
Inferring Social Networks from Outbreaks

Dana Angluin1?, James Aspnes1??, and Lev Reyzin2? ? ?

1 Department of Computer Science, Yale University
51 Prospect St., New Haven, CT 06511

{dana.angluin, james.aspnes}@yale.edu

2 Yahoo! Research
111 West 40th St. 17th Fl., New York, NY 10018

lreyzin@yahoo-inc.com

Abstract. We consider the problem of inferring the most likely social
network given connectivity constraints imposed by observations of out-
breaks within the network. Given a set of vertices (or agents) V and
constraints (or observations) Si ⊆ V we seek to find a minimum log-
likelihood cost (or maximum likelihood) set of edges (or connections) E
such that each Si induces a connected subgraph of (V, E). For the offline
version of the problem, we prove an Ω(log(n)) hardness of approxima-
tion result for uniform cost networks and give an algorithm that almost
matches this bound, even for arbitrary costs. Then we consider the online
problem, where the constraints are satisfied as they arrive. We give an
O(n log(n))-competitive algorithm for the arbitrary cost online problem,
which has an Ω(n)-competitive lower bound. We look at the uniform cost
case as well and give an O(n2/3 log2/3(n))-competitive algorithm against
an oblivious adversary, as well as an Ω(

√
n)-competitive lower bound

against an adaptive adversary. We examine cases when the underlying
network graph is known to be a star or a path, and prove matching upper
and lower bounds of Θ(log(n)) on the competitive ratio for them.

1 Introduction

In the real world, we often observe patterns that expose information about an
underlying structure that we are interested in discovering, and in this paper,
we focus our attention on learning social networks by passively observing such
patterns. Here, we consider inferring the structure of social networks by observing
phenomena that give us information about their connectivity. Our observations
may be limited, and we may not be able to infer the underlying networks precisely
– in that case, we can try to find the most likely structure given prior beliefs.
? Supported in part by the National Science Foundation under grant CCF-0916389.

?? Supported in part by the National Science Foundation under grants CNS-0435201
and CCF-0916389.

? ? ? Work supported in part by the National Science Foundation under a National Science
Foundation Graduate Research Fellowship and in part under Grant # 0937060 to the
Computing Research Association for the Computing Innovation Fellowship program.

For example, in the United States, the Centers for Disease Control and Pre-
vention release various data3 on persons affected by illnesses – where, ideally,
we would have information on exactly who is affected in each outbreak. From
this information we can try to learn the network’s underlying structure. In an
idealized setting, we can consider persons infected during one outbreak as con-
nected subsets in a population – for a disease spreads among persons in close
proximity, and such data impose constraints on the topology of the network.
Given such constraints, the problem would then be to find a maximum likelihood
social network from the disease data.

Thus, each set imposes a constraint on the network – namely that it be
connected in its induced subgraph. The goal of the learner is to infer the most
probable network that satisfies the connectivity requirements presented to it.

The learner can also have a prior belief about the probability each edge
appears in the network. Let p(u,v) be the a priori probability of an edge appearing
between nodes u and v. If the prior distribution on edges is independent and each
edge appears with low probability, the goal of finding a maximum likelihood
social network given the constraints is to find a set of edges E that satisfies all
of the constraints, for which the quantity∏

{u,v}∈E

p(u,v)

∏
{u,v}/∈E

(
1− p(u,v)

)
=
∏
{u,v}

(
1− p(u,v)

) ∏
{u,v}∈E

p(u,v)(
1− p(u,v)

)
is maximized. Taking the logarithm, we want a set of edges E that minimizes
the sum ∑

{v,u}∈E

− log

(
p(u,v)(

1− p(u,v)

)).

We assume that all quantities p(u,v) ≤ 1/2, meaning that we a priori do not
expect any pair of given agents to be connected. This assumption implies that
each term in the sum—the log-likelihood cost of the edge—is non-negative.

We can now think of the priors in terms of these costs. The goal of the learner
becomes to construct the cheapest network (with respect to the prior costs) that
satisfies the connectivity constraints.

This task presents various natural variations. We can consider what happens
if the constraints are given to the learner in advance, and when the constraints
arrive online. If they arrive online, they can be chosen adversarially or obliviously.
We can imagine all edges in a network having the same cost, or that edges in a
network have arbitrary costs. There are also cases when some information about
the underlying social network is known, for example, that there exists a path
that satisfies all the constraints.

1.1 Past Work

In the area of active learning, Angluin et al. [7] study the problem of reconstruct-
ing independent cascade social networks by activating and suppressing various
3 For more on CDC statistics, we direct the reader to www.cdc.gov/datastatistics/.

nodes in the network. The problem of actively discovering various networks from
connectivity queries has been much studied in [2, 6, 8, 9, 14, 18]. In active learning
of hidden networks, the object of the algorithm is to learn the network exactly.
Our model is similar, except the learner is passive and has only the constraints
it is given. Our task is to output the most likely network consistent with the
constraints without the ability to query the network.

In a different passive learning model, Akutsu et al. [1] consider the problem
of completing networks consistently with observations. Their model assumes the
learner has more information and uses different target networks, but it is an
example of a model that captures some of the spirit of our problem.

A variant of our problem was also considered by Korach and Stern [16] in
another context where users in a trusted set in a network want to send messages
among themselves without having the messages travel outside the group. Trusted
sets of users can overlap, creating complicated structures, and these trusted sets
form connectivity constraints in their subgraphs, imposing similar requirements
to those in the social network inference problem.

In [16] Korach and Stern analyze the offline version of this problem for the
case where the constraints can be satisfied by a tree. They give a polynomial
time algorithm that finds the optimal solution in the tree-realizable case. In [17]
Korach and Stern consider this problem for the case where the optimal solution
forms a tree, and all of the connectivity constraints must be satisfied by stars.
They pose as an open question the case of general graphs. Among our other
results, we answer their question in this paper.

In a different line of work, Alon et al. [5] explore a wide range of network
optimization problems, including generalized connectivity, cuts, facility location,
and multicast. The connectivity problem they study involves ensuring a network
with fractional edge weights has a flow of 1 over cuts specified by the constraints.
In [3], Alon et al. also study approximation algorithms for the Online Set Cover
problem, which has connections to Network Inference problems which we explore
in this paper. In [15] Gupta et al. also consider a network design problem for
pairwise vertex connectivity constraints.

1.2 Preliminaries

In this paper, we consider the following Network Inference problem. V is a set
of vertices, and for each undirected edge e = (vi, vj), ce is the cost of constructing
edge e. A collection of connectivity constraints S = {S1, S2, . . . , Sr} is given,
where each Si is a subset of V . The task is to construct a set E of edges between
vertices of V such that for each i, the set Si induces a connected subgraph of
G = (V,E). The quality of the solution is measured by comparing the sum of the
costs of all the edges in E with the optimal cost of satisfying all the constraints.

In the offline version of the problem, the algorithm knows all of the constraints
at the outset; in the Online Network Inference problem, the constraints are
given to the algorithm one by one, and edges must be added to G to satisfy each
new constraint. By default, we allow the edges to have arbitrary costs, but in
the uniform cost version of the problem the edge costs are all equal to 1.

When we restrict the underlying graph in a problem to a smaller class of
graphs, we mean that all constraints Si can be satisfied (for the online case, in
hindsight), by a graph from that class.

1.3 Our Results

In Section 2 we analyze the offline problem, where we show that the Uniform Cost
Network Inference problem (and therefore the arbitrary cost one) has a hardness
of approximation lower bound of Ω(log(n)) times the optimal solution. We give
an O(log(r)) approximation algorithm, where r is the number of constraints.
This matches the lower bound when r is polynomial in n.

In Section 3, we look at the Online Network Inference Problem. First, in
Subsection 3.1, we look at the case when the underlying uniform cost graph
is a star or path. In both cases, we show that the optimal algorithm has an
Ω(log(n))-competitive ratio and give a matching O(log(n))-competitive algo-
rithm. We also show that in the case when edges have non-uniform costs, there
is no cn-competitive algorithm for any c < 1, even when the underlying graph
is a path.

Then, in Subsection 3.2 we consider the general case of Online Network Infer-
ence, where the topology of the underlying graph is unrestricted. There we give
an O(n log(n))-competitive algorithm for the arbitrary cost case, that almost
matches our lower bound. For the Uniform Cost Network Inference problem,
we give an Ω(

√
n)-competitive lower bound, and in the case of an oblivious

adversary, we give an O(n2/3 log2/3(n))-competitive algorithm.

2 Offline Network Inference

We first examine the offline Uniform Cost Network Inference problem.

Theorem 1. If P 6=NP, the approximation ratio for the Uniform Cost Net-
work Inference problem on n nodes is Ω(log n).

Proof. We reduce from the Hitting Set problem. The inputs to Hitting Set are
U = {v1, v2, . . . , vn} and {C1, C2, . . . , Cj} with Ci ⊆ U . The Hitting Set prob-
lem is to minimize |H|, where H ⊆ U such that ∀Ci, H ∩ Ci 6= ∅. We define an
instance of the Uniform Cost Network Inference problem with n3 by n vertices
v(i,j), for all 1 ≤ i ≤ n3 (rows) and 1 ≤ j ≤ n (columns). For each i, the vertices
in row i, {v(i,1), v(i,2), . . . , v(i,n)}, correspond to the elements {v1, . . . , vn} in the
Hitting Set instance.

Now we define the connectivity constraints for the Uniform Cost Network In-
ference problem. First we enforce that all pairs of vertices in each row i are con-
nected, by adding a connectivity constraint for each pair of vertices {v(i,j), v(i,k)}.
For each constraint Ci in the Hitting Set problem, we create

(
n3

2

)
connectivity

constraints. Without loss of generality, let Ci = {v1, v2, . . . , vk}. For each pair
l 6= j such that 1 ≤ l, j ≤ n3 we add a connectivity constraint

Sl,j
Ci

= {v(l,1), v(l,2), . . . , v(l,k), v(j,1), v(j,2), . . . , v(j,k)} (1)

in the Uniform Cost Network Inference problem. This enforces the Hitting Set
constraints pairwise between the n3 rows of the network inference problem.

Each pair of rows in our new instance contains the original Hitting Set in-
stance. First, the algorithm has no choice but to place a clique on each row. Then,
let equation (1) be a constraint. To satisfy Sl,j

Ci
, the algorithm must choose some

edge between row l and row j among vertices 1, . . . , k. We observe that if the
algorithm chooses an edge between two vertices corresponding to different ele-
ments in the two rows, it could do at least as well by choosing the edge going
between two copies of one of the two elements. To see this, if edge (v(l,x), v(j,y)),
with x 6= y, is chosen to satisfy the constraint Sl,j

Ci
, edge (v(l,x), v(j,x)) would

have also satisfied the constraint (and corresponds to choosing element x in the
Hitting Set). Then, for any other constraint between the two rows, (v(l,x), v(j,y))
will satisfy it only if (v(l,x), v(j,x)) will. Hence an optimal algorithm may choose
edges in one-to-one correspondence with the elements in the original Hitting Set
instance.

Because Hitting Set is the complement of Set Cover, if P6=NP, its optimal
approximation ratio is Ω(log(n)) [13], and there are Θ

(
n3

2

)
pairs of Hitting Set

instances (or rows). The optimal solution has
(
n3
(
n
2

)
+ OPT

(
n3

2

))
edges – the

first term counts the pairwise constraints in each row. So unless P=NP, the best
polynomial time algorithm will require

(
n3
(
n
2

)
+ Ω

(
log(n)OPT

(
n3

2

)))
edges,

giving us the result. �

Below, we give an algorithm that almost meets this lower bound, even in the
arbitrary cost case when r is polynomial in n.

Theorem 2. There is a polynomial time O(log(r))-approximation algorithm for
the Network Inference problem on n nodes and r constraints.

Proof. The inputs are the vertices V = {v1, v2, . . . , vn}, the cost ce of each
edge e = (vi, vj), and the constraints {S1, S2, . . . , Sr}. Let C(E) be a potential
function that takes in a set of edges and sums over all constraints Si, 1 minus
the number of components Si induces on (V,E). Let E be initially empty. Now,
consider the following greedy algorithm: until all constraints are satisfied (while
C(E) < 0), greedily add to E the edge that is arg maxe

C(E+e)−C(E)
ce

.
We now notice that C(E) is sub-modular in its edge set – as in, if A ⊆ B then

for all e, C(A+e)−C(A) ≥ C(B+e)−C(B). This is clear because A can induce
additional components for e to reduce compared to B. Now we use the result of
Wolsey [19] that says that a greedy algorithm for maximizing an integer-valued
submodular set function f on elements x gives a H(m) approximation to the
optimum of f , where m = maxx f({x}) and H(m) =

∑m
i (1

i). Because each
edge can increase the value of C by at most r, we have m ≤ r, giving an O(log r)
approximation. �

3 Online Network Inference

Oftentimes, the learner must commit to its choices as constraints arrive. For
example, when the constraints represent diseases, we may wish to commit re-
sources to fight an epidemic. This leads us to consider the natural extension of
network inference to the online setting.

In the online setting, the collection of connectivity constraints S1, S2, . . . , Sr

is now given one at a time, and we say that upon being presented Si the algorithm
is on round i. Also, let Ei be the edge set after the algorithm satisfies constraint
Si. To explore the worst-case performance of our algorithms, unless otherwise
stated, we assume an adaptive adversary, meaning that the adversary can
wait for the algorithm to satisfy constraint Si before determining constraint
Si+1.

In this section, we are interested in competitive analysis. An algorithm is
c-competitive if the cost of its solution is less than c times OPT, where OPT
is the best solution in hindsight. In the case when we know that the underlying
graph is, for instance, a uniform cost path or star, we know that OPT = (n−1).

First, we prove a lemma helpful for analyzing online algorithms.

Lemma 1. Let n(G, S) be the number of connected components S ⊆ V induces
in G, and let Gi = (V,Ei). For every algorithm for the Online Network In-
ference problem, there is an algorithm that performs at least as well and adds
exactly (n(Gi, Si+1)− 1) edges on every round i.

Proof. Let A be any algorithm for the online network inference problem. We can
make a new algorithm called Alazy, that on each round inserts only a subset of
edges that A has inserted up to that round, enough to keep the constraints sat-
isfied. Each edge that A inserts but Alazy does not, Alazy remembers as possible
edges for future rounds and adds them as needed to satisfy future constraints.
It is clear that Alazy needs to put down a spanning tree on the components in-
duced by constraint i, which is (n(Gi, Si+1) − 1) edges; any fewer edges would
not satisfy the constraint. Thereby, Alazy satisfies the constraints, and because
Alazy uses a subset of the edges of A, it performs at least as well. �

3.1 Stars and Paths

First, we examine the case when the underlying graph is a star. This represents
the extreme case of one influential agent having many connections.

Theorem 3. The optimal competitive ratio for the Online Uniform Cost
Network Inference problem on n nodes when the algorithm knows the under-
lying graph is a star is Θ(log(n)).

Proof. We first prove the lower bound – that the competitive ratio for any algo-
rithm is Ω(log(n)). The adversary maintains a partition of the vertices into two
sets: C, the possible centers, and D = (V − C), the non-centers. Initially C has
(n − 1) vertices and D has one vertex, and the initial two constraints given to

the algorithm are V and C. At every step, the adversary looks for a vertex v ∈ C
that maximizes the number of edges (u, v) with u ∈ D given by the algorithm,
and moves v from C to D, that is, C ′ = C \ {v} and D′ = D ∪ {v}. The new
constraints given by the adversary are C ′∪u for all u ∈ D′. Thus, the algorithm
must ensure at least one edge from each element of D′ to some element of C ′.
The adversary continues until it has moved all but one vertex from C to D.

To analyze, we consider the edges from elements of D to the element v moved
from C to D when |C| = i. Each element of D must have at least one edge to
an element of C, so the maximum number of edges from D to one element of C
is at least the average: (n − i)/i. These edges are all distinct, so the algorithm
must produce at least

∑n−1
i=2 (n− i)/i = Ω(n log(n)) edges in all. Yet, all these

constraints can be satisfied by a star with (n − 1) edges. This completes the
proof of the lower bound.

For the upper bound, we give an O(log(n))-competitive algorithm. The algo-
rithm will keep track of a set Ci of potential centers and Di = V − Ci known
non-centers at round i. Any node not appearing in some constraint cannot be
a center. The algorithm keeps nodes in Ci connected by a path, and each node
in Di is connected to some node in Ci, such that the number of edges going
into each node in Ci from Di is no more than d(|Di|)/|Ci|e, meaning that all
nodes in Ci have close to the same degree. Initially, C0 = V and is connected by
an arbitrary path (costing O(n) edges). At any stage of the algorithm, when a
constraint Si comes in, if it does not eliminate any potential centers, it is easy to
see Si is already satisfied. Otherwise, we remove any potential centers Ri ⊂ Ci−1

that are now known to be non-centers from Ci−1 (to form Ci), and we add them
to Di−1 (to form Di). Further, we ignore all edges to nodes in Ri. We re-stitch
the path connecting nodes in Ci, which takes at most |Ri|+ 1 edges. Then, we
connect (in such a way that keeps the degrees of the nodes in Ci about equal)
all nodes in Ri to nodes in Ci, which takes |Ri| edges, and also all nodes in Di−1

that became disconnected from Ci because were connected to nodes in Ri, which
takes O

(
|R||Di−1|
|Ci−1|

)
edges. This clearly satisfies constraint Si.

To see why this gives us the needed result, we notice that at most n centers
can be removed from C, and therefore connections involving nodes in Ri take∑n

i=1 O(|Ri|) = O(n). The rest of the connections, by the analysis in the para-

graph above, cost
∑

i O
(
|R||Di−1|
|Ci−1|

)
≤
∑

i O
(

|Ri|n
|Ci−1|

)
. If we consider removing

one center at a time (as opposed to in groups Ri), we can bound this from above
by O(n

∑n
i=1

1
n−i) = O(n log(n)). �

Next, we examine another natural structure – when the underlying graph is
a path.

Theorem 4. The optimal competitive ratio for the Online Uniform Cost
Network Inference problem on n nodes when the algorithm knows the under-
lying graph is a path is Θ(log(n)).

Proof. First we prove the lower bound, that any algorithm has a competitive
ratio of Ω(log(n)). We show an adversarial strategy that forces the algorithm to

use O(n log(n)) edges when the optimal solution in hindsight uses only (n − 1)
edges. The adversary first shows all the nodes, which by Lemma 1 the optimal
algorithm connects using (n − 1) edges. Then the adversary divides the nodes
into two independent sets and presents each of them to the algorithm in arbitrary
order. The optimal algorithm must connect the two subgraphs with trees (again
by Lemma 1), and the adversary repeats this process recursively. We say that
each depth in the recursion is a new level in this process. Because the algorithm
puts down O(n) edges per level, given this strategy for the adversary, the optimal
algorithm needs to put down a path at each step so as to balance the sizes of two
following independent sets and limit the algorithm to O(log(n)) levels. Hence,
the algorithm uses Ω(n log(n)) edges, but it is clear that knowing the sets in
advance, one can satisfy the connectivity requirements using O(n) edges - by
simply connecting the smallest sets and then merging them accordingly into a
path. This gives us the desired Ω(log(n)) gap.

Now we prove the upper bound by giving an O(log((n))-competitive algo-
rithm. We first observe that every constraint Si is a sub-interval of the path,
and the algorithm must put down enough edges to capture a permutation of
the vertices consistent with the Si’s. The algorithm we introduce maintains a
pq-tree – a data structure, introduced by Booth and Lueker in [10], that keeps
track of all consistent orderings of nodes given contiguous intervals in a permuta-
tion. A pq-tree is a tree that consists of leaf nodes, p-nodes, and q-nodes. A leaf
node is an element (or vertex in our case). A p-node (permutation node) has
2 or more children of any type, and its children form a contiguous interval, but
can be ordered in any order. A q-node has 3 or more children of any type and
its children form an interval in the given order or its reverse. Each new interval
constraint updates the pq-tree, and then the algorithm adds edges to satisfy the
new constraint.

We will show that the algorithm can satisfy the constraints using O(n log(n))
edges by using a potential function to keep track of the evolution of the pq-tree.
Let P be the set of p-nodes in a given tree and Q be the set of q-nodes. Also
for any node p, let c(p) count p’s children. For constants a and b, our potential
function is

Φ = a
∑
p∈P

((c(p)− 1)(log(c(p)− 1)) + b|Q|. (2)

We observe that the pq-tree before any constraints arrive has one p-node at
the root, and all its children are leaf nodes. This corresponds to an arbitrary
permutation of the vertices. So at the beginning, Φ = Θ(n log(n)). In comparison,
when the permutation is specified, the root is a q-node and the rest of the nodes
are leaves. In that case, Φ = Θ(1).

Now we look at what happens when a constraint comes in. We will argue
that the number of edges we need to insert into our graph is a lower bound on
the drop in the potential function, and because it is always the case that Φ ≥ 0,
this will complete the proof.

We first analyze the most common type of update to a pq-tree. A constraint
comes in and splits a known interval into two, that is, it splits a p-node with m

children into two p-nodes (one with at most (k + 1) children and the other with
at most (m−k) children), and attaches them to a q-node parent. So the drop in
the potential function is as follows (where H(p) is the binary entropy function.)

−∆Φ = a ((m− 1) log(m− 1)− (k log(k) + (m− k − 1) log(m− k − 1)))− b

= a(m− 1)
(

log(m− 1)− k

m− 1
log(k)− m− k − 1

m− 1
log(m− k − 1)

)
− b

= a(m− 1)
(
− k

m− 1
log
(

k

m− 1

)
− m− k − 1

m− 1
log
(

m− k − 1
m− 1

))
− b

= a(m− 1)H
(

k

m− 1

)
− b

≥ a(m− 1) min
(

k

m− 1
,
m− k − 1

m− 1

)
− b

= amin (k, m− k − 1)− b.

Now, 2 min (k, m− k − 1) is exactly how much is required in the worst case to
stitch up a split interval – because we have to connect up all of the nodes in
the smaller new interval, and patch at most as many gaps in the larger interval
(similar to the reasoning in the proof of the lower bound). It takes at most 4 more
edges to connect up the ends of the two new intervals to the rest of the graph, and
this can be paid for if a = 10 and b = 4. We remember min (k, m− k − 1) ≥ 1, so
we spend 2 on splitting the p-node, 4 on re-stitching, and 4 on the new q-node,
and thus a = 10.

Booth and Lueker in [10] characterized all of the possible updates to the
pq-tree using 10 patterns: L, P1, P2, P3, P4, P5, P6, Q1, Q2, and Q3, given in
the Appendix. Neither L, Q1, nor P1 changes the number of p-nodes or q-nodes.
P2-P6 split at most one p-node and create at most one q-node, and are covered
by our analysis above. Q2 and Q3 require us to reconnect at most 2 pairs of
endpoints (with 4 edges), but also reduce the number of q-nodes by 1 or 2 (this
is why b = 4), and the edges are paid for by the drop in Φ. �

In the arbitrary cost case, the competitive ratio becomes considerably worse.

Theorem 5. There is no (cn)-competitive algorithm for c < 1 for the Online
Network Inference problem on n vertices, even when the underlying graph is
a path.

Proof. We let all edges among (n− 1) of the vertices have cost 0, and all edges
from the remaining vertex, s, have cost 1. The adversary first tells the algorithm
that all the vertices are connected. When the algorithm satisfies this constraint,
the adversary excludes from the next constraint all vertices the algorithm has
chosen to directly connect to s. This continues until the adversary forces the
algorithm to use all the 1 edges. But because each constraint is a subset of the
previous constraint, the optimal solution only needs to contain the final cost 1
edge, and can connect the remaining vertices using a path that goes through the
vertices in the order they were excluded in the adversary’s choice of constraints.

Hence, the algorithm was forced to pay a cost of (n − 1), while the optimal
solution pays a cost of 1. �

3.2 General Graphs

We introduce the Online Fractional Network Inference problem, in which
the algorithm is similarly given a set of vertices V and edge costs ce for all
e = (v, w) ∈ V , and sees a sequence of constraints {S1, S2, . . . , Sr}. The task
is to assign fractional weights we to the edges (or pairs of vertices), such that
for each i, the maximum flow between each pair of vertices in Si is at least 1,
given the weights we (to be interpreted as edge capacities). The quality of the
solution is measured by comparing

∑
cewe with the optimal cost of satisfying

all the connectivity constraints. In the online problem, the algorithm may not
decrease any edge weights from round to round.

Lemma 2. There is an O(log(n))-competitive polynomial time algorithm for the
Online Fractional Network Inference problem on n nodes.

Proof. We give Algorithm 1 for the Online Fractional Network Inference prob-
lem. Algorithm 1 is a modification of the algorithm in 3.1 of Alon et al. [5], and
this proof closely follows their logic.

Algorithm 1 An O(log(n))-competitive Algorithm for the Online Fractional
Network Inference Problem

Let |V | = n and |E| = m
Upon seeing first constraint, set all we = 1

m2

for each constraint S do
for each pair v, w ∈ S do

if the flow from v to w in S is at least 1 then
do nothing

else
while the flow from v to w in S is less than 1 do

compute a min-weight cut C between v and w in S.
for each edge e ∈ C, we = we(1 + 1/ce)

end while
end if

end for
end for

We say that the optimal solution OPT has cost α. We assume the value of
α is known, and we can then assume all edges have cost between 1 and m.4

4 Alon et al. [5] argue that we can use all edges of cost less than α/m and stay within
our bound, and we can ignore all edges with cost greater than α, and then rescale.
They also show how to guess α to within a factor of 2, justifying the assumption
that α is known in advance.

We now follow the argument in Alon et al. [5], which works for Algorithm 1 al-
most without modification. First we note that the algorithm generates a feasible
solution. This is clear from its termination condition.

Now we will prove that the number of weight augmentation steps performed
during the run of the algorithm is O(α log(m)). Consider the potential function

Φ =
∑
e∈E

cew
∗
e lg(we),

where w∗
e is the weight of edge e in OPT. It is clear from the initial edge weights

that the potential function begins as Φ0 = −O(α lg(m)). Because the weight
update rule ensures that no edge gets weight more than 2, the potential function
never exceeds 2α. And the increase in the potential function with each weight
augmentation step is at least 1:

∆Φ =
∑
e∈E

cew
∗
e lg(we(1 + 1/ce))−

∑
e∈E

cew
∗
e lg(we)

=
∑
e∈E

cew
∗
e lg(1 + 1/ce)

≥
∑
e∈E

w∗
e

≥ 1.

Finally, we look at the cost of our solution,
∑

e∈E wece, (which begins at ≤ 1)
and notice that in a weight augmentation step, it does not exceed

∑
e∈E

we

ce
ce ≤

1. So, whenever Φ increases by at least 1, the cost of our solution increases by
no more than 1. This gives us an O(log(m)) = O(log(n)) approximation to the
Online Fractional Network Inference problem. �

We can now use Lemma 2 to develop an algorithm that almost matches the
lower bound from Theorem 5.

Theorem 6. There is an O(n log(n))-competitive polynomial time algorithm for
the Online Network Inference problem on n nodes.

Proof. We use Algorithm 1 together with a rounding scheme similar to the one
considered by Buchbinder [11] for solving linear programs, to get our result.

For each edge e, we choose 2n random variables X(e, i) independently and
uniformly from [0, 1]. For each edge, we let threshold T (e) = min2n

i=1 X(e, i). Then
we run the algorithm for the Online Fractional Network Inference problem, and
whenever we ≥ T (e), we add e to our integral solution, and continue. Now we
claim the following.

1. The integral solution has expected cost O(n) times the fractional solution.
2. The integral solution satisfies all the constraints with high probability.

To prove the first claim, for any edge e, the probability that X(e, i) < we

is we. The probability that e is chosen to be in the integral solution is the

probability that some X(e, i) < we – we call this event Ai. Hence, the proba-
bility of ∪2n

i=1Ai is 2nwe, and by linearity of expectation, on every round, the
expected cost of our solution is O(n) times the fractional solution, which is an
O(log(n)) approximation of OPT for the integral problem. Hence our solution
is an O(n log(n)) approximation of OPT in expectation.

To prove the second claim, we pick a constraint S. The constraint S is satisfied
if and only if for every cut C ∈ S, there exists an edge crossing C in our solution.
We fix a cut C. The probability the cut is not crossed is the probability we have
not chosen any edge crossing the cut. This probability is

∏
e∈C (1− we)2n ≤

e(−2n
P

e∈C we). And because the cut is crossed with a flow of 1 in the fractional
solution (i.e.

∑
e∈C we ≥ 1) at the time it is considered by the algorithm, we can

bound this by 1
e2n . There are r constraints and at most 2n cuts per constraint, so

by the union bound, the probability our solution is not feasible is
(

r2n

e2n

)
. Because

r < 2n < en, the probability our solution is not feasible tends to 0 as n increases,
completing the proof. �

We note that it is tempting to try to improve the bound for the Online
Network Inference problem by reducing it to Online Set Cover with the hope
of getting better bounds by using algorithms from [4] or [11]. In Online Set
Cover, the sets to be covered are given in advance, and the elements come in
online. In Online Network Inference, the graph is known in advance, but there
are exponentially many constraints in the size of the graph that can arrive online.
While a reduction that makes edges in the network graph correspond to sets and
all cuts induced by the connectivity constraints correspond to elements in the
Online Set Cover problem is possible, the resulting bound on the competitiveness
ratio is O(n log(n)), which yields no improvement over our algorithm.

We now make a simple observation for the uniform cost case.

Proposition 1. There is an O(n)-competitive polynomial time algorithm for the
Online Uniform Cost Network Inference problem on n nodes.

Proof. Consider the algorithm that puts down a clique for each constraint pre-
sented to it. Let q ≤ n be the number of nodes that appear in at least one
constraint. Our algorithm uses O(q2) edges, but the optimal algorithm must
clearly use at least Ω(q) edges. �

We also present a lower bound for the online uniform cost case.

Theorem 7. The Online Uniform Cost Network Inference problem on n
nodes has an Ω(

√
n)-competitive lower bound.

Proof. We divide the vertices into two sets Q and R, with |Q| =
√

n and |R| =
n −

√
n. For each vi ∈ R, the adversary does the following. At stage t = 1

the adversary sets Q(i,1) = Q. At stage t, the adversary gives the learner the
constraint S(i,t) = Q(i,t) ∪ vi. Let C(i,t) be the set of vertices in Q which the
learner connects to vi in response to being presented S(i,t). The adversary sets
Q(i,t+1) = Q(i,t) \ C(i,t) and continues to the next stage. The adversary stops
when Q(i,t) = ∅.

To analyze this strategy for the adversary, for each vi, we order the edges
from vi to R by the stage in which the learner has placed them, breaking ties
arbitrarily. It is clear that the last edge the learner places is sufficient to connect
vi to R for all constraints S(i,t). Hence, all of these constraints can be satisfied
in retrospect by placing a clique on Q using

(√
n

2

)
= O(n) edges and one edge

per vertex in R, also using O(n) edges. But the learner places Ω(n) edges per
vertex in Q, amounting to Ω (n

√
n) edges in total, giving the desired result. �

We now consider the Online Network Inference problem with an oblivious
adversary – an adversary who commits to the constraints {S1, S2, . . . , Sr} be-
fore presenting any of them to the algorithm.

Theorem 8. There is a randomized polynomial time algorithm for the Online
Uniform Cost Network Inference problem on n nodes that gives an expected
O(n2/3 log2/3(n))-competitive ratio against an oblivious adversary.

Proof. We assume that the optimal solution has m = Ω(n) edges (that each
vertex appears in some constraint). We then create an Erdös Rényi random graph
on our graph G, by putting in edges independently with a specified probability.
Random graph connectivity has a sharp threshold of c log(n)

n for c > 1 [12].

When p = c log2/3(n)
n1/3 , G has O(n5/3 log2/3(n)) edges in expectation. Now, our

algorithm is simple – for each constraint Si such that |Si| ≥ n1/3 log1/3(n),
because of our choice of p, Si is already connected with high probability in G.
Because we assume that there are only polynomially many constraints (even in
the offline case, as in Theorem 2), for large enough c, all such constraints are
satisfied in expectation. For every constraint Si of size < n1/3 log1/3(n) that we
see, we can put a clique with O(n2/3 log2/3(n)) edges on that constraint, and
each time we do that, we are guaranteed to hit at least one edge in OPT. Hence,
this costs us O(n5/3 log2/3(n) + n2/3 log2/3(n)OPT) edges in expectation, and
because m = Ω(n), we have an O(n2/3 log2/3(n)) approximation ratio. �

4 Discussion and Open Problems

In this paper we present a theoretical study of the Network Inference problem.
This model allows us to estimate connections among populations from data that
exposes certain constraints. One challenge in using this model to learn real-world
networks is that oftentimes, due to issues of privacy, data is anonymized (for
example disease data), and it is hard to tell when the same person participates
in multiple constraints. However, there are other settings where this would not
be an issue. For network construction problems, our algorithms give network
designers methods of optimizing costs while satisfying their users’ constraints.

We leave open some interesting questions. In the offline case, we give an
Ω(log(n)) hardness of approximation lower bound and an O(log(r)) approxima-
tion algorithm for both the arbitrary cost and uniform cost Network Inference
problems. If r is polynomial in n these bounds match, but otherwise there can

be a gap. We also have a log(n) asymptotic gap for the Online Network Infer-
ence problem. For the Online Uniform Cost Network Inference problem, we have
an Ω(

√
n) adversarial lower bound and an O(n2/3/log1/3(n)) algorithm for the

oblivious case. Improving these bounds is an important problem.
Another open problem is to find tight bounds for trees in the uniform cost

case. For stars and paths, the bounds are tight, and our arguments can be
adapted to give a Ω(log(n))-competitive lower bounds against an oblivious ad-
versary. Perhaps an O(log(n))-competitive algorithm can be found for trees in
general, but our algorithms for paths and stars rely on their specific properties
and do not immediately generalize. Finally, one can consider generalizations of
the Network Inference Problem, for example constraints could require the ver-
tices to be k-connected in the induced subgraphs.

5 Acknowledgments

We thank the anonymous reviewers of this paper for helpful suggestions. We
thank an anonymous reviewer of a previous version of this paper for helping
improve our analysis of Theorem 2. Parts of this work were done while Lev
Reyzin was in the Department of Computer Science at Yale University.

References

1. Akutsu, T., Tamura, T., and Horimoto, K. Completing networks using ob-
served data. In ALT (2009), pp. 126–140.

2. Alon, N., and Asodi, V. Learning a hidden subgraph. SIAM J. Discrete Math.
18, 4 (2005), 697–712.

3. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., and Naor, J. The online
set cover problem. In Proceedings of the 35th annual ACM symposium on Theory
of computing (2003), pp. 100–105.

4. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., and Naor, J. The online
set cover problem. In STOC (2003), pp. 100–105.

5. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., and Naor, J. A gen-
eral approach to online network optimization problems. ACM Transactions on
Algorithms 2, 4 (2006), 640–660.

6. Alon, N., Beigel, R., Kasif, S., Rudich, S., and Sudakov, B. Learning a
hidden matching. SIAM J. Comput. 33, 2 (2004), 487–501.

7. Angluin, D., Aspnes, J., and Reyzin, L. Optimally learning social networks
with activations and suppressions. In 19th International Conference on Algorithmic
Learning Theory (2008), pp. 272–286.

8. Angluin, D., and Chen, J. Learning a hidden graph using O(log n) queries per
edge. J. Comput. Syst. Sci. 74, 4 (2008), 546–556.

9. Beigel, R., Alon, N., Kasif, S., Apaydin, M. S., and Fortnow, L. An optimal
procedure for gap closing in whole genome shotgun sequencing. In RECOMB
(2001), pp. 22–30.

10. Booth, K. S., and Lueker, G. S. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst.
Sci. 13, 3 (1976), 335–379.

11. Buchbinder, N. Designing Competitive Online Algorithms Via A Primal-Dual
Approach. PhD thesis, Technion – Israel Institute of Technology, Haifa, Israel,
2008.

12. Erdös, P., and Rényi, A. On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci 5 (1960), 17–61.

13. Feige, U. A threshold of ln for approximating set cover. J. ACM 45, 4 (1998),
634–652.

14. Grebinski, V., and Kucherov, G. Reconstructing a Hamiltonian cycle by query-
ing the graph: Application to DNA physical mapping. Discrete Applied Mathemat-
ics 88, 1-3 (1998), 147–165.

15. Gupta, A., Krishnaswamy, R., and Ravi, R. Online and stochastic survivable
network design. In STOC (2009), pp. 685–694.

16. Korach, E., and Stern, M. The clustering matroid and the optimal clustering
tree. Mathematical Programming 98, 1-3 (2003), 345–414.

17. Korach, E., and Stern, M. The complete optimal stars-clustering-tree problem.
Discrete Applied Mathematics 156, 4 (2008), 444–450.

18. Reyzin, L., and Srivastava, N. Learning and verifying graphs using queries with
a focus on edge counting. In ALT (2007), pp. 285–297.

19. Wolsey, L. A. An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2, 4 (1982), 385–393.

Appendix: Updating a pq-tree

We briefly describe the patterns in [10] for updating pq-trees, as broken down
into 10 cases. This can be used as a guide for tracking the changes in Equation 2.

L This pattern simply relabels some leaf nodes.
P1 This pattern simply relabels a p-node.
P2 This pattern moves some children of a p-node into their own p-node.
P3 This pattern moves some children of a p-node into their own p-node and

creates a parent q-node.
P4 This pattern moves some children of a p-node to be children of a newly

created p-node, whose parent is a q-node that is a child of the original p-
node.

P5 This pattern moves some children of a p-node into their own p-node that is
the child of the original p-node, which becomes transformed to a q-node.

P6 This pattern moves some children of a p-node to their own p-node that is
moved to be the child of a newly created q-node formed by merging two
q-nodes.

Q1 This pattern simply relabels a q-node.
Q2 This pattern deletes a q-node and moves its children to become children of

its parent q-node.
Q3 This pattern deletes two q-nodes and merges their children to become chil-

dren of their parent q-node.

