Tight Bounds for Anonymous
 Adopt-Commit Objects

Faith Ellen
University of Toronto
joint work with Jim Aspnes to appear at SPAA 2011

Consensus

Consensus

- termination: each nonfaully process outputs a value
- agreement: all outputs are the same
- validity: every output is an input
consensus using only r / w registers:
there is no deterministic algorithm Chat tolerates 1 process crash in an asynchronous system [FLP, LA]
there are randomized algorithms Chat tolerate any number of process crashes in asynchronous systems $[A, A B, A C, A H, C, C I L]$
- termination: each nonfaully process outputs a value with probability 1
randomized consensus algorithms

(commit, v)
(commit,v)
if all inputs are v, all outputs are (commits) same with (commit,v) or (adopt,v) probability $\Delta>0$
= expected step complexity of adopt-commit
= expected step complexity of conciliator $=0(\log n)$
if Δ is constant, expected step complexity of consensus is $0(+C)$
m-valued adopt-commit objects
- On) deterministic [Gafni]
- O(Log m) deterministic, anonymous [Asphes]
anonymous: all processes run the same code
$0 O(\min (n, \log m / \log \log m))$ deterministic, anonymous and matching randomized, anonymous Lower bound
m-valued adopt-commit object
(u), u in $[1, m]$
possible outputs: $\{($ adopt, $v) \mid \vee$ in $[1, m]\}$
U $\{($ commit, $v) \mid \vee$ in $[1, m]\}$
termination: each nonfaulty process outputs a value
: every output is an input
if all inputs are v, all outputs are (commit, v)
if some output is (commit,v), every output is (commit,v) or (adopt,v)
m-valued conflict detector
$\operatorname{check}(v), v$ in $[1, m]$
possible outputs: $\{$ true, false\}
termination: each nonfaulty process outputs a value in every execution in which all check operations have the same input, they all output false
in every execution that contains check (v) and check $\left(v^{\prime}\right)$, at least one of them outputs true
a conflict detector from an adopt-commit object
check (v)
$\left(d, v^{\prime}\right):=\operatorname{adoptcommit}(v)$
if $\left(d, v^{\prime}\right)=($ commit,$v)$
then return false
else return true
an adopt-commit object from a conflict detector and registers
adoptCommit(v)
if check (v) then conflict := true else $u:=$ proposal
if $u=0$ then proposal $:=v$ conflict else $v:=u$ initially false
$b:=$ conflict
if b then return (adopt, v) proposal initially 0 else return (commit, v)
a conflict detector from registers
check (v)
ω : for $i:=1$ to n do if done then goto r

$$
M[i]:=v
$$

done $:=$ true
r for $i:=1$ to n do if $M[i] \neq v$
then return true return false
done initially false
$M[1 . . n]$ all initially 0
a conflict detector from registers
check (v)
ω : for $i:=1$ to n do if done then goto r

$$
M[i]:=v
$$

done $:=$ true
r for $i:=1$ to n do if $M[i] \neq v$
then return true return false
done initially false $M[1 . . n]$ all initially 0
a conflict detector from registers
check (v)
ω : for $i:=1$ to n do if done then goto r

$$
M[i]:=v
$$

done $:=$ true
r for $i:=1$ to n do if $M[i] \neq v$
then return true
done initially false
$M[1 . . n]$ all initially 0
a conflict detector from registers
check (v)
ω : for $i:=1$ to n do if done then goto r

$$
M[i]:=v
$$

done $:=$ true
r for $i:=1$ to n do if $M[i] \neq v$
then return true
done initially false $M[1 . . n]$ all initially 0
a conflict detector from registers
check (v)
ω : for $i:=1$ to n do if done then goto r

$$
M[i]:=v
$$

done $:=$ true
r for $i:=1$ to n do if $M[i] \neq v$
then return true
done initially false $M[1 . . n]$ all initially 0
a conflict detector from registers
check (v)
ω : for $i:=1$ to n do if done then goto r

$$
M[i]:=v
$$

done $:=$ true
r for $i:=1$ to n do if $M[i] \neq v$
then return true
done initially false
$M[1 . . n]$ all initially 0
a conflict detector from registers
check (v)
ω : for $i:=1$ to n do if done then goto r

$$
M[i]:=v
$$

done $:=$ true
r for $i:=1$ to n do if $M[i] \neq v$
then return true
done initially false $M[1 . . n]$ all initially 0
a conflict detector from registers
check (v)
ω : for $i:=1$ to n do if done then goto r

$$
M[i]:=v
$$

done $:=$ true
r for $i:=1$ to n do if $M[i] \neq v$
then return true
done initially false $M[1 . . n]$ all initially 0
a conflict detector from registers
check (v)
ω : for $i:=1$ to n do if done then goto r

$$
M[i]:=v
$$

done $:=$ true
r for $i:=1$ to n do if $M[i] \neq v$
then return true
done initially false $M[1 . . n]$ all initially 0
a conflict detector from registers
check (v)
ω : for $i:=1$ to n do if done then goto r

$$
M[i]:=v
$$

done $:=$ true
r for $i:=1$ to n do if $M[i] \neq v$
then return true
done initially false
$M[1 . . n]$ all initially 0
a conflict detector from registers
check (v)
ω : for $i:=1$ to n do if done then goto r

$$
M[i]:=v
$$

done $:=$ true
r for $i:=1$ to n do if $M[i] \neq v$
then return true
done initially false
$M[1 . . n]$ all initially 0
a conflict detector from registers
check (v)
ω : for $i:=1$ to n do if done then goto

$$
M[i]:=v
$$

done $:=$ true
r for $i:=1$ to n do if $M[i] \neq v$ then return true return false
done initially false $M[1 . . n]$ all initially 0

M	3	3	2	2	2

3
\square
a conflict detector from registers
check (v)
ω : for $i:=1$ to n do if done then goto

$$
M[i]:=v
$$

done $:=$ true
r for $i:=1$ to n do if $M[i] \neq v$ then return true return false
done initially false $M[1 . . n]$ all initially 0

M	3	3	3	2	2

3
\square
a 2-valued conflict detector from registers
check(v)
$M[v]:=v$
if $v=1$
then $x:=M[2]$
else $x:=M[1]$
if $x \neq 0$
then return true else return false

$$
M[1 . .2]
$$

both initially 0
a 2-valued conflict detector from registers
check(v)
$M[v]:=v$
if $v=1$
then $x:=M[2]$
else $x:=M[1]$
if $x \neq 0$
then return true else return false

$$
M[1 . .2]
$$

both initially 0

$$
M|1| 0
$$

a 2-valued conflict detector from registers
check(v)
$M[v]:=v$
if $v=1$
then $x:=M[2]$
else $x:=M[1]$
if $x \neq 0$
then return true else return false

$$
M[1 . .2]
$$

both initially 0

an m-valued conflict detector from registers
check(v)
for $i:=1$ to k do
$x:=M[\pi v[i]]$
if $x=0$
then $M[\pi v[i]]:=v$
else if $x \neq v$
then return true
return false
π_{1}, \ldots, π_{m} distinct permutations of $\{1, . ., k\}$ $M[1 . . k]$ all initially 0

M

0	0	0

k is $0(\log m / \log \log m)$
an m-valued conflict detector from registers
check(v)
for $i:=1$ to 3 do
$x:=M[\pi v[i]]$
if $x=0$
then $M[\pi v[i]]:=v$
else if $x \neq v$
then return true
return false

$$
\begin{aligned}
& \pi_{1}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \pi_{2}=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] \\
& \pi_{3}=\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right] \\
& \pi_{4}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right] \\
& \pi_{5}=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right] \\
& \pi_{6}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

M \square
an m-valued conflict detector from registers
check (v)
for $i:=1$ to 3 do
$x:=M[\pi v[i]]$
if $x=0$
then $M[\pi v[i]]:=v$
else if $x \neq v$
then return true
return false

$$
\begin{aligned}
& \pi_{1}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \pi_{2}=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] \\
& \pi_{3}=\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right] \\
& \pi_{4}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right] \\
& \pi_{5}=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right] \\
& \pi_{6}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

M \square
an m-valued conflict detector from registers
check(v)
for $i:=1$ to 3 do
$x:=M[\pi v[i]]$
if $x=0$
then $M[\pi v[i]]:=v$
else if $x \neq v$
then return true

$$
\begin{aligned}
& \pi_{1}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \pi_{2}=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] \\
& \pi_{3}=\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right] \\
& \pi_{4}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right] \\
& \pi_{5}=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right] \\
& \pi_{6}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

M
1
an m-valued conflict detector from registers
check(v)
for $i:=1$ to 3 do
$x:=M[\pi v[i]]$
if $x=0$
then $M[\pi v[i]]:=v$
else if $x \neq v$
then return true
return false

$$
\begin{aligned}
& \pi_{1}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \pi_{2}=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] \\
& \pi_{3}=\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right] \\
& \pi_{4}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right] \\
& \pi_{5}=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right] \\
& \pi_{6}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

M
1
1
1
an m-valued conflict detector from registers
check(v)
for $i:=1$ to 3 do
$x:=M[\pi v[i]]$
if $x=0$
then $M[\pi v[i]]:=v$
else if $x \neq v$
then return true
return false

$$
\begin{aligned}
& \pi_{1}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \pi_{2}=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] \\
& \pi_{3}=\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right] \\
& \pi_{4}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right] \\
& \pi_{5}=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right] \\
& \pi_{6}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

M \square
an m-valued conflict detector from registers
check(v)
for $i:=1$ to 3 do
$x:=M[\pi v[i]]$
if $x=0$
then $M[\pi v[i]]:=v$
else if $x \neq v$
then return true
return false

$$
\begin{aligned}
& \pi_{1}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \pi_{2}=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] \\
& \pi_{3}=\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right] \\
& \pi_{4}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right] \\
& \pi_{5}=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right] \\
& \pi_{6}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

M
an m-valued conflict detector from registers
check(v)
for $i:=1$ to 3 do
$x:=M[\pi v[i]]$
if $x=0$
then $M[\pi v[i]]:=v$
else if $x \neq v$
then return true
return false

$$
\begin{aligned}
& \pi_{1}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \pi_{2}=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] \\
& \pi_{3}=\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right] \\
& \pi_{4}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right] \\
& \pi_{5}=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right] \\
& \pi_{6}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

M

an m-valued conflict detector from registers
check (v)
for $i:=1$ to 3 do
$x:=M[\pi v[i]]$
if $x=0$
then $M[\pi v[i]]:=v$
else if $x \neq v$
then return true
return false

$$
\begin{aligned}
& \pi_{1}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \pi_{2}=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] \\
& \pi_{3}=\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right] \\
& \pi_{4}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right] \\
& \pi_{5}=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right] \\
& \pi_{6}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

M
an m-valued conflict detector from registers
check(v)
for $i:=1$ to 3 do
$x:=M[\pi v[i]]$
if $x=0$
then $M[\pi v[i]]:=v$
else if $x \neq v$
then return true
return false

$$
\begin{aligned}
& \pi_{1}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \pi_{2}=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] \\
& \pi_{3}=\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right] \\
& \pi_{4}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right] \\
& \pi_{5}=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right] \\
& \pi_{6}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

M \square
an m-valued conflict detector from registers
check (v)
for $i:=1$ to 3 do
$x:=M[\pi v[i]]$
if $x=0$
then $M[\pi v[i]]:=v$
else if $x \neq v$
then return true
return false

$$
\begin{aligned}
& \pi_{1}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \pi_{2}=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] \\
& \pi_{3}=\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right] \\
& \pi_{4}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right] \\
& \pi_{5}=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right] \\
& \pi_{6}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

M \square
an m-valued conflict detector from registers
check (v)
for $i:=1$ to 3 do
$x:=M[\pi v[i]]$
if $x=0$
then $M[\pi v[i]]:=v$
else if $x \neq v$
then return true
return false

$$
\begin{aligned}
& \pi_{1}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \pi_{2}=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] \\
& \pi_{3}=\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right] \\
& \pi_{4}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right] \\
& \pi_{5}=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right] \\
& \pi_{6}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

M

for any $u \neq v$, i is before j in πu and j is before i in πv, for some $i \neq j$
$s(\min (n, \log m / \log \log m))$ Lower bound on step complexity of anonymous m-valued conflict detectors for n processes
$=$ solo execution of check (V)
= registers written to in
= registers read from, but not written to, in
$R 3, R 2, W 6, W 3, R 1, W 5, R 2, W 6, R 3$
$=$ solo execution of check (V)
= registers written to in
= registers read from, but not written ko, in
$R 3, R 2, W 5, W 3, R 1, W 5, R 2, W 6, R 3$
= permutation of arranged according to first writes to registers in and last reads from registers in
$=$ solo execution of check (V)
= registers written to in
= registers read from, but not written ko, in
$R 3, R 2, W 5, W 3, R 1, W 5, R 2, W 6, R 3$
= permutation of arranged according to first writes to registers in and last reads from registers in
$=$ solo execution of check (V)
= registers written to in
$=$ registers read from, but not written to, in

LEMMA 1 If $\leq n$ then there exist $i_{,} j$ in

$$
\cap
$$

that occur in different orders in $\pi(v)$ and

Suppose all $i_{i} j$ in occur in the same orders in and

$$
\begin{aligned}
& R 3, R 2, W 5, W 3, R 1, W 6, R 2, W 6, R 3 \\
& \pi(v)=[5,3,1,2,6] \\
& R E, R 1, W, N 3, R 4, R 1, W 1, W 2, R 5, W_{2}
\end{aligned}
$$

The adversary can construct an execution E^{\prime} that is indistinguishable from to and indistinguishable from $E(u)$ to .

Suppose all $i_{j} j$ in \qquad occur in the same orders in and

$$
\begin{aligned}
& R 3, R 2, W 5, W 3, R 1, W 6, R 2, W 6, R 3 \\
& \pi(V)=[5,3,1,2,6] \\
& R 6, R 1, W, R 3, R 4, R 1, W 7, W, R 6, W 2 \\
& =[347
\end{aligned}
$$

The adversary can construct an execution E^{\prime} that is indistinguishable from to and indistinguishable from $E(u)$ to .

R3, R2, W6, W3, R1, W6, R2, W6, R3
RE, R1, W2, $, R 4, R 1, W_{7}, W 2, R 6, W_{2}$
$,<, N 3,<1,1<1$,
is scheduled immedialely before corresponding

R3, R2, W6, W3, R1, W6, R2, W6, R3
RE, R1, W,, R4, R1, W7, W2, RE, W2
, N, R3,N3,R1,R1,R2,
is scheduled immedialely before corresponding
is scheduled immediately after corresponding

R3, R2, W6, W3, R1, W6, R2, W6, R3
RE, R1, W,, R4, R1, W7, W2, RE, W2
$R 3, R 2, R 6, R 1, W 5, N 5, R 3, W 3, R 4, R 1, R 1, W 7, W 6, R 2, W 2$, WG,RE,R3,W2
is scheduled immedialely before corresponding
is scheduled immedialely after corresponding
R/W's belween successive
and
R'/W's belween successive are incerleaved arbitrarily
$R 3, R 2, R 6, R 1, \quad, \quad, \quad 3, R 4, R 1, R 1, W 7, W 6, R 2, W 2$, W6,RG,R3,W2

Problem: 9 may read a value written by or may read a value written by

Solution: add clones.
A clone of q is a process with the same input (and code) as , which is run in lockstep with, until immediately before some write. The clone performs that write later to ensure that reads the value it last wrote to that register.
$R 3, R 2, R G, R G, R 1, R 1, W, \quad, R 3, W 3, R 4, R 1, R 1, W 7, W 6$, , W6,WG,RG,R3,W2

For each i in add one clone of for each Ri by after its first Wi and add one clovis of p or each Ri by after its first

This ensures that any read of $M[i]$ after the first two writes of M[i] will see the same value in E^{\prime} it saw in \qquad or

$$
\begin{aligned}
& R 3, R 2, R G, R 5, R 1, R 1, W, \quad, R 3, W 3, R 4, R 1, R 1, W 7, W 5, \\
& , W 6, R 5, R 3, W 2
\end{aligned}
$$

For each i in \square \cap all Ri's, Ri by p occur before the first write wi by 9 and, hence read 0 .

For each i in $W(v) \cap R(u)$: all Ri's, by occur before the first write by and, hence read 0 .

LEMMA 2 Let $\pi(1), \ldots, \pi(m)$ be finite sequences without repetition such that, for every two sequences, $\pi(v)$ and $\pi(u)$, there exist elements i and j that occur in $\pi(v)$ and $\pi(u)$ in different orders. Then $\Sigma\{1 /|\pi(v)|!: v=1, \ldots, m\} \leq 1$.

THEOREM The worst case step complexity of any deterministic anonymous m-valued conflict detector for n processes is $s 2(\min (n, \log m / \log \log m))$.

Proof: Let $t=\max \{|E(v)|: v=1, \ldots, m\}$.
Then $|\pi(v)| \leq|E(v)| \leq \varepsilon$.
If $k>n / 2$, the claim is true. Otherwise, for all $v \neq u,|E(v)|+|E(u)| \leq n$.
By Lemma 1, for all u and v, there exist elements i and j chat occur in $\pi(v)$ and $\pi(u)$ in different orders. Hence, $m / t!=\Sigma\{1 / k!: v=1, \ldots, m\} \leq$
$\Sigma\{1 /|\pi(v)|!: v=1, \ldots, m\} \leq 1$, by Lemma 2 . So $m \leq!!$ and
t is $s(\log m / \log \log m)$.

COROLLARY Any anonymous randomized m-valued conflict detectors for n processes has $s(\min (n, \log m / \log \log m))$ skep complexity with probability 1 against an oblivious adversary.

Suppose not.
For each $v=1, \ldots, m$, there is a sequence of coin flips such that some solo execution $E(v)$ by a process with input v takes at most t steps, where $t \leq n / 2$ and $t \leq m$. The proof of the theorem constructs an execution E^{\prime} in which two processes with different inputs both perform check and return false. This violates correctness.

THEOREM? Any anotigitsins randomized m-valued conflict detectors for n processes has $s(\min (n, \log m / \log \log m))$ step complexity with probability 1 against an oblivious adversary.

