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Abstract

PAC learning of unrestricted regular languages is long kntwbe a difficult problem. The
class of shuffle ideals is a very restricted subclass of ezdahguages, where the shuffle ideal
generated by a stringis the collection of all strings containingas a subsequence. This funda-
mental language family is of theoretical interest in its aight and provides the building blocks
for other important language families. Despite its appeasénplicity, the class of shuffle ideals
appears quite difficult to learn. In particular, just as farestricted regular languages, the class is
not properly PAC learnable in polynomial time if RPNP, and PAC learning the class improperly
in polynomial time would imply polynomial time algorithmerfcertain fundamental problems in
cryptography. In the positive direction, we give an effitialyorithm for properly learning shuffle
ideals in the statistical query (and therefore also PAC) ehadder the uniform distribution.
Keywords: PAC Learning, Statistical Queries, Regular Languagesem@histic Finite Au-
tomata, Shuffle Ideals, Subsequences

1. Introduction

Inferring regular languages from examples is a classiclproln learning theory. A brief sampling
of areas where various automata show up as the underlyimgafism include natural language
processing (speech recognition, morphological analysisnputational linguistics, robotics and
control systems, computational biology (phylogeny, gtrtad pattern recognition), data mining,
time series and music (Koskenniemi, 1983; de la Higuera52®hri, 1996; Mohri et al., 2002;
Mohri, 1997; Mohri et al., 2010; Rambow et al., 2002; Sprdatle 1996). Thus, developing
efficient formal language learning techniques and undedstg their limitations is of a broad and
direct relevance in the digital realm.

Perhaps the currently most widely studied theoretical rhoidearning is Valiant's PAC model,
which allows for a clean, elegant theory while retaining someasure of empirical plausibil-
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ity (Valiant, 1984). Since PAC learnability is charactedzby finite VC-dimension and the concept
class ofn-state deterministic finite state automata (DFA) has VCetlision®(nlogn) (Ishigami
and Tani, 1997), the PAC learning problem is solved, in anrmftion theoretic sense, by con-
structing a DFA om states consistent with a given labeled sample. Unfortlynads shown in
the works of Angluin (1978), Gold (1978) and Pitt and Warm({it93) under standard complexity
assumptions, finding small consistent automata is a cortiguoddly intractable task. Furthermore,
attempts to circumvent the combinatorial search over aatarny learning with a different repre-
sentation class are thwarted by cryptographic hardnessttgesThe papers of Pitt and Warmuth
(1990) and Kearns and Valiant (1994) prove the existencenallsautomata and “hard” distribu-
tions over{0,1}" so that any efficient learning algorithm that achieves amaiyial advantage over
random guessing will break various cryptographic hardasssmptions.

In a modified model of PAC, and with additional structuraliasptions, a class of probabilistic
finite state automata was shown by Clark and Thollard (206d)Ralmer and Goldberg (2007) to
be learnable. If the target automaton and sampling digioib@are assumed to be “simple”, efficient
probably exact learning is possible (Parekh and Honavdr120When the learner is allowed to
make membership queries, it follows by the results of Anglili987) that DFAs are learnable in
this augmented PAC model.

The prevailing paradigm in regular language learning has lbe make structural regularity as-
sumptions about the family of languages and/or the samgistgibution in question and to employ
a state merging heuristic. Indeed, over the years a numbelewér and sophisticated combina-
torial approaches have been proposed for learning DFAsic@¥y an initial automaton or prefix
tree consistent with the sample is first created. Then,irsgavtith the trivial partition with one
state per equivalence class, classes are merged whilenpngsan invariant congruence property.
The automaton learned is obtained by merging states aogptdithe resulting classes. Thus, the
choice of the congruence determines the algorithm and gkzegion bounds are obtained from
the structural regularity assumptions. This rough sumrapadly characterizes the techniques of
Angluin (1982), Oncina and Garcia (1992), Ron et al. (19€3ark and Thollard (2004), Parekh
and Honavar (2001) and Palmer and Goldberg (2007), andrenghtly this appears to have been
the only general purpose technique available for learnmefautomata.

More recently, Kontorovich et al. (2006), Cortes et al. (20@nd Kontorovich et al. (2008)
proposed a substantial departure from the state mergiragligan. Their approach was to embed
a specific family of regular languages (the piecewise-bdstanes) in a Hilbert space via a kernel
and to identify languages with hyperplanes. A unifying Geatof this methodology is that rather
than building an automaton, the learning algorithm outputtassifier defined as a weighted sum
of simple automata. In subsequent work by Kontorovich andl&a(2009) this approach was
extended to learning general discrete concepts. Thesksidsawever, provided only margin based
generalization guarantees, which are weaker than true BAGds.

A promising research direction is to investigate the qoestf efficient PAC learnability for
restricted subclasses of the regular sets. One approaghakd existing efficient PAC algorithms
in other domains, for example, for classes of propositiéoahulas over the boolean culfg,1}",
or classes of geometric concepts such as axis-aligned hoXy discretize the representation if
necessary, and consider the resulting sets of strings torbeaf languages. If the languages have
finite cardinality, they are trivially regular, althoughethmay or may not have succinct deterministic
finite state acceptors.
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Figure 1: The canonical DFA for recognizing the shuffle idefal = aabover> = {a,b,c}, which
accepts precisely those strings that conta&s a subsequence.

Another approach is to consider classes of regular langudgfined by structural restrictions on
the automata or grammars that accept or generate therm Etgill (1995) consider the learnability
of bounded-width branching programs, and show that theam isfficient algorithm to PAC learn
width-2 branching programs, though not properly, and amwiefit proper PAC learning algorithm
for width-2 branching programs with respect to the uniforistribution. They also show that PAC
learning width-3 branching programs is as hard as PAC legrBiNF formulas, a problem whose
status remains open.

In this paper we study the PAC learnability of another res#d class of regular languages, the
shuffle ideals. The shuffle ideal generated by a stung the collection of all strings containing
u as a (not necessarily contiguous) subsequence (see Fidorad illustration). Despite being a
particularly simple subfamily of the regular languagesifid ideals play a prominent role in formal
language theory. Their boolean closure forms the impoffemily known aspiecewise-testable
languages, defined and characterized by Simon (1975). Thestiucture of this language family
has made it an object of intensive study, with deep connestio computability, complexity theory,
and semigroups (see the papers of Lothaire (1983) and KdimddPolak (2008) and the references
therein). On a more applied front, the shuffle ideals captanee rudimentary phenomena in human
language morphology (Kontorovich et al., 2003).

In Section 3 we show that shuffle ideals of known length aretbxdearnable in the statis-
tical query model under the uniform distribution, though efiiciently. Permitting approximate
learning, the algorithm can be made efficient; this in tuelds efficient proper PAC learning un-
der the uniform distribution. On the other hand, in Sectiowetshow that the shuffle ideals are
not properly PAC learnable under general distributiongssRP=NP. In Section 5 we show that a
polynomial time improper PAC learning algorithm for the sdeof shuffle ideals would imply the
existence of polynomial time algorithms to break the RSAptwgystem, factor Blum integers, and
test quadratic residuosity. These two negative resultsaasdogous to those for general regular
languages represented by deterministic finite automata.

2. Preliminaries

Throughout this paper, we consider a fixed finite alphahathose size will be denoted sy We
assumes > 2. The elements df* will be referred to astringswith their length denoted by|; the
empty string isA. The concatenation of stringg andu, is denoted by, - u, or ujup. The string
u is aprefix of a stringv if there exists a stringv such thatv = uw. Similarly, u is a suffixof v if
there exists a string/ such thatv = wu. We use exponential notation for repeated concatenation of
a string with itself, that isy" is the concatenation af copies ofu.

Define the binary relatioi: onX* as follows:u C v holds if there is a witneds= (h<ipg<...<
ijy) such that, = u;j for all j € [|u]]. When there are several witnessesudat v, we may partially
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order them coordinate-wise, referring to the unique mihietament as théeftmostembedding.
The unique maximal element is thightmostembedding. Ifu C v then theleftmost sparof uin v
is the shortest prefiy of v such thau C v; and therightmost sparof uin vis the shortest suffix,
of v such thau C v,.

Formally, the (principalshuffle ideaenerated by € 5! is the regular language

IMI(u) = {X€Z" tUC X} = Z'u T pX*. .. T u X*

(an example is given in Figure 1). The shuffle ideal of starmpnsists of all strings over the given
alphabet such thatC v. The termshuffle ideacomes from algebra (Lothaire, 1983; Paun, 1994)
and dates back to the paper of Eilenberg and Mac Lane (1953).

The following lemmas will be useful in the sequel. The firsinienediate from the definitions;
the second formalizes the obvious method of determiningthvelnel C v and finding a leftmost
embedding if so.

Lemma 1 Suppose &= UjUpuz and v= viVpvg are strings such that @ v and v is the leftmost
span of 4 in v and v is the rightmost span ofstin v. Then g C v,.

Lemma 2 Evaluating the relation (C x is feasible in time Qx|).

Proof If u= A, thenu is certainly a subsequence xf If u= au wherea € X, we search for the
leftmost occurrence d@ in x. If there is no such occurrence, theiis certainly not a subsequence
of x. Otherwise, we writex = yax, wherey contains no occurrence af thenu is a subsequence of
x if and only if U is a subsequence &f, so we continue recursively withf andx'. The total time
for this algorithm iSO(|x|). [ |

We assume a familiarity with the basics of the PAC learninglehoas defined in the textbook
of Kearns and Vazirani (1994). To recap, consider the imgt@pacer = X*, concept clasg C 2%,
and hypothesis clasg C 2*. An algorithm £ is given access to a labeled samfle- (X,Y)" ;,
where theX; are drawn iid from some unknown distributidhover x andY; = f(X;) for some
unknowntarget f € ¢, and produces ypothesis k& # . We say that. efficiently PAC learng if
for anye, & > 0 there is amy € N such that for allf € ¢ and all distributions>, the hypothesiéiy,
generated by, based on a sample of sime> my satisfies

PTP({x€x :hm(x) # f(x)}) > €] <8&;

moreover, we require that bothy and£’s runtime be at most polynomial &2, 3 and the sizes
of f andX;. The learning is said to beroperif # = ¢ andimproperotherwise. If the learning
algorithm achieves = 0, the learning is said to exact(Bshouty, 1997; Bshouty et al., 2005).
Most learning problems can be cleanly decomposed into a agtatipnal and an information
theoretic component. The information theoretic aspectearhing automata are well understood.
As mentioned above, the VC-dimension of a collection of DEA®svs polynomially with maximal
number of states, and so any small DFA consistent with theitigasample will, with high proba-
bility, have small generalization error. For shuffle ideals even simpler bound can be derived. If
nis an upper bound on the length of the string Z* generating the target shuffle ideal, then our

concept class contains exactly
n

/;IZIZ =0(z]")

4



ON THE LEARNABILITY OF SHUFFLE IDEALS

members. Thus, with probability at least-B, any shuffle ideal consistent with a sample of size
will achieve a generalization error of

O(nlog|2|—logé>.
m

Hence, the problem of properly PAC learning shuffle ideals Ibeen reduced to finding one
that is consistent with a given sample. This is shown to beptationally hard under adversarial
distributions (Theorem 7), but feasible under the uniforme ¢Theorem 6). Actually, our positive
result is somewhat stronger: since we show learnabilithérstatistical query (SQ) model of Kearns
(1998), this implies a noise tolerant PAC result. In additim Section 5 we show that the existence
of a polynomial time improper PAC learning algorithm for fffaiideals would imply the existence
of polynomial time algorithms for certain cryptographioplems.

3. SQ Learning Under the Uniform Distribution

The main result of this section is that shuffle ideals areiefiity PAC learnable under the uniform
distribution. To be more precise, we are dealing with théaimse spacer = =" endowed with
the uniform distribution, which assigns a weight |&f " to each element of. Our learning
algorithm is most naturally expressed in the languagstatistical queriegKearns, 1998; Kearns
and Vazirani, 1994). In the original definition, a statiatiqueryy is a binary predicate of a random
instance-label pair, and the oracle returns the véiyeadditively perturbed by some amount not
exceeding a specified tolerance parameter. We will considemewhat richer class of queries.

3.1 Constructing and Analyzing the Queries

Foru e =" anda € Z, we define the queryya(-,-) by

Xua(xy) = { LEX
e Y(L{o=a} — Liora}/(5—1)), ULCX

wherex is the prefix ofx of length(n— 1), o is the symbol inx following the leftmost embedding
of uand1y represents the 0-1 truth value of the predicafeecall thats = |Z|). Our definition of
the queryyya is legitimate because (i) it can be efficiently evaluatednhea 2) and (ii) it can be
expressed as a linear combinationQifl) standard binary queries (also efficiently computable). In
words, the functiorx, a computes the mapping, y) — R as follows. Ifuis not a subsequence xf
Xua(X,y) = 0. Otherwisexya checks whether the symbalin x following the leftmost embedding
of uis equal toa, and, ifx is a positive exampley(= +1), returns 1ifo=a, or—1/(s—1) if 0 £ a.

If X is a negative examplg/ & —1) then the signs of the values returned are inverted.

Suppose for now that the length= |u] of the target shuffle ideal is known. Our learning
algorithm uses statistical queries to recouer - one symbol at a time. It starts with the empty
stringu = A. Having recoveredi = uy,...,u, ¢ < L, we inferu,,1 as follows. For eacla € Z,
the SQ oracle is called with the quexy . and a tolerance & 1 < 1 to be specified later. Our key
technical observation is that the valuety, » effectively selects the next symbol of

Lemma 3
+%P(L,H,S), a= LTKHL]-
EXu.a = 2 —
—g=pPLns), a#lsy
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where

e ()06

Proof Fix an unknown stringi of lengthL > 1; by assumption, we have recoverediia u; ... U, =
U ... U the first/ symbols ofu. Let U = u0” be the extension af obtained by padding it on the
right with infinitely many 0 symbols (we assume=X).

Let X be a random variable representing the uniformly chosen kastpngx. Let T be the
largest value for whicl, ... u} is a subsequence ¥f. Let§ = 11>} be the indicator for the event
thatX is a positive instance, i.e., thaf...u_ = U] ...u is a subsequence ¥f.

Observe thal has a binomial distribution:

T ~ Binom(n,1/s);

indeed, as we sweep acrosseach positiorX; has a ¥s chance of being the next unused symbol of
u'. An immediate consequence of this fact is thd€ Pr 1] is exactlyy | (7)(1/s)%(1—1/9)" k.

Now fix £ < L and letl, be defined as follows. If =0 thenl, =0, and ifu;...u, is not
a subsequence of;...X,_1 thenl, = n— 1. Otherwise|, is the position ofu, in the leftmost
embedding ofu;...us in X;...Xn_1. Thenl,+ 1 is the position ofo as defined in (3.1), on if
Up...W le...xn,]_.

We define two additional random variabl@g,andTg. Ty is the length of the longest prefix of
u’ that is a subsequence Xfwith X, 1 excluded:

Ta=max{t:u]...u T X1... X, X, 42... %n}

Intuitively, Tg is the length of the longest prefix af with uj,_ ; excluded that is a subsequenceXof
with X, 1 excluded. Formally, let;v, ... be the sequenag u, . .. with the elements,, excluded,
thatis,vi =u if i </Zandv, =u_ , if i > /+1.

Te=max{t:vi...vt C X1..X, X, +2..%n} .
Like T, Ta andTg are binomially distributed, but now
Ta, Tz ~ Binom(n—1,1/s).

The reason is that we always omit one positioXithe one followingu, if u, appears befor¥, or
X, if it does not), and for each other position, there is stilieependent As chance that it is the
next symbol inu’ (or u" with uj, , excluded.)

An important fact is thak|, 1 is independent of the values of andTg, though of cours@, and
Tg are not independent of each other. This is not immediateljools: whetheiX;, 1 equalsu;, ,
or not affects the interpretation of later symbolsXin However, the probability that each symbol
Xi,+2... is the next unused symbol il (or v) is still an independent /s whetherX;, 1 consumes a
symbol ofu’ (or v) or not. The joint distribution o, andTg is not affected.

We now computeE), 5 by averaging over the choices in the joint distributionTgfand Tg. If
Ta > L, thenuis a subsequence of;... X, X,12... %, andX is a positive exampley(= +1) no
matter howX, 1 is chosen. In this case, each symbokEinontributes 1 to the conditional expected

1

value with probability ¥s and—g=; with probability 5;51; the net contribution is 0.

6
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If X is a positive example, themis a subsequence &f and a leftmost embedding afin X
embedsa; ... Uy in X;...X;, and embedsi;;1...ug in Xj,41...X,. Thus, no matter what symbol is
chosen forX|, 11, Us42... UL is a subsequence of,.>... Xy, andTg must be at leadt — 1. Thus, if
Ta > L thenTg > L — 1. Moreover, ifTg < L — 1, X must be a negative examphe=€ —1) no matter
how X, 11 is chosen. In this case, the probabiliti/s) contribution of—1 is exactly offset by the
probability{ %) contribution of;, and the conditional expected value is O.

Thus the only case in which there may be a non-zero contoibuiti the expected value is when
Ta <L andTg > L —1, that is, when the choice &, 1 may affect the label oK. The exampleX
is positive if and only ifX|, 1 = U,11, which occurs ifo = u41. Thus the conditional expectation
fora=uy,1is

_ 1 _
lPI’[O':Up+1]—|—aPI’[O’#U1+1]:——|—TTZZ/S

Fora## uy, 1, the conditional expectation iS‘i‘Sﬁ. This can be computed directly by considering
cases, or by observing that the chang® fos Xu.a(X) = 0 always, and that al # u,, 1 induce same
expectation by symmetry.

Finally we need to determine [k < L A Tz > L — 1]. We may write

PiTe>L—1ATa<L]=PrTg>L—-1—PiTg >L—1ATp > L]
Becauselp > L impliesTg > L — 1,
PiTe > L —1ATa> L] =PTa> L],
and thus
PiTe > L—1ATa<L]=PrTg >L—1] —PTa > L].

Becausela andTg are binomially distributed, Pfg > L —1ATa < L] is

which is

(L) -y —pns.

This concludes the proof of Lemma 3. [ |

3.2 Specifying the Query Toleranca

The analysis in Lemma 3 implies that to identify the next sgidf u € =" it suffices to distin-
guish the two possible expected value€gf, o, which differ by (2/(s—1))P(L,n,s). If the query

tolerance is set to one third of this value, that is,
2
T=—P(L,ns
3(8_ 1) ( ) ) )

thens statistical queries for each prefix ofuffice to learru exactly.
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Theorem 4 When the length L of the target stringis known,u is exactly identifiable with Q.s)
statistical queries at tolerance= ﬁP(L,n,s).

In the above SQ algorithm there is no need for a precisionnpetiere because the learning is
exact that is,e = 0. Nor is there a need for a confidence parametaecause each statistical query
is guaranteed to return an answer within the specified toder,an contrast to the PAC setting where
the parameted protects the learner against an “unlucky” sample.

However, if the relationship betweemandL is such thatP(L,n,s) is very small, then the
tolerancet will be very small, and this first SQ algorithm cannot be cdased efficient. If we
allow an approximately correct hypothess> 0), we can modify the above algorithm to use a
polynomially bounded tolerance.

Theorem 5 When the length L of the target stringis known,u is approximately identifiable to
within € > 0 with O(Ls) statistical queries at tolerance= 2¢/(9(s— 1)n).

Proof We modify the SQ algorithm to make an initial statistical pueith tolerancee/3 to estimate
Pri§ = 1], the probability thak is a positive example. If the answer<s2¢/3, then P =1] <¢
and the algorithm outputs a hypothesis that classifies alingkes as negative. If the answer is
>1-—2¢/3, then P = 1] > 1— ¢ and the algorithm outputs a hypothesis that classifies alhgkes
as positive.

Otherwise, FE = 1] and P[§ = 0] are both at least/3, and the first SQ algorithm is used.
We now show thaP(L,n,s) > €/(3n), establishing the bound on the tolerance. Q¢L,n,s) =
) (é)" (1- %)n_L and note thaQ(L,n,s) = (n/Ls)P(L,n,s). If L < n/sthenQ(L,n,s) is at least
as large as every term in the sum

oo E( ) (-3

and thereforeQ(L,n,s) > ¢/(3L) andP(L,n,s) > €/(3n). If L > n/sthenQ(L,n,s) is at least as
large as every term in the sum

aa-5 (0 () (-3

and thereford(L,n,s) > Q(L,n,s) >¢/(3n). [ |

3.3 PAC Learning

The main result of this section is now obtained by a standartgstormation of an SQ algorithm to
a PAC algorithm.

Theorem 6 The concept class = {H_[(u) Tue ZS”} is efficiently properly PAC learnable under
the uniform distribution.

Proof We assume that the algorithm receives as inputs € andd. Because there are onhy 1
choices ofL, a standard method may be used to iterate through them. Witasanthe modified SQ



ON THE LEARNABILITY OF SHUFFLE IDEALS

algorithm by drawing a sample of labeled examples and usiegtto estimate the answers to the
O(Ls) calls to the SQ oracle with queries at tolerance 2¢/(9(s— 1)n), as described by Kearns
(1998). According to the result of Kearns (1998, Theorem 1),

2
(@] (r% log m) =0 (i—g(nlogs— Iog€'>)>

examples suffice to determine correct answers to all théesgiat the desired tolerance, with prob-
ability at least 1- 9. |

Our learning algorithm and analysis are rather strongly tiiethe uniform distribution. If this
assumption is omitted, it might now happen thgiR> L — 1A Ta < L] is small even though positive
and negative examples are mostly balanced, or there mightrbetable correlations betweerand
the values offy andTg. It seems that genuinely new ideas will be required to handtniform
distributions.

4. Proper PAC Learning Under General Distributions Is Hard Unless NP=RP

This hardness result follows a standard paradigm (see Keard Vazirani, 1994). We show that
the problem of deciding whether a given labeled sample adanitonsistent shuffle ideal is NP-
complete. A standard argument then shows that any proper|@&@er for shuffle ideals can
be efficiently manipulated into solving the decision proileyielding an algorithm in RP. Thus,
assuming RBEZ NP, there is no polynomial time algorithm that properly feashuffle ideals.

Theorem 7 For any alphabet of size at lea& given two disjoint sets of strings BC z*, the
problem of determining whether there exists a string u shehwC x for each x¢ S and uZ x for
each xe T is NP-complete.

We first prove a lemma that facilitates the representatiominfilependent binary choices. Let
> ={0,1}, letn be a positive integer and defirg to be the set of 2binary strings described by
the regular expression

((00000+ 0010011)".
Define strings
Vo = 000100
v; = 001000
d=11

and letS, consist of the two strings
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Define the strings

Yo = 00010
y1 = 01000
z= 0000

do=1

and for each integdrsuch that I< i < n, define the strings

tio = (Vod)'yod(vod)"™
ti1 = (vod)' ~ty;d(vod)"™
tio = (Vod)'~*zd(vod)™

ti 3 = (Vod) " Lvodo(vod)™ .

The stringst o, tj 1 andt; » are obtained frong by replacing occurrenceof vp by yo, y1, andz,
respectively. The strint 3 is obtained frongy by replacing occcurendeof d by dy. Let T, consist
of all the stringd; j for 1 <i <nand 0< j <3.

The following lemma shows that the set of strings consisiétit S, andT, is precisely the 2
strings inA.

Lemma 8 Let G, be the set of strings u such that u is a subsequence of batigstn $ and not a
subsequence of any string ip. TThen G = A,.

Proof We first observe that for any positive integaiand any stringi € A, the leftmost span ai
in (vod)™Mis (vod)™ itself, and the leftmost span afin (vid)™ is (vid)™ itself. Form= 1, we have
u= 0000011 o = 0010011, whilesod = 00010011 and;d = 00100011, and the result holds by
inspection. Then a straightforward induction establistimesresult form > 1. Similarly, for any
stringu € A, the rightmost span afuin d(vpd)™ is d(vpd)™ itself, and the rightmost span di
ind(vid)™is d(v1d)M itself. In the base case we hastea = 110000011 odu = 110010011, while
dvyd = 1100010011 andwv;d = 1100100011, and the result holds by inspection. A straogiveird
induction establishes the result for> 1.

Supposal € A,. Then

u=uduwd---uyd,

where eachy; is either 00000 or 00100. ClearlyC 55 andu C s;, because 00000 and 00100 are
subsequences g§ andv;.

Consider a string o € Ty. Suppose thai C t; 0. Divide u into three partsy = u'uu”, whereu
isuid---u_1d andu” = du1 ---und. The leftmost span af’ in t; g is (vod)'~1, and the rightmost
span ofu” in tj o is d(vod)”*i, which implies thaty; C yg by Lemma 1. Buty; is either 00000 or
00100 andy is 00010, which is a contradiction. $ds not a subsequencepf. Similar arguments
show thatu is not a subsequence ®f ort;».

Now supposel C ti3. We divideu into parts,u = u'uidu1u”’, whered’ = uid---ui_1d and
U’ =du,z---uyd. The leftmost span af in tj 3 is (vod)'~1 and the rightmost span of in ti3 is
d(vod)"'~1. By Lemma 1, we must have

Uidu 11 C VodoVo.

10
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That is, at least one of the strings
00000110000M0100110000M0000110010®M01001100100

must be a subsequence of 0001001000100, which is falsejrgitwvatu is not a subsequence of
ti 3. Thusuis not a subsequence of any stringli andu € Cy,. ThusA, C C,.
For the reverse direction, suppase C,. We consider an embedding ofin 55 and divideu
into segments
U= Upd1Uz02 - - - UnCh,

where for each, u; C vp andd; C d. If for anyi we haved; C 1, thenu C t; 3, a contradiction. Thus
di = 11=d for everyi. Similarly, if u; is a subsequence @§, y, or z, thenu is a subsequence
of tj o, tj 1, Ortj », respectively, so we know that eaghis a subsequence of the string 000100, but
not a subsequence of the strings 00010, 01000, or 0000. dtidifficult to check that the only
possibilities fory; are

0000Q0010Q000100

To eliminate the third possibility we use the fact thids a subsequence sf. Consider any string
w=wdwod- - - wnd,

wherew; = 000100 and eactv; for j # i is either 00000 or 00100. We may divigeinto parts
w = w00010Qv" wherew = wd---wi_1d andw’ = dwi,1d---wnd. If wC s, then the leftmost
span ofw in s is (vid)'~1, and the rightmost span @f’ in s is d(vid)"", which by Lemma 1
means that 000100 must be a subsequenag f 001000, a contradiction. Thus no suetis a
subsequence @, and we must have; equal to 00000 or 00100 for all that is,u must be inA,.
ThusC, C A,. [ |

We now prove Theorem 7.

Proof To see that this decision problem is in NP, note th& i empty, then any string of length
longer than the longest string i satisfies the necessary requirements, so that the answas in t
case is necessarily “yes.” §is nonempty, then no string longer than the shortest strirgcian be

a subsequence of every string3nso we need only guess a strimgwhose length is bounded by
that of the shortest string i8and check whethew is a subsequence of every stringSmand of no
string inT, which takes time proportional to the sum of the lengths lofha input strings (Lemma
2).

To see that this problem is complete in NP, we reduce satiiiffabf CNF formulas to this
guestion. Given a CNF formul@ over then variablesx; for 1 <i < n, we construct two sets of
binary stringsSandT such thatp is satisfiable if and only if there exists a shuffle strinthat is a
subsequence of every string®and of no string inl. The setSis just the two stringsy ands; in
the setS,. The sefT is the strings in the séf, together with additional strings determined by the
clauses ofp. By Lemma 8, the strings consistent wihandT, are the 2 strings inA,.

We use each = u;dwd- - - upd in A, to represent an assignment to theariabless; by choosing
x; = 0 if u; is 00000 andk; = 1 if uj = 00100. We construct additional elementsiobased on the
clauses of the formulg to exclude any strings representing assignments that dsatisty ¢. For
example, if clausg of @is

(X3 VXV X17),

11
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we add a string; to T obtained fromsy by replacing occurrence 3 af by 00000, replacing
occurrence 6 ofy by 00100, and occurrence 17 af by 00100, where we have chosen 00000 or
00100 to falsify the corresponding literal. The stringsAinthat are subsequencestphre exactly
those that correspond to assignments that falsify claudep, and adding; to T eliminates these
strings from those consistent wiandT. By adding one string; to T for each clausg of ¢, we
ensure that the only stringsthat are subsequences of both elementSarid not subsequences of
any element ofl are exactly those elementsAf that correspond to assignments that do not falsify
any clause ofp. Thus, there exists at least one strintpat is a subsequence of both stringSiand

not a subsequence of any stringTinf and only if @is satisfiable.

Note thatS contains two strings of lengt®(n), T, contains 4 strings of lengthO(n), andT
additionally contains one string of leng®(n) for each clause o, so the sizes o6 and T are
polynomial in the size ofp. This completes the proof of Theorem 7. [ |

5. Cryptographic Limitations on PAC Learning Shuffle Ideals

In this section we show that the problem of PAC learning aaglof constant-depth, polynomial-
size threshold formulas is efficiently reducible to the peab of PAC learning shuffle ideals. Be-
cause for some constant depth, the class of polynomialteieshold formulas of that depth are
capable of computing iterated product, the results of Keand Valiant (1994) imply that a polyno-

mial time PAC algorithm to learn them would imply polynomiathe algorithms for certain funda-

mental problems in cryptography, namely, inverting RSArgption, factoring Blum integers, and

testing quadratic residuosity. Thus, the class of shufidaliglfaces the same cryptographic limi-
tations on PAC learnability as demonstrated by Kearns afidntdor the class of general regular
languages represented by deterministic finite automata.

A threshold functions a Boolean function witlm inputs and a threshold Its output is 1 if at
leastt of its inputs are 1 and 0 otherwise. Thus, an ORndfiputs is equivalent to a threshold func-
tion with threshold 1, and an AND ah inputs is equivalent to a threshold function with threshold
m. There arem+- 2 different threshold functions ah inputs, corresponding to—=0,1,...,m+ 1.
The threshold = 0 computes the constant function 1, while the thresteidn+ 1 computes the
constant function 0.

Given an integem > 1, we define the clasb(n,m,d) of threshold formulas over the variables
Vh = {X1,X2,...,%,} Of fan-in exactlym and depthd by induction ond as follows. The formulas of
depthd = 0 are the two constants 0 and 1 and tindi®rals x; andx;. Ford > 0, the formulas of
depthd consist of a threshold function with inputs applied to a sequencerafformulas of depth
d —1. Note that a threshold function af inputs can be used to compute a threshold function of
fewer inputs by insuring that the excess inputs are the aahfinction 0.

We can picture the elements ©fn,m,d) as ordered fullm-ary trees of deptld whose internal
nodes are labeled by threshold functions, and whose leaeeklaeled by constants or literals.
Thus, the total number of occurrences of constants or litéman threshold formula of fan-imand
depthd is O(m?). If d is a fixed constant anch is bounded by a polynomial in, the total size of
such a formula is bounded by a polynomialrin The same is true ifnis a fixed constant and
is bounded byO(logn); in this case, the formulas compute functions in the clas& NfCconstant
fan-in, logarithmic depth Boolean circuits.

12
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We now describe a reduction parameterized biyat maps each threshold formdlan T (n,m,d)
to a shuffle stringq4(f), and each assignmeatto the variabled/, to an assignment stringy(a),
such that the assignmeatatisfiesf if and only if the shuffle stringq(f) is a subsequence of the
assignment stringg(a). The string alphabet consists of the symbols 0 and 1 and af skt-d
delimiters: #,#1,...,#q.

The base case 6= 0, wheref is a single constant 0 or 1 or a single litexabr X. In this case,
the shuffle string is

ro(f) = yi#oy2#o. . . yn#o,

wherey; is defined as follows. If =0 theny; = 01 for all j, and if f = 1 theny; = A for all j. If
f =x theny; = A for all j #i andy; = 1, while if f =X; theny; = A for all j # i andy; = 0.

If the assignmena is given by a binary stringya,. .. a,, indicating thatx; is assigned the value
a;, then the string representing the assignment is just

So(a) = a#oas#o . . . anto.

It is clear thatro(f) is a subsequence &f(a) if and only if then occurrences of ¢in each string
are matched, ang is a subsequence ef forall j =1,2,...,n. For f =0 we havey; = 01 for all
j, so this holds for n@. For f =1 we havey; = A for all j, and this holds for everg. If f is a
literal, then this holds if and only ¥; = g;, that is, if and only ifa satisfiesf. Thus, whenf is a
constant or a literakg(f) is a subsequence af(a) if and only if a satisfiesf.

In addition to definining the shuffle string and the assignimstrings at each level, we also
define a slack string. For level 0, the slack strmgs defined as follows.

7o = (01#)",

That is, zy consists ofn repetitions of the string 0%# For leveld, the slack string is designed to
ensure thatq(f) is a subsequence af for any f € T(n,m,d); this clearly holds at leved = 0.

For the inductive casd > 0, we assume that the construction has been definatdl-fdr using
symbols 0, 1, and delimiters#..,#34_1. Thus the leved delimiter, #, has not yet been used.
Supposef is a depthd threshold formula fronT (n,m,d), that is,

f :e(fla f27"'7 fm)»

where eacH is a depthd — 1 threshold formula anfl is a threshold function with threshotd We
define the shuffle string
ra(f) = UplslpUy - - - UmUm(#q) 2,
where for eachh=1,2,...,m,
U = I’dfl(fi)#d.
That is,rq(f) consists of two copies of the level- 1 code forf;, with each copy followed by the
delimiter #, fori =1,2,...,m, followed byt pairs of the delimiter # Note thatry4(f) may contain
up to 4n+ 2 copies of .
Given an assignmerstto the variable¥/},, we define a levall assignment string

sa(@) = V2",

where
V= s4-1(a)#aZa-1#a.

13
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That is,sq(a) is 2m copies of the string consisting of the levell — 1 code fora, followed by #,
followed by the level — 1 slack string, followed by 4 Note thatsy(a) contains exactly #h copies
of #4.

Finally, the leveld slack string is defined as follows.

2y = (Za—1#a) ™.
A straightforward induction shows that for any thresholdvala f in T(n,m,d), rq(f) is a subse-
quence ofzy, and for any assignmeatto the variablessy(a) is also a subsequence Rt

Lemma 9 For all threshold formulas f in Tn,m,d) and assignments a to the variables if ¥
satisfies f if and only if4(f) is a subsequence of(®).

Proof This is proved by induction od. Ford = 0, the basis construction showed that for all
constants or literal$ and assignments, a satisfiesf if and only if ro( f) is a subsequence af(a).
Inductively assume that the construction works dor 1. Supposef is a depthd threshold
formula, that is,
f=0(f, ..., fm),

where eacH is a depthd — 1 threshold formula anfl is a threshold function with threshotd For
any indexi and any assignmeatlet

Ui =rq-1(fi)#a
and
V= s4-1(a)#aZa-1#d.

Becausey_1(fi) is a subsequence of the slack stringi, uiu; is a subsequence w¥. Also, u;u; is

a subsequence ofif and only if rq_1(f;) is a subsequence &f_1(a), which holds if and only ifa
satisfiesf;, by the inductive assumption. dfy; is not a subsequence wfthen a leftmost embedding
of ujy; in vv must match the first#in uyju; to the second tin vv and the secondg#n u;u; to the
fourth # in vv, thereby “consuming” all ofv for the embedding.

Suppose satifiesf. Because is a threshold function with threshotdthere must be a sét
of at least indicesi such thata satisfiesf;. By the inductive assumption, this means that; ( f;)
is a subsequence &f_1(a) for eachi € T. For each € T, uju; is a subsequence of Fori ¢ T,

Uiu; is a subsequence of but not ofv. Thus we can find a leftmost embeddingreff) in sy(a)

by consuming one copy offrom sy(a) for eachi € T and two copies for eadhZ T, using at most
2m—t copies, and leaving at leastopies, which allows us to embed the trailing sequence of 2
delimiters # in the remaining copies of Thusrq(f) is a subsequence &f(a).

Conversely, suppose that(f) is a subsequence &f(a), and consider a leftmost embedding.
Considering the segmentgy; of rq(f) from left to right, we see that the leftmost embedding con-
sumes one copy of if a satisfiesf; and two copies ifa does not satisfyfi. Thus, if T is the set
of indicesi such that satisfiesf;, then after embedding ath such segmentsn2— |T| copies ofv
are consumed frorgy(a), leaving|T| copies. Because the trailing @ccurrences of in rq(f) are
matched in the remaining portion gf(a), we must have [T | > 2t, and therefore satisfiesf; for
at least indicesi, that is,a satisfiesf. |

How long are the stringsy(f) andsy(a)? Each is a subsequence f and form > 2, the
length ofzy is bounded by10m)¥(3n). This is polynomial im if either d is a fixed constant anah
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is polynomial inn, or if mis a fixed constant and = O(logn). In either case, the mapping froan
to sy(a) is computable in polynomial time, and we have the followiaguits.

The first result assumes a polynomial time algorithm to lesmffle ideals over some fixed
alphabet.

Theorem 10 Suppose for some positive integer d, there exists a polahdimie algorithm to PAC
learn shuffle ideals over an alphabet of size-&. Then for any polynomial (m), there exists a
polynomial time algorithm to PAC learn the threshold foremiin T(n, p(n),d).

The second result assumes a polynomial time algorithm to iauffle ideals over an arbitrary
finite alphabet, where the dependence on the alphabet sizidb@at most exponential.

Theorem 11 Suppose there exists an algorithm to PAC learn shuffle ideads arbitrary finite
alphabets that runs in time polynomial in n and, @here n is a bound on the length of examples,
s is the alphabet size and C is a fixed constant. Then for argtaainK, there exists a polynomial
time algorithm to PAC learn the threshold formulas iinT2,K logn).

5.1 Example of the Construction ofrq(f) and sy(a)
We illustrate the construction for the formula
f= (Xl\/)_(z) A ()_(1/\X3)

from T(3,2,2) and the assignmeiat= 001. To avoid subscripted delimiters, let #, $, and % stand
for #g, #1 and # respectively. For the base case we have the following.

I’o(Xl) = 1###

ro()_q) = O###
ro()_(z) = #HO##
I’o(Xg) = ##1#

Zp = 01#01#01#
The two subformulas of have thresholds of 1 and 2 respectively.
ri(XqVXo) = 1###S1##HSHO#HSHOHHSSS
ri1(X1 A Xg) = OfH#SOHHHSHH L #SHHLHISSDS
7 = (01#01#01#%°
For f the threshold is 2.
ra(f) = ((1H###D? (HOHH#D?)$39%) ((OHHHD? (HH1#H° $$$$99 2% %6 %%
2, = ((01#01#01#%°%)1°
The assignment strings for the assigmagt 001 are as follows.
so(a) = O#O#1#
si(a) = (0#O#1#$01#01#014$
sp(a) = ((O#O#1#$01#01#01#$%(01#01#01#5 °%)*

Assignment satisfiesf andr,(f) is a subsequence ef(a).
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6. Discussion

We have shown that the class of shuffle ideals is not effigigmibperly PAC learnable if RE-
NP, and is not efficiently improperly PAC learnable undetaiarcryptographic assumptions. On
the other hand, even with classification noise, efficienpprdAC learning of shuffle ideals is
possible under the uniform distribution. One technicalsgjioa that remains is whether the results
in Section 5 can be proved for an alphabet of constant sizieiendent ofl.) Another is whether
PAC learning shuffle ideals is as hard as PAC learning detestiu finite acceptors. Much remains
to be understood about the learnability of subclasses aftindar languages.
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