initial state isZ. The transitions are given by the
following, wherex andy are any states:

(1) (x, y) 7→ (x, P )

To detect whether all states are labeledP in the limit, we would like to treat the outputs of this
protocol as the inputs to a another protocol to detect any occurrences ofZ in the limit. However, to
do this, the protocol to detect any occurrences ofZ must cope with inputs that may change before
they stabilize to their final values. In the next section we show that all the Presburger predicates (of
which the problem ofZ detection is a simple instance) are stably computable with such “stabilizing
inputs” in the unrestricted family of graphs, establishing the existence of the required protocol.

Similarly, there is a protocol that stably computes whether every vertex has out-degree at least
1. By running all four protocols in parallel, we may stably compute the property: does every
vertex have in-degree and out-degree exactly1? Thus, there is a protocol that stably computes the
property ofG being a directed cycle for the unrestricted family of graphs, proving Theorem 1.

These techniques generalize easily to recognize other properties characterized by conditions
on vertices having in-degrees or out-degrees of zero or one. A directed line has one vertex of
in-degree zero, one vertex of out-degree zero, and all other vertices have in-degree and out-degree
one. An out-directed star has one vertex of in-degree zero and all other vertices of in-degree one
and out-degree zero, and similarly for an in-directed star. An out-directed arborescence has one
vertex of in-degree zero and all other vertices have in-degree one, and similarly for an in-directed
arborescence.

Theorem 4 The graph properties of being a directed line, a directed star, or a directed arbores-
cence are stably computable in the unrestricted family of graphs.

In a later section, we generalize Theorem 1 to show that for anyd there is a protocol to recog-
nize whether the network communication graph has in-degree and out-degree bounded byd and to
organize it asO(n) cells of linearly ordered memory if so. We now turn to the issue of inputs.
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4 Computing with stabilizing inputs

We define a model of stabilizing inputs to a network protocol, in which the input to each node may
change finitely many times before it stabilizes to a final value. We are interested in what predicates
of the final input assignment are stably computable. An important open question is whether any
predicate stably computable in a family of graphs is stably computable with stabilizing inputs in
the same family of graphs.

Though we do not fully answer this question, we show that a large class of protocols can be
adapted to stabilizing inputs by generalizing two theorems from [2] to the case of stabilizing inputs:
all Presburger predicates are stably computable with stabilizing inputs in the all-pairs family of
graphs, and any predicate that can be stably computed with stabilizing inputs in the all-pairs family
of graphs can be stably computed with stabilizing inputs in the unrestricted family of graphs.

We assume that there is a finite set of input symbols, and each device has a separate input port
at which its current input symbol (representing a sensed value) is available at every computation
step. Between any two computation steps, the inputs to any subset of the devices may change
arbitrarily.

Formally, we extend the definition of protocols by adding finite setX of input symbols, and
stipulating that the transition function will map(Q×X)× (Q×X) to a singleton subset ofQ×Q
(for deterministic protocols), or a nonempty subset ofQ × Q (for nondeterministic protocols.) A
configuration C is a mapping ofV to (Q×X), specifying the state and input for every vertex in the
graph. Using the standard projection functions,π1(C(u)) is the state ofu in C andπ2(C(u)) is the
input ofu in C. An initial configuration has every vertex in the initial state, and arbitrary inputs.
Theoutput of a configuration is obtained by applying the output map to the state components of
the configuration.

We revise the definition of a one-step transition between configurations as follows. LetC and
C ′ be configurations, and letu, v be distinct nodes. We say thatC goes toC ′ via pair e = (u, v),
denotedC

e→ C ′, if (π1(C
′(u)), π1(C

′(v))) ∈ δ(C(u), C(v)) and for allw ∈ V − {u, v}, we have
π1(C

′(w)) = π1(C(w)). That is, the states ofu andv in C ′ have been updated according toδ,
using the states and inputs ofu andv in C, and the state of every other vertexw is unchanged from
C to C ′. Note that there is no constraint on the inputs inC ′.

Computations are defined as previously. However, we need to distinguish those computations
in which the inputs stabilize. We say a computationC0, C1, C2, . . . hasstabilizing inputs if there
is some finite stepk after which the input to each vertex does not change. Thus, there is afinal
input assignmentx : V → X such thatx(v) = π2(Cl(v)) for everyv ∈ V and everyl ≥ k. A
computationC0, C1, C2, . . . hasunchanging inputsif for eachv, the input tov never changes, that
is, π2(Ck(v)) = π2(C0(v)) for all k. Unchanging inputs are a special case of stabilizing inputs.

A computationC0, C1, C2, . . . with stabilizing inputs isfair if for every configurationC that
occurs infinitely often in the computation, and every configurationC ′ such that the input assign-
ment inC ′ is equal to the input assignment inC andC → C ′, C ′ also occurs infinitely often in the
computation. These definitions specialize to the previous ones (with no input) whenX is a single
letter alphabet.

We now consider predicates defined not just on graphs, but on graphs with vertices labeled by
input symbols. Alabeled graph property P is a mapping from pairs(G, x) to {0, 1}, whereG
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is a network graph andx is an input assignment forG. A protocolA stably computes the labeled
graph propertyP with stabilizing inputs in the family of graphsG1,G2, . . . if for everyn and every
graphG ∈ Gn, and every input assignmentx to G, every fair computation ofA in G that starts
from an initial configuration and has inputs stabilizing to final assignmentx stabilizes to the output
P (G, x). We will use the termpredicate to mean a labeled graph property hereafter. We note
that in the special case of the all-pairs graph, the graph structure is completely symmetric and the
stably computable predicates depend only on the multiset of inputs determined byx.

By running several protocols in parallel, and defining the output at each vertex to be a Boolean
combination of the outputs of the individual protocols, we have the following.

Lemma 5 Any Boolean combination of a finite set of predicates stably computable with stabilizing
inputs in a family of graphsG1,G2, . . . is stably computable with stabilizing inputs in the same
family of graphs.

4.1 Nondeterministic protocols

To simplify the proofs of the existence of protocols, we first show how nondeterministic protocols
can be transformed into deterministic protocols. Intuitively, this is because a deterministic protocol
can exploit the nondeterminism inherent in the choice of which interaction occurs.

A nondeterministic d-coloring protocol. To illustrate the power of nondeterministic protocols,
we describe a very simple protocol that is guaranteed to stabilize on ad-coloring of any network
communication graph in thed-colorable family of graphs. The statesQ are the integers0 through
d− 1 inclusive, thought of as colors, with initial state0. The goal is to stabilize in a configuration
in which no two adjacent vertices have the same state. For eachi ∈ Q there is one transition rule:

(1) (i, i) 7→ (j, k)

wherej andk are any elements ofQ. All other transitions are the identity. Transitions of type
(1) select a “conflict edge,” that is, an edge joining two vertices currently assigned the same color,
and arbitrarily recolor the two endpoints. The fairness condition guarantees that the appropriate
(j, k)’s will eventually be chosen.

To see that ifG is d-colorable, any fair computation must stabilize to a correctd-coloring of
G, observe that from any configuration containing a conflict edge there is a reachable configura-
tion containing no conflict edges. IfG is not d-colorable, the coloring never stabilizes in a fair
computation.

Theorem 6 For every nondeterministic protocolA there exists a deterministic protocolB such
that if A stably computes a predicateP with stabilizing inputs in a family of graphs, thenB also
stably computesP with stabilizing inputs in the same family of graphs.

Proof sketch: Let A be a nondeterministic protocol with statesQ, initial stateq0, input
symbolsX, output symbolsY , output mapO, and transition functionδ. We describe a simulation
of A that works in graphs with at least3 vertices. For smaller graphs, we combine the simulation
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with a protocol that tests whethern = 1 or n = 2 (using the fact that Presburger predicates ofn
can be stably computed) and stabilizes to the correct results in those cases.

Let m be the maximum cardinality of any of the setsδ((q, a), (q′, a′)) for (q, a), (q′, a′) ∈
Q × X. For each pair of labels(q, a), (q′, a′) ∈ Q × X, select an arbitrary surjective function
f(q,a),(q′,a′) mapping{0, 1, . . . ,m− 1} to δ((q, a), (q′, a′)).

We describe a protocolB to simulateA. The states consist of three components: (1) a leader
mark∗ or its absence−. (2) a stateq ∈ Q. (3) a choice counter, consisting of an integer between
0 andm − 1 inclusive. The output mapO′ is O′(xqc) = O(q). The initial state of every device is
∗q00.

The transitions are

(1) ((∗qc, a), (∗q′c′, a′)) 7→ (−qc, ∗q′c′)
(2) ((∗qc, a), (−q′c′, a′)) 7→ (−qc, ∗q′(c′ + 1))
(3) ((−q′c′, a′), (∗qc, a)) 7→ (∗q′(c′ + 1),−qc)
(4) ((−qc, a), (−q′c′, a′)) 7→ (−rc,−r′c′)

where the increments are made modulom and the pair of states(r, r′) is the element ofδ((q, a), (q′, a′))
selected by the functionf(q,a),(q′,a′)(c). Thus, in transitions of type (4), the value of the choice
counter of the initiator is used to make a deterministic choice of an element ofδ((q, a), (q′, a′)).
The role of the leader mark, or nondeterminizer, is to hop around the graph incrementing choice
counters as it goes; this is the function of the first three types of transitions.

4.2 The Presburger predicates

The Presburger graph predicates form a useful class of predicates on the multiset of input symbols,
including such things as “all the inputs are a’s”, “at least 5 inputs are a’s”, “the number of a’s is
congruent to3 modulo5”, and “twice the number of a’s exceeds three times the number of b’s” and
Boolean combinations of such predicates. Every Presburger graph predicate is stably computable
with unchanging inputs in the all-pairs family of graphs [2]. The main result of this subsection is
the following generalization.

Theorem 7 Every Presburger graph predicate is stably computable with stabilizing inputs in the
family of all-pairs graphs.

We define the Presburger graph predicates as those expressible in the following expression
language.3 For each input symbola ∈ X, there is a variable#(a) that represents the number of
occurrences ofa in the input. Aterm is a linear combination of variables with integer coefficients,
possibly modulo an integer. Anatom is two terms joined by one of the comparison operators:
<,≤, =,≥, >. An expressionis a Boolean combination of atoms.

Thus, if the input alphabetX = {a, b, c}, the predicate “all the inputs are a’s” can be expressed
as#(b) + #(c) = 0, the predicate that the number of a’s is congruent to 3 modulo 5 can be
expressed as(#(a) mod 5) = 3, and the predicate that twice the number of a’s exceeds three
times the number of b’s by2#(a) > 3#(b).

3These are closely related to the Presburger integer predicates defined in [2]. Details will be given in the full paper.
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Majority To indicate the ideas of the general proof, we show how to generalize the basic predi-
cate of majority to stabilizing inputs. The input and output alphabets are{0, 1}. The value of the
majority predicate is 1 if there are more 1’s than 0’s in the final input assignment; otherwise, it is
0. We describe a deterministic protocol with states consisting of a leader bit, a most recent input
bit, and a counter with integer values from−2 to 2. The initial state has leader bit equal to1, most
recent input bit equal to0, and counter equal to−1. The output is1 if the counter is positive;
otherwise, it is0.

The following invariants are preserved in the computation: (1) any vertex with leader bit1 and
a negative counter has most recent input bit0 and any vertex with leader bit1 and a positive counter
has most recent input bit1, and (2) the sum of the counters of all vertices with leader bit equal to
1 is equal to the number of1’s in the most recent input bits minus the number of0’s in the most
recent input bits. This will show that the following protocol correctly computes majority.

In an interaction, the two devices first update their most recent input bit as follows. If the
current input is equal to the most recent input bit, no updating is necessary. Otherwise, if the
leader bit is0, the leader bit is set to1 and the counter is set to2 if the current input is1 and−2 if
the current input is0. If the leader bit is1, then2 is added to the counter if the current input is1,
or 2 is subtracted from the counter if the current input is0. (We must show that this does not cause
the counter to overflow.) In either case, the most recent input bit is then set to the current input.

After both agents have performed this update, they interact as follows. If both have leader bits
equal to1, if their counter values are both positive or both negative, no further changes are made.
If they have opposite signs, or one or both are0, then both their counters are set to the sum of their
counters. One of the vertices sets its leader bit to0, subject to the condition that if the remaining
leader’s counter is negative, then its most recent input bit is0, and if it is positive, its most recent
input bit is1. (We must show that this condition can be satisfied.) If only one has leader bit equal
to 1, then the other copies its counter value. If neither has leader bit equal to1, then there is no
change of state.

If we consider any fair computation of this protocol from an initial configuration with stabi-
lizing inputs, after some finite number of steps the inputs will not change, the most recent input
bits will be equal to the respective current inputs, there will be at least one vertex with leader bit
equal to1, and all leaders (and all vertices) will have positive counters, or they will all have zero
counters, or they will all have negative counters. Thus, the outputs stabilize to0 or 1 in any such
computation.

4.3 Simulating the all-pairs graph with stabilizing inputs

In this section, we generalize a theorem of [2] to prove that any predicate stably computable with
stabilizing inputs in the all-pairs family of graphs can be stably computed with stabilizing inputs
in the unrestricted family of graphs. We use nondeterminism to simplify the description of the
simulator.

Theorem 8 For any protocolA there exists a protocolB such that for everyn, ifA stably computes
predicateP with stabilizing inputs in the all-pairs interaction graph withn vertices andG is any
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communication graph withn vertices, protocolB stably computes predicateP with stabilizing
inputs inG.

Proof sketch: LetA have statesQ, initial stateq0, inputsX, outputsY , and transition function
δ. If we did not have to deal with stabilizing inputs, we could construct a very simple nondetermin-
istic protocol to simulateA using the statesQ, choosing at each interaction whether to exchange
the states of the two vertices (which eventually allows any pair of simulated vertices to interact)
or to take a step of the transition functionδ, simulating a step ofA. With stabilizing inputs, we
have to compensate for the fact that the simulated states move around the graph, but the inputs are
supplied at fixed vertices.

Details are left to the full paper.

Corollary 9 The Presburger predicates are stably computable with stabilizing inputs in the unre-
stricted family of graphs.

Since the predicate “no input isZ” is Presburger, this corollary completes the proof of Lemma 3.

5 Computing in bounded-degree networks

In Section 3 we showed that there is a protocol that stably computes whetherG is a directed cycle.
If G is a directed cycle, another protocol can organize a Turing machine computation of space
O(n) in the graph to determine properties of the inputs. Thus, certain graph structures can be
recognized and exploited to give very powerful computational capabilities.

In this section we generalize this result to the family of graphs with degree at mostd. A
straightforward generalization of the protocol in Lemma 2 does not work, as we now illustrate.
Consider the protocol below, which attempts to use the statesR1 andR2 to keep track of the in-
degree of a vertex, with stateY intended to indicate that a vertex of in-degree greater than2 has
been detected.

(1) (−,−) 7→ (I1, R1)
(2) (I1, R1) 7→ (−,−)
(3) (−, R1) 7→ (I2, R2)
(4) (I2, R2) 7→ (−, R1)
(5) (−, R2) 7→ (Y, Y )
(6) (Y, x) 7→ (Y, Y )
(7) (x, Y ) 7→ (Y, Y )

This protocol fails on the graphG with five vertices and edges(1, 2), (3, 2), (3, 4), (5, 4), as wit-
nessed by the computation:

(−,−,−,−,−), (−, R1, I1,−,−), (−, R1, I1, R1, I1), (−, R1,−,−, I1), (−, R2, I2,−, I1), (Y, Y, I2,−, I1).

However, a more complex protocol using a leader works.
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Lemma 10 For every positive integerd, there is a protocol that stably computes whetherG has
maximum degree less than or equal tod.

Proof sketch: We describe a protocol to determine whetherG has any vertex of out-degree
greater thand; in-degree is analogous, and the “nor” of these properties is what is required. The
protocol is nondeterministic and based on leader election. Every vertex is initially a leader and has
output0. Each leader repeatedly engages in the following searching behavior. It hops around the
vertices ofG and decides to check a vertex by marking it and attempting to placed + 1 markers of
a second type at the ends of edges outgoing from the vertex being checked. It may decide to stop
checking, collect a set of markers corresponding to the ones it set out, and resume its searching
behavior. If it succeeds in placing all its markers, it changes its output to1, hops around the graph
to collect a set of markers corresponding to the ones it set out, and resumes its searching behavior.

When two leaders meet, one becomes a non-leader, and the remaining leader collects a set of
markers corresponding to the ones that both had set out, changes its output back to0, and resumes
its searching behavior. Non-leaders copy the output of any leader they meet.

After the leader becomes unique and collects the set of markers that it and the last deposed
leader had set out, then the graph is clear of markers and the unique leader resumes the searching
behavior with its output set to0. If there is no vertex of out-degree greater thand, the output
will remain 0 (and will eventually be copied by all the non-leaders.) If there is some vertex of
out-degree greater thand, the searching behavior eventually finds it and sets the output to1, which
will eventually be copied by all the non-leaders.

Note that this technique can be generalized (using a finite collection of distinguishable markers)
to determine the existence of any fixed subgraph inG. (For the lemma, the fixed subgraph is the
out-directed star ond + 2 vertices.) Another variant of this idea (mark a vertex and try to reach
the mark by following directed edges) gives protocols to determine whetherG contains a directed
cycle or a directed odd cycle.

Theorem 11 There are protocols that stably compute whetherG contains a fixed subgraph, or a
directed cycle, or a directed cycle of odd length in the unrestricted family of graphs.

For bounded-degree graphs, we can organize the nodes into a spanning tree rooted at a leader,
which can then distributed a Turing machine tape of sizeO(n) across the nodes. This allows a
population with a bounded-degree interaction graph to compute any function of the graph structure
that is computable in linear space.

Theorem 12 For every positive integerd, there is a protocol that for anyd-bounded graphG
stably constructs a spanning tree structure inG that can be used to simulaten cells of Turing
machine tape.

Proof sketch: The protocol is rather involved; details are deferred to the full paper. We give
an outline of the protocol here.

The starting point is to label the vertices ofG in such a way that no two neighbors of any
vertex have the same label. A vertex can then send messages to a specific neighbor by waiting to
encounter another vertex with the appropriate label.

12



To see that such a labeling exists, consider the graphG′ obtained fromG by ignoring the
direction of edges and including an edge between any two nodes at distance2 in G. A proper
coloring ofG′ will give the required labeling ofG, and the degree ofG′ is at most4d2, soG′ can
be colored with4d2 + 1 colors.

One part of the protocol eventually constructs a labeling of the desired kind by using leader
election and a searching behavior that attempts to find two vertices at distance two that have the
same label and nondeterministically relabel both. Eventually there will be no more relabeling.

The other part of the protocol attempts to use the constructed labeling to build a spanning tree
structure inG. This is also based on leader election. Each leader begins building a spanning tree
from the root, recording in each vertex the labels of the known neighbors of the vertex, and des-
ignating (by label) a parent for each non-root vertex. The leader repeatedly traverses its spanning
tree attempting to recruit new vertices. When it meets another leader, one becomes a non-leader
and the other begins building a new spanning tree from scratch.

The labeling portion of the protocol is running in parallel with the tree-construction, and it
produces a “restart” marker whenever it relabels vertices. When a leader encounters a “restart”
marker, it deletes the marker and again begins building a new spanning tree from scratch.

Eventually all the relabeling will be completed, and only one leader will remain, and the final
spanning tree construction will not be restarted. However, it is important that the spanning tree
construction be able to succeed given a correct labeling but otherwise arbitrary states left over from
preceding spanning tree construction attempts. The leader repeatedly traverses the constructed
spanning tree, setting a phase indicator (0 or 1) at each pass to detect vertices that are not yet part
of the tree. An arbitrary ordering on the labels gives a fixed traversal order for the spanning tree,
and a portion of each state can be devoted to simulating a Turing machine tape cell.

Because a leader cannot determine when it is unique, when the labeling is stable, or when the
spanning tree is complete, it simply restarts computation in the tree each time it begins rebuilding
a spanning tree. Eventually, however, the computation has access ton simulated cells of tape.

Itkis and Levin use a similar construction in their self-stabilizing protocols for identical name-
less nodes in an asynchronous communication network (represented by an undirected, connected,
reflexive graphG) with worst-case transient faults [16]. In their model, in addition to a finite num-
ber of bits of storage, each nodex maintains a finite set of pointers to itself and its neighbors, and
can detect whether a neighbory has a pointer tox and/ory, and can set a pointer to point to the
first (in a fixed ordering) neighbor with a given property. This additional information about the
graph structure permits them to exploit storageO(|V |) in all cases. By comparison, in our model
there are no pointers and each device truly has only a constant amount of memory regardless of
the size and topology of the network. For this reason, in an all-pairs graph of sizen, only memory
proportional tolog n is achievable. So the bounded-degree restriction of Theorem 12, or some
other limitation that excludes the all-pairs graph, appears to be necessary.

6 Discussion and open problems

It is open whether every predicate stably computable with unchanging inputs in a family of graphs
is stably computable with stabilizing inputs in the same family of graphs. For the family of all-
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pairs graphs, both classes contain the Presburger predicates. It follows that if, in this family, some
predicate is stably computable with unchanging inputs but not with stabilizing inputs, that predicate
would not be Presburger. The existence of such a predicate would disprove a conjecture from [2].

A natural measure of the information-theoretic memory capacity of a graphG with a finite
set of vertex labelsL is the log of number of different isomorphism classes ofG with vertex
labels drawn fromL. If L has at least two elements, the all-pairs graphs have memory capacity
Θ(log n), which can be exploited for computation in the setting of randomized interactions and
computation with errors [2]. When the cardinality ofL is large enough compared tod (O(d2)
suffices), the memory capacity ofd-degree bounded graphs isΘ(n), which we have shown above
can be exploited by protocols for stable computation. Are there protocols to exploit the full-
information theoretic memory capacity of arbitrary network communication graphs?

An important future direction is to study the running time of protocols in this model, perhaps
under a stochastic model of pairwise interactions, as in the model of conjugating automata [2].
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