
A Simple Population Protocol for
Fast Robust Approximate Majority

Dana Angluin1, James Aspnes1,?, and David Eisenstat2,??

1 Yale University, Department of Computer Science
{dana.angluin, james.aspnes}@yale.edu

2 Princeton University, Department of Computer Science
deisenst@cs.princeton.edu

Abstract. We describe and analyze a 3-state one-way population protocol for
approximate majority in the model in which pairs of agents are drawn uniformly
at random to interact. Given an initial configuration of x’s, y’s and blanks that
contains at least one non-blank, the goal is for the agents to reach consensus on
one of the values x or y. Additionally, the value chosen should be the majority
non-blank initial value, provided it exceeds the minority by a sufficient margin.
We prove that with high probability n agents reach consensus in O(n log n) in-
teractions and the value chosen is the majority provided that its initial margin
is at least ω(

√
n log n). This protocol has the additional property of tolerating

Byzantine behavior in o(
√

n) of the agents, making it the first known population
protocol that tolerates Byzantine agents. Turning to the register machine con-
struction from [2], we apply the 3-state approximate majority protocol and other
techniques to speed up the per-step parallel time overhead of the simulation from
O(log4 n) to O(log2 n). To increase the robustness of the phase clock at the heart
of the register machine, we describe a consensus version of the phase clock and
present encouraging simulation results; its analysis remains an open problem.

1 Introduction

Population protocols [1] model distributed systems in which individual agents
are extremely limited, in fact finite-state, and complex behavior of the system
as a whole emerges from the rules governing pairwise interaction of the agents.
Such models have been defined and used in other fields, for example, statistics,
epidemiology, physics and chemistry; understanding their behavior is a funda-
mental scientific problem. The new perspective we bring as computer scientists
is to ask what computational behaviors these systems can exhibit. In addition
to fundamental scientific knowledge, answers may provide novel designs for
distributed computational systems at many scales.

? Supported in part by NSF grant CNS-0435201.
?? Supported in part by a Gordon Y. S. Wu Fellowship and a National Defense Science and

Engineering Graduate Fellowship.

Chemists have defined a standard model of small molecules in a well-mixed
solution, in which the molecules are agents, the state of an agent represents
the chemical species of the molecule, and interaction rules specify the probable
products of a collision between two molecules; the sequence of collisions is de-
termined by uniform random draws of a pair of agents to interact [4, 5]. In [1]
it is shown that this model in principle permits the design of a “computer in
a beaker,” that is, we can design interaction rules that allow a population of n
molecules to simulate the behavior of a register machine with a constant num-
ber of registers holding numbers of magnitudeO(n) for poly(n) steps with error
probability 1/ poly(n) in parallel time that is a factor of poly(n) larger than the
number of simulated instructions. In [2] we have shown that a careful analy-
sis of the properties of epidemics permits us to design a much more efficient
simulation, in which the per-step slowdown factor is O(log4 n) parallel time.

The register machine of [2] has several shortcomings: it requires an initial
configuration with a designated leader, it does not tolerate faults, and O(log4 n)
is still fairly slow. One goal of this paper is to develop more tools for the design
of fast robust population protocols, with improvement of the register machine as
a critical testbed. The main tool we develop is our 3-state protocol for approx-
imate majority; this is a protocol that rapidly takes a configuration of x’s, y’s
and b’s to a configuration that is all x’s or all y’s. The final value represents the
majority value (among x’s and y’s) in the initial configuration, provided it ex-
ceeds the minority value by a sufficient margin, namely ω(

√
n log n). Moreover,

we show that is robust to o(
√
n) Byzantine agents, the first population protocol

that provably tolerates any Byzantine agents. With a sufficiently redundant rep-
resentation of register values, this protocol gives a fast comparison operation,
which, when combined with other techniques, reduces the slowdown factor of
the simulation toO(log2 n) parallel time. Though the approximate majority pro-
tocol has only 3 states, its analysis is nontrivial; we expect that the protocol and
its analysis will find other applications in the design of fast robust population
protocols.

The register machine of [2] has at its heart the construction of a phase clock
that causes the agents to move together rapidly through a fixed cycle of phases;
together meaning that no two agents are more than a very few phases apart, and
rapidly meaning the parallel time to complete a cycle isO(log n). We would like
to avoid the need for a designated leader or leaders in the initial configuration to
synchronize the phase clock, and we would like the phase clock to be robust. In
Section 8 we describe an apparently robust consensus variant of the phase clock,
and a protocol to start it from a uniform initial configuration. We give simulation
results suggesting that it performs well. However, the problem of analyzing it
formally remains open; more tools are necessary.

2 Model

A population protocol consists of a finite set of states Q, a finite set of in-
put symbols X ⊆ Q, a finite set of output symbols Y , an output function
γ : Q → Y , and a joint transition function δ : Q × Q → Q × Q. A pop-
ulation protocol is executed by a fixed finite population of agents with states
in Q. For convenience, we assume that each agent has an identity v ∈ V , but
agents do not know their own identities or others’.

Initially, each agent is assigned a state according to an input x : V → X
that maps agent identities to input symbols. In the general population protocol
model, there is an interaction graph, a directed graph G = (V,A) without
self-loops, whose arcs indicate the possible agent interactions that may take
place. (G is directed because we assume that interacting agents are able to break
symmetry.) In this paper, G will always be a complete graph.

During each execution step, an arc (v, w) is chosen uniformly at random
from A. The “source” agent v is the initiator, and the “sink” agent w is the
responder. These agents update their states jointly according to δ: if v is in state
qv and w is in state qw, the state of v becomes δ1(qv, qw), the state of w becomes
δ2(qv, qw), where δi gives the ith coordinate of the output of δ. The states of all
other agents are unchanged. For any given V , a population protocol computes
a (possibly partial) function f : XV → Y in ` steps with error probability ε
if for all x ∈ f−1(Y), the configuration c : V → Q after ` steps satisfies the
following properties with probability 1− ε.

– All agents agree on the correct output: for all v ∈ V , f(x) = γ(c(v)).
– This remains true with probability 1 in the future.

We are interested in the guarantees one can make about a fixed protocol over a
family of functions f defined for all finite populations.

Although we have described the population protocol model in a sequential
light, in which each step is a single pairwise interaction, interactions between
pairs involving different agents are independent and may be thought of as oc-
curring in parallel. In measuring the speed of population protocols, then, we
define 1 unit of parallel time to be |V | steps. The rationale is that in expecta-
tion, each agent initiates 1 interaction per parallel time unit; this corresponds to
the chemists’ idealized assumption of a well-mixed solution.

2.1 Byzantine Agents

We extend the basic randomized population protocol model described above to
allow Byzantine behavior from some of the agents. In addition to the n normal

agents we allow a population to include z Byzantine agents. For each interac-
tion, an ordered pair of agents is selected uniformly at random from the pop-
ulation of normal and Byzantine agents. A Byzantine agent may simulate any
normal agent state in an interaction, and its choice of state may depend on both
the global configuration and the identity of the specific agent it encounters. The
state of Byzantine agents is not meaningful and so is not included in the descrip-
tion of a configuration. We first describe our protocol and analyze its behavior
without Byzantine agents.

3 A 3-State Approximate Majority Protocol

We analyze the behavior of the following population protocol with states Q =
{b, x, y}. The state b is the blank state. Row labels give the initiator’s state and
column labels the responder’s state.

x b y
x (x, x) (x, x) (x, b)
b (b, x) (b, b) (b, y)
y (y, b) (y, y) (y, y)

Note that this protocol is one-way: every interaction changes at most the re-
sponder’s state; thus it can be implemented with one-way communication. Only
the interactions xb, yb, xy, and yx change the responder’s state; we may think
of these as the only interactions that consume energy. The blank configuration
of all b’s is stable, but cannot be reached from any non-blank configuration be-
cause no interaction can eliminate the last x or y. The configurations of all x’s
and all y’s are stable, and every non-blank configuration can reach at least one
of them.

An intuitive description of the process is that agents in state b are undecided,
while initiators in states x and y are attempting to convert responders that they
meet to adopt their respective states. Such an initiator immediately converts an
undecided responder, but only succeeds in reducing an opposing responder to
undecided status. The process may also be thought of as two competing epi-
demics, x’s and y’s, with the ability to reverse each other’s progress.

In Sections 4 and 5, we show that with high probability this protocol (a) con-
verges from any non-blank configuration to a stable configuration in O(n log n)
interactions; and (b) correctly computes the initial majority x or y value pro-
vided ω(

√
n log n) more agents carry this value in the starting configuration

than carry the opposing value. In Section 6, we show that it can tolerate o(
√
n)

Byzantine agents; the formal definition of this property is given there.

4 Convergence

We show that, from any non-blank initial configuration, the 3-state approxi-
mate majority protocol converges to either all x tokens or all y tokens within
O(n log n) interactions with high probability. We divide the space of non-blank
configurations into four regions: three corners, where most tokens are b, x, or y,
and a central region where the tokens are more evenly balanced. We show that
the number of interactions in each region is bounded by O(n log n) w.h.p., by
constructing a family of supermartingales of the formM = eaS/nf(x, y) where
a > 0 is a constant, S counts the number of interactions of a particular type and
f is a potential function defined across the entire space of configurations. (We
overload x, y and b to denote the number of each token in a configuration.)

Specifically, we let τ∗ be the stopping time at which the protocol converges,
and let τ = min(τ∗, kn log n) for some fixed k. Assuming f does not vary too
much over the space of configurations, we can use the supermartingale property
E[Mτ] ≤M0 to show that eaSτ/n is small, and then use Markov’s inequality to
get the bound on Sτ . Summing the bounds for each region then gives the total
bound on the number of interactions. Though it would seem that truncating at
time kn log n assumes what we are trying to prove, in fact we show that with
high probability the total number of interactions is much less than kn log n,
implying that we do in fact converge by the given time bound.

The resulting proof requires a careful selection of f . To keep the argument
at least locally simple, we construct separate potential functions to bound differ-
ent classes of operations, based on the type of interaction that occurs and which
region of the configuration space it occurs in. The reason for this classification
is that the behavior of the protocol is qualitatively different in different regions
of the configuration space. When most tokens are blank, the protocol acts like
an epidemic, with non-blank tokens rapidly infecting blank tokens. When most
tokens carry the same non-blank value, the protocol acts like coupon collector,
with the limit on convergence being the time for the few remaining minority
tokens to be converted to the majority value. In the central region, where no
token type predominates, the protocol acts like a random walk with increasing
bias away from the center. Unfortunately, in none of these configurations does
the protocol act enough like the analogous well-known stochastic processes to
permit a direct reduction to previous results, and the behavior in border areas
blends smoothly between one form and another. The supermartingale/potential
function approach allows separate arguments designed for each region to be
blended smoothly together. Unfortunately, this still requires considerable calcu-
lation to verify that each potential function does what it is supposed to. In this
extended abstract, the detailed calculations are omitted for reasons of space.

The reader may be surprised to find that such a simple protocol requires
such a lengthy proof. Despite substantial efforts, we were unable to apply more
powerful tools to this problem. Part of the reason is that we are trying to obtain
exact asymptotic bounds on a system much of whose interesting behavior oc-
curs when particular tokens are very rare or when the behavior of the protocol is
highly random (e.g., with evenly balanced numbers of x and y tokens); this (to-
gether with the fact that the corresponding systems of differential equations do
not have closed-form solutions) appears to rule out arguments based on classical
techniques involving reduction to a continuous process in the limit (e.g., [6, 7]).
Similarly, approaches based on direct computation of hitting times or eigenval-
ues of the resulting Markov chain would appear to require substantially more
work than a direct potential function argument.

It is possible that such difficulties are an inherent property of randomized
population protocols. The ability to construct register machines using such pro-
tocols [1, 2] suggests that analysis of an arbitrary protocol for arbitrarily large
populations quickly enters the realm of undecidability. But we cannot rule out
the possibility that a more sophisticated approach might give an easier proof of
the convergence rate for the particular protocols we are interested in.

Our results are stated using explicit constant factors. The reader should be
warned that in many cases these are gross overestimates, and that from simula-
tion we observe that the expected number of interactions to convergence seems
to be less than 4n log n from two challenging initial configurations (see Fig-
ure 1.) The first of these, an initial population evenly divided between x and y
with no blank tokens, can be shown numerically for reasonably small n to be
the configuration that maximizes expected convergence time.

Fig. 1. Simulation results: parallel time of approximate majority from two initial conditions

 10

 20

 30

 40

 50

 100 1000 10000 100000

S
te

ps
 p

er
 a

ge
nt

Population size

Starting configuration: half Xs, half Ys

Parallel time to reach consensus
3.03 * log(x)

 10

 20

 30

 40

 50

 100 1000 10000 100000

S
te

ps
 p

er
 a

ge
nt

Population size

Starting configuration: one X, one Y

Parallel time to reach consensus
2.55 * log(x)

The full convergence bound is stated below.

Theorem 1. Let τ∗ be the time at which x = n or y = n first holds. Then for
any fixed c > 0 and sufficiently large n,

Pr [τ∗ ≥ 6754n log n+ 6759cn log n] ≤ 5n−c.

Proof. We give here a brief sketch only. First, we show that the potential func-
tion f = 1

(x−y)2+2n
is reduced by −Θ(1/n) of its previous value on average

conditioned on an xb or a yb interaction, and that it rises by a smaller relative
amount conditioned on an xy or a yx interaction. It follows that f · eO(S−αT)/n

is a supermartingale, where S counts xy and yx interactions, T counts xb and
yb interactions, and α < 1. The factor of O(n) drop in f between the maximum
initial f = 1/(2n) and final f = 1/(n2 + 2n) allows only a similar expected
rise in e(S−αT)/n and thus (with high probability) only an O(n log n) rise in
S − αT . Since all but at most n − 1 initial blank tokens destroyed in T must
have previously been created in S, T ≤ S + n, giving an O(n log n) bound on,
in turn: (a) S alone; (b) S + T ; (c) all interactions in the central region (where
xy, yx, xb, or yb interactions are likely). Separate potential functions are used
to bound the remaining interactions in the corners. ut

5 Correctness of Approximate Majority

Not only does the 3-state protocol converge quickly, but it also converges to the
dominant non-blank value in its input if there is a large enough initial majority.

Theorem 2. With high probability, the 3-state approximate majority protocol
converges to the initial majority value if the difference between the initial ma-
jority and initial minority populations is ω(

√
n log n).

Proof. Without loss of generality, assume that the initial majority value is x. We
consider a coupled process (ut, u′t) where ut = (xt − yt) and u′t is the sum of
a series of fair ±1 coin flips. Initially u′0 = u0. Later values of u′t are specified
by giving a joint distribution on (∆u,∆u′). We do so as follows. Let p be the
probability that ∆u = 1 and q the probability that ∆u = −1. Then let

(∆u,∆u′) =

(0, 0) with probability 1− p− q,
(1, 1) with probability 1

2(p+ q),
(1,−1) with probability p− 1

2(p+ q),
(−1,−1) with probability q.

The probability in the third case is non-negative if p/(p + q) = Pr[∆u =
1|∆u 6= 0] ≥ 1

2 . This holds as long as u ≥ 0; should u ever drop to zero, we
end the process.

Observe that unless this event happens, we have ut ≥ u′t. We can also verify
by summing the cases that ∆u rises with probability exactly p and drops with
probability exactly q; and that∆u′ rises or drops with equal probability 1

2(p+q).
So we have E[∆u′] = 0 and that |∆u′| ≤ 1, the preconditions for Azuma’s
inequality.

Theorem 1 shows that the process converges before O(n log n) interac-
tions with high probability. Suppose the process converges at some time τ =
O(n log n). Then by Azuma’s inequality we have that |u′τ −u′0| = O(

√
n log n)

throughout this interval with high probability. So if u′0 = u0 = ω(
√
n log n),

it follows that u0 ≥ u′0 ≥ 0 throughout the execution, and in particular that
the process does not terminate before convergence and that u is non-negative at
convergence. But this excludes the y = n case, so the process converges to the
initial majority value. ut

6 Tolerating Byzantine Agents

In this section, we show that the 3-state approximate majority protocol can tol-
erate up to o(

√
n) Byzantine agents, computing the correct majority value in

O(n log n) time with high probability despite their interference. However, to do
so we must both assume a somewhat larger initial majority, and slightly relax
the criterion for convergence.

The issue with convergence is that Byzantine agents can always pull the nor-
mal agents out of a converged configuration. For example, if all normal agents
are in the x state, any encounter with a Byzantine initiator can shift the normal
agent to a b state, and a second encounter can shift it to a y state, even though
there are no normal y agents in the population. So we must accept a small num-
ber of normal agents that do not have the correct value.

But in fact the situation is worse: if we run long enough, there exists a tra-
jectory with nonzero probability that takes us to the blank configuration, which
is stable. So we must also accept a small probability that we reach the blank
configuration quickly, and the assurance that we reach it with probability 1 af-
ter a very long time. However, we can show that with high probability neither
outcome occurs within a polynomial number of steps.

Our technique is to adjust the potential functions used by the non-Byzantine
process to account for Byzantine transitions. We then use these adjusted poten-
tial functions to show that (a) strong pressure exists to keep the process out of
the high-b corner and in the high-x and high-y corners, and (b) the number of
interactions (including Byzantine interactions) to reach the x or y corner is still
small.

6.1 Biased-Walk Barriers

Let us begin by showing that it is difficult even for Byzantine agents to force the
protocol into a configuration with a low value of vt = xt + yt.

Observe that if the Byzantine agents attempt to minimize v, v nonetheless
increases at each interaction with likelihood proportional to vb and decreases
with likelihood proportional to 2xy+ zv. So the probability of an increase con-
ditioned on any change in v is vb/(vb+ 2xy + zv) ≥ vb/(vb+ v2/2 + zv) =
b/(b + z + v/2) ≥ b/n provided z ≤ v/2. For large b and small z this gives a
random-walk behavior that is strongly biased upwards.

Suppose
√
n ≤ v ≤ n/8. Then b ≥ (7/8)n and z = o(

√
n) � v/2, so

Pr[∆v = 1|∆v 6= 0] ≥ 7/8. We wish to bound the probability starting from
some initial v0 in this range that v reaches

√
n before it reaches n/8. Though the

probability that v rises or falls changes over the interval, the position of v can
be lower-bounded by the position of a coupled variable v′ that moves according
to a biased random walk with fixed probability p = 7/8 of increasing by 1 and
q = 1/8 of decreasing by 1. From the standard analysis of the gambler’s ruin
problem,3 we have that (q/p)v

′
t is a martingale, and thus that the quantity

Pr[v′ reaches
√
n before n/8](q/p)

√
n+Pr[v′ reaches n/8 before

√
n](q/p)n/8

is equal to (q/p)v0 . Because (q/p)n/8 = (1/7)n/8 is exponentially small, it
makes sense to ignore the second addend, leaving

Pr[v′ reaches
√
n before n/8](q/p)

√
n < (q/p)v0

or
Pr[v′ reaches

√
n before n/8] < (q/p)v0−

√
n.

It follows that if v0 ≥
√
n + c log7 n, then the probability that v drops

to
√
n before reaching n/8 is bounded by n−c. Once v reaches n/8, further

drops to
√
n become exponentially improbable even conditioned on starting at

v = n/8− 1. We thus have:

Lemma 1. Fix c > 0. Let z = o(
√
n) and let v0 ≥

√
n + c log7 n. Then for

sufficiently large n, the probability that vt ≤
√
n for any t < en/8n−c is less

than 2n−c.

Proof. The probability that v reaches
√
n before reaching n/8 for the first time

is at most n−c. For each subsequent drop to n/8− 1, there is a probability of at
most (1/7)n/8−1−

√
n ≤ exp(−n/8)) that v reaches

√
n before returning to n/8.

3 See, for example, [3, §XIV.2].

Since each such excursion below n/8 involves at least one interaction, en/8n−c

interactions gives at most an expected n−c drops to
√
n for a total probability of

reaching v =
√
n bounded by 2n−c. ut

We can apply a similar analysis to the x and y corners, but here the proto-
col drifts toward the all-x or all-y configuration instead of away from it. Here
we track 3y + b for the x corner and 3x + b for the y corner. Because these
functions can change by more than just ±1, the simple random walk analysis
becomes more difficult. Instead, we proceed by showing that exp(3y + b) is
a supermartingale, and bound the probability of moving from 2

√
n to 3

√
n by

exp(−
√
n), the inverse of the change in exp 3y + b.

Formally, we have:

Lemma 2. Fix c > 0. Let z = o(
√
n) and let 3y0 + b0 ≤ 2

√
n. Then for

sufficiently large n, the probability that 3yt + bt ≥ 3
√
n for any t < e

√
n−1n−c

is less than n−c.

Proof. (Omitted for reasons of space.) ut

6.2 Convergence Time with Byzantine Agents

The convergence time is given in the following theorem.

Theorem 3. Let τ be the time at which x ≥ n−
√
n, y ≥ n−

√
n, or v ≤

√
n

first holds. Let v0 be the initial number of x’s and y’s. Then for any fixed c > 0
and sufficiently large n, if v0 ≥

√
n+ c log7 n, then

Pr
[
τ ≥ 6754n log n+ 6759cn log n or vτ ≤

√
n
]

= n−c+o(1).

Proof. (Proof omitted for reasons of space.) ut

Note that once we are in the x or y corner, Lemma 2 tells us that we remain
there with high probability for exponential time. So we have a complete char-
acterization of the convergence behavior of the 3-state majority protocol with
o(
√
n) Byzantine agents. It is also not hard to see that the proof of Theorem 2

also continues to hold for z = o(
√
n), provided we increase the size of the initial

majority to ω(
√
n log n) to compensate for the offset of o(

√
n log n) generated

by Byzantine interactions.

7 Speeding Up the Register Machine Construction

In this section we show how to use the 3-state approximate majority protocol
and other techniques to speed up the register machine construction in [2] so

that it has per-step parallel time overhead of O(log2 n) instead of O(log4 n).
The original construction is based on a single agent representing a finite-state
controller operating via commands spread by epidemics on register values rep-
resented in unary by tokens scattered across the population. A major bottleneck
in [2] is the difficulty of carrying out exact comparisons (performed inO(log2 n)
time using O(log n) rounds that alternate cancellation with amplification) and
of performing subtractions (done in O(log3 n) using addition, comparison, and
binary search). Our approximate majority protocol gives a simpler and faster
implementation of comparison, provided we pad out the register values to avoid
near-ties. A further adjustment to the representation gives cheap subtraction.

Because space does not permit us to repeat the description of the original
construction here, we refer the reader to [2] for details.

We begin by replacing the original O(log2 n) parallel time comparison op-
eration by our new O(log n) parallel time approximate majority protocol. To
ensure that a comparison is correct with high probability, we need to ensure that
the register values being compared differ by ω(

√
n log n). We guarantee this

by having registers hold values that are multiples of n2/3; three such registers
are sufficient to represent n = (n1/3)3 different values, thinking of them as the
high, middle and low order wide-digits of a number in base n1/3. Thus, to com-
pare two wide digits, say A and B, we do an approximate majority comparison
of A+ (1/2)n2/3 with B; if the result is that A is in the majority, then we con-
clude that B ≤ A, otherwise that A < B. To compare two registers composed
of O(1) wide-digits it suffices to proceed digit by digit.

The subtraction operation of [2] requires O(log n) rounds of binary search
where the O(log2 n) parallel time comparison operation dominates the cost of
each round. Though we could replace these comparisons with our faster compar-
ison operation and reduce the cost of subtraction to O(log2 n), we can obtain a
still better reduction to O(log n) parallel time by use the logician’s construction
of the integers from the natural numbers: the value A in a register is represented
by the difference A+ − A− of values in two different registers. To compute
C ← A+B, we compute C+ ← A+ +B+ and C− ← A− +B−. To compute
C ← A−B, we compute C+ ← A+ +B− and C− ← A− +B+. These oper-
ations both take parallel time O(log n), because addition is already O(log n) in
the previous construction. An additional clock cycle of cancellation keeps the +
and − components from overflowing.

For registers with this balanced representation, we must revisit comparison.
To compare A with B, we compare (A+ + B−) with (A− + B+). Since these
differ by a multiple of n2/3, our previous comparison method works. The result
is that subtraction can be done with O(1) additions and comparisons, which
gives parallel time of O(log n).

The most expensive operation in [2] is division by a constant, which is based
on O(log n) rounds of binary search in which subtraction dominates. The im-
proved cost of subtraction immediately reduces the parallel time for division to
O(log2 n) without any change to the division algorithm.

The remaining issue is how to convert the input values in the registers, which
are represented in simple unary, into the wide-digits representation. We use the
previous machine operations to create a reference value of magnitude Θ(n2/3)
in a register and the usual base-conversion algorithms to extract the wide digits
of each input register value and store them multiplied by the reference value; this
initialization takes polylogarithmic parallel time [2], after which the per-step
overhead of simulating the register machine is O(log2 n). Thus, for simulating
the register machine specified in [2], we have the following improvement.

Theorem 4. A probabilistic population of n agents with a designated leader
can simulate the steps of the virtual register machine defined in [2], such that
the probability that any single step in the simulation fails or takes more than
O(n log2 n) interactions can be made O(n−c) for any fixed c.

8 A More Robust Phase Clock?

The fault tolerance of the 3-state approximate majority protocol and the inherent
redundancy of the wide-digit representation of register values is encouraging:
perhaps there is a fast and provably robust version of the register machine con-
struction. However, there is a second component of our register machine that
must be made more robust. This is the phase clock, a subprotocol used to count
off intervals of Θ(log n) parallel time so that the leader can estimate when an
epidemic has finished propagating.

The phase clock of [2] is a protocol withm states and one designated leader.
The state of an agent represents the phase that it is in. A responder in phase i
adopts the phase of any initiator in phases i+1 mod m through i+m/2 mod m,
but ignores initiators in other phases. New phases are triggered by the leader
agent. When the leader responds to an initiator in its own phase, that leader
moves to the next phase. Counting the number of interactions between the event
that the leader enters phase 0 until the event that the leader next enters phase 0
as a round, it is shown that with high probability each of a polynomial number
of rounds takes parallel time Θ(log n) with inverse polynomial probability of
error. Note that although this protocol also works when given Θ(n1−ε) desig-
nated leaders, it requires an initial configuration with the appropriate number of
designated leaders, and is not robust to errors.

We now describe (a) a method for quickly starting the phase clock from
a uniform initial state, and (b) a consensus variant of the phase clock that ap-

pears to be more robust. Our present techniques are not sufficient to analyze the
resulting algorithm, so we must make do with simulation results.

Simulation results suggest that the following protocol can start up a phase
clock with high probability in Θ(log n) parallel time. This protocol is one-way,
so for brevity we identify δ with δ2.

This protocol is the semidirect product of several components. The first
component allows us to make approximate coin tosses. The states are Qcoin =
{0, 1}, with initial value xcoin = 0, and the transition function is δcoin(q, q′) =
1−πcoin(q). Starting from any configuration, this protocol rapidly converges to-
wards an equal proportion of agents in each state. The second component counts
the number of consecutive coin values equal to 1 the agent has seen immediately
prior, up to a maximum of ` > 0. The states are Qcount = {0, 1, . . . , `}, xcount =
0, and the transition function δcount(q, q′) = πcoin(q)(min{πcount(q′) + 1, `}).

The third component approximates an exponential decay process. There is a
parameter k1 ≤ `. The states are Qdecay1 = {0, 1}, xdecay1 = 1, and the update
function is δdecay1(q, q′) = [πcount(q) < k1]πdecay1(q′). The idea is that for all
0 < α < 1 and 0 < c, we can find k1 such that with high probability, there is
a period of cn log n steps where the number of agents with decay1 value of 1 is
between 1 and nα. In this period, using agents with decay1 value of 1 as tempo-
rary leaders, we can run a disposable phase clock that functions correctly only
for a constant number of phases before all the values of decay1 become 0. This
phase clock is used to choose a stable leader population of size Θ(n1−ε), which
in turn supports a second copy of the phase clock that runs for polynomially
many steps.

Our consensus variant of the phase clock from [2] works as follows. In ad-
dition to the phases 0, 1, . . . , φ − 1, we have a blank “phase”. Thus Qphase1 =
{b, 0, 1, . . . , φ − 1}. xphase1 = 0. If x is a nonblank phase, then let succ(x) =
(x+ 1) mod φ be the successor phase of x. We have

δphase1(q, q′) =

p′ if p = b

p if p′ = b

p′ if p′ = p 6= b and πdecay1(q) = 0
succ(p′) if p′ = p 6= b and πdecay1(q) = 1
p′ if p, p′ 6= b and p′ = succ(p)
p if p, p′ 6= b and succ(p′) = p

b otherwise,

where p = πphase1(q) and p′ = πphase1(q′). If the phase of the initiator is blank or
one behind the responder’s, the responder’s phase is unchanged. If the phase of

the responder is blank, it copies the phase of the initiator. If the phases are non-
blank and equal, the responder increments its phase if and only if the initiator
has decay value 1 (temporary leader status.) If the initiator’s phase is one more
than the responder’s, the responder increments its phase. In all other cases, the
responder sets its phase to blank. In summary, we are following a multiple-
valued generalization of the 3-state majority algorithm except when the phases
are nonblank and within distance 1 of one another. In this case, we revert to
behavior like that of the original phase clock.

Once the disposable phase clock is running, it is used to select the real
phase clock’s leaders. This is accomplished by having another exponential de-
cay process that is reset by the disposable phase clock each complete cycle.
Thus we need a way to detect approximately the onset of each cycle. Our
criterion is for each agent to keep a local “maximum” of the phases it has
been in, and perform the reset when this maximum wraps around. Formally,
Qmax = {0, 1, . . . , φ− 1}, xmax = 0, and

δmax(q, q′) =

{
p′ if p′ 6= b and (p′ − πmax(q′)) mod φ ≤ φ/2
πmax(q′) otherwise,

where p′ = δphase1(q, q′). Since the last cycle may be partial, we also need a one-
value history for the decay process. Now Qdecay2 = {0, 1} × {0, 1}, xdecay2 =
(1, 1), and

δdecay2(q, q′) =

{
(1, y) if δmax(q, q′) < πmax(q′)
([πcount(q) < k2]y, y′) otherwise,

where (y, y′) = δdecay2(q′). The final set of leaders are those agents with y′ = 1
when the disposable phase clock stops running. A second copy of the consensus
phase clock, running from the initial configuration using y′ = 1 to designate
leaders, rapidly converges in simulation to correct robust phase clock behavior
when the number of leaders becomes appropriate.

We implemented the disposable phase clock leader election protocol and
tried it once on each value of b1.01nc between 100 and 100000 for integers n,
with every agent in the same initial state. There are three parameters to tune: φ,
k1, and k2. The protocol is not very sensitive to the settings of these parameters,
but the setting φ = 9, k1 = 5, and k2 = 4 worked better than many others.

The results are depicted in Figure 2. As can be seen, it seems that the pro-
tocol generally leaves Θ(n1−ε) leaders and completely converges in O(log n)
time.

Fig. 2. Simulation results: parallel time of leader election and final number of leaders

 100

 200

 300

 400

 500

 600

 100 1000 10000 100000

S
te

ps
 p

er
 a

ge
nt

Population size

Parallel time until leaders stable
36.1 * log(x)

 1

 10

 100

 1000

 10000

 100 1000 10000 100000

Population size

Final number of leaders
0.377 * x**0.603

9 Acknowledgments

The second author would like to thank Joanna Ellman-Aspnes for suggestions
that helped overcome an obstacle in the proof of the main lemma bounding
convergence. The authors would like to thank the DISC 2007 reviewers for their
helpful comments.

References

1. Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed Computing, pages
235–253, March 2006.

2. Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population proto-
cols with a leader. In Distributed Computing: 20th International Symposium, DISC 2006:
Stockholm, Sweden, September 2006: Proceedings, pages 61–75, September 2006.

3. William Feller. An Introduction to Probability and its Applications, volume 1. John Wiley
and Sons, third edition, 1958.

4. Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of
Physical Chemistry, 81(25):2340–2361, 1977.

5. Daniel T. Gillespie. A rigorous derivation of the chemical master equation. Physica A,
188:404–425, 1992.

6. Thomas G Kurtz. Approximation of Population Processes. Number 36 in CBMS-NSF Re-
gional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathe-
matics, Philadelphia, 1981.

7. Nicholas C. Wormald. Differential equations for random processes and random graphs. An-
nals of Applied Probability, 5(4):1217–1235, November 1995.

