Tight Bounds for
Amwmvmous
AdOF?EwCommiE

Ob jects

Faith Ellen
University of Toronto

Jont work with Jim Asphes
to appear at SPAA 2011



O

ONSENSUS




Consensus

1

@ termination: each Mo%f&u&v process
outputs a value

® agreement: all outputs are the same

o v&tidi&v: every OU,EF?%& LS a EMF.'M,&



consensus using cw\i.v r/w reqisters:

there is o deterministic algorithm
that tolerates 1 process crash i an
asynchronous system [FLP, LA]

there are randomized algorithms
that tolerate any number of process
crashes i asynchronous systems
[A, AB, AC, AH, C, CIL]

@ termination: each Mowfau,&tj process
ca-u%[m,%s a value with prob&biuﬁtj 1



randomized consensus algorithms

(commitv) (commitv)

U all
imgu&s are v, all ou&yu&s
are {(commibv) all
U some output is outputs are the
(commiltv), every oubput is same wikh
(commitv) or (adoptv) probability & > ©



= expected step complexit
of ado%%aomm&f : ’

= expected step complexity of
conciliator = 0(log n)

if -~ is constant, expected
step complexity of consensus

is 0( + Q)



o 0(n) deterministic [Gafni]

® O(log m) deterministic,
anonymous [Asymes]

anohymous: all processes rui the samwe code

e O(min(n, log m / log log m))
deterministic, anohymous and
matching randomized, anohymous
Llower bound



(u,), W A {1;“"‘]
Passibt& outputs: {(&d@p&,\/)l v in [1,m]}
U {(commibv)] v in [1,m]

each nonfaulty process oubpuls a value
: every output is an nput

if all inputs are v, all oulputs are
(commibv)

U some oubpul is (commibyv), every
output is (commibt,v) or (&dap&,v)



m-valued conflict detector

check(Vv), v in [1,m]

passibt@. outputs: {true, false}

termination: each nomfau&v process oultputs a value

i every execution in which all checle c::-pera&ions
have the same inpul, they all output false

n every execution that contains check{Vv) and
check(V'), at least one of them oubputs true



a conflict detector from
an

checiev)

(d,v) := (V)
U (d,v) = (commity)
the return false

else return btrue



an from a
conflict detector and

V)
f check(v) then .= brue
else u :=
U u = O then s
else v iz u initially folse
b :=
U b then return (&ciop&,v) initially ©

else reburn (commib,v)



a conflict detector from

check(v)
w: for L := 1 bo n do nitially false
2 then qoto r
[L] 28 all tnitially o
= brue

e e WO 0 o
Fhewn return btrue

reburn false



a conflict detector from

check(v)
w: for L := 1 bo n do nitially false
2 then qoto r
[L] 28 all tnitially o
= brue

g e O O O
Fhewn return btrue

reburn false



a conflict detector from

checkl(v)
w: for L := 1 bo n do nitially false
2 then qoto r
[L] 28 all tnitially o
= brue

g W 0 O
Fhew rebturn brue

reburn false



a conflict detector from

checkl(v)
w: for L := 1 bo n do nitially false
2 then qoto r
[L] 28 all tnitially o
= brue

K & V8" O O

Fhewn return btrue

reburn false



a conflict detector from

checklv)
w: for L := 1 bo n do nitially false
2 then qoto r
[L] 28 all tnitially o
= brue

K B ¥R 2 O

Fhewn return btrue

reburn false



a conflict detector from

checklv)
w: for L := 1 bo n do nitially false
2 then qoto r
[L] 28 all tnitially o
= brue

g B iR 2 2

Fhewn return btrue

reburn false



a conflict detector from

checklv)
w: for L := 1 bo n do nitially false
2 then qoto r
[L] 28 all tnitially o
= brue

g B iR 2 2

Fhewn return btrue

reburn false



a conflict detector from

check(v)
w: for L := 1 bo n do nitially false
2 then qoto r
[L] 28 all tnitially o
= brue

K B ¥R 2 O

Fhewn return btrue

reburn false



a conflict detector from

checkl(v)
w: for L := 1 bo n do nitially false
2 then qoto r
[L] 28 all tnitially o
= brue

2 iR 2 O

Fhewn return btrue

reburn false



a conflict detector from

checkl(v)
w: for L := 1 bo n do nitially false
2 then qoto r
[L] 28 all tnitially o
= brue

2 R 2 2

Fhewn return btrue

reburn false



a conflict detector from

checkl(v)
w: for L := 1 bo n do nitially false
2 then qoto r
[L] 28 all tnitially o
= brue

B TR 2 2

Fhewn return btrue

reburn false



a conflict detector from

check{v)
w: for L := 1 bo n do nitially false
i then qoto
r
il ;= v all E.Miﬁmi.i,j o
= brue

r: for L := 1 to n do
U [i] #v 3 5 2 2 2
then reburn btrue

reburin false :



a conflict detector from

check{v)
w: for L := 1 bo n do nitially false
i then qoto
r
il ;= v all E.Miﬁmi.i,j o
= brue

r: for L := 1 to n do
U [i]-v 5 S s 2 2
then rebturn true

reburin false :



a 2-valued conflict detector from

checklv)

U x =0
Fhewn return btrue

else return false



a 2-valued conflict detector from

checklv)

U x =0
Fhewn return btrue

else return false



a 2-valued conflict detector from

checklv)

U x =0
Fhewn return btrue

else return false



an m-valued conflict detector from

@k@.ﬁ‘f(\/) . Trll .“;Trm
for i:=1 &‘? k do distinct
X = {Tr\’[‘«]] F@.rmu&oxﬁoms

. = o)

L‘f X O‘f {1;«”‘{}
then [TJi]] :=v
else ‘ff X all imi&iauv o
Ehen reburn btrue

reburin false O O O

i is O(log m / log log m)



an m-valued conflict detector from

checkel(v)
for i := 1 ko 3 do
X 5= fellv] ColJ
Exf x = O
thew [MVil] := v
else f x # v
then return true

reburin false

T =[12 3]
T =[1 3 2]
Ts=[21 3]
Ta=[2 3 1]
s =[312]
Te =[32 1]

& Q O



an m-valued conflict detector from

checkel(v)
for i := 1 ko 3 do
X 5= fellv] ColJ
Exf x = O
thew [MVil] := v
else f x # v
then return true

reburin false

T =[12 3]
T =[1 3 2]
Ts=[21 3]
e =[2 3 1]
s =[312]
Te =[32 1]

w0 o



an m-valued conflict detector from

checkel(v)
for i := 1 ko 3 do
X 5= fellv] ColJ
Exf x = O
thew [MVil] := v
else f x # v
then return true

reburin false

T =[12 3]
T =[1 3 2]
Ts=[21 3]
e =[2 3 1]
s =[312]
Te =[32 1]

Ll o



an m-valued conflict detector from

checkel(v)
for i := 1 ko 3 do
X 5= fellv] ColJ
Exf x = O
thew [MVil] := v
else f x # v
then return true

reburin false

T =[12 3]
T =[1 3 2]
Ts=[21 3]
Ta=[2 3 1]
s =[312]
Te =[32 1]

" e |



an m-valued conflict detector from

checkel(v)
for i := 1 ko 3 do
X 5= fellv] ColJ
Exf x = O
thew [MVil] := v
else f x # v
then return true

reburin false

T =[12 3]
T =[1 3 2]
Ts=[21 3]
Ta=[2 3 1]
s =[312]
Te =[32 1]

& Q O



an m-valued conflict detector from

check(v) T =[12 3]
for i := 1 ko 3 do T2 =[1 3 2]
x := [TJ[il] Tz =[21 3]
U x=o0 T+ = [2 3 1]
then [MJ[i]] :=v s =[31 2]
else f x # v Te =32 1]

Fhewn return btrue

reburin false © 4 ©



an m-valued conflict detector from

checkel(v)
for i := 1 ko 3 do
X 5= fellv] ColJ
Exf x = O
thew [MVil] := v
else f x # v
then return true

reburin false

T =[12 3]
T =[1 3 2]
Ts=[21 3]
e =[2 3 1]
s =[312]
Te =[32 1]

ol e o



an m-valued conflict detector from

checkel(v)
for i := 1 ko 3 do
X 5= fellv] ColJ
Exf x = O
thew [MVil] := v
else f x # v
then return true

reburin false

T =[12 3]
T =[1 3 2]
Ts=[21 3]
Ta=[2 3 1]
s =[312]
Te =[32 1]

W I 4



an m-valued conflict detector from

checkel(v)
for i := 1 ko 3 do
X 5= fellv] ColJ
Exf x = O
thew [MVil] := v
else f x # v
then return true

reburin false

T =[12 3]
T =[1 3 2]
Ts=[21 3]
Ta=[2 3 1]
s =[312]
Te =[32 1]

& Q O



an m-valued conflict detector from

checkel(v)
for i := 1 ko 3 do
X 5= fellv] ColJ
Exf x = O
thew [MVil] := v
else f x # v
then return true

reburin false

T =[12 3]
T =[1 3 2]
Ts=[21 3]
e =[2 3 1]
s =[312]
Te =[32 1]

w0 o



an m-valued conflict detector from

check(v) T =[12 3]
for L := 1 to 3 do T = [1 3 2]
x := [TJ[il] Tz =[21 3]
U x=o0 T+ = [2 3 1]
then [TMVi]] := v s =[312]
else f x # v Te =[32 1]
then returi btrue
reburin false I 4 ©

for any u # v, i is before j in Tuand
j is before L n T, for some L # |



siimin(n, log m / log log m)) Llower bound
on step complexity of anonymous m-valued
conflict detectors for n processes



= solo execution of checlk( )
reqisters written to in

1

1

reqgisters read from,
but not wriktken to, in

K3, K2, W§, W3, K1, W§, K2, W&, K3



solo execubtion of checlk( )
reqisters written to in

1

1

reqisters read from,
but not wriktken to, in

Q;a} QZ’) ) ) Ql} wg} QZ’I ) Qs

1

= permutation of
arranged according to
first writes to reqisters in and
last reads from reqisters in



1

solo execubtion of checlk( )
reqisters written to in

1

reqisters read from,
but not wriktken to, in

Q,ﬁ; QZ, s ) s W5;

1

; ; K3

= permutation of
arranged according to
first writes to reqgisters in and
Last reads from reqgisters in



= solo execution of checlk( )
reqisters written to in

1

reqisters read from,
but not wriktken to, in

1

LEMMA 1 If +
then there exist i,} in
)

that occur in different orders
0N and

T\
>



Suppose all i,} in 0
occur i Ehe same orders i
and <.

R3, K2, / ) ; W§, ) ; K3

Qﬁ} Ql} ) ) ) ) ) ) Qﬁ} wz’

The adversary can construct an execution £
that is indistinquishable from to  and
indistinquishable from to



Suppose all i,} in 0
occur i Ehe same orders i
and <.

RILRI wh Tl WS -2 e R 3
&

RS, RL, %@ ~SW" | RSswW2
4 7

The adversary can construct an execution £
that is indistinquishable from to  and
indistinquishable from to



r23) QZ; s ) s W5; s Wﬁ, K3
Q5} Ql; s s Q"f'; ) WV; s Qﬁ, W2

) ) ) ) )

is scheduled immediately before
corresponding



r23} (22; s ) s W5; s W@, K3
Q5} Ql; s s Q"f'; ) WV; s f35; W2

) ) ) ) ) ) )

is scheduled immediately before
corresponding

is scheduled immediately after
corresponding



r23} (22; s ) s W5; s W@, K3
Q5} Ql; s s Q"f'; ) WV; s f35; W2

R3,RR,RE,KRL, , , , ,R4, , W72Ws ,
W6,KE,K3,W2

is scheduled immediately before

aorres[mnc&uf\g
is scheduled immediately after
@Orres[zammdms
R/W's bebween successive and
R'/W's bebween successive are

inkerleaved arbi&raritv



R3,RR,REKL, , , , R4, , W7Ws,

Wo,KE,K3,W2

Problem: may read a value written bj
or  may read a value wriltten bv

Solubion: add clownes.

A clone of is a process with the same
iput (and code) as , which is run in
lockstep with , until immediately before
some write. The clone Fverﬂforms that
write later to ensure that reads the
value it Last wrote to that register.

)



QE} QZ} Qs} Qg}leilef ) ) ) ,Qé’; ) ;W?;W5;
,  MNWEWE RS RSN

For each L i )

add one clone of for e&th Rt by
after ikts first  and

add one of for each Ri by
after iks first

This ensures that any read of M[i]
after the first bwo writes of M[i]
will see the same value in £

Lk saw i or



Q‘S} QZ} Qs} Qg}(zlilef ) ) ) ,sz’; ) }W7)W5}
,  WE WS KSE,R3,WR

For each L ) ;
all Ri's, by occur before the
first write by and, hence read o,

For each L i ()
all Ri's, by ocecur before the
first write by and, hence read o,



LEMMA 2 Let 1(1),..,T(m) be finite
sequences without repetition such that, for
every two sequences, M(v) and M(u), there
exist elements i and j that occur in M(v)
and T(u) in different orders. Then

S/l v = 1,.mt £ 1,



THEOREM The worst case step
complexity of any deterministic
anonymous m-valued conflict
detector for n processes is
s2(imin(n, Llog m / Llog Log m)).



Proof: Let b = max {[E(V)] : v =1, mi.

Then [TV € [E(V)] £ E.
1f b > n/2, the claim is btrue. Otherwise,
for all v %= u, [E(V)] + [E(w)] £ w.

By Lemma 1, for all u and v, there exist
@.P@.mev\&s L and | that occur in T(v) and
T(w) h ditferent orders. Hence,

mAl =3 1A v = 1, mt £

S/l s v = 1,m) €1, bj Lewama 2.
So m € b and

b is s2{log m / Log Log m).



COROLLARY Ay anonymous
randomized m-valued conflict
detectors for n processes has
s2(min(n, log m / Llog Log m))
sE@.[a aompi&xi&y wikh prababiti&j 1
against an oblivious adw@.rsarv.



Suppose nok,

For each v = 1,..,m, there is a
sequence of coin flips such that
some solo execution £{(v) bj a
process wikth EMPME v btalkkes at most b
steps, where t € n/2 and k! £ m,
The proof of the theorem constructs
an execubtion &' i which two
processes with different inputs both
perform check and return false.
This violates correctiness.



THEQRKEM? Amj S
randomized m-valued conflict
detectors for n processes has
s2(min(n, log m / Llog Log m))
sE@.[a aompi&xi&y wikh prababiti&j 1
against an oblivious adw@.rsarv.



