
Tight Bounds for
Anonymous

Adopt-Commit
Objects

Faith Ellen
University of Toronto

joint work with Jim Aspnes
to appear at SPAA 2011

Consensus

P1 P2 P3 P4

2 1 23

Consensus

P1 P2 P3 P4

1 1 1

X
termination: each nonfaulty process
outputs a value

agreement: all outputs are the same

validity: every output is an input

consensus using only r/w registers:

there is no deterministic algorithm
that tolerates 1 process crash in an
asynchronous system [FLP, LA]

there are randomized algorithms
that tolerate any number of process
crashes in asynchronous systems
[A, AB, AC, AH, C, CIL]

termination: each nonfaulty process
outputs a value with probability 1

randomized consensus algorithms

A AC C A

(commit,v) (commit,v)

v

v'

v
(adopt,v)

v' v'

v v

convergence: if all
inputs are v, all outputs
are (commit,v)

probabilistic
agreement: all
outputs are the
same with
probability ∆ > 0

v

(adopt,v')

(adopt,v)

coherence: if some output is
(commit,v), every output is
(commit,v) or (adopt,v)

v

A = expected step complexity
of adopt-commit

C = expected step complexity of
conciliator = O(log n)

if ∆ is constant, expected
step complexity of consensus
is O(A + C)

m-valued adopt-commit objects

O(n) deterministic [Gafni]

O(log m) deterministic,
anonymous [Aspnes]

anonymous: all processes run the same code

O(min(n, log m / log log m))
deterministic, anonymous and
matching randomized, anonymous
lower bound

convergence: if all inputs are v, all outputs are
(commit,v)

coherence: if some output is (commit,v), every
output is (commit,v) or (adopt,v)

termination: each nonfaulty process outputs a value

validity:: every output is an input

m-valued adopt-commit object
adoptCommit(u), u in [1,m]
possible outputs: {(adopt,v)| v in [1,m]}
 U {(commit,v)| v in [1,m]}

in every execution that contains check(v) and
check(v'), at least one of them outputs true

termination: each nonfaulty process outputs a value

m-valued conflict detector

check(v), v in [1,m]
possible outputs: {true, false}

in every execution in which all check operations
have the same input, they all output false

a conflict detector from
an adopt-commit object

check(v)
(d,v') := adoptCommit(v)
if (d,v') = (commit,v)
then return false
else return true

an adopt-commit object from a
conflict detector and registers

adoptCommit(v)

if check(v) then conflict := true

 else u := proposal

if u = 0 then proposal := v

 else v := u

b := conflict

if b then return (adopt,v)

 else return (commit,v)

conflict
initially false
proposal
initially 0

a conflict detector from registers

check(v)

w: for i := 1 to n do

 if done then goto r

 M[i] := v

done := true

r: for i := 1 to n do

 if M[i] ≠ v

 then return true

return false

done
initially false

M[1..n]
all initially 0

0 0 0 00

done f

M

a conflict detector from registers

check(v)

w: for i := 1 to n do

 if done then goto r

 M[i] := v

done := true

r: for i := 1 to n do

 if M[i] ≠ v

 then return true

return false

done
initially false

M[1..n]
all initially 0

0 0 0 02

done f

M

a conflict detector from registers

check(v)

w: for i := 1 to n do

 if done then goto r

 M[i] := v

done := true

r: for i := 1 to n do

 if M[i] ≠ v

 then return true

return false

done
initially false

M[1..n]
all initially 0

2 0 0 02

done f

M

a conflict detector from registers

check(v)

w: for i := 1 to n do

 if done then goto r

 M[i] := v

done := true

r: for i := 1 to n do

 if M[i] ≠ v

 then return true

return false

done
initially false

M[1..n]
all initially 0

2 2 0 02

done f

M

a conflict detector from registers

check(v)

w: for i := 1 to n do

 if done then goto r

 M[i] := v

done := true

r: for i := 1 to n do

 if M[i] ≠ v

 then return true

return false

done
initially false

M[1..n]
all initially 0

2 2 2 02

done f

M

a conflict detector from registers

check(v)

w: for i := 1 to n do

 if done then goto r

 M[i] := v

done := true

r: for i := 1 to n do

 if M[i] ≠ v

 then return true

return false

done
initially false

M[1..n]
all initially 0

2 2 2 22

done f

M

a conflict detector from registers

check(v)

w: for i := 1 to n do

 if done then goto r

 M[i] := v

done := true

r: for i := 1 to n do

 if M[i] ≠ v

 then return true

return false

done
initially false

M[1..n]
all initially 0

2 2 2 22

done t

M

a conflict detector from registers

check(v)

w: for i := 1 to n do

 if done then goto r

 M[i] := v

done := true

r: for i := 1 to n do

 if M[i] ≠ v

 then return true

return false

done
initially false

M[1..n]
all initially 0

2 2 2 02

done f

M

a conflict detector from registers

check(v)

w: for i := 1 to n do

 if done then goto r

 M[i] := v

done := true

r: for i := 1 to n do

 if M[i] ≠ v

 then return true

return false

done
initially false

M[1..n]
all initially 0

2 2 2 03

done f

M

a conflict detector from registers

check(v)

w: for i := 1 to n do

 if done then goto r

 M[i] := v

done := true

r: for i := 1 to n do

 if M[i] ≠ v

 then return true

return false

done
initially false

M[1..n]
all initially 0

2 2 2 23

done f

M

a conflict detector from registers

check(v)

w: for i := 1 to n do

 if done then goto r

 M[i] := v

done := true

r: for i := 1 to n do

 if M[i] ≠ v

 then return true

return false

done
initially false

M[1..n]
all initially 0

3 2 2 23

done f

M

a conflict detector from registers

check(v)

w: for i := 1 to n do

 if done then goto
r
 M[i] := v

done := true

r: for i := 1 to n do

 if M[i] ≠ v

 then return true

return false

done
initially false

M[1..n]
all initially 0

3 2 2 23

done t

M

a conflict detector from registers

check(v)

w: for i := 1 to n do

 if done then goto
r
 M[i] := v

done := true

r: for i := 1 to n do

 if M[i] ≠ v

 then return true

return false

done
initially false

M[1..n]
all initially 0

3 3 2 23

done t

M

a 2-valued conflict detector from registers

check(v)

M[v] := v

if v = 1

then x := M[2]

else x := M[1]

if x ≠ 0

then return true

else return false

M[1..2]
both initially 0

0 0M

a 2-valued conflict detector from registers

check(v)

M[v] := v

if v = 1

then x := M[2]

else x := M[1]

if x ≠ 0

then return true

else return false

M[1..2]
both initially 0

1 0M

a 2-valued conflict detector from registers

check(v)

M[v] := v

if v = 1

then x := M[2]

else x := M[1]

if x ≠ 0

then return true

else return false

M[1..2]
both initially 0

1 2M

an m-valued conflict detector from registers

check(v)

for i := 1 to k do

 x := M[∏v[i]]

 if x = 0

 then M[∏v[i]] := v

 else if x ≠ v

 then return true

return false

∏1,...,∏m

distinct
permutations
of {1,..,k}

M[1..k]
all initially 0

0 0 0M

k is O(log m / log log m)

an m-valued conflict detector from registers

check(v)

for i := 1 to 3 do

 x := M[∏v[i]]

 if x = 0

 then M[∏v[i]] := v

 else if x ≠ v

 then return true

return false

∏1 = [1 2 3]
∏2 = [1 3 2]
∏3 = [2 1 3]
∏4 = [2 3 1]
∏5 = [3 1 2]
∏6 = [3 2 1]

0 0 0M

an m-valued conflict detector from registers

check(v)

for i := 1 to 3 do

 x := M[∏v[i]]

 if x = 0

 then M[∏v[i]] := v

 else if x ≠ v

 then return true

return false

∏1 = [1 2 3]
∏2 = [1 3 2]
∏3 = [2 1 3]
∏4 = [2 3 1]
∏5 = [3 1 2]
∏6 = [3 2 1]

1 0 0M

an m-valued conflict detector from registers

check(v)

for i := 1 to 3 do

 x := M[∏v[i]]

 if x = 0

 then M[∏v[i]] := v

 else if x ≠ v

 then return true

return false

∏1 = [1 2 3]
∏2 = [1 3 2]
∏3 = [2 1 3]
∏4 = [2 3 1]
∏5 = [3 1 2]
∏6 = [3 2 1]

1 1 0M

an m-valued conflict detector from registers

check(v)

for i := 1 to 3 do

 x := M[∏v[i]]

 if x = 0

 then M[∏v[i]] := v

 else if x ≠ v

 then return true

return false

∏1 = [1 2 3]
∏2 = [1 3 2]
∏3 = [2 1 3]
∏4 = [2 3 1]
∏5 = [3 1 2]
∏6 = [3 2 1]

1 1 1M

an m-valued conflict detector from registers

check(v)

for i := 1 to 3 do

 x := M[∏v[i]]

 if x = 0

 then M[∏v[i]] := v

 else if x ≠ v

 then return true

return false

∏1 = [1 2 3]
∏2 = [1 3 2]
∏3 = [2 1 3]
∏4 = [2 3 1]
∏5 = [3 1 2]
∏6 = [3 2 1]

0 0 0M

an m-valued conflict detector from registers

check(v)

for i := 1 to 3 do

 x := M[∏v[i]]

 if x = 0

 then M[∏v[i]] := v

 else if x ≠ v

 then return true

return false

∏1 = [1 2 3]
∏2 = [1 3 2]
∏3 = [2 1 3]
∏4 = [2 3 1]
∏5 = [3 1 2]
∏6 = [3 2 1]

0 4 0M

an m-valued conflict detector from registers

check(v)

for i := 1 to 3 do

 x := M[∏v[i]]

 if x = 0

 then M[∏v[i]] := v

 else if x ≠ v

 then return true

return false

∏1 = [1 2 3]
∏2 = [1 3 2]
∏3 = [2 1 3]
∏4 = [2 3 1]
∏5 = [3 1 2]
∏6 = [3 2 1]

0 4 4M

an m-valued conflict detector from registers

check(v)

for i := 1 to 3 do

 x := M[∏v[i]]

 if x = 0

 then M[∏v[i]] := v

 else if x ≠ v

 then return true

return false

∏1 = [1 2 3]
∏2 = [1 3 2]
∏3 = [2 1 3]
∏4 = [2 3 1]
∏5 = [3 1 2]
∏6 = [3 2 1]

4 4 4M

an m-valued conflict detector from registers

check(v)

for i := 1 to 3 do

 x := M[∏v[i]]

 if x = 0

 then M[∏v[i]] := v

 else if x ≠ v

 then return true

return false

∏1 = [1 2 3]
∏2 = [1 3 2]
∏3 = [2 1 3]
∏4 = [2 3 1]
∏5 = [3 1 2]
∏6 = [3 2 1]

0 0 0M

an m-valued conflict detector from registers

check(v)

for i := 1 to 3 do

 x := M[∏v[i]]

 if x = 0

 then M[∏v[i]] := v

 else if x ≠ v

 then return true

return false

∏1 = [1 2 3]
∏2 = [1 3 2]
∏3 = [2 1 3]
∏4 = [2 3 1]
∏5 = [3 1 2]
∏6 = [3 2 1]

1 0 0M

an m-valued conflict detector from registers

check(v)

for i := 1 to 3 do

 x := M[∏v[i]]

 if x = 0

 then M[∏v[i]] := v

 else if x ≠ v

 then return true

return false

∏1 = [1 2 3]
∏2 = [1 3 2]
∏3 = [2 1 3]
∏4 = [2 3 1]
∏5 = [3 1 2]
∏6 = [3 2 1]

1 4 0M

for any u ≠ v, i is before j in ∏u and
j is before i in ∏v, for some i ≠ j

Ω(min(n, log m / log log m)) lower bound
on step complexity of anonymous m-valued

conflict detectors for n processes

E(v) = solo execution of check(v)
W(v) = registers written to in E(v)
R(v) = registers read from,
 but not written to, in E(v)

R3, R2, W5, W3, R1, W5, R2, W6, R3

E(v) = solo execution of check(v)
W(v) = registers written to in E(v)
R(v) = registers read from,
 but not written to, in E(v)

R3, R2, W5, W3, R1, W5, R2, W6, R3

∏(v) = permutation of W(v) U R(v)
arranged according to
first writes to registers in W(v) and
last reads from registers in R(v)

E(v) = solo execution of check(v)
W(v) = registers written to in E(v)
R(v) = registers read from,
 but not written to, in E(v)

R3, R2, W5, W3, R1, W5, R2, W6, R3

∏(v) = permutation of W(v) U R(v)
arranged according to
first writes to registers in W(v) and
last reads from registers in R(v)

[5,3,1,2,6]

E(v) = solo execution of check(v)
W(v) = registers written to in E(v)
R(v) = registers read from,
 but not written to, in E(v)

LEMMA 1 If |E(v)| + |E(u)| ≤ n
then there exist i,j in
(W(v) U R(v)) (W(u) U R(u))
that occur in different orders
in ∏(v) and ∏(u).

U

Proof: Suppose all i,j in (W(v) U R(v))
(W(u) U R(u)) occur in the same orders in
∏(v) and ∏(u).

U

E(v) = R3, R2, W5, W3, R1, W5, R2, W6, R3

∏(v) = [5,3,1,2,6]

E(u) = R5, R1, W5, R3, R4, R1, W7, W2, R5, W2

∏(u) = [5,3,4,1,7,2]

The adversary can construct an execution E'
that is indistinguishable from E(v) to p and
indistinguishable from E(u) to q.

Proof: Suppose all i,j in (W(v) U R(v))
(W(u) U R(u)) occur in the same orders in
∏(v) and ∏(u).

U

E(v) = R3, R2, W5, W3, R1, W5, R2, W6, R3

∏(v) = [5,3,1,2,6]

E(u) = R5, R1, W5, R3, R4, R1, W7, W2, R5, W2

∏(u) = [5,3,4,1,7,2]

The adversary can construct an execution E'
that is indistinguishable from E(v) to p and
indistinguishable from E(u) to q.

E(v) = R3, R2, W5, W3, R1, W5, R2, W6, R3

E(u) = R5, R1, W5, R3, R4, R1, W7, W2, R5, W2

Ri is scheduled immediately before
corresponding Ri/Wi

W5,R3,W3,R1,R1,R2

E(v) = R3, R2, W5, W3, R1, W5, R2, W6, R3

E(u) = R5, R1, W5, R3, R4, R1, W7, W2, R5, W2

Ri is scheduled immediately before
corresponding Ri/Wi

Wi is scheduled immediately after
corresponding Ri/Wi

W5,W5,R3,W3,R1,R1,R2,W2

E(v) = R3, R2, W5, W3, R1, W5, R2, W6, R3

E(u) = R5, R1, W5, R3, R4, R1, W7, W2, R5, W2

Ri is scheduled immediately before
corresponding Ri/Wi

Wi is scheduled immediately after
corresponding Ri/Wi

R/W's between successive R/W's and
R'/W's between successive R/W's are

interleaved arbitrarily

R3,R2,R5,R1,W5,W5,R3,W3,R4,R1,R1,W7,W5,R2,W2,
W6,R5,R3,W2

Problem: q may read a value written by p
or p may read a value written by q

R3,R2,R5,R1,W5,W5,R3,W3,R4,R1,R1,W7,W5,R2,W2,
W6,R5,R3,W2

Solution: add clones.

A clone of q is a process with the same
input (and code) as q, which is run in
lockstep with q, until immediately before
some write. The clone performs that
write later to ensure that q reads the
value it last wrote to that register.

R3,R2,R5,R5,R1,R1,W5,W5,R3,W3,R4,R1,R1,W7,W5,
R2,W2,W6,W5,R5,R3,W2

For each i in W(v) W(u):
add one clone of q for each Ri by q
after its first Wi and
add one clone of p for each Ri by p
after its first Wi

U
This ensures that any read of M[i]
after the first two writes of M[i]
will see the same value in E'
it saw in E(v) or E(u)

R3,R2,R5,R5,R1,R1,W5,W5,R3,W3,R4,R1,R1,W7,W5,
R2,W2,W6,W5,R5,R3,W2

For each i in R(v) W(u):
all Ri's, Ri by p occur before the
first write Wi by q and, hence read 0.

U

For each i in W(v) R(u):
all Ri's, Ri by q occur before the
first write Ri by p and, hence read 0.

U

LEMMA 2 Let ∏(1),...,∏(m) be finite
sequences without repetition such that, for
every two sequences, ∏(v) and ∏(u), there
exist elements i and j that occur in ∏(v)
and ∏(u) in different orders. Then
∑ {1/|∏(v)|! : v = 1,...,m} ≤ 1.

THEOREM The worst case step
complexity of any deterministic
anonymous m-valued conflict
detector for n processes is
Ω(min(n, log m / log log m)).

By Lemma 1, for all u and v, there exist
elements i and j that occur in ∏(v) and
∏(u) in different orders. Hence,
m/t! = ∑ {1/t! : v = 1,...,m} ≤
∑ {1/|∏(v)|! : v = 1,...,m} ≤ 1, by Lemma 2.
So m ≤ t! and
 t is Ω(log m / log log m).

Proof: Let t = max {|E(v)| : v =1,...,m}.

Then |∏(v)| ≤ |E(v)| ≤ t.
If t > n/2, the claim is true. Otherwise,
for all v ≠ u, |E(v)| + |E(u)| ≤ n.

COROLLARY Any anonymous
randomized m-valued conflict
detectors for n processes has
Ω(min(n, log m / log log m))
step complexity with probability 1
against an oblivious adversary.

Suppose not.
For each v = 1,...,m, there is a
sequence of coin flips such that
some solo execution E(v) by a
process with input v takes at most t
steps, where t ≤ n/2 and t! ≤ m.
The proof of the theorem constructs
an execution E' in which two
processes with different inputs both
perform check and return false.
This violates correctness.

THEOREM? Any anonymous
randomized m-valued conflict
detectors for n processes has
Ω(min(n, log m / log log m))
step complexity with probability 1
against an oblivious adversary.

