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Abstract. Fast algorithms are presented for performing computations in a prob-
abilistic population model. This is a variant of the standard population proto-
col model—in which finite-state agents interact in pairs under the control of an
adversary scheduler—where all pairs are equally likely to be chosen for each
interaction. It is shown that when a unique leader agent is provided in the ini-
tial population, the population can simulate a virtual register machine in which
standard arithmetic operations like comparison, addition, subtraction, and multi-
plication and division by constants can be simulated in O(n log4 n) interactions
with high probability. Applications include a reduction of the cost of computing a
semilinear predicate to O(n log4 n) interactions from the previously best-known
bound of O(n2 log n) interactions and simulation of a LOGSPACE Turing ma-
chine using the same O(n log4 n) interactions per step. These bounds on interac-
tions translate into O(log4 n) time per step in a natural parallel model in which
each agent participates in an expected Θ(1) interactions per time unit. The cen-
tral method is the extensive use of epidemics to propagate information from and
to the leader, combined with an epidemic-based phase clock used to detect when
these epidemics are likely to be complete.

1 Introduction

The population protocol model of Angluin et al. [3] consists of a population of finite-
state agents that interact in pairs, where each interaction updates the state of both par-
ticipants according to a transition function based on the participants’ previous states
and the goal is to have all agents eventually converge to a common output value that
represents the result of the computation, typically a predicate on the initial state of the
population. A population protocol that always converges to the correct output is said to
perform stable computation and a predicate that can be so computed is called stably
computable.

In the simplest version of the model, any pair of agents may interact, but which
interaction occurs at each step is under the control of an adversary, subject to a fairness
condition that essentially says that any continuously reachable global configuration is
eventually reached. The class of stably computable predicates in this model is now very
well understood: it consists precisely of the semilinear predicates (those predicates
on counts of input agents definable in first-order Presburger arithmetic [23]), where
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semilinearity was shown to be sufficient in [3] and necessary in [5]. However, the fact
that a protocol will eventually converge to the correct value of a semilinear predicate
says little about how long such convergence will take.

Our fundamental measure of convergence is the total number of pairwise interac-
tions until all agents have the correct output value, considered as a function of n, the
number of agents in the population. We may also consider models in which reactions
occur in parallel according to a Poisson process (as assumed in e.g. [17,18]); this gives
an equivalent distribution over sequences of reactions but suggests a measure of time
based on assuming each each agent participates in an expected Θ(1) interactions per
time unit. It is not hard to see that this time measure is asymptotically equal to the
number of interactions divided by n.

To bound these measures, it is necessary to place further restrictions on the adver-
sary: a merely fair adversary may wait an arbitrary number of interactions before it
allows a particular important interaction to occur. In the present work, we consider the
natural probabilistic model, proposed in [3], in which each interaction occurs between
a pair of agents chosen uniformly at random. In this model, it was shown in [3] that
any semilinear predicate can be computed in Θ(n2 log n) expected interactions using
a protocol based on leader election in which the leader communicates the outcome by
interacting with every other agent. Protocols were also given to simulate randomized
LOGSPACE computations with polynomial slowdown, allowing an inverse polynomial
probability of failure.

We give a new method for the design of probabilistic population protocols, based
on controlled use of self-timed epidemics to disseminate control information rapidly
through the population. This method organizes a population as an array of registers
that can hold values linear in the size of the population. The simulated registers sup-
port the usual arithmetic operations, including addition, subtraction, multiplication and
division by constants, and comparison, with implementations that complete with high
probability in O(n log4 n) interactions and polylogarithmic time per operation. As a
consequence, any semilinear predicate can be computed without error by a probabilis-
tic population protocol that converges in O(n log4 n) interactions with high probability,
and randomized LOGSPACE computation can be simulated with inverse polynomial
error with only polylogarithmic slowdown. These bounds are optimal up to polyloga-
rithmic factors, because Ω(n log n) interactions are necessary to ensure that every agent
has participated in at least one interaction with high probability.

However, in order to achieve these low running times, it is necessary to assume
a leader in the form of some unique input agent. This is a reasonable assumption in
sensor network models as a typical sensor network will have some small number of
sensors that perform the specialized task of communicating with the user and we can
appoint one of these as leader. Assuming the existence of a leader does not trivialize the
problem; for example, any protocol that requires that the leader personally visit every
agent in the population runs in expected number of interactions at least Ω(n2 log n).

If a leader is not provided, it is in principle possible to elect one; however, the best
known expected bounds for leader election in a population protocol is still the Θ(n2)
interactions or Θ(n) time of a naive protocol in which candidate leaders drop out only
on encountering other leaders. It is an open problem whether a leader can be elected



significantly faster. There must also be a way to reinitialize the simulation protocol once
all but one of the candidates drops out. We discuss these issues further in Section 7.

In building a register machine from agents in a population protocol, we must solve
many of the same problems as hardware designers building register machines from elec-
trons. Thus the structure of the paper roughly follows the design of increasing layers
of abstraction in a CPU. We present the underlying physics of the world—the popula-
tion protocol model—in Section 2. Section 3 gives concentration bounds on the number
of interactions to propagate the epidemics that take the place of electrical signals and
describes the phase clock used to coordinate the virtual machine’s instruction cycle.
Section 4 describes the microcode level of our machine, showing how to implement
operations that are convenient to implement but hard to program with. More traditional
register machine operations are then built on top of these microcode operations in Sec-
tion 5, culminating in a summary of our main construction in Theorem 2. Applications
to simulating LOGSPACE Turing machines and computing semilinear predicates are
described in Section 6. Some directions for future work are described in Section 7. Due
to space limitations, most proofs are omitted from this extended abstract.

Many of our results are probabilistic, and our algorithms include tuning parameters
that can be used to adjust the probability of success. For example, the algorithm that
implements a given register machine program is designed to run for nk instructions for
some k, and the probability of failure for each instruction must be bounded by a suitable
inverse polynomial in n. We say that a statement holds with high probability if for any
constant c there is a setting of the tuning parameters that cause the statement to hold
with probability at least 1− n−c. The cost of achieving a larger value of c is a constant
factor slowdown in the number of interactions (or time) used by the algorithms.

1.1 Related work

The population protocol model has been the subject of several recent papers. Diamadi
and Fischer introduced a version of the probabilistic model to study the propagation of
trust in a social network [15], and a related model of urn automata was explored in [2].
One motivation for the basic model studied in [3] was to understand the computational
capabilities of populations of passively mobile sensors with very limited computational
power. In the simplest form of the model, any agent may interact with any other, but
variations of the model include limits on which pairs of agents may interact [1, 3, 4],
various forms of one-way and delayed communication [6], and failures of agents [14].
The properties computed by population protocols have also been extended from pred-
icates on the initial population to predicates on the underlying interaction graph [1],
self-stabilizing behaviors [7], and stabilizing consensus [8].

Similar systems of pairwise interaction have previously been used to model the in-
teraction of small molecules in solution [18, 19] and the propagation in a human popu-
lation of rumors [12] or epidemics of infectious disease [10]. Epidemic algorithms have
also been used previously to perform multicast operations, e.g. by Birman et al. [11].

The notion of a “phase clock” as used in our protocol is common in the self-
stabilizing literature, e.g. [20]. There is a substantial stream of research on building self-
stabilizing synchronized clocks dating back to to the work of Arora et al. [9]. Recent



work such as [16] shows that it is possible to perform self-stabilizing clock synchro-
nization in traditional distributed systems even with a constant fraction of Byzantine
faults; however, the resulting algorithms require more network structure and computa-
tional capacity at each agent that is available in a population protocol. An intriguing
protocol of Daliot et al. [13] constructs a protocol for the closely-related problem of
pulse synchronization inspired directly by biological models. Though this protocol also
exceeds the finite-state limits of population protocols, it may be possible to construct a
useful phase clock for our model by adapting similar techniques.

2 Model

In this paper we consider only the complete all-pairs interaction graph, so we can sim-
plify the general definition of a probabilistic population protocol as follows. A popula-
tion protocol consists of a finite set Q of states, of which a nonempty subset X are the
initial states (thought of as inputs), a deterministic transition function (a, b) 7→ (a′, b′)
that maps ordered pairs of states to ordered pairs of states, and an output function that
maps states to an output alphabet Y . The population consists of agents numbered 1
through n; agent identities are not visible to the agents themselves, but facilitate the
description of the model. A configuration C is a map from the population to states,
giving the current state of every agent. An input configuration is a map from the popu-
lation to X , representing an input consisting of a multiset of elements of X . C can reach
C ′ in one interaction, denoted C → C ′, if there exist distinct agents i and j such that
C(i) = a, C(j) = b, the transition function specifies (a, b) 7→ (a′, b′) and C ′(i) = a′,
C ′(j) = b′ and C ′(k) = C(k) for all k other than i and j. In this interaction, i is
the initiator and j is the responder – this asymmetry of roles is an assumption of the
model [4].

An execution is a sequence C1, C2, . . . of configurations such that for each i, Ci →
Ci+1. An execution converges to an output y ∈ Y , if there exists an i such that for
every j ≥ i, the output function applied to every state occurring in Cj is y. In gen-
eral, individual agents may not know when convergence to a common output has been
reached, and protocols are generally designed not to halt. An execution is fair if for any
Ci and Cj such that Ci → Cj and Ci occurs infinitely often in the execution, Cj also
occurs infinitely often in the execution. A protocol stably computes a predicate P on
multisets of elements of X if for any input configuration C, every fair execution of the
protocol starting with C converges to 1 if P is true on the multiset of inputs represented
by C, and converges to 0 otherwise. Note that a fixed protocol must be able to handle
populations of arbitrary finite size – there is no dependence of the number of states on
n, the population size.

For a probabilistic population protocol, we stipulate a particular probability dis-
tribution over executions from a given configuration C1 as follows. We generate Ck+1

from Ck by drawing an ordered pair (i, j) of agents independently and uniformly, ap-
plying the transition function to (Ck(i), Ck(j)), and updating the states of i and j ac-
cordingly to obtain Ck+1. (Note that an execution generated this way will be fair with
probability 1.) In the probabilistic model we consider both the random variable of the



number of interactions until convergence and the probabilities of various error condi-
tions in our algorithms.

3 Tools

Here we give the basic tools used to construct our virtual machine. These consist of con-
centration bounds on the number of interactions needed to spread epidemics through the
population (Section 3.1), which are then used to construct a phase clock that controls the
machine’s instruction cycle (Section 3.2). Basic protocols for duplication (Section 3.3),
cancellation (Section 3.4), and probing (Section 3.5) are then defined and analyzed.

3.1 Epidemics

By a one-way epidemic we denote the population protocol with state space {0, 1}
and transition rule (x, y) 7→ (x,max(x, y)). Interpreting 0 as “susceptible” and 1 as
“infected,” this protocol corresponds to a simple epidemic in which transmission of the
infection occurs if and only if the initiator is infected and the responder is susceptible. In
the full paper, we show, using a reduction to coupon collector and sharp concentration
results of [21], that the number of interactions for the epidemic to finish (that is, infect
every agent) is Θ(n log n) with high probability.

It will be useful to have a slightly more general lemma that bounds the time to infect
the first k susceptible agents. Because of the high variance associated with filling the
last few bins in the coupon collection problem, we consider only k ≥ nε for ε > 0.

Lemma 1. Let T (k) be number of interactions before a one-way epidemic starting
with a single infected agent infects k agents. For any fixed ε > 0 and c > 0, there
exist positive constants c1 and c2 such that for sufficiently large n and any k > nε,
c1n ln k ≤ T (k) ≤ c2n ln k with probability at least 1− n−c.

3.2 The phase clock

The core of our construction is a phase clock that allows a leader to determine when an
epidemic or sequence of triggered epidemics is likely to have finished. In essence, the
phase clock allows a finite-state leader to count off Θ(n log n) total interactions with
high probability; by adjusting the constants in the clock, the resulting count is enough
to outlast the c2n lnn interactions needed to complete an epidemic by Lemma 1. Like
physical clocks, the phase clock is based on a readily-available natural phenomenon
with the right duration constant. A good choice for this natural phenomenon, in a prob-
abilistic population protocol, turns out to be itself the spread of an epidemic. Like the
one-way epidemic of Section 3.1, the phase clock requires only one-way communica-
tion.

Here is the protocol: each agent has a state in the range 0 . . .m−1 for some constant
m that indicates which phase of the clock it is infected with. (The value of m will be
chosen independent of n, but depending on c, where 1 − n−c is the desired success
probability.) Up to a point, later phases overwrite earlier phases: a responder in phase i



will adopt the phase of any initiator in phases i+1 mod m through i+m/2 mod m, but
will ignore initiators in other phases. This behavior completely describes the transition
function for non-leader responders.

New phases are triggered by a unique leader agent. When the leader encounters
an initiator with its own phase, it spontaneously moves to the next phase. The leader
ignores interactions with initiators in other phases. The initial configuration of the phase
clock has the leader in phase 0 and all other agents in phase m − 1. A round consists
of m phases. A new round starts when the leader enters phase 0.

The normal operation of the phase clock has all the agents in a very few adja-
cent states, with the leader in the foremost one. When that state becomes populated
enough for the leader to encounter another agent in that state, the leader moves on to
the next state (modulo m) and the followers are pulled along. Successive rounds should
be Θ(n log n) interactions apart with high probability; the lower bound allows mes-
sages sent epidemically to reach the whole population, and the upper bound is essential
for the overall efficiency of our algorithms.

Analysis We wish to show that for appropriate constants c and m, any epidemic (run-
ning in parallel with the phase clock) that starts in phase i completes by the next oc-
currence of phase (i + c) mod m with high probability. To simplify the argument,
we first consider an infinite-state version of the phase clock with state space Z ×
{leader, follower} and transition rules

(x, b), (y, follower) 7→ (x, b), (max(x, y), follower)
(x, b), (x, leader) 7→ (x, b), (x + 1, leader)
(x, b), (y, leader) 7→ (x, b), (y, leader) [y 6= x]

We assume the initial configuration (at interaction 0) has the leader in state 0 and
each follower in state −1. This infinite-state protocol has the useful invariant that every
agent has a phase less than or equal to that of the leader. We define phase i as starting
when the leader agent first adopts phase i. This result bounds the probability that a
phase “ends too early” by n−1/2.

Lemma 2. Let phase i start at interaction t. Then there is a constant a such that for
sufficiently large n, phase i + 1 starts before interaction t + an lnn with probability at
most n−1/2.

Observing that several phases must “end too early” in order for a round to “end too
early” allows us to go from a failure probability of n−1/2 for a phase to n−c for a round.

Corollary 1. Let phase i start at interaction t. Then for any c > 0 and d > 0, there
is a constant k such that for sufficiently large n, phase i + k starts before t + dn lnn
interactions with probability at most n−c.

The following theorem gives probabilistic guarantees for a polynomial number of
rounds of the phase clock. In the proof the probability of failure due to a “straggler”
(agent so far behind that it appears to be ahead modulo m) must be also be appropriately
bounded, to ensure that m may be a constant independent of n.



Theorem 1. For any fixed c, d > 0, there exists a constant m such that, for all suffi-
ciently large n, the finite-state phase clock with parameter m, starting from an initial
state consisting of one leader in phase 0 and n−1 followers in phase m−1, completes
nc rounds of m phases each, where the minimum number of interactions in any of the
nc rounds is at least dn lnn with probability at least 1− n−c.

Proof. The essential idea is to apply Corollary 1 twice: once to show that with high
probability the number of interactions between phase i + 1 and phase i + m/2 is long
enough for any old phase-i agents to be eaten up (thus avoiding any problems with
wrap-around), and once to show the lower bound on the length of a round.

To show that no agent is left behind, consider, in the infinite-state protocol, the fate
of agents in phase i or lower once at least one agent in phase i + 1 or higher exists. If
we map all phases i or lower to 0 and all phases i + 1 or higher to 1, then encounters
between agents have the same effect after the mapping as in a one-way epidemic. By
Lemma 1, there is a constant c2 such that all n agents are infected by interaction c2n lnn
with probability at least 1−n−3c. By Corollary 1, there is a constant k1 such that phase
i + k1 + 1 starts at least c2n lnn interactions after phase i + 1 with probability at least
1 − n−3c. Setting m > 2(k1 + 1) then ensures that all phase i (or lower) agents have
updated their phase before phase i+m/2 with probability at least 1−2n−3c. If we sum
the probability of failure over all mnc phases in the first nc rounds, we get a probability
of at most 2mn−2c that some phase i agent survives long enough to cause trouble.

Assuming that no such trouble occurs, we can simulate the finite-state phase clock
by mapping the phases of the infinite-state phase clock mod m. Now by Corollary 1
there is a constant k2 such that the number of interactions to complete k2 consecutive
phases is at least dn lnn with probability at least 1− n−3c. Setting m ≥ k2 thus gives
that all nc rounds take at least dn lnn interactions with probability at least 1−ncn−3c =
1 − n−2c. Thus the total probability of failure is bounded by 2mn−2c + n−2c < n−c

for sufficiently large n as claimed.

3.3 Duplication

A duplication protocol has state space {(1, 1), (0, 1), (0, 0)} and transition rules:

(1, 1), (0, 0) 7→ (0, 1), (0, 1)
(0, 0), (1, 1) 7→ (0, 1), (0, 1)

with all other encounters having no effect.
When run to convergence, a duplication protocol starting with a “active” agents in

state (1, 1) and the rest in the null state (0, 0) converges to 2a “inactive” agents in state
(0, 1), provided 2a is less than n; otherwise it converges to a population of mixed active
and inactive agents with no unrecruited agents left in the null state. The invariant is
that the total number of 1 tokens is preserved while eliminating as many double-token
agents as possible. We do not consider agents in a (1, 0) state as they can be converted
to (0, 1) immediately at the start of the protocol.



When the initial number of active agents a is close to n/2, duplication may take as
much as Θ(n2) interactions to converge, as the last few active agents wait to encounter
the last few null agents. But for smaller values of a the protocol converges more quickly.

Lemma 3. Let 2a + b ≤ n/2. The probability that a duplication protocol starting with
a active agents and b inactive agents, has not converged after (2c+1)n lnn interactions
is at most n−c.

3.4 Cancellation

A cancellation protocol has states {(0, 0), (1, 0), (0, 1)} and transition rules:

(1, 0), (0, 1) 7→ (0, 0), (0, 0)
(0, 1), (1, 0) 7→ (0, 0), (0, 0)

It maintains the invariant that the number of 1 tokens in the left-hand position minus
the number of 1 tokens in the right-hand position is fixed. It converges when only (1, 0)
and (0, 0) or only (0, 1) and (0, 0) agents remain. We assume that there are no (1, 1)
agents as these can be converted to (0, 0) agents at the start of the protocol. We refer to
agents in state (1, 0) or (0, 1) as nonzero agents.

As with duplication, the number of interactions to converge when (1, 0) and (0, 1)
are nearly equally balanced can be as many as Θ(n2), since we must wait in the end
for the last few survivors to find each other. This is too slow to use cancellation to
implement subtraction directly. Instead, we will use cancellation for inequality testing,
using duplication to ensure that there is a large enough majority of one value or the
other to ensure fast convergence. We will use the following fact.

Lemma 4. Starting from any initial configuration, with probability at least 1 − n−c,
after 4(c + 1)n lnn interactions a cancellation protocol has either converged or has at
most n/8 of each type of nonzero agent.

3.5 Probing

A probing protocol is used to detect if any agents satisfying a given predicate exist. It
uses three states (in addition to any state tested by the predicate) and has transition rules

(x, y) 7→ (x,max(x, y))

when the responder does not satisfy the predicate and

(0, y) 7→ (0, y)
(x, y) 7→ (x, 2) [x > 0]

when the responder does. Note that this is a one-way protocol.
To initiate a probe, a leader starts in state 1; this state spreads through an initial

population of state 0 agents as in a one-way epidemic and triggers the epidemic spread
of state 2 if it reaches an agent that satisfies the predicate.



Lemma 5. For any c > 0, there is a constant d such that for sufficiently large n, with
probability at least 1 − n−c it is the case that after dn lnn interactions in the probing
protocol either (a) no agent satisfies the predicate and every agent is in state 1, or (b)
some agent satisfies the predicate and every agent is in state 2.

4 Computation by epidemic: the microcode level

In this section, we describe how to construct an abstract register machine on top of
a population protocol. This machine has a constant number of registers each capable
of holding integer values in the range 0 to n, and supports the usual arithmetic op-
erations on these registers, including addition, subtraction, multiplication and division
by constants, inequality tests, and so forth. Each of these operations takes at most a
polylogarithmic number of basic instruction cycles, where an instruction cycle takes
Θ(n log n) interactions or Θ(log n) time.

The simulation is probabilistic; there is an inverse polynomial probability of error
for each operation, on which the exponent can be made arbitrarily large at the cost of
increasing the constant factor in the running time.

The value of each register is distributed across the population in unary. For each
register A, every member i of the population maintains one bit Ai and the current value
of A is simply

∑
i Ai. Thus the finite state of each agent can be thought of as a finite

set of finite-valued control variables, and one boolean variable for each of a finite set of
registers. Recall that the identities of agents are invisible to the agents themselves, and
are used to facilitate description of the model.

We assume there is a leader agent that organizes the computation; part of the leader’s
state stores the finite-state control for the register machine. We make a distinction be-
tween the “microcode layer” of the machine, which uses the basic mechanisms of Sec-
tion 3, and the “machine code” layer, which provides familiar arithmetic operations.

At the microcode layer, we implement a basic instruction cycle in which the leader
broadcasts an instruction to all agents using an epidemic. The agents then carry out this
instruction until stopped by a second broadcast from the leader. This process repeats
until the computation terminates.

To track the current instruction, each agent (including the leader) has a current
instruction register in addition to its other state. These instructions are tagged with a
round number in the range 0, 1, 2, where round i instructions are overwritten by round
i + 1 (mod 3) instructions.

The instructions and their effects are given in Table 1. Most take registers as ar-
guments. We also allow any occurrence of a register to be replaced by its negation, in
which case the operation applies to those agents in which the appropriate bit is not set.
For example, SET(¬A) resets Ai, PROBE(¬A) tests for agents in which Ai is not set,
COPY(¬A,B) sets Bi to the negation of Ai, and so forth.

To interpret the table entries: when an agent changes its current instruction register
to SET(A), it sets its boolean variable for register A to 1 and waits for the next instruc-
tion. Similarly, when it changes its current instruction register to COPY(A,B), then
the agent sets its boolean variable for register B to the value of its boolean variable for



Instruction Effect on state of agent i

NOOP No effect.
SET(A) Set Ai = 1.
COPY(A, B) Copy Ai to Bi

DUP(A, B) Run duplication protocol on state (Ai, Bi).
CANCEL(A, B) Run cancellation protocol on state (Ai, Bi).
PROBE(A) Run probe protocol with predicate Ai = 1.

Table 1. Instructions at the microcode level.

register A. When its current instruction becomes DUP(A,B), then the agent begins run-
ning the duplication protocol (Section 3.3) on the ordered pair of its boolean variables
for registers A and B. (In the case of (1, 0), it immediately exchanges them to (0, 1),
and in the cases of (1, 1) and (0, 0), it participates in the duplication protocol when it
interacts with other agents with current instruction DUP(A,B), until either its pair be-
comes inactive or a new instruction supersedes the current one.) CANCEL(A,B) and
PROBE(A) are handled analogously, where the predicate probed is whether the agent’s
boolean variable for register A is 1. We omit describing the underlying transitions as
the details are tedious.

When the leader updates its own current instruction register, the new value spreads
to all other agents in Θ(n log n) interactions with high probability (Lemma 1). The
NOOP, SET, and COPY operations take effect immediately, so no additional interac-
tions are required. The PROBE operation may require waiting for a second triggered
epidemic, but the total interactions are still bounded by O(n log n) with high proba-
bility (by Lemma 5). Only the DUP and CANCEL operations may take longer to con-
verge. Because subsequent operations overwrite each agent’s current instruction reg-
ister, issuing a new operation has the effect of cutting these operations off early. But
if this new operation is issued Ω(n log n) interactions later, the DUP operation con-
verges with high probability unless it must recruit more than half the agents (Lemma 3),
and the CANCEL operation either converges or leaves at most n/4 uncanceled values
(Lemma 4). Note that for either operation, which outcome occurred can be detected
with COPY and PROBE operations.

Thus, the leader waits for Ω(n log n) interactions between issuing successive in-
structions, where the constant is chosen based on the desired error bound. But this
can be done using a phase clock with appropriate parameter (Theorem 1): if it is large
enough that both the probability that an operation completes too late and the proba-
bility that some phase clock triggers to early is o(n−2c) per operation, then the total
probability that any of nc operations fails is o(n−c).

5 Computation by epidemic: higher-level operations

The operations of the previous section are not very convenient for programming. In this
section, we describe how to implement more traditional register operations.

These can be divided into two groups: those that require a constant number of
microcode instructions, and those that are implemented using loops. The first group,



Operation Effect Implementation Notes
Constant 0 A← 0 SET(¬A)

Constant 1 A← 1
SET(¬A)
Aleader ← 1

Assignment A← B COPY(B, A)

Addition A← A + B
COPY(B, X)
DUP(X, A)
PROBE(X)

May fail with X 6= 0 if A + B > n/2.

Multiplication A← kB Use repeated addition. k = O(1)

Zero test A 6= 0? PROBE(A)

Table 2. Simple high-level operations and their implementations. Register X is an auxiliary reg-
ister.

shown in Table 2, includes assignment, addition, multiplication by a constant, and zero
tests. The second group includes comparison (testing for A < B, A = B, or A > B),
subtraction, and division by a constant (including obtaining the remainder). These op-
erations are described in more detail below.

Comparison For comparison, it is tempting just to apply CANCEL and see what to-
kens survive. But if the two registers A and B being compared are close in value,
then CANCEL may take Θ(n2) interactions to converge. Instead, we apply up to 2 lg n
rounds of cancellation, alternating with duplication steps that double the discrepancy
between A and B. If A > B or B > A, the difference soon becomes large enough that
all of the minority tokens are eliminated. The case where A = B is detected by failure
to converge, using a counter variable C that doubles every other round.

The algorithm is given in Figure 1. It uses registers A′, B′, and C plus a bit r to
detect even-numbered rounds.

Lemma 6. Algorithm 1 returns the correct answer with high probability after executing
at most O(log n) microcode operations.

Subtraction Subtraction is the inverse of addition, and addition is a monotone operation.
It follows that we can implement subtraction using binary search. Our rather rococo
algorithm for computing C ← A−B, given in Figure 2 repeatedly looks for the largest
power of two that can be added to the candidate difference C without making the sum
of the difference C and the subtrahend B greater than the minuend A. It obtains one
more 1 bit of the difference for each iteration.

The algorithm assumes A ≥ B. An initial cancellation step is used to handle par-
ticularly large inputs. This allows the algorithm to work even when A lies outside the
safe range of the addition operation.

The algorithm uses several auxiliary registers to keep track of the power of two to
add to C (this is the D register) and to perform various implicit sums and tests (as in
computing B′ + C + D + D).

Lemma 7. When A ≥ B, Algorithm 2 computes C ← A− B with high probability in
O(log3 n) microcode operations.



1: A′ ← A.
2: B′ ← B.
3: C ← 1.
4: r ← 0.
5: while true do
6: CANCEL(A′, B′).
7: if A′ = 0 and B′ = 0 then
8: return A = B.
9: else if A′ = 0 then

10: return A < B.
11: else if B′ = 0 then
12: return A > B.
13: end if
14: r ← 1− r.
15: if r = 0 then
16: C ← C + C.
17: if addition failed then
18: return A = B.
19: end if
20: end if
21: A′ ← A′ + A′.
22: B′ ← B′ + B′.
23: end while

Fig. 1. Comparison algorithm.

1: A′ ← A.
2: B′ ← B.
3: CANCEL(A′, B′).
4: if B′ = 0 then
5: C ← A.
6: return.
7: end if
8: C ← 0.
9: while A′ 6= B′ + C do

10: D ← 1.
11: while A′ ≥ B′ + C + D + D do
12: D ← D + D.
13: end while
14: C ← C + D.
15: end while

Fig. 2. Subtraction algorithm.

Division Division of A by a constant k is analogous to subtraction; we set A′ ← A and
B ← 0 and repeatedly seek the largest power of two D such that kD can be successfully
computed (i.e., does not cause addition to overflow) and kD ≤ A′. We then subtract
kD from A′ and add D to B.

The protocol terminates when A′ < k, i.e. when no value of D works. At this
point B holds the quotient bA/kc and A′ the remainder A mod k. Since each iteration
adds one bit to the quotient, there are at most O(lg n) iterations of the outer loop, for
a total cost of O(lg4 n) microcode operations (since each outer loop iteration requires
one subtraction operation).

One curious property of this protocol is that the leader does not learn the value
of the remainder, even though it is small enough to fit in its limited memory. If it is
important for the leader to learn the remainder, it can do so using k addition and com-
parison operations, by successively testing the remainder A′ for equality with the values
0, 1, 1+1, 1+1+1, . . . , k. The cost of this test is dominated by the cost of the division
algorithm.

Other operations Multiplication and division by constants give us the ability to extract
individual bits of a register value A. This is sufficient to implement basic operations like
A← B · C, A← bB/Cc in polylogarithmic time using standard bitwise algorithms.

Summary Combining preceding results gives:



Theorem 2. A probabilistic population can simulate steps of a virtual machine with a
constant number of registers holding integer values in the range 0 to n, where each step
consists of (a) assigning a constant 0 or 1 value to a register; (b) assigning the value
of one register to another; (c) adding the value of one register to another, provided the
total does not exceed n/2; (d) multiplying a register by a constant, provided the result
does not exceed n/2; (e) testing if a register is equal to zero; (f) comparing the values
of two registers; (g) subtracting the values of two registers; or (h) dividing the value
of a register by a constant and computing the remainder. The probability that for any
single operation the simulation fails or takes more than O(n log4 n) interactions can
be made O(n−c) for any fixed c.

6 Applications

Simulating RL In [3], it was shown that a probabilistic population protocol with a leader
could simulate a randomized LOGSPACE Turing machine with a constant number of
read-only unary input tapes with polynomial slowdown. The basic technique was to use
the standard reduction of Minsky [22] of a Turing machine to a counter machine, in
which a Turing machine tape is first split into two stacks and then each stack is repre-
sented as a base-b number stored in unary. Because the construction in [3] could only
increment or decrement counters, each movement of the Turing machine head required
decrementing a counter to zero in order to implement division or multiplication. Us-
ing Theorem 2, we can perform division and multiplication in O(n log4 n) interactions,
which thus gives the number of interactions for a single Turing machine step. If we treat
this quantity as O(log4 n) time, we get a simulation with polylogarithmic slowdown.

Theorem 3. For any fixed c > 0, there is a constant d such that a probabilistic pop-
ulation protocol on a complete graph with a leader that can simulate nc steps of a
randomized LOGSPACE Turing machine with a constant number of read-only unary
input tapes using d log4 n time per step with a probability of failure bounded by n−c.

Protocols for semilinear predicates From [3] we have that it is sufficient to be able
to compute congruence modulo k, +, and < to compute any semilinear predicate.
From Theorem 2 we have that all of these operations can be computed with a leader
in O(n log4 n) interactions with high probability. The final stage of broadcasting the
result to all agents can also be performed in O(n log n) interactions with high probabil-
ity using an epidemic.

However, there is some chance of never converging to the correct answer if the
protocol fails. To eliminate this possibility, we construct an optimistic hybrid protocol
in which the fast but potentially inaccurate O(n log4 n)-interaction protocol is supple-
mented by an O(n2) leaderless protocol, with the leader choosing (in case of disagree-
ment) to switch its output from that of the fast protocol to that of the slow protocol
when it is likely the slow protocol has finished. The resulting hybrid protocol converges
to the correct answer in all executions while still converging in O(n log4 n) interactions
in expectation and with high probability.



Theorem 4. For any semilinear predicate P , and for any c > 0, there is a probabilistic
population protocol on a complete graph with a leader to compute P without error
that converges in O(n log4 n) interactions with probability at least 1 − n−c and in
expectation.

7 Open problems

For most of the paper, we have assumed that a unique leader agent is provided in the
initial input. The most pressing open problem is whether this assumption can be elimi-
nated without drastically raising the cost of our protocols.

One problem is the question of whether we can efficiently restart the phase clock
after completing an initial leader election phase. A proof of possibility can be obtained
by observing that the leader can shut off all other agents one at a time in O(n2 log n)
interactions, and then restart them in the same number of interactions; however, the
leader may have to wait an additional large polynomial time to be confident that it has
in fact reached all agents. We believe, based on preliminary simulation results, that a
modified version of our phase clock can be restarted much more efficiently by a newly-
elected leader. This would allow us to use our LOGSPACE simulator after an initial
O(n2)-interaction leader election stage. But more work is still needed.

Even better would be a phase clock that required no leader at all. This would allow
every agent to independently simulate the single leader, eliminating both any initial
leader election stage and the need to disseminate instructions. Whether such a leaderless
phase clock is possible is not clear.

It would be interesting to explore refinements of the underlying assumption that
pairs are drawn uniformly at random to interact, for example, to reflect the physical
effects of spatial dispersion of the agents.
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