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This paper presents the first tight bounds on the time complexity of shared-memory renaming, a fundamental problem in distributed computing
in which a set of processes need to pick distinct identifiers from a small namespace.

We first prove an individual lower bound of Ω(k) process steps for deterministic renaming into any namespace of size sub-exponential in k,
where k is the number of participants. The bound is tight: it draws an exponential separation between deterministic and randomized solutions, and
implies new tight bounds for deterministic concurrent fetch-and-increment counters, queues and stacks. The proof is based on a new reduction from
renaming to another fundamental problem in distributed computing: mutual exclusion. We complement this individual bound with a global lower
bound of Ω(k log(k/c)) on the total step complexity of renaming into a namespace of size ck, for any c ≥ 1. This result applies to randomized
algorithms against a strong adversary, and helps derive new global lower bounds for randomized approximate counter implementations, that are
tight within logarithmic factors.

On the algorithmic side, we give a protocol that transforms any sorting network into a randomized strong adaptive renaming algorithm, with
expected cost equal to the depth of the sorting network. This gives a tight adaptive renaming algorithm with expected step complexity O(log k),
where k is the contention in the current execution. This algorithm is the first to achieve sublinear time, and it is time-optimal as per our randomized
lower bound. Finally, we use this renaming protocol to build monotone-consistent counters with logarithmic step complexity and linearizable
fetch-and-increment registers with polylogarithmic cost.
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1. INTRODUCTION
The availability of unique names, or identifiers, is a fundamental requirement for distributed computation. Even in
settings where unique identifiers such as MAC or IP addresses are available, they often come from a very large
namespace, which reduces their usefulness. The renaming problem, in which a set of processes need to pick unique
names from a small namespace, is one of the fundamental problems in distributed computing. Intuitively, renaming
can be seen as the dual of the consensus problem [Pease et al. 1980]: if solving consensus requires processes to agree
on a single value, renaming asks processes to disagree in a constructive way, by returning distinct values from a small
space of names.

More precisely, the renaming problem assumes that processes have unique initial names from a large, virtually
unbounded namespace, and requires each process to eventually return a name (the termination condition), and that
the names returned should be unique (the uniqueness condition). The size of the resulting namespace should be at
most T > 0, which is given in advance. The namespace size T should only depend on n, the maximum number of
participating processes. The adaptive version of the renaming problem requires the size of the namespace T to only
depend on k, the number of processes actually taking steps in the current execution, also known as the contention in
the execution. If the size of the namespace matches exactly the number of participating processes, renaming is said
to be strong, and the namespace is said to be tight. Otherwise, renaming is loose. Intuitively, a tight namespace is
desirable since it minimizes the number of “wasted” names, which are allocated but go unused.

A significant amount of research, e.g. [Attiya et al. 1990], [Bar-Noy and Dolev 1989], [Burns and Peter-
son 1989], [Moir and Anderson 1995], [Herlihy and Shavit 1999], [Afek and Merritt 1999], [Attiya and Fouren
2001], [Eberly et al. 1998], [Panconesi et al. 1998], has studied the solvability and complexity of renaming in an
asynchronous environment. In particular, tight, or strong deterministic renaming, where the size of the namespace is
exactly n, is known to be impossible [Herlihy and Shavit 1999], [Castañeda and Rajsbaum 2010]. In fact, (n+ t− 1)
is the best achievable namespace size when t processes may crash [Castañeda and Rajsbaum 2010], [Castañeda and
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Rajsbaum 2012]. The proof of this result required the use of complex techniques [Herlihy and Shavit 1999], [Gafni
2009]. This impossibility result can be circumvented through the use of randomization: there exist randomized re-
naming algorithms that ensure a tight namespace of n names, guaranteeing name uniqueness in all executions and
termination with probability 1, e.g. [Eberly et al. 1998]. Despite considerable research effort on efficient renaming
algorithms, e.g. [Panconesi et al. 1998], [Borowsky and Gafni 1993], [Moir and Anderson 1995], [Moir and Garay
1996], [Afek and Merritt 1999], [Attiya and Fouren 2001], [Eberly et al. 1998], [Chlebus and Kowalski 2008], [Afek
et al. 1999], prior to our work there have been no time optimality results for shared-memory renaming, either for
randomized or deterministic algorithms.

1.1. Overview of the Results
In this paper, we present the first tight time complexity bounds for this problem, both for deterministic and ran-
domized implementations. For deterministic algorithms, we give a tight linear lower bound on renaming into any
sub-exponential namespace.5 For randomized algorithms, we give tight logarithmic upper and lower bounds on the
time complexity of adaptive renaming. Together, our results give an exponential time complexity separation between
deterministic and randomized renaming.

Since renaming can be solved trivially using objects with stronger semantics, such as stacks, queues, or fetch-and-
increment counters, our lower bounds also apply to these widely-used concurrent objects. These results improve or
match the previously known lower bounds for these problems (see Figure 1 for an overview). On the other hand, our
renaming algorithms can be extended to obtain new efficient implementations of other shared objects, such as counters,
mutex, test-and-set or fetch-and-increment. (A summary is given in Figure 2.)

From a technical perspective, this paper highlights new connections between renaming and other fundamental ob-
jects: sorting networks [Knuth 1998] and mutual exclusion [Dijkstra 1965]. We show that sorting networks can be
used to obtain optimal-time solutions for randomized renaming. In turn, such renaming solutions can be used to obtain
efficient mutual exclusion algorithms. We then proceed by reduction, and derive a lower bound on renaming from a
known lower bound on the time complexity of mutual exclusion [Kim and Anderson 2012]. This result then general-
izes to more complex objects that solve renaming. The lower bound on the time complexity of randomized renaming
follows from a separate information-based argument.

In the following, we describe these contributions in more detail.

1.2. Deterministic Renaming Lower Bound
The main contribution of this paper is characterizing the time complexity of the renaming problem in asynchronous
shared memory. For deterministic algorithms, we prove that Θ(k) process steps is a tight bound for the individual
step complexity of adaptive renaming in a sub-exponential namespace6 in the number of participants k. This result,
whose proof can be found in Section 7, extends to non-adaptive renaming, to yield a linear lower bound on the
complexity of renaming in a polynomial namespace in n. It holds for wait-free algorithms using reads, writes, test-
and-set, and compare-and-swap operations, and is matched by various algorithms in the literature, e.g. [Moir and
Anderson 1995], [Moir and Garay 1996].

We obtain the result by reduction from a lower bound on mutual exclusion. The proof is structured in two steps.
The first step assumes a wait-free algorithm R, renaming adaptively into a loose namespace of size T (k), of size
sub-exponential in k. We transform this algorithm into a strong adaptive renaming algorithm S(R), by adding an
O(log T (k)) term to the complexity of the original algorithm R. This first transformation is based on a connection
between renaming and sorting networks [Knuth 1998]. (We also exploit this connection to obtain a time-optimal
randomized renaming algorithm.)

The second step in the proof relates adaptive strong renaming to mutual exclusion. We prove that any strong adaptive
renaming algorithm (and thus, also the algorithm S(R)) can be used to solve mutual exclusion with a constant overhead
in terms of complexity. This second transformation yields an algorithm Mutex (S(R)) that solves mutual exclusion
with worst-case complexity O(C(R) + log T (k)), where C(R) is the worst-case complexity of the original renaming
algorithm R. We now apply a linear lower bound by Kim and Anderson [Kim and Anderson 2012] on the complexity
of adaptive mutual exclusion to obtain that the algorithm R must have linear complexity in k as long as the namespace
T (k) is a sub-exponential function in k.

Intuitively, the argument shows that, given k processes that need to pick unique names from a large namespace,
there exists a worst-case schedule in which a process executes for Ω(k) steps, roughly one step for every other process
executing in the system. This is somewhat surprising, since it implies that giving the processes more choice for the

5This bound is matched by previously known algorithms, e.g. [Moir and Anderson 1995]. See Section 4 for a detailed discussion.
6More precisely, a sub-exponential namespace is a namespace of size o(αk), for any constant α > 1.
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Shared Object Lower Bound Type Matching Algorithms New Result

Deterministic ck-renaming Ω(k) Local [Moir and Garay 1996] Yes
Ω(k log(k/c)) Global - Yes

Randomized ck-renaming Ω(k log(k/c)) Global Section 5 Yes
c-Approximate Counter Ω(k log(k/c)) Global [Aspnes et al. 2012a] Yes

Fetch-and-Increment Ω(k) Local [Moir and Anderson 1995] Improves on [Fich et al. 2005]
Ω(k log k) Global Section 5 Improves on [Attiya and Hendler 2010]

Queues and Stacks Ω(k) Local [Herlihy 1991] Improves on [Fich et al. 2005]
Ω(k log k) Global - Improves on [Attiya and Hendler 2010]

Fig. 1: Summary of the lower bound results and relation to previous work.

namespace size does not help in terms of worst-case step complexity: assigning names in a huge namespace, e.g. of
size Θ(k100), is asymptotically no easier that renaming in a small namespace of size O(k).

The reduction technique implies an even stronger linear lower bound, on the number of remote memory references
(RMRs) that a process has to perform in a worst-case execution in the cache-coherent shared memory model. In
brief, RMRs are a complexity measure that takes into account the number of cache misses that a process incurs while
running an algorithm, and can be orders of magnitude slower than accesses to local memory on modern multi-processor
architectures.

1.3. Randomized Adaptive Renaming Lower Bound
We complement the deterministic lower bound by also analyzing the time complexity of randomized adaptive renam-
ing. More precisely, we analyze the worst-case expected total number of steps that processes must perform. We prove
a global step complexity lower bound: given any algorithm that renames into a namespace of size ck, with c ≥ 1, there
exists an adversarial strategy that causes the k processes to take Ω(k log(k/c)) total steps in expectation. This lower
bound applies to algorithms using reads, writes, test-and-set and compare-and-swap primitives, and to algorithms that
may not terminate with some non-zero probability. This total step complexity lower bound is tight for c = 1, i.e. for
strong adaptive renaming, since it is matched by the renaming network algorithm presented in Section 5.

The same technique implies an Ω(k log(k/c)) total step complexity lower bound for randomized implementations
of c-approximate shared counters, i.e. counters that return a result that is within a factor of c of the real value. This
lower bound is tight within logarithmic factors [Aspnes et al. 2012a], and limits the complexity gain from allowing
approximation within constant factors.

Our argument follows the structure of a previous result by Jayanti [Jayanti 1998], which in turn is similar to a lower
bound by Cook, Dwork, and Reischuk [Cook et al. 1986] on the complexity of computing basic logical operations
on PRAM machines. Jayanti proved an Ω(log k) lower bound on the expected step complexity of shared counters,
queues, and stacks, which also applies to renaming. We generalize his result in two ways: first, we consider total step
complexity, and thus obtain a stronger Ω(log k) lower bound on the average worst-case expected step complexity of
the problem. Second, our results also apply to loose (approximate) versions of renaming and counting, bounding the
benefits of relaxing the object semantics.

1.4. Lower Bounds for Other Objects
Since more complex shared-memory objects such as queues, stacks, or fetch-and-increment counters solve adaptive
strong renaming with constant complexity overhead, it follows that the local and global lower bounds stated in the
previous two sections apply to these objects as well.

In particular, the deterministic lower bound implies that wait-free deterministic implementations of these objects
have linear step complexity in the worst case, suggesting that they do not scale well in terms of worst-case time
complexity. The result holds for algorithms that are adaptive (whose complexity depends only on the contention in the
execution), or if the algorithms do not assume any bound on the size of the initial namespace of participating processes.
(We discuss ways of circumventing the lower bound in Sections 7.3 and 7.4.)

Similarly, the total step complexity lower bound also applies to queues, stacks, and fetch-and-increment out of
read-write registers with compare-and-swap operations, giving an Ω(k log k) lower bound for exact implementations
in executions where k processes participate. This bound is more general since it applies to randomized algorithms
as well, and to algorithms that assume names from a small namespace. These lower bounds are matched by several
known implementations (please see Figure 1 for a case-by-case description).
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Shared Object Time Complexity
Adaptive Randomized Renaming O(log k) steps

m-valued Counters O(logm) steps
m-valued Fetch-and-Increment O(log k logm) steps

One-Shot Mutual Exclusion O(log k) remote memory references

Fig. 2: Summary of algorithmic results.

1.5. An Algorithm for Strong Randomized Renaming
Our main algorithmic contribution is a time-optimal algorithm for strong adaptive renaming based on a variation of
sorting networks [Cormen et al. 2009] which we call renaming networks. A renaming network is a sorting network in
which all comparators have been replaced with two-process test-and-set objects.

The mechanism behind the algorithm is that each process is assigned a distinct input port, and follows a path through
the network determined by leaving each comparator on its top output wire if it wins the test-and-set, and on the bottom
output wire otherwise; the output name is the index of the port that it reaches. This construction guarantees that if k
processes enter the network on distinct input ports, they will reach the first k output ports, thus returning unique names
from 1 to k. The expected step complexity of the algorithm is bounded by the maximum number of comparators
between an input port and an output port in the sorting network. There exist sorting networks for which this number is
logarithmic in the number of input ports [Ajtai et al. 1983].

The key technical issues are assigning unique input ports to the renaming network, and adapting the network size to
work for unbounded values of k (required to obtain an adaptive algorithm). We overcome the first obstacle by noticing
that input port assignment can be seen as another instance of renaming, and designing a randomized loose renaming
algorithm with low complexity, which assigns unique names from 1 to kc for some constant c, with high probability.
We overcome the second issue by introducing a new adaptive sorting network, whose size can adapt to the number
of processes that access it, and whose complexity remains logarithmic whenever truncated to a finite number of input
and output ports.

The resulting algorithm guarantees a tight adaptive namespace with complexity O(log k), with high probability.
This is the first known algorithm to achieve tight adaptive renaming in less than linear time. It improves exponentially
on previous strong renaming solutions, which had worst-case complexity at least linear, e.g. [Alistarh et al. 2010]. It
also gives an exponential separation between deterministic and randomized renaming algorithms. The total work lower
bound in Section 8 shows that this algorithm is in fact optimal, and that no asymptotic complexity improvements are
possible by relaxing namespace size within constant factors. We build on this algorithm to obtain a new counter
implementation, a bounded-use fetch-and-increment object, and a mutual exclusion algorithm with logarithmic time
complexity. The algorithmic results are summarized in Figure 2.

1.6. Roadmap
The paper is divided in three parts. (Note that the technical presentation has a slightly different structure than the
introduction.) The first part gives the background, outlining the model (Section 2), problem statements (Section 3), and
an overview of related work (Section 4). In the second part (Sections 5 and 6) we present a time-optimal randomized
renaming algorithm and its applications to counting objects. We focus on lower bounds in part three. We give the
deterministic lower bound and its extensions to other objects in Section 7. We then present the proof of the global
step complexity lower bound in Section 8, with applications to renaming and counting. We summarize the results and
present an overview of open questions in Section 9.

2. SYSTEM MODEL
In this section, we introduce the system model for which our algorithms and lower bounds are designed. We also
describe the cost measures under which we will analyze algorithms. In brief, the model we consider is the standard
asynchronous shared memory model [Attiya and Welch 1998], [Lynch 1996] in which processes execute without
bounds on their relative execution speed, in the presence of crash failures, communicating through operations on
registers.

2.1. The Asynchronous Shared Memory Model
2.1.1. Model Overview. We consider the standard asynchronous shared-memory model, in which n processes

p1, . . . , pn communicate through operations on shared multi-writer multi-reader atomic registers. We will denote by k
the contention in an execution, i.e. the actual number of processes that take steps in the execution.

Processes follow an algorithm, which is composed of instructions. Each instruction consists of some local compu-
tation, which may include an arbitrary number of local coin flips, and one shared memory operation, such as a read or
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write to a register, which we call a shared-memory step. A number of t < n processes may fail by crashing. (Through-
out this paper, we assume that the upper bound t on the number of failures is n− 1.) A failed process does not execute
any further instructions. A process that does not crash during an execution is correct.

The order in which the processes execute shared-memory steps and their crashes are controlled by a scheduler,
which we model as an adversary. More precisely, we allow the adversary to observe the state of all processes, including
local coin flips, whenever scheduling the next step. This type of adversary is known as the strong adversary.

In the following, we define these terms formally.

2.1.2. Processes, Algorithms, and Shared Objects. A process is a sequential unit of computation, created by an ap-
plication when necessary. For simplicity, we will assume that processes are created at the beginning of each execution,
and each executes steps from its algorithm when scheduled. Thus, we denote by Π = {p1, p2, . . . , pn} the set of all
processes that may execute an algorithm. Accordingly, n will be the total number of processes that may execute an
algorithm. On the other hand, we will denote by k the actual number of processes that execute instructions in the
execution. Consequently, we have the relation k ≤ n.

Initially, each process pi is assigned a unique initial identifier id i, which, for simplicity, is an integer. We will
assume that the space of initial identifiers is of infinite size. This models the fact that, in real systems, processes may
use identifiers from a very large space, such as the space of UNIX process identifiers, or the set of all IP addresses.

Each process executes an algorithm assigned to it by the application. An algorithm is a series of instructions. A
process’ next instruction is always determined by its state and by the algorithm. The difference between deterministic
and randomized algorithms is that, in the latter case, the state may contain the results of random coin flips performed
by the process.

Processes perform local computation, as well as execute operations on shared objects. Each operation is described
by an invocation, and a response. For example, the operation

val ← R.read( )

reads the contents of shared object R, in this case a register. The response of the read operation is stored in the local
variable val . If process p invokes an operation on objectX , we say that it accessesX . Note that an operation invocation
may not necessarily be followed by a response event. Such an operation is called a pending operation.

2.1.3. Randomization. Some of the algorithms we present are randomized, in that the processes’ actions may depend
on the outcomes of local coin flips. In general, we use randomization in algorithms in order to assign probability weight
to executions, and avoid the worst-case executions with high probability.

Processes may perform local coin flips by calling a local function coin, which takes two integer parameters a and b
with a ≤ b, and returns an integer x with a ≤ x ≤ b chosen uniformly at random. For example, the call coin(0, 1) will
return 0 with probability 1/2, and 1 with probability 1/2.

2.1.4. Concurrent Executions and the Adversarial Scheduler. An execution is a sequence of operations performed
by a set of processes. In order to represent executions, we will assume discrete time, where at every unit there is only
one active process. In a time unit, the active process can perform any number of local computations or local coin flips,
and then issue an event or execute a step.

Events are local to each process, i.e. are always received by the process issuing the event, and are used to mark
the time when a process starts and stops invoking an implementation of a shared object as part of its algorithm. (For
example, the time when a process calls a procedure implementing a lower-level shared object X , and the time when
it returns from this procedure.) Processes are sequential, i.e. in each step a process may execute at most one operation
on at most one object. In particular, the return event is used by the process uses to return from the algorithm.

A step is an execution of an operation on a base object, which comprises the invocation and the subsequent response
(therefore, every operation on a base object takes at most one unit of time to execute). Whenever a process pi becomes
active (as decided by the scheduler), pi executes an event or a step. We assume that the scheduler has access to the
results of any local computation or local coin flips leading to the step, before choosing to schedule it. It may be possible
that a process does not have anything to execute, e.g. if it terminates its algorithm, in which case it executes an empty
no-op step.

The order in which processes take steps and issue events is determined by an external abstraction called a scheduler,
over which processes do not have control. In the following, we will consider the scheduler as an adversary, whose
goal is to maximize the cost of the protocol (in this paper, we focus on number of steps as a cost measure). Thus, we
will use the terms adversary and scheduler interchangeably. The adversary controls the schedule, which is a (possibly
infinite) sequence of process identifiers. If process pi is in position τ of the sequence, then this implies that pi is active
at time τ . The adversary has the freedom to schedule any interleaving that complies with the given model. In this
paper, we assume an asynchronous model, therefore the adversary may schedule any interleaving of process steps.
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Consequently, an execution is a sequence of all events and steps issued by processes in a given run of an imple-
mentation. Every execution has an associated schedule, which yields the order in which processes are active in the
execution. For deterministic algorithms, the schedule completely determines the execution.

For randomized algorithms, notice that different assumptions on the relation between the scheduler and the random
coin flips that processes perform during an execution may lead to different results. In this paper, we will assume that
the adversary controlling the schedule is a strong adversary, that observes the results of the local coin flips, together
with the state of all processes, before scheduling the next process step (in particular, the interleaving of process steps
may depend on the result of their coin flips).

This is the standard adversarial model for randomized distributed algorithms, which reflects the fact that the speed
of a process may be influenced by the results of random coin flips that the process performs. On the one hand, it is
the strongest “reasonable” adversarial model, since a stronger adversary would have to be aware of the results of coin
flips that the processes perform in the future. On the other hand, it encompasses weaker adversarial models, such as
the oblivious adversary, e.g. [Alistarh and Aspnes 2011], which fixes the scheduling and failure pattern independently
of the processes’ coin flips.

2.2. Asynchrony and Wait-Freedom
In this paper, we focus on asynchronous shared-memory systems. In such systems, the time delay between two con-
secutive events of any process may be arbitrary, i.e. there are no assumptions on the relative speed of processes.
This models the fact that, in general-purpose systems, processes may be preempted or otherwise delayed for arbi-
trary periods of time. While real-world systems may not be entirely asynchronous, proving algorithms correct in the
asynchronous model ensures that they will be correct in any system in which delays are bounded. In this setting, an
implementation is wait-free if any process invoking an operation also returns within some finite number of its own
steps. In this paper, we focus on wait-free algorithms.

2.3. Complexity Measures
We measure complexity in terms of process steps, where each shared-memory operation is counted as one step. Thus,
the (individual) step complexity of an algorithm is the worst-case number of steps that a single process may have to
perform in order to return from an algorithm, including invocations to lower-level shared objects. The total step com-
plexity is the total number of shared memory operations that all participating processes perform during an execution.
For randomized algorithms, we will analyze the worst-case expected number of steps that a process may perform dur-
ing an execution as a consequence of the adversarial scheduler, or give more precise probability bounds for the number
of steps performed during an execution.

For the lower bound in Section 7, we will use a stronger measure of complexity, by counting the number of remote
memory references (RMRs). In cache-coherent (CC) shared memory, each process maintains local copies of shared
variables inside its cache. The consistency of the cache among processes is ensured by a coherence protocol. A variable
is remote to a process if its cache contains a copy of the variable whose value is out of date (or if the cache contains no
copy of the variable); otherwise, the variable is local. A process step is local if it accesses a local variable. Otherwise,
the step is a remote memory reference (RMR). A similar definition exists for the distributed shared memory (DSM)
model. Notice that, since each RMR implies a distinct process step, RMR complexity is always a lower bound on step
complexity.

2.4. Linearizability
Linearizability [Herlihy and Wing 1990] is a correctness condition for shared object implementations. Intuitively, an
implementation is linearizable (or atomic) if every shared memory operation should appear to the processes as if it was
executed instantaneously at some single and unique point in time between its invocation and its response. This notion
helps keep the algorithms simple, by eliminating technical details and providing a clean interface. The semantics of
atomic objects can be described by using their sequential behavior, i.e. by giving their sequential specification.

More precisely, an implementation of an object O is linearizable if, for every execution, there exists a total order
over all the complete process operations operations together with a subset of the incomplete process operations such
that every operation is immediately (atomically) followed by a response, and the sequence of operations given by that
total order is consistent with a sequential execution of the object O.
Linearizability and Randomization. Recent results by Golab et al. [Golab et al. 2011] show that linearizability is
not a sufficient correctness condition when randomization is employed. More precisely, they show that the adversary
can gain extra power whenever a randomized algorithm uses other (deterministic or randomized) linearizable imple-
mentations as sub-algorithms. In this paper, we circumvent this technical issue by avoiding the use of linearizability
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as a correctness condition when employing sub-algorithms: instead, we isolate a set of invariants whenever we use a
known implementation as a sub-algorithm.

3. PROBLEM STATEMENTS AND SHARED OBJECTS
We now present the definitions and sequential specifications of the problems and objects considered in this paper.

3.1. Renaming
The renaming problem, introduced in [Attiya et al. 1990], is defined as follows. Each of the n processes has initially a
distinct identifier id i taken from a domain of potentially unbounded sizeM , and should return an output name oi from
a smaller domain. (Note that the index i is only used for description purposes, and is not known to the processes.) Given
an integer T , an object ensuring deterministic renaming into a target namespace of size T , also called a T -renaming
object, guarantees the following properties.

(1) Termination: In every execution, every correct process returns a name.
(2) Namespace Size: Every name returned is from 1 to T .
(3) Uniqueness: Every two names returned are distinct.

The randomized renaming problem relaxes the termination condition, ensuring randomized termination: with prob-
ability 1, every correct process returns a name. The other two properties stay the same.

The domain of values returned, which we call the target namespace, is of size T . In the classical renaming prob-
lem [Attiya et al. 1990], the parameter T may not depend on the range of the original names. On the other hand, it
may depend on the parameter n and on the number of possible faults t.

For adaptive renaming, the size of the resulting namespace, and the complexity of the algorithm, should only depend
on the number of participating processes k in the current execution. In some instances of the problem, processes are
assumed not to know the maximum number of processes n, whereas in other instances an upper bound on n is provided.
(In this paper, we consider the slightly harder version in which the upper bound on n is not provided.)

If the size of the namespace matches exactly the number of participating processes, then we say that the target
namespace is tight. Consequently, the strong renaming problem requires that the processes obtain unique names from
1 to n, i.e. T = n. The strong adaptive renaming problem requires that k participating processes obtain consecutive
names 1, 2, . . . , k. Thus, strong adaptive renaming is the version of the problem with the largest number of constraints.
To distinguish the classical renaming problem from the adaptive version, we will denote the classical version, where
n is given and complexity and namespace depend on n, as the non-adaptive renaming problem.

3.2. Registers
The simplest base object we will use is the register. The sequential specification of the object exports two operations:

— read( ), which returns the current state (value) of the object,
— write(v), which changes the state of the object to value v, and returns success.

If a process pi executes a read operation on a register R, we say that pi reads R. Similarly, we say that pi writes
value v to R if it invokes a write(v) operation on register R.

3.3. Test-and-Set and Compare-and-Swap
The test-and-set object, whose sequential specification is given in Figure 3, can be seen as a tournament object for n
processes. In brief, the object has initial value 0, and supports a single test-and-set operation, which atomically sets
the value of the object to 1, returning the value of the object before the invocation. Notice that at most one process
may win the object by returning the initial value 0, while all other processes lose the test-and-set by returning 1. A key
property is that no losing test-and-set operation may return before the winning operation is invoked.

More precisely, a correct deterministic implementation of a single-use test-and-set object ensures the following
properties:

(1) (Validity.) Each participating process may return one of two indications: 0, or 1.
(2) (Termination.) Each process accessing the object eventually returns or crashes.
(3) (Linearization.) Each execution has a linearization orderL in which each invocation of test-and-set is immediately

followed by a response (i.e., is atomic), such that the first response is either 0 or the caller crashes, and no return
value of 1 can be followed by a return value of 0.

(4) (Uniqueness.) At most one process may return 0.
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Variable:;
Value , a binary atomic register,
initially 0;

procedure test-and-set();
if Value = 0 then

Value ← 1;
return 0;

end
else

return 1;
end

Fig. 3: Sequential specification of a one-shot test-and-set object.

Variable:;
V , a register, with initial value ⊥;
procedure compare-and-swap( oldV ,newV );
s← V ;
if oldV = s then

V ← newV ;
return s;

end
else

return s;
end

Fig. 4: Sequential specification of the compare-and-swap
object.

For randomized test-and-set, the termination condition is replaced by the following randomized termination prop-
erty: with probability 1, each process accessing the object eventually returns or crashes. The other requirements stay
the same.

In this paper, we will use a randomized two-process test-and-set implementation by Tromp and Vitànyi [Tromp and
Vitányi 2002] as a basis for our algorithms. Their algorithm ensures the following properties, whose proofs can be
found in their paper.

THEOREM 3.1 ([TROMP AND VITÁNYI 2002]). The two-process test-and-set implementation of [Tromp and
Vitányi 2002] ensures the following properties.

— (Single Winner) In any execution, at most one process may return 0.
— (Winner-Loser Ordering) Given any test-and-set operation τ that returns 1, there exists another test-and-set oper-

ation w, starting before τ returns, such that w either returns 0 or does not complete.
— (Probabilistic Termination) Operations by correct processes terminate with probability 1.
— (Complexity) The algorithm has expected constant read-write step complexity. For a fixed constant α ≥ 1, and for

any integer ` ≥ 1, the probability that a process performs more than α log ` read and write steps while running the
algorithm is at most 1/`2.

The compare-and-swap object can be seen a generalization of the test-and-set object, whose underlying register
supports multiple values (as opposed to only 0 and 1). Its sequential specification is presented in Figure 4. More
precisely, a compare-and-swap object exports the following operations:

— read and write, having the same semantics as for registers,
— compare-and-swap(oldV ,newV ), which compares the state s of the object to the value oldV , and either (1)

changes the state of the object to newV and returns oldV if s = oldV , or (b) returns the state s if s 6= oldV .

Notice that the compare-and-swap object can be seen as an augmented register, which also supports the conditional
compare-and-swap operation. Also note that it is trivial to implement a test-and-set object from a compare-and-swap
object.

3.4. Counter and Max-Register Objects
A counter object has initial state 0, and supports operations increment and read, with the following semantics:

— read( ), which returns the current state (value) of the object,
— increment( ), which changes v, the current value of the object to v + 1, and returns success.

A decrementable counter has the same semantics as a counter, but offers an additional decrement( ) operation,
which changes the value v of the object to v − 1, and returns success.

A fetch-and-increment object supports a single operation fetch-and-inc, which changes the value v of the object to
v + 1, and returns value v.

The max-register is a shared object maintaining a value V , initially 0, which records the highest value ever written
to it. The max-register defines a default maximal value vmax which it may store. Aspnes et al. [Aspnes et al. 2012a]
gave an implementation of a max-register with logarithmic complexity in vmax.
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THEOREM 3.2 (ASPNES ET AL. [ASPNES ET AL. 2012A]). There exists a linearizable, deterministic, wait-free
max-register construction for n processes where each operation has cost O(min(n, log vmax)).

3.5. Mutual Exclusion
The goal of the mutual exclusion (mutex) problem is to allocate a single, indivisible, non-shareable resource among n
processes. A process with access to the resource is said to be in the critical section. When a user is not involved with
the resource, it is said to be in the remainder section. In order to gain admittance to the critical section, a user executes
an entry section; after it is done with the resource, it executes an exit section. Each of these sections can be associated
with a partitioning of the code that the process is executing.

Each process cycles through these sections in the order: remainder, entry, critical, and exit. Thus, a process that
wants to enter the critical section first executes the entry section; after that, it enters the critical section, after which it
executes the exit section, returning to the remainder section. We assume that in all executions, each process executes
this section pattern infinitely many times. For simplicity, we assume that the code in the remainder section is trivial,
and every time the process is in this section, it immediately enters the entry section. An execution is admissible if
for every process pi, either pi takes an infinite number of steps, or pi’s execution ends in the remainder section. A
configuration at a time τ is given by the code section for each of the processes at time τ .

An algorithm solves mutual exclusion with no deadlock if the following hold. We adopt the definition of [Attiya
and Welch 1998].

— Mutual exclusion: In every configuration of every execution, at most one process is in the critical section.
— No deadlock: In every admissible execution, if some process is in the entry section in a configuration, then there is

a later configuration in which some process is in the critical section.
— No lockout (Starvation-free): In every admissible execution, if some process is in the entry section in a configuration,

then there is a later configuration in which the same process is in the critical section.
— Unobstructed exit: In every execution, every process returns from the exit section in a finite number of steps.

In this paper, we focus on shared-memory mutual exclusion algorithms. As for renaming, there exists a distinction
between adaptive and non-adaptive solutions. A classical, non-adaptive, mutual excusion algorithm is an algorithm
whose complexity depends on n, the maximum number of processes that may participate in the execution, which
is assumed to be known by the processes at the beginning of the execution. On the other hand, an adaptive mutual
exclusion algorithm is an algorithm whose complexity may only depend on the number of processes k participating in
the current execution.

3.6. Queues and Stacks
The queue is a data structure which maintains a set of elements with first-in-first-out (FIFO) semantics. More precisely,
the state of a queue can be described as an array [x0 = ⊥, x1, . . . , xm]. A queue is empty if its state is [⊥].

Assume a queue in state [x0 = ⊥, x1, . . . , xm]. The sequential specification of a queue supports two operations:

— The Enqueue(v) operation changes the state of the stack to [x0 = ⊥, x1, . . . , xm, v], returning success. We assume
v 6= ⊥.

— The Dequeue() operation returns the “oldest” element in the queue. More precisely, if m ≥ 1, then the Dequeue()
operation returns x1 and changes the state of the stack to [x0 = ⊥, x2, . . . , xm]. Otherwise, the operation returns
⊥.

The stack is a data structure which maintains a set of elements with last-in-first-out (LIFO) semantics. More pre-
cisely, the state of a stack can be described as an array [x0 = ⊥, x1, . . . , xm], where the last element xm is the top of
the stack. A stack is empty if its state is [⊥].

Assume a stack in state [x0 = ⊥, x1, . . . , xm]. The sequential specification of a stack supports two operations:

— The Push(v) operation changes the state of the stack to [x0 = ⊥, x1, . . . , xm, v], returning success. We assume
v 6= ⊥.

— The Pop() operation returns the top of the stack. If xm 6= ⊥, then the Pop() operation also changes the state of the
stack to [x0 = ⊥, x1, . . . , xm−1].

4. RELATED WORK
In this section, we provide an overview of research on renaming and related data structures in the shared memory and
message-passing models.
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4.1. Renaming
The renaming problem, defined in Section 3.1, was introduced by Attiya et al. [Attiya et al. 1990], in the asynchronous
message-passing model. The paper presented a non-adaptive algorithm that achieves (2n − 1) names in the presence
of t < n/2 faults, and showed that a tight namespace of n names cannot be achieved in an asynchronous system with
crash failures. It also introduced and studied a version of the problem called order-preserving renaming, in which the
final names have to respect the relative order of the initial names.

Renaming has been studied in a variety of models and under various timing assumptions. For synchronous message-
passing systems, Chaudhuri et al. [Chaudhuri et al. 1999] gave a wait-free algorithm for strong renaming in O(log n)
rounds of communication, and proved that this upper bound is asymptotically tight if the number of process failures is
t ≤ n − 1 and the algorithm is comparison-based, i.e. two processes may distinguish their states only through com-
parison operations. Attiya and Djerassi-Shintel [Attiya and Djerassi-Shintel 2001] studied the complexity of renaming
in a semi-synchronous message-passing system, subject to timing faults. They obtained a strong renaming algorithm
with O(log n) rounds of broadcast and proved a Ω(log n) time lower bound when algorithms are comparison-based
or when the initial namespace is large enough compared to n. Both these algorithms can be made adaptive, to obtain
a running time of O(log k). Okun [Okun 2010] presented a strong renaming algorithm that is also order-preserving,
with O(log n) time complexity. The algorithm exploits a new connection between renaming and approximate agree-
ment [Fekete 1990]. Recently, Alistarh et al. [Alistarh et al. 2012] analyzed Okun’s algorithm and showed that it is also
early-deciding, i.e. its running time can adapt to the number of failures f ≤ n− 1 in the execution. In particular, they
showed that the algorithm terminates in a constant number of rounds, if f <

√
n, and in O(log f) rounds otherwise.

The first shared-memory renaming algorithm was given by Bar-Noy and Dolev [Bar-Noy and Dolev 1989], who
ported the synchronous message-passing algorithm of Attiya et al. [Attiya et al. 1990] to use only reads and writes.
They obtained an algorithm with namespace size (k2 + k)/2 that uses O(n2) steps per operation, and an algorithm
with a namespace size of (2k − 1) using O(n · 4n) steps per operation.

Early work on lower bounds focused on the size of the namespace that can be achieved using only reads and
writes. Burns and Peterson [Burns and Peterson 1989] proved that, for any T (n) < 2n − 1, long-lived renaming7 in
a namespace of size T (n) is impossible in asynchronous shared memory using reads and writes. They also gave the
first long-lived (2n − 1)-renaming algorithm. (However, the complexity of this algorithm depends on the size of the
initial namespace, which is not allowed by the original problem specification [Attiya et al. 1990].) In a landmark paper,
Herlihy and Shavit [Herlihy and Shavit 1999] used algebraic topology to show that there exist values of n for which
(2n − 2)-renaming is impossible. Recently, Castañeda and Rajsbaum [Castañeda and Rajsbaum 2010], [Castañeda
and Rajsbaum 2012] proved that if n is a prime power, then target namespace size T (n) ≥ 2n − 1 is necessary, and,
otherwise, there exists an algorithm with 2n− 2 namespace size.

A parallel line of work [Lipton and Park 1990], [Kutten et al. 2000] studied anonymous renaming, where processes
do not have initial identifiers and start in identical state. In this case, renaming cannot be achieved with probability 1
using only reads and writes, since one cannot distinguish between processes in the same state, and thus two processes
may always decide on the same name with non-zero probability.

Afek and Merritt [Afek and Merritt 1999] presented an adaptive read-write renaming algorithm with optimal names-
pace of size (2k − 1), and O(k2) step complexity. Attiya and Fouren [Attiya and Fouren 2001] gave an adaptive
(6k − 1)-renaming algorithm with O(k log k) step complexity. Chlebus and Kowalski [Chlebus and Kowalski 2008]
gave an adaptive (8k − log k − 1)-renaming algorithm with O(k) step complexity. For long-lived adaptive renaming,
there exist implementations with O(k2) time complexity for renaming into a namespace of size O(k2), e.g. [Afek
et al. 1999]. The fastest such algorithm with optimal (2k − 1) namespace size has O(k4) step complexity [Attiya and
Fouren 2001].

The time lower bound in Section 7 shows that linear-time deterministic algorithms are in fact time optimal (since
they ensure namespaces of polynomial size). On the other hand, the existence of a deterministic read-write algorithm
which achieves both an optimal namespace and linear time complexity is an open problem.

The relation between renaming and stronger primitives such as fetch-and-increment or test-and-set was investigated
by Moir and Anderson [Moir and Anderson 1995]. Fetch-and-increment can be used to solve renaming trivially, since
each process can return the result of the operation plus 1 as its new name. Renaming can be solved by using an
array of test-and-set objects, where each process accesses test-and-set objects until winning the first one. The process
then returns the index of the test-and-set object that it has acquired. Moir and Anderson [Moir and Anderson 1995]
also present implementations of renaming from registers supporting set-first-zero and bitwise-and operations. In this
paper, the authors also notice the fact that adaptive tight renaming can solve mutual exclusion. (This connection
is also mentioned in [Attiya and Bortnikov 2002].) Using load-linked and store-conditional primitives, Brodsky et

7The long-lived version of renaming allows processes to release names as well as to acquire them.
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al. [Brodsky et al. 2006] gave a linear-time algorithm with a tight namespace. (Their paper also presents an efficient
synchronous shared-memory algorithm.)

Randomization is a natural approach for obtaining names, since random coin flips can be used to “balance” the
processes’ choices. A trivial solution when n is known is to have processes try out random names from 1 to n2.
Name uniqueness can be validated using deterministic splitter objects [Anderson and Moir 1997], and the algorithm
uses a constant number of steps in expectation, since, by the birthday paradox, the probability of collision is very
small. The feasibility of randomized renaming in asynchronous shared memory was first considered by Panconesi et
al. [Panconesi et al. 1998]. They presented a non-adaptive wait-free solution with a namespace of size n(1 + ε) for
ε > 0 constant, with expected O(M log2 n) running time, where M is the size of the initial namespace.

A second paper to analyze randomized renaming was by Eberly et al. [Eberly et al. 1998]. The authors obtain a
strong non-adaptive renaming algorithm based on the randomized wait-free test-and-set implementation of Afek et
al. [Afek et al. 1992]. Their algorithm is long-lived, and is shown to have amortized step complexity O(n log n). The
average-case total step complexity is Θ(n3).

A paper by Alistarh et al. [Alistarh et al. 2010] generalized the approach by Panconesi et al. [Panconesi et al. 1998]
by introducing a new, adaptive test-and-set implementation with logarithmic step complexity, and a new strategy
for the processes to pick which test-and-set to compete in: each process chooses a test-and-set between 1 and n at
random. The authors prove that this approach results in a non-adaptive tight algorithm with O(n polylogn) total step
complexity.8 (However, in this algorithm, individual processes may still perform a linear number of accesses.) A
modified version of this approach generates an adaptive algorithm with similar complexity, which ensures a loose
namespace of size (1 + ε)k, for ε > 0 constant.

The randomized algorithm presented in this paper first appeared in [Alistarh et al. 2011a]. The renaming network
algorithm is the first algorithm to achieve strong adaptive renaming in sub-linear time, improving exponentially on the
time complexity of previous solutions. The lower bound in Section 8 shows that this algorithm is in fact time-optimal.
The fact that any sorting network can be used as a counting network when only one process enters on each wire was
observed by Attiya et al. [Attiya et al. 1995] to follow from earlier results of Aspnes et al. [Aspnes et al. 1994]; this is
equivalent to our use of sorting networks for non-adaptive renaming in Section 5.1.1. The lower bounds in this paper
first appeared in [Alistarh et al. 2011b].

4.2. Counting Data Structures
Many multi-processor coordination tasks can be expressed as counting problems, where processes assign values
from a given range. Thus, there has been considerable work on counting data structures over the last few decades.
Counting networks [Aspnes et al. 1994] are an example of such data structures, where processes interact with a
counter by traversing a network of balancer objects9. Efficient counting networks with O( polylogn ) complexity
are known [Aspnes et al. 1994]. Counting networks are similar to the renaming networks presented in Section 5.1.1:
however, the aim of a counting network is to balance the number of processes exiting on the output ports, whereas
renaming networks ensure that no two processes reach the same output port. As a consequence, the structure and
applications of counting networks are in general different than those of renaming networks.

Another well-studied object is the counter. A linear-time deterministic atomic counter implementation follows from
the atomic snapshot construction of Afek et al. [Afek et al. 1993]. Jayanti et al. [Jayanti et al. 2000] proved Ω(n)
space and time lower bounds for deterministic counter implementations if processes may access the object multiple
times, while Jayanti [Jayanti 1998] gave Ω(log n) time lower bounds for counter objects using reads, writes, or load-
linked/store-conditional operations.

A recent result by Aspnes et al. [Aspnes et al. 2012a] leveraged the fact that objects may be accessed for a limited
number of times to give an m-valued max register implementation with O(min(n, logm)) time complexity, and a
O(min(n, logm log n)) upper bound for deterministic wait-free counters with maximal value m. Recently [Aspnes
et al. 2012b], this technique was generalized to obtain atomic snapshots with O(log2 b · log n) time complexity for a
scan, and O(log b) complexity for an update, where b is the number of update operations performed on the object.

5. ADAPTIVE STRONG RENAMING IN LOGARITHMIC EXPECTED TIME
In this section, we present an algorithm for strong adaptive renaming, which ensures a namespace that exactly matches
the number of participants k. The algorithm has expected step complexity O(log k), which is optimal, as we show in
Section 8.

8In the following, by polylogn we denote logc n, for some integer c ≥ 1.
9Intuitively, a balancer acts as a toggle mechanism. It has two inputs and two outputs; processes enter the object on its inputs, and the balancer
alternates sending processes to its top and bottom output wires.
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input x

input y

output x' = min ( x, y )

output y' = max ( x, y )

Fig. 5: Structure of a comparator.

Shared:;
Renaming network R;

procedure rename(vi);
w ← input wire corresponding to vi in R;
while w is not an output wire do

T ← next test-and-set on wire w of R;
res ← T.test-and-set( );
if res = 0 then

w ← output wire x′ of T ;
end
else

w ← output wire y′ of T ;
end

end
return w.index ;

Fig. 6: Pseudocode for executing a renaming network.

Renaming networks. The key ingredient behind the algorithm is a connection between renaming and sorting net-
works, a data structure used for sorting sequences of numbers in parallel. In brief, we start from a sorting network, and
replace the comparator objects with two-process test-and-set objects, to obtain an object we call a renaming network.
The algorithm works as follows: each process is assigned a unique input port, and follows a path through the network
determined by leaving each two-process test-and-set on its higher output wire if it wins the test-and-set, and on its
lower output wire if it loses. The output name is the index (from top to bottom) of the output port it reaches.

There are two major obstacles to turning this idea into a strong adaptive renaming algorithm. The first is that this
construction is not adaptive. Since the step complexity of running the renaming network depends on the number of
input ports assigned, then, if we simply use the processes’ initial names to assign input ports, we could obtain an
algorithm with unbounded worst-case step complexity, since the space of initial identifiers is potentially unbounded.
The second obstacle is that a regular sorting network construction has a fixed number of input and output ports,
therefore the construction would not adapt to the contention k. Since we would like to avoid assuming any bound on
the contention, we need to build a sorting network that “extends” its size as the number of participating processes
increases.

In the following, we show how to overcome these problems, and obtain a strong adaptive renaming algorithm with
complexity O(log k), with high probability in k.10 In the next section, we use this construction to obtain randomized
implementations of counter and fetch-and-increment objects.

5.1. Renaming using a Sorting Network
We now give a strong renaming algorithm based on a sorting network. For simplicity, we describe the solution in the
case where the bound on the size of the initial namespace, M , is finite and known. We circumvent this limitation in
Section 5.2.

5.1.1. Renaming Networks. We start from an arbitrary sorting network with M input and output ports, in which
we replace the comparators with two-process test-and-set objects. The structure of a comparator is given in Figure 5

10Notice that, if the contention k is small, the failure probability O(1/kc) with c ≥ 2 constant may be non-negligible. In this case, the failure
probability can be made to depend on the parameter n at the cost of a multiplicative Θ(logn) factor in the running time of the algorithm.
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4 
Fig. 7: Execution of a renaming network. The two processes start at arbitrary distinct input ports, and proceed through the network

until reaching an output port. The two-process test-and-set objects are depicted as locks. A two process test-and-set object is
highlighted if it has been won during the execution. The execution depicted is one in which processes proceed sequentially (the

upper process first executes to completion, then the lower process executes). The two processes reached output ports 1 and 2, even
though they started at arbitrary input ports.

(please see standard texts, e.g. [Cormen et al. 2009], for background on sorting networks). The two-process test-and-set
objects maintain the input ports x, y and the output ports x′, y′. We call this object a renaming network.

We assume that each participating process pi has a unique initial value vi from 1 to M . (These values can be the
initial names of the processes, or names obtained from another renaming algorithm, as described in Section 5.2). Also
part of the process’s algorithm is the blueprint of a renaming network with M input ports, which is the same for all
participants.

We use the renaming network to solve adaptive tight renaming as follows. (Please see Figure 6 for the pseudocode.)
Each participating process enters the execution on the input wire in the sorting network corresponding to its unique
initial value vi. The process competes in two-process test-and-set instances as follows: if the process returns 0 (wins)
a two-process test-and-set, then it moves “up” in the network, i.e. follows output port x′ of the test-and-set; otherwise
it moves “down,” i.e. follows output port y′. Each process continues until it reaches an output port b`. The process
returns the index ` of the output port b` as its output value. See Figure 7 for a simple illustration of a renaming network
execution.
Test-and-set. In this section, the test-and-set objects used as comparators are implemented using the algorithm of
Tromp and Vitányi [Tromp and Vitányi 2002]; in Section 7, we will assume hardware implementations of test-and-
set. This distinction is only important when computing the complexity of the construction, and does not affect its
correctness.

5.1.2. Renaming Network Analysis. In the following, we show that the renaming network construction solves adap-
tive strong renaming, i.e. that processes return values between 1 and k, the total contention in the execution, as long as
the size of the initial namespace is bounded by M .

THEOREM 5.1 (RENAMING NETWORK CONSTRUCTION). Whenever starting from a correct sorting network,
the renaming network construction solves strong adaptive renaming, with the same progress property as the test-and-
set objects used. If the sorting network has depth d (defined below), then each process will perform O(d) test-and-set
operations before returning from the renaming network.

PROOF. First, we prove that the renaming network is well-formed, i.e. that no two processes may access the same
port of a two-process test-and-set object.

CLAIM 1. No two processes may access the same port of a two-process test-and-set object.

PROOF. Recall that each renaming network is obtained from a sorting network. Therefore, for any renaming net-
work, we can maintain the standard definitions of network and wire depth as for a sorting network [Cormen et al.
2009]. In particular, the depth of a wire is defined as follows. An input wire has depth 0. A test-and-set that has two
input wires with depths dx and dy will have depth max(dx, dy)+1. A wire in the network has depth equal to the depth
of the test-and-set from which it originates. Because there can be no cycles of test-and-sets in a renaming network,
this notion is well-defined. The depth of a network is the maximum depth of an output wire.

The claim is equivalent to proving that no two processes may occupy the same wire in an execution of the network.
We prove this by induction on the depth of the current wire. The base case, when the depth is 0, i.e. we are examining
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an input wire, follows from the initial assumption that the initial values vi of the processes are unique, hence no two
processes may join the same input port.

Assume that the claim holds for all wires of depth d ≥ 0. We prove that it holds for any wire of depth d + 1.
Notice that the depth of a wire may only increase when passing through a two-process test-and-set object. Consider an
arbitrary two-process test-and-set object, with two wires of depth at most d as inputs, and two wires of depth d+ 1 as
outputs. By the induction hypothesis, the test-and-set is well formed in all executions, since there may be at most two
processes accessing it in any execution. By the specification of test-and-set, it follows that, in any execution, there can
be at most one process returning 0 from the object, and at most one process returning 1 from the object. Therefore,
there can be at most one process on either output wire, and the induction step holds. This completes the proof of this
claim.

Termination follows since the base sorting network has finite depth and, by definition, contains no cycles. There-
fore, the renaming network has the same termination guarantees as the two-process test-and-set algorithm we use. In
particular, if we use the two-process test-and-set implementation of [Tromp and Vitányi 2002], the network guarantees
termination with probability 1. We prove name uniqueness and namespace tightness by ensuring the following claim.

CLAIM 2. The renaming network construction ensures that no two processes return the same output, and that the
processes return values between 1 and k, the total contention in the execution.

The proof is based on a simulation argument from an execution of a renaming network to an execution of a sorting
network. We start from an arbitrary execution E of the renaming network, and we build a valid execution of a sorting
network. The structure of the outputs in the sorting network execution will imply that the tightness and uniqueness
properties hold in the renaming network execution.

Let P be the set of processes that have taken at least one step in E . Each process pi ∈ P is assigned a unique
input port vi in the renaming network. Let I denote the set of input ports on which there is a process present. We then
introduce a new set of “ghost” processes G, each assigned to one of the input ports in {1, 2, . . . ,M} \ I . We denote
by C the set of “crashed” processes, i.e. processes that took a step in E , but did not return an output port index.

The next step in the transformation is to assign input values to these processes. We assign input value 0 to processes
in P (and correspondingly to their input ports), and input value 1 to processes in G.

Note that, in execution E , not all test-and-set objects in the renaming network may have been accessed by processes
(e.g., the test-and-set objects corresponding to processes in G), and not all processes have reached an output port (i.e.,
crashed processes and ghost processes). The next step is to simulate the output of these test-and-set operations by
extending the current renaming network execution.

We extend the execution by executing each process in C ∪ G until completion. We first execute each process in
C, in a fixed arbitrary order, and then execute each process in G, in a fixed arbitrary order. The rules for deciding the
result of test-and-set objects for these processes are the following.

— If the current test-and-set T already has a winner in the extension of E , i.e. a process that returned 0 and went “up”,
then the current process automatically goes “down” at this test-and-set.

— Otherwise, if the winner has not yet been decided in the extension of E , then the current process becomes the winner
of T and goes “up,” i.e. takes output port x′.

In this way, we obtain an execution in which M processes participate, and each test-and-set object has a winner and
a loser. By Claim 1, the execution is well-formed, i.e. there are never two processes (or two values) on the same wire.
Also note that the resulting extension of the original execution E is a valid execution of a renaming network, since
we are assuming an asynchronous shared memory model, and the ghost and crashed processes can be seen simply as
processes that are delayed until processes in P \ C returned.

The key observation is that, for every two-process test-and-set T in the network, T obeys the comparison property
of comparators in a sorting network, applied to the values assigned to the participating processes. We take cases on the
processes p and q participating in T .

(1) If p and q are both in P , then both have associated value 0, so the T respects the comparison property irrespective
of the winner.

(2) If p ∈ P and q ∈ G, then notice that p necessarily wins T , while q necessarily loses T . This is trivial if p ∈ P \C;
if p ∈ C, this property is ensured since we execute all processes in C before processes in G when extending E .
Therefore, the process with associated value 0 always wins the test-and-set.

(3) If p and q are both in G, then both have associated value 1, so T respects the comparison property irrespective of
the winner.
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The final step in this transformation is to replace every test-and-set operation with a comparator between the binary
values corresponding to the two processes that participate in the test-and-set. Thus, since we have started from a
sorting network, we obtain a sequence of comparator operations ordered in stages, in which each stage contains only
comparison operations that may be performed in parallel. The above argument shows that all comparators obey the
comparison property applied to the values we assigned to the corresponding processes. In particular, when input
values are different, the lower value (corresponding to participating processes) always goes “up,” while the higher
value always goes “down.”

Thus, the execution resulting from the last transformation step is in fact a valid execution of the sorting network
from which the renaming network has been obtained. Recall that we have associated each process that took a step to
a 0 input value, and each ghost process to a 1 input value to the network. Since, by Claim 1, no two input values may
be sorted to the same output port, we first obtain that the output port indices that the processes in P return are unique.
For namespace tightness, recall that we have obtained an execution of a sorting network with M input values, M − k
of which, i.e. those corresponding to processes in G, are 1. By the sorting property of the network, it follows that the
lower M − k output ports of the sorting network are occupied by 1 values. Therefore, the M − k “ghost” processes
that have not taken a step in E must be associated with the lower M − k output ports of the network in the extended
execution. Conversely, processes in P must be associated with an output port between 1 and k in the extension of
the original execution E . The final step is to notice that, in E , we have not modified the output port assignment for
processes in P \C, i.e. for the processes that returned a value in the execution E . Therefore, these processes must have
returned a value between 1 and k. This concludes the proof of this claim and of the Theorem.

We now apply the renaming network construction starting from sorting networks of optimal logarithmic depth,
whose existence is ensured by the AKS construction [Ajtai et al. 1983]. (Recall that the AKS construction [Ajtai et al.
1983] gives, for any integer N > 0, a network for sorting N integers, whose depth is O(logN). The construction is
quite complex, and therefore we do not present it here.)

COROLLARY 5.2 (AKS). The renaming network obtained from an AKS sorting network [Ajtai et al. 1983] with
M input ports solves the strong adaptive renaming problem with M initial names, guaranteeing name uniqueness in
all executions, and using O(logM) test-and-set operations per process in the worst case. The termination guarantee
is the same as that of the test-and-set objects used.

PROOF. The fact that this instance of the algorithm solves strong adaptive renaming follows from Theorem 5.1.
For the complexity claims, notice that the number of test-and-set objects a process enters is bounded by the depth of
the sorting network from which the renaming network has been obtained. In the case of the AKS sorting network with
M inputs, the depth is O(logM).

5.2. A Strong Adaptive Renaming Algorithm
We present an algorithm for adaptive strong renaming based on an adaptive sorting network construction. For any
k ≥ 0, the algorithm guarantees that k processes obtain unique names from 1 to k. We start by presenting a sorting
network construction that adapts its size and complexity to the number of processes executing it. We will then use this
network as a basis for an adaptive renaming algorithm

5.2.1. An Adaptive Sorting Network. We present a recursive construction of a sorting network of arbitrary size. We
will guarantee that the resulting construction ensures the properties of a sorting network whenever truncated to a finite
number of input (and output) ports. The sorting network is adaptive, in the sense that any value entering on wire n and
leaving on wire m traverses at most O(log max(n,m)) comparators.

Let the width of a sorting network be the number of input (or output) ports in the network. The basic observation
is that we can extend a small sorting network B to a wider range by inserting it between two much larger sorting
networks A and C. The resulting network is non-uniform—different paths through the network have different lengths,
with the lowest part of the sorting network (in terms of port numbers) having the same depth as B, whereas paths
starting at higher port numbers may have higher depth.

Formally, suppose we have sorting networks A, B, and C, where A and C have width m and B has width k < m.
Label the inputs of A as A1, A2, . . . , Am and the outputs as A′1, A

′
2, . . . , A

′
m, where i < j means that A′i receives a

value less than or equal to A′j . Similarly label the inputs and outputs of B and C. Fix ` ≤ k/2 and construct a new
sorting network ABC with inputs B1, B2, . . . B`, A1, . . . Am and outputs B′1, B

′
2, . . . B

′
`, C

′
1, C

′
2, . . . C

′
m. Internally,

insert B between A and C by connecting outputs A′1, . . . , A
′
k−` to inputs B`+1, . . . , Bk; and outputs B′`+1, . . . B

′
k to

inputs C1, . . . Ck−`. The remaining outputs of A are wired directly across to the corresponding inputs of C: outputs
A′k−`+1, . . . , A

′
m are wired to inputs Ck−`+1, . . . , Cm. (See Figure 8.)

LEMMA 5.3. The network ABC constructed as described above is a sorting network.
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Fig. 8: One stage in the construction of the adaptive sorting network. The small labels indicate port number: upper is higher.

PROOF. The proof uses the well-known Zero-One Principle [Cormen et al. 2009]: we show that the network cor-
rectly sorts all input sequence of zeros and ones, and deduce from this fact that it correctly sorts all input sequences.

Given a particular 0-1 input sequence, let zB and zA be the number of zeros in the input that are sent to inputs
B1 . . . B` andA1 . . . Am. BecauseA sorts all of its incoming zeros to its lowest outputs,B gets a total of zB+max(k−
`, zA) zeros on it inputs, and sorts those zeros to outputs B′1 . . . B

′
zB+max(k−`,zA). An additional zA−max(k− `, zA)

zeros propagate directly from A to C.
We consider two cases, depending on the value of the max:

— Case 1: zA ≤ k − `. Then B gets zB + zA zeros (all of them), sorts them to its lowest outputs, and those that reach
outputs B′`+1 and above are not moved by C. Therefore, the sorting network is correct in this case.

— Case 2: zA > k − `. Then B gets zB + k − ` zeros, while zA − (k − `) zeros are propagated directly from A to C.
Because ` ≤ k/2, zB + k − ` ≥ k/2 ≥ `, and B sends ` zeros out its direct outputs B′1 . . . B`. All remaining zeros
are fed into C, which sorts them to the next zA + zB − ` positions. Again, the sorting network is correct.

When building the adaptive network, it will be useful to constrain which parts of the network particular values
traverse. The key tool is given by the following lemma:

LEMMA 5.4. If a value v is supplied to one of the inputs B1 through B` in the network ABC, and is one of the `
smallest values supplied on all inputs, then v never leaves B.

PROOF. Immediate from the construction and Lemma 5.3; v does not enter A initially, and is sorted to one of the
output B′1 . . . B

′
`, meaning that it also avoids C.

Now let us show how to recursively construct a large sorting network with polylogM depth when truncated to the
first M positions. We assume that we are using a construction of a sorting network that requires at most a logc n depth
to sort n values, where a and c are constants. For the AKS sorting network [Ajtai et al. 1983], we have c = 1 and very
large a; for constructible networks (e.g., the bitonic sorting network [Knuth 1998]), we have c = 2 and small a.

Start with a sorting network S0 of width 2. In general, we will let wj be the width of Sj ; so we have w0 = 2. We
also write dj for the depth of Sj (the number of comparators on the longest path through the network).

Given Sj , construct Sj+1 by appending two sorting networks Aj+1 and Cj+1 with width w2
j − wj/2, and attach

them to the top half of Sj as in Lemma 5.3, setting ` = wj/2.
Observe that wj+1 = w2

j and dj+1 = 2a logc(w2
j −wj/2) + dj ≤ 4a logc wj + dj . Solving these recurrences gives

wj = 22
j

and dj =
∑j

i=0 2c(i+2)a = O(2cj).
If we set M = 22

j

, then j = lg lgM , and dj = O(2c lg lgM ) = O(logcM). This gives us polylogarithmic depth
for a network with M lines, and a total number of comparators of O(M logcM).

We can in fact state a stronger result, relating the input and output port indices for a value with the complexity of
sorting that value:

THEOREM 5.5. For any j ≥ 0, the network Sj constructed above is a sorting network, with the property that any
value that enters on the n-th input and leaves on the m-th output traverses O(logc max(n,m)) comparators.
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PROOF. That Sj is a sorting network follows from induction on j using Lemma 5.3.
For the second property, let Sj′ be the smallest stage in the construction of Sj to which input n and output m are

directly connected. Then wj′−1/2 < max(n,m) ≤ wj′/2, which we can rewrite as 22
j′−1

< 2 max(n,m) ≤ 22
j′

or j′ − 1 < lg lg max(n,m) ≤ j′, implying j′ = dlg lg max(n,m)e. By Lemma 5.4, the given value stays in Sj′ ,

meaning it traverses at most dj′ = O
(

2cj
′
)

= O
(
2cdlg lgmax(n,m)e) = O (lgc max(n,m)) comparators.

5.2.2. Transformation to a Renaming Nework. We now apply the previous results to renaming networks.

COROLLARY 5.6. Consider the sequence of networks Rj resulting from replacing comparators with two-process
test-and-set objects in the extensible sorting network construction from Section 5.2.1. For any M ≥ k > 0, assuming
initial names from 1 to M , these networks solve strong renaming for k processes with O(logM) test-and-set accesses
per process.

PROOF. Fix a M ≥ k > 0, and let j be the first index in the sequence such that the resulting network Sj has at
least M inputs and M outputs. By Theorem 5.5, this network sorts, and has depth O(logM) (considering the version
of the construction using the AKS sorting network as a basis). By Theorem 5.1, the corresponding renaming network
Rj solves adaptive strong renaming for any k processes with initial names between 1 and M , performing O(logM)
test-and-set accesses per process.

5.2.3. An Algorithm for Strong Adaptive Renaming. We show how to apply the adaptive sorting network construction
to solve strong adaptive renaming when the size of the initial namespace, M , is unknown, and may be unbounded.
This procedure can also be seen as transforming an arbitrary renaming algorithm A, guaranteeing a namespace of
size M , into strong renaming algorithm S(A), ensuring a namespace from 1 to k. In case the processes have initial
names from 1 to M , then A is a trivial algorithm that takes no steps. We first describe this general transformation,
and then consider a particular case to obtain a strong adaptive renaming algorithm with logarithmic time complexity.
Notice that, in order to work for unbounded contention k, the algorithm may use unbounded space, since the adaptive
renaming network construction continues to grow as more and more processes access it.
Description. We assume a renaming algorithmAwith complexity C(A), guaranteeing a namespace of sizeM (which
may be a function of k, or n). We assume that processes share an instance of algorithm A and an adaptive renaming
network R, obtained using the procedure in Section 5.2.1.

The transformation is composed of two stages. In the first stage, each process pi executes the algorithm A and
obtains a temporary name vi from 1 to M . In the second stage, each process uses the temporary name vi as the index
of its (unique) input port to the renaming network R. The process then executes the renaming network R starting at
the given input port, and returns the index of its output port as its name.
Wait-freedom. Notice that, technically, this algorithm may not be wait-free if the number of processes k participating
in an execution is infinite, then it is possible that a process either fails to acquire a temporary name during the first stage,
or it continually fails to reach an output port by always losing the test-and-set objects it participates in. Therefore, in
the following, we assume that k is finite, and present bounds on step complexity that depend on k.
Constructibility. Recall that we are using the AKS sorting network [Ajtai et al. 1983] of O(logM) depth for M
inputs as the basis for the adaptive renaming network construction. However, the constants hidden in the asymptotic
notation for this construction are large, and make the construction impractical [Knuth 1998]. On the other hand, since
the construction accepts any sorting network as basis, we can use Batcher’s bitonic sorting network [Knuth 1998],
with O(log2M) depth as a basis for the construction. Using bitonic networks trades a logarithmic factor in terms of
step complexity for ease of implementation.

5.2.4. Analysis of the Strong Adaptive Renaming Algorithm. We now show that the transformation is correct, trans-
forming any renaming algorithm A with namespace M and complexity C(A) into a strong renaming algorithm, with
complexity cost C(A) +O(logM).

THEOREM 5.7 (NAMESPACE BOOSTING). Given any renaming algorithm A ensuring namespace M with ex-
pected worst-case step complexityC(A), the renaming network construction yields an algorithm S(A) ensuring strong
renaming. The number of test-and-set operations that a process performs in the renaming network isO(logM). More-
over, if A is adaptive, then the algorithm S(A) is also adaptive. When using the randomized test-and-set construction
of [Tromp and Vitányi 2002], the number of steps that a process takes in the renaming network is O(logM) both in
expectation and with high probability in k.

PROOF. Fix an algorithm A with namespace M and worst-case step complexity C(A). Therefore, we can assume
that, during the current execution, each process enters a unique input port between 1 and M in the adaptive renam-
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ing network. By Corollary 5.6, each process reaches a unique output port between 1 and k, which ensures that the
transformation solves strong renaming.

If the algorithm A is adaptive, i.e. the namespace size M and its complexity C(A) depend only on k, then the
entire construction is adaptive, since the adaptive renaming network guarantees a namespace size of k, and complexity
O(logM), which only depends on k. This concludes the proof of correctness.

For the upper bound on worst-case step complexity, notice that a process may take at mostC(A) steps while running
the first stage of the algorithm. By Corollary 5.6, we obtain that a process performs O(logM) test-and-set accesses
in any execution. Since the randomized test-and-set construction of [Tromp and Vitányi 2002], has constant expected
step complexity, the worst-case expected step complexity of the whole construction is C(A) +O(logM).

To obtain the high probability bound on the number of read-write operations performed by a process in the renaming
network, first recall that the number of test-and-set operations that a process may perform while executing the renaming
network is Θ(logM). Therefore, we can see the number of read-write steps that a process takes while executing the
renaming network as a sum of Θ(logM) geometrically distributed random variables, one for each two-process test-
and-set. It follows that the number of steps that a process performs while executing the renaming network isO(logM)
with high probability in M . Since M ≥ k, this bound also holds with high probability in k.

We now substitute the generic algorithm A with the RatRace loose renaming algorithm of [Alistarh et al. 2010],
whose structure and properties are given in the Appendix. We obtain a strong renaming algorithm with logarithmic
step complexity. First, the properties of the RatRace renaming algorithm are as follows.

PROPOSITION 1 (RatRace RENAMING). For c ≥ 3 constant, the RatRace renaming algorithm described above
yields an adaptive renaming algorithm ensuring a namespace of size O(kc) in O(log k) steps, both with high proba-
bility in k. Every process eventually returns with probability 1.

This implies the following.

COROLLARY 5.8. There exists an algorithm T such that, for any finite k ≥ 1, T solves strong adaptive renaming
with worst-case step complexity O(log k). The upper bound holds in expectation and with high probability in k.

PROOF. We replace the algorithm A in Theorem 5.7 with RatRace renaming. We obtain a correct adaptive strong
renaming algorithm.

For the upper bounds on complexity, by Proposition 1, the RatRace renaming algorithm ensures a namespace of
size O(kc) using O(log k) steps, with probability at least 1 − 1/kc, for some constant c ≥ 3. The complexity of the
resulting strong renaming algorithm is at most the complexity of RatRace renaming plus the complexity of executing
the renaming network. By Theorem 5.7, with probability at least 1− 1/kc, this is at most

O(log k) +O(log kc) = O(log k).

The expected step complexity upper bound follows identically. Finally, since RatRace is adaptive, the transformation
also yields an adaptive renaming algorithm.

We also obtain the following corollary, which applies to the case when test-and-set is available as a base object.

COROLLARY 5.9. Given any renaming algorithm A ensuring namespace M with worst-case step complexity
C(A), and assuming test-and-set base objects with constant cost, the renaming network construction yields an algo-
rithm S(A) ensuring strong renaming with worst-case step complexity C(A) +O(logM). Moreover, if A is adaptive,
then the algorithm S(A) is also adaptive.

5.2.5. A Multi-Shot Algorithm. The strong adaptive algorithm described in the previous section limits each process
to performing a single name request per execution. However, we notice that essentially the same algorithm allows
processes to perform multiple name requests. Ifm is the total number of name requests performed during the execution,
then the algorithm ensures a namespace of size m, and step complexity O(logm).
Description. When requesting a name, the process first executes the RatRace renaming algorithm to obtain a unique
input port index for the renaming network. It then executes the renaming network to reach a new output port, whose
index it returns as its new name. Notice that the process never releases the name it acquired during a previous request,
and performs the new request as if it were a new process.
Analysis. The algorithm has the following properties.

COROLLARY 5.10. The multi-shot algorithm ensures unique names, and termination with probability 1. More-
over, for finite m ≥ k, in any execution with m total requests, all names returned are between 1 and m, and the step
complexity of the algorithm is O(logm), both in expectation and with high probability.
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The proof is straightforward once we notice that every execution with m name requrests by k < m processes
requests is equivalent to an execution with m requests, each by a distinct process (since the process’s initial identifier
is only used for comparisons inside the RatRace renaming object.) The claim then follows from Corollary 5.8, where
k = m.

6. APPLICATIONS TO COUNTING
6.1. A Bounded Counter
We now build a counter algorithm based on the strong adaptive renaming algorithm in Section 5.2. The algorithm
exports read and increment operations, and has a bounded maximum value vmax. We note that the counter relaxes the
standard linearizability correctness property, and only ensures a weaker property, called monotone consistency, which
we describe below.

6.1.1. Monotone Consistency. Monotone consistency [Aspnes et al. 2012a] is a correctness condition for concurrent
data structures, which is weaker than linearizability. Intuitively, monotone consistency ensures linearizability of the
increment operations (no updates are lost), but does not ensure that read operations can always be linearized. One
advantage of this guarantee is that, for some objects, known monotone consistent implementations are more efficient
known than their linearizable counterparts [Aspnes et al. 2012a].11

For example, a counter data structure (as defined below) is monotone consistent if the following hold.

(1) There exists a total order < over all read operations, such that, if some read operation R1 finishes before another
read operation R2 starts, then R1 < R2. If R1 < R2, the value v1 returned by R1 is less than or equal the value
v2 returned by R2.

(2) The value v returned by a read operation R satisfies x ≤ v, where x is the number of increment operations that
finished before the operation R started.

(3) The value v returned by a read operation R satisfies y ≥ v, where y is the number of increment operations that
start before the read operation completes.

6.1.2. Algorithm. Description. The processes share an adaptive renaming object implemented using the construction
in the previous section, and a linearizable max-register, implemented using the construction of Aspnes et al. [Aspnes
et al. 2012a], whose properties are given in Section 3.4. The max register has maximum value vmax, which may be
arbitrarily large, but must be given in advance.

For the increment operation, a process acquires a new name from the adaptive renaming object. It then writes the
newly obtained name to the max-register and returns. (Notice that, by the argument in Section 5.2.5, this algorithm
supports multiple increments by the same process.) For the read operation, the process simply reads the value of the
max-register and returns it.
Analysis. The counter object has the following properties.

LEMMA 6.1 (COUNTER PROPERTIES). The counter implementation is monotone consistent, and has expected
step complexity O(log v) per increment, where v is the number of increment operations started before the operation
returns. A read operation has cost O(min(log v, n)).

PROOF. Termination with probability 1 for finite v follows from the properties of the objects we use. For monotone
consistency, we need to prove the following.
(1) There exists a total ordering < on the read operations such that if an operation R1 finishes before some operation
R2 starts, then R1 < R2, and if R1 < R2, then the value returned by R1 is less than or equal to the value returned
by R2. For this, we order the read operations by their linearization points when reading the max-register object. This
ordering clearly has the required properties.
(2) The value v returned by a read is always ≥ the number of completed increment operations. Let y be the number
of completed increment operations. Notice that each completed operation obtains a unique name, and writes it to the
max-register (this holds also if a single process performs multiple increment operations). It then follows that the value
in the max-register at the time of the read is at least y.
(3) The value v returned by a read is always ≤ the number of started increment operations. Let z be the number of
started increment operations. Assume for contradiction that a process returns a value v which is larger than z. In this
case, there must exist a process that returned a name which is strictly larger than the number of name requests on the
adaptive renaming object. This contradicts the adaptive property of the object.

11However, no complexity separation between these two consistency conditions is known.

19



Shared: boolean doorway , initially open;

procedure `-test-and-set();
if doorway = closed then

return false
end
else

name← strong-renaming();
if name ≤ ` then return true
else

doorway ← closed
return false

end
end

Fig. 9: The `-test-and-set implementation.

Shared: test , an `/2-test-and-set object;
O .left , an `/2-valued f&inc object;
O .right , an `/2-valued f&inc object;

procedure `-fetch-and-increment();
if ` = 0 then return 0;
if `/2-test-and-set(test) then

return fetch-and-increment(O .left)
end
else

return `/2 + fetch-and-increment(O.right)
end

Fig. 10: The `-fetch-and-increment object.

Therefore the counter object is monotone consistent. For the complexity bound on the increment operation, notice
that, by Corollary 5.10, the complexity of the first stage of the adaptive renaming protocol is O(log v), and the number
of temporary names is O( poly v) with high probability. It then follows that the complexity of the adaptive renaming
object is O(log v) in expectation. By Theorem 5.7, the same bound holds with high probability. By the properties of
the max-register, it follows that that the complexity of an increment operation is O(log v). The complexity of the read
operation is the same as the complexity of the max register.

Linearizability counterexample. We show a non-linearizable execution of our counter implementation. Consider
three processes p1, p2, p3. Processes p2 and p3 start the execution concurrently. Process p2 obtains name 2 and writes
it to the max register, while p3 is still executing the renaming network. After p2’s operation terminates, p1 starts its
increment operation and “steals” name 1 from p3, and writes this value to the max register (this execution is possible
in a renaming network). We insert a read operation R1 between the end point of p2’s operation and the start point of
p1’s operation. This operation must return value 2. We insert a second read operation R2 between the end point of
p1’s operation and before p3 writes to the max register. The second operation must also return value 2 for the counter.
Notice that, in this case, p1’s operation cannot be properly linearized, since it is located between two read operations
returning the same value.

6.2. Linearizable Bounded-Value Fetch-and-Increment
We now show how to use an adaptive tight renaming protocol to construct a linearizablem-valued fetch-and-increment
object, i.e. a fetch-and-increment object that supports only values up to m. The sequential specification of the object is
the same as that of fetch-and-increment, except that the object keeps returning m− 1 once it has reached the threshold
value m.
Description. The outline of the construction is as follows. We first use the tight adaptive renaming protocol to build
a linearizable `-test-and-set object, which generalizes a standard test-and-set object by providing ` winners instead of
a single one. We implement such an object by having processes run the adaptive tight renaming algorithm and return
true if and only if their acquired name is at most `. To ensure this is linearizable, we protect the renaming protocol
with a doorway bit, which guarantees that processes arriving after some process returns false cannot prevent a process
that started the operation earlier from winning.

The second part of the m-valued fetch-and-increment construction is based on a recursive tree construction. For
` = m,m/2,m/4 down to 1, at each stage ` of the construction, we are implementing an `-fetch-and-increment
object, composed of one `/2-test-and-set object, and two `/2-fetch-and-increment objects (the left child, and the right
child of the current node, respectively). If a process wins in the `/2-test-and-set object, then it calls the left `/2-valued
fetch-and-increment object; otherwise it calls the right object.
Analysis. We begin by formally defining an `-test-and-set object.

Definition 6.2. An `-test-and-set object O supports one type of operation which returns either true or false. The
sequential specification of the object is that the first ` invocations of the operation return true and the rest return false.

Our implementation of an `-test-and-set object is given in Figure 9. The following lemma shows correctness of our
implementation. Intuitively, any operation that starts late sees the doorway closed, therefore must return false.
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LEMMA 6.3. Procedure `-test-and-set in Figure 9 implements a linearizable `-test-and-set.

PROOF. By correctness of the adaptive tight renaming algorithm, ` processes obtain a name whose value is at
most `, and therefore exactly ` processes return true. For linearizability, we partition the operations into two disjoint
categories, Ctrue and Cfalse, according to their return values. We order all operations in Ctrue before the time that
the doorway is set to closed, and all operations in Cfalse afterwards. Within each category we order the operations
according to the order of non-overlapping operations. It is clear that this order satisfies the sequential specification
of the `-test-and-set object, since all operations that return true are linearized before those that return false, and there
are exactly ` of those. To show that this order preserves the order of non-overlapping operations, we only need to
argue about non-overlapping operations in different categories, since within each category this order is preserved by
construction. Let idop1 be an operation that returns true and op2 be an operation that returns false and assume, towards
a contradiction, that op2 finishes before op1 starts. Then op2 must set the doorway to closed , implying that after op1
reads the doorway it returns false. This contradiction concludes the proof that the above implements a linearizable
`-test-and-set object.

Next, Figure 10 shows an implementation of an `-valued fetch-and-increment object using two smaller fetch-
and-increment objects. Note that this recursive construction unfolds to a tree, whose leaves are 0-valued fetch-and-
increment objects. We implement such an object with an empty data structure on which the fetch-and-increment
operation always returns 0.

We conclude with a proof of correctness of the above implementation. The basic idea is that the linearizability of the
`/2-test-and-set object allows us to linearize all operations incrementing to small values before those that increment
to large values.

LEMMA 6.4. If O .left and O .right are linearizable `/2-fetch-and-increment objects then procedure recursive-
fetch-and-increment implements a linearizable `-fetch-and-increment object.

PROOF. Since O .left and O .right are linearizable, we can associate each access to them with its linearization point.
We partition the operations into two disjoint categories, Cleft and Cright , according to the `/2-fetch-and-increment
object they access. We linearize operations in Cleft before those in Cright . Within each category, we linearize the
operations according to the order of their linearization points with respect to the `/2-fetch-and-increment object they
access (O .left for Cleft , and O.right for Cright ). By correctness of the `/2-test-and-set object, exactly `/2 processes
return true and the rest return false.

Hence, this ordering preserves the sequential specification of an `-fetch-and-increment, given the assumption
that O .left and O.right are linearizable `/2-fetch-and-increment objects. To show this preserves the order of non-
overlapping operations, we need to argue only about non-overlapping operations in different categories, since within
each category this order is preserved by the assumption on the linearizability of O .left and O.right . Let op1 be an
operation in Cleft and op2 be an operation in Cright and assume, towards a contradiction, that op2 finishes before
op1 starts. Since op2 is in Cright then its return value of the `/2-test-and-set object is false. Since op1 starts after op2
finishes it must also return false by correctness of the `/2-test-and-set object, and therefore op1 must be in Cright as
well. This contradicts the assumption that op1 is in Cleft , which completes the proof.

Finally, we provide upper bounds for the worst-case time complexity of our implementations. The bounds follow
from the properties of the tight adaptive renaming algorithm.

LEMMA 6.5. The `-test-and-set object has expected step complexity O(log k). The m-valued fetch-and-increment
object has expected step complexity O(log k logm), where k is the number of participating processes.

PROOF. The upper bound on the complexity of `-test-and-set follows from Corollary 5.8. The upper bound on
the expected step complexity of the fetch-and-increment object follows from the fact that the recursive construction
unfolds to a tree of height O(logm), with an `-test-and-set at each node, where ` ≤ m/2. By the above, we obtain
that the resulting structure has O(logm log k) expected step complexity.

7. A LOWER BOUND ON THE TIME COMPLEXITY OF DETERMINISTIC RENAMING
In this section, we prove a linear lower bound on the time complexity of deterministic renaming in asynchronous shared
memory. The lower bound holds for algorithms using reads, writes, test-and-set, and compare-and-swap operations,
and is matched within constants by existing algorithms, as discussed in Section 4. We first prove the lower bound for
adaptive deterministic renaming, and then extend it to non-adaptive renaming by reduction. The lower bound will
hold for algorithms that either rename into a sub-exponential namespace in k (if the algorithm is adaptive) or into a
polynomial namespace in n (if the algorithm is not adaptive).
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The Strategy. We obtain the result by reduction from a lower bound on mutual exclusion. The argument can be split
in two steps, outlined in Figure 11. The first step assumes a wait-free algorithm R, renaming adaptively into a loose
namespace of sub-exponential size M(k), and obtains an algorithm T (R) for strong adaptive renaming. As shown in
Section 5, the extra complexity cost of this step is an additive factor of O(logM(k)).12

The second step uses the strong renaming algorithm T (R) to solve adaptive mutual exclusion, with the property
that the RMR complexity of the resulting adaptive mutual exclusion algorithm ME (T (R)) is O(C(k) + logM(k)),
where C(k) is the step complexity of the initial algorithm R. Finally, we employ an Ω(k) lower bound on the RMR
complexity of adaptive mutual exclusion by Anderson and Kim [Kim and Anderson 2012]. When plugging in any
sub-exponential function for M(k) in the expression bounding the RMR complexity of the adaptive mutual exclusion
algorithm ME (T (R)), we obtain that the algorithm R must have step complexity at least linear in k.

Renaming 
Algorithm R

 
Namespace M(k)
Complexity C(k)  

Strong Renaming 
Algorithm T( R )

 
Namespace k

Complexity 
O( C(k) + log (M(k)) ) 

Adaptive Mutex 
Algorithm 
ME(T(R))

 
RMR Complexity 

O( C(k) + log (M(k)) )  

Claim 3 Claim 4

Fig. 11: The structure of the reduction in Theorem 7.1.

Applications. We notice that we can also apply the result to obtain a linear lower bound on the time complexity of
non-adaptive renaming algorithms, that guarantee names from 1 to some polynomial function in n, with n known. We
prove this generalization by reduction in Section 7.2.

A second application follows from the observation that many common shared-memory objects such as queues,
stacks, and fetch-and-increment registers can be used to solve adaptive strong renaming. In turn, this will imply that the
linear lower bound will also apply to deterministic shared-memory implementations of these objects using read, write,
compare-and-swap or test-and-set operations. We analyze the limitations of this lower bound and ways to circumvent
it in Section 7.4.

Finally, the reduction from renaming to mutual exclusion will also imply the existence of a non-adaptive mutual
exclusion algorithm with optimal O(log n) RMR complexity.

7.1. Adaptive Lower Bound
In this section, we prove the following result.

THEOREM 7.1 (INDIVIDUAL TIME LOWER BOUND). For any k ≥ 1, given n = Ω(k2
k

), any wait-free determin-
istic adaptive renaming algorithm that renames into a namespace of size at most 2f(k) for any function f(k) = o(k)
has a worst-case execution with 2k− 1 participants in which (1) some process performs Ω(k) RMRs (and Ω(k) steps)
and (2) each participating process performs a single rename operation.

PROOF. We begin by assuming for contradiction that there exists a deterministic adaptive algorithmR that renames
into a namespace of sizeM(k) = 2f(k) for f(k) ∈ o(k), with step complexity C(k) = o(k). The first step in the proof
is to show that any such algorithm can be transformed into a wait-free algorithm that solves adaptive strong renaming
in the same model, augmented with test-and-set base objects; the complexity cost of the resulting algorithm will be
O(C(k) + logM(k)). This result follows immediately from Corollary 5.9.

CLAIM 3. Assuming test-and-set as a base object, any wait-free algorithm R that renames into a namespace of
sizeM(k) with complexity C(k) can be transformed into a strong adaptive renaming algorithm T (R) with complexity
O(C(k) + logM(k)).

Returning to the main proof, in the context of assumed algorithmR, the claim guarantees that the resulting algorithm
T (R) solves strong adaptive renaming with complexity o(k) +O(log 2f(k)) = o(k) +O(f(k)) = o(k).

12Since we are assuming a system with atomic test-and-set and compare-and-swap operations, we can use such operations with unit cost in the
construction from Section 5.
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The second step in the proof shows that any wait-free strong adaptive renaming algorithm can be used to solve
adaptive mutual exclusion with only a constant increase in terms of step complexity. We note that the mutual exclusion
algorithm obtained is single-use (i.e., each process executes it exactly once).

CLAIM 4. Any deterministic algorithm R for adaptive strong renaming implies a correct adaptive mutual exclu-
sion algorithm ME (R). The RMR complexity of ME (R) is upper bounded asymptotically by the RMR complexity of
R, which is in turn upper bounded by its step complexity.

PROOF. We begin by noting a few key distinctions between renaming and mutual exclusion. Renaming algorithms
are usually wait-free, and assume a read-write shared-memory model which may be augmented with atomic compare-
and-swap or test-and-set operations; complexity is measured in the number of steps that a process takes during the
execution. For simplicity, in the following, we abuse notation and call this the wait-free (WF) model. Mutual exclusion
assumes a more specific cache-coherent (CC) or distributed shared memory (DSM) shared-memory model with no
process failures (otherwise, a process crashing in the critical section would block the processes in the entry section
forever). Thus, solutions to mutual exclusion are inherently blocking; the complexity of mutex algorithms is measured
in terms of remote memory references (RMRs). We call this second model the failure-free, local spinning model, in
short LS.

The transformation from adaptive tight renaming algorithm R in WF to the mutex algorithm ME (R) in LS uses the
algorithm R to solve mutual exclusion. The key idea is to use the names obtained by processes as tickets to enter the
critical section.

Processes share a copy of the algorithmR, and a right-infinite array of shared bits Done[1, 2, . . .], initially false. For
the enter procedure of the mutex implementation, each of the k participating processes runs algorithm R, and obtains
a unique name from 1 to k. Since the algorithm R is wait-free, it can be run in the LS model with no modifications.

The process that obtained name 1 enters the critical section; upon leaving, it sets the Done[1] bit to true. Any
process that obtains a name id ≥ 2 from the adaptive renaming object spins on the Done[id − 1] bit associated to
name id − 1, until the bit is set to true. When this occurs, the process enters the critical section. When calling the
exit procedure to release the critical section, each process sets the Done[id ] bit associated with its name to true and
returns. This construction is designed for the CC model.

We now show that this construction is a correct mutex implementation.

— For the mutual exclusion property, let qi be the process that obtained name i from the renaming network, for
i ∈ {1, . . . , k}. Notice that, by the structure of the protocol, for any i ∈ {1, . . . , k − 1}, process qi+1 may enter
the critical section only after process qi has exited the critical section, since process qi sets the Done[i] bit to true
only after executing the critical section. This creates a natural ordering between processes’ accesses in the critical
section, which ensures that no two processes may enter it concurrently.

— For the no deadlock and no lockout properties, first notice that, since the mutex algorithm runs in a failure-free
model, and the test-and-set instances we use in the renaming network are deterministically wait-free, it follows that
every process will eventually reach an output port in the renaming network. Thus, by Theorem 5.7, each process
will eventually be assigned a name from 1 to k. Conversely, each name i from 1 to k will eventually get assigned to
a unique process qi. Therefore, each of the Done[ ] bits corresponding to names 1, . . . , k will be eventually set to
true, which implies that eventually each process enters the critical section, as required.

— The unobstructed exit condition holds since each process performs a single operation in the exit section.

For the complexity claims, notice that, once a process obtains the name from algorithm R, it performs at most two
extra RMRs before entering the critical section, since RMRs may be charged only when first reading the Done[v − 1]
register, and when the value of this register is set to true. Therefore, the (individual or global) RMR complexity of the
mutex algorithm is the same (modulo constant multiplicative factors) as the RMR complexity of the original algorithm
R. Since the algorithm R is wait-free, its RMR complexity is a lower bound on its step complexity.

The last remaining claim is that the resulting renaming algorithm is adaptive, i.e. its complexity only depends on the
contention k in the execution, and the algorithm works for any value of the parameter n. This follows since the original
algorithm R was adaptive, and by the structure of the transformation. In fact, the transformation does not require an
upper bound on n to be known; if such an upper bound is provided, then it can be used to bound the size of the Done[ ]
array. This concludes the proof of the claim.

Final argument. To conclude the proof of Theorem 7.1, notice that the algorithm resulting from the composition of
the two claims, ME (T (R)), is an adaptive mutual exclusion algorithm that requires o(k) + O(f(k)) = o(k) RMRs
to enter and exit the critical section, in the cache-coherent model, where 2f(k) is the size of the namespace guaranteed
by the renaming algorithm.
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However, the existence of this algorithm contradicts the Ω(k) lower bound on the RMR complexity of adaptive
mutual exclusion by Anderson and Kim [Kim and Anderson 2012, Theorem 2], stated below.

THEOREM 7.2 (MUTEX TIME LOWER BOUND [KIM AND ANDERSON 2012]). For any k ≥ 1, given n =

Ω(k2
k

), any deterministic mutual exclusion algorithm using reads, writes, and compare-and-swap operations that
accepts at least n participating processes has a computation involving (2k − 1) participants in which some process
performs k remote memory references to enter and exit the critical section [Kim and Anderson 2012].

The algorithm R is adaptive and therefore works for unbounded n. Therefore, the adaptive mutual exclusion al-
gorithm ME (T (R)) also works for unbounded n. Hence the above mutual exclusion lower bound contradicts the
existence of algorithm ME (T (R)). The contradiction arises from our initial assumption on the existence of algorithm
R. The claim about step complexity follows since, for wait-free algorithms, the RMR complexity is always a lower
bound on step complexity. The claim about the number of rename operations follows from the structure of the trans-
formation and from that of the mutual exclusion lower bound of [Kim and Anderson 2012], in which each process
performs the entry section once.

7.1.1. Technical Notes. Relation between k and n. The lower bound of Anderson and Kim [Kim and Anderson 2012]
from which we obtain our result assumes large values of n, the maximum possible number of participating processes,
in the order of k2

k

. Therefore, for a fixed n, the relative value of k for which the linear lower bound is obtained may
be very small. For example, the lower bound does not preclude an algorithm with running time O(min(k, log n)) if n
is known in advance.
Read-write algorithms. Notice that, although the first reduction step employs compare-and-swap (or test-and-set)
operations for building the renaming network, the lower bound also holds for algorithms that only employ read or
write operations, since the renaming network is independent from the original renaming algorithm R.
Single-Use Mutex. As noted above, the mutual exclusion algorithm we obtained is single-use. This is not a problem
for the lower bound, since it holds for executions where each process invokes the entry section once, however it limits
the usefulness of the algorithm. We note that the algorithm can be extended to a variant where processes invoke the
critical section several times (following the outline in Section 5.2.5), however in this case the time complexity will be
logarithmic in the total number of mutual exclusion calls in the execution.
Progress conditions. Known adaptive renaming algorithms, e.g. [Moir and Garay 1996], [Alistarh et al. 2011a], do
not guarantee wait-freedom in executions where the number of participants is unbounded, since a process may be
prevented indefinitely from acquiring a name by new incoming processes. Note that our lower bound applies to these
algorithms as well, as the original mutual exclusion lower bound of Anderson and Kim [Kim and Anderson 2012]
applies to all mutex algorithms ensuring livelock-freedom, and our transformation does not require a strengthening of
this progress condition.

7.2. Non-Adaptive Renaming Lower Bound
The same technique also implies a linear lower bound on the step complexity of non-adaptive renaming algorithms.
For non-adaptive algorithms, the size of the set of participants is bounded by a fixed, known parameter N , and the size
of the target namespace and the complexity of the algorithm depend on this parameter.
Strategy. We prove the generalization by reduction: we first show that, under some restrictions, a non-adaptive re-
naming algorithm can be transformed into a renaming algorithm with fails, which returns a fail indication whenever
the number of processes k accessing the algorithm is > N . Then, we show that any renaming algorithm with fails can
be used to obtain an adaptive renaming algorithm with similar step complexity and namespace guarantees. The lower
bound then follows from the previous result for adaptive algorithms.

7.2.1. Renaming with Fails. We define a renaming algorithm with fails as a non-adaptive renaming algorithm
RF (N), that has the same specification as a renaming algorithm as long as the number of participants k does not
exceed the maximum number of participants N that the algorithm allows. On the other hand, if k > N , then the
algorithm RF (N) may return a special value fail to the calling process instead of a (unique) name. An instance of the
algorithm is a variant RF (N) for a particular N .

Definition 7.3 (Renaming with Fails). The renaming with fails task for parameter N in namespace T (N) assumes
k > 0 processes with unique initial identifiers from an unbounded namespace, and ensures the following.

(1) Termination: In every execution, every correct process returns either an integer name or a fail indication.
(2) Namespace Size: In every execution, every integer name returned is from 1 to T (N).
(3) Uniqueness: In every execution, no two processes may return the same integer name.
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(4) Progress when k ≤ N : If the contention k in the current execution is at most N , no process returns fail.

Note that, by the specification of the renaming problem, an instance assumes no limit on the size of the initial
identifiers that participating processes may have; however, a non-fail return value is guaranteed only if at most N
processes participate. Also, this property ensures that the complexity of a renaming algorithm may not depend on
the size of the initial namespace that the algorithm accepts. Otherwise, since the algorithm accepts a virtually infinite
namespace, the algorithm would have unbounded complexity.
From non-adaptive renaming to renaming with fails. In the following, we consider non-adaptive renaming algo-
rithms that ensure the following properties:

(1) Every step of the algorithm executed by a correct process terminates eventually;
(2) Any step can only access variables that are allocated by the algorithm;
(3) There exists a bounded function C(N) such that, for every execution, the number of steps performed by a process

is at most C(N).

It is straightforward to see that any wait-free algorithm can be modified to ensure properties (1) and (2). Property
(3) states that the step complexity of the algorithm can be bounded by a function C(N). Given these properties, we
give a procedure to transform any non-adaptive renaming algorithm R into a renaming algorithm with fails RF with
the same asymptotic complexity.

Let T (N) be the namespace that R renames into; C(N) is an upper bound on R’s complexity. We associate with
each process a local program counter that counts the number of steps that the process has performed in the current
execution. Processes share an instance of the algorithm R, and an array Split of T (N) randomized splitter objects, as
defined in Appendix A.1.
Transformation. Each process executes algorithm R, checking the local program counter at every step. If the local
program counter exceeds the value C(N) while running R, then the process automatically returns fail. If the process
obtains a name that is larger than T (N) from R, then it automatically returns fail. If the process obtains a name r from
the current instance of R, then it checks that this name is unique by accessing the auxiliary array Split of randomized
splitter objects in position r. If the splitter returns stop, then the process returns that name as its decision value (recall
that the splitter properties ensure that at most one process may return stop at a splitter). Otherwise, if the splitter returns
left, or right, then the process returns fail.

We now check that this transformation results in a renaming algorithm with fails, whose asymptotic step complexity
is the same as the one of the original algorithm R. Notice that, in general, the behavior of a non-adaptive renaming
algorithm is not specified when k exceeds N .

LEMMA 7.4 (RENAMING WITH FAILS). For any N > 0, given a renaming algorithm R for at most N processes
with complexity C(N) ensuring a namespace of size T (N), the transformation yields a renaming with fails algorithm
RF with parameter N , having the same asymptotic step complexity as R, ensuring the same properties as R as long
as k ≤ N .

PROOF. Consider a renaming algorithm R as above. If k ≤ N , it is easy to see that no process returns a fail
indication, and the algorithm RF ensures the same properties as R, with the same asymptotic complexity.

Otherwise, if k > N , then the algorithmRmay break correctness either by returning a name that is outside the range
T (N), or by having two processes return the same integer name, or by having a process run forever. Other deviations
from correctness are excluded, since we assume that every step by a correct process eventually returns, and steps may
only access memory allocated by the algorithm. However, we cover these possibilities in the transformation by having
processes return fail indications whenever one of these events occurs: a process returning a name out of range returns
fail; processes getting the same name detect the conflict through the Split array; a process returns fail if it takes more
than C(N) steps as part of the algorithm R. Therefore the transformation implements a renaming algorithm with fails
for parameter N .

7.2.2. From Renaming with Fails to Adaptive Renaming. In this section, we show that any renaming algorithm with
fails ensuring a namespace of polynomial size in N can be transformed into an adaptive renaming algorithm, at the
cost of a multiplicative logarithmic increase in running time, conserving polynomial namespace size.
Transformation. We start from a non-adaptive renaming with fails algorithm R, which, for any N ≥ 1, renames into
a namespace of size T (N), with complexity C(N), as long as the number of participants k to the instance does not
exceed N . We consider an infinite series (Ri)i∈N of instances of algorithm R, where instance Ri is the algorithm R
for parameter N = 2i.

The transformation proceeds as follows. Each process accesses the instances (Ri)i∈N in order, until it first obtains
an integer name from an instance Ri (as opposed to a fail indication). If, on the other hand, a process obtains a fail

25



indication from Ri, it increments its instance counter i, and proceeds to the next instance. Once it has obtained a name
v, the process returns v plus the sum resulting from adding up the namespace sizes for the previous instances, i.e., for
j ≥ 2,

∑i−1
j=1 T (2j).

We now prove that the algorithm described above is a correct adaptive renaming algorithm, and bound its complexity
and namespace size.

LEMMA 7.5. LetA be an algorithm that renames with fails such that, for anyN ≥ 1, it guarantees a namespace of
size polynomial inN with step complexity o(N). Then the above transformation yields an adaptive renaming algorithm
that renames in a namespace polynomial in the number of participants k, whose complexity is o(k).

PROOF. Fix an arbitrary execution of the transformation, and let k be the number of participants in the execution.
Letm be the highest index of an instance in the series (Ri)i∈N that a process accesses in this execution. Since a process
may only access an instance of a higher index if it fails in the current instance, and an instance Ri may return fail only
if the number of participants k exceeds the number of allowed participants 2i, it follows that m = O(log k).

For bounded k, each correct process eventually returns a name in the transformation. (On the other hand, if k is
infinite, then the transformation no longer guarantees starvation-freedom.) The name uniqueness property follows
since renaming with fails guarantees uniqueness, and the namespace resulting from the transformation is partitioned
into the namespaces returned by the instances (Ri)i∈N.

We now bound the size of the namespace that the algorithm generates as a function of k, the number of participants.
Assume that, for any N , the algorithm R returns names between 1 and N c. If m is the largest index of an accessed
instance, then the size of the namespace is bounded by

∑m
i=1 2ci ≤ 2c(m+1) = O(kc), i.e. polynomial in k, since

m = O(log k). Notice that the transformation uses no knowledge of the maximum number of processes that may
participate in the execution. Therefore, the transformation is an adaptive renaming algorithm that renames into a
namespace of size polynomial in the contention k.

Finally, we bound the step complexity of the transformation. By its structure, the number of steps a process takes
in total is bounded by C(2m) + C(2m−1) + . . . + C(1). Since Rm is the highest accessed instance of algorithm R,
it follows that 2c(m+1) ≥ k ≥ 2m−1. (The first inequality follows since k processes accessing the first m objects can
occupy at most 2c(m+1) distinct names. The second holds since object Rm−1 is not sufficient for the processes.) We
want to show that C(2m) +C(2m−1) + . . .+C(1) is in o(2m) = o(k), knowing that C(2m) = o(2m). Therefore, we
need to show that the quantity

C(2m) + C(2m−1) + . . .+ C(1)

2m

converges to 0 as m→∞. Let Am = C(2m)+C(2m−1)+ . . .+C(1), and let Bm = 2m+1−1. Recall the following
result from basic calculus.

LEMMA 7.6 (STOLZ-CESÀRO). Let (An)n≥1 and (Bn)n≥1 be two sequences of real numbers, such that (Bn)n≥1
is positive, strictly increasing, and unbounded. Then

lim
n→∞

An

Bn
= lim

n→∞

An+1 −An

Bn+1 −Bn
,

if the limit on the right hand side exists.

We apply this result to Am and Bm as defined above, and obtain that

lim
m→∞

C(2m) + C(2m−1) + . . .+ C(1)

2m+1 − 1
= lim

n→∞

Am+1 −Am

Bm+1 −Bm
= lim

m→∞

C(2m+1)

2m+1
= 0,

where the second limit exists and is 0, since C(k) = o(k). Therefore, by a change of variables, the complexity of the
transformation is o(k), as claimed.

On the other hand, the existence of such an adaptive renaming algorithm contradicts Theorem 7.1. Therefore, it
follows that every deterministic renaming algorithm with fails with parameter N , guaranteeing a namespace polyno-
mial inN has complexity Ω(N). From Lemma 7.4, the same result holds for non-adaptive renaming algorithms which
ensure properties (1)-(3).

COROLLARY 7.7. Any deterministic non-adaptive renaming algorithm, with the property that for any n ≥ 1 the
algorithm ensures a namespace polynomial in n, has worst-case step complexity Ω(n).
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7.3. Applications
7.3.1. Lower Bounds for Other Objects. These results imply time lower bounds for implementations of other shared

objects, such as fetch-and-increment registers, queues, and stacks. Some of these results are new, while others improve
on previously known results.

We first show reductions between fetch-and-increment, queues, and stacks, on the one hand, and adaptive strong
renaming, on the other hand.

LEMMA 7.8. For any k > 0, we can solve adaptive strong renaming using a fetch-and-increment register, a queue,
or a counter.

PROOF. Given a linearizable fetch-and-increment register, we can solve adaptive strong renaming by having each
participant call the fetch-and-increment operation once, and return the value received plus 1. The renaming properties
are follow trivially from the sequential specification of fetch-and-increment.

Given a linearizable shared queue, we can solve renaming as follows. If an upper bound on n is given, then we
initialize the queue with distinct integers 1, 2, . . . , n; otherwise, we initialize it with an unbounded string of integers
1, 2, 3, . . .. In both cases, 1 is the element at the head of the queue. Given this initialized object, we can solve adaptive
strong renaming by having each participant call the dequeue operation once, and return the value received. Correctness
follows trivially from the sequential specification of the queue.

Finally, given a stack, we initialize it with the same string of integers, where 1 is the top of the stack. To solve
renaming, each process performs pop on the stack and returns the element received.

This implies a linear time lower bound for these objects.

COROLLARY 7.9 (QUEUES, STACKS, FETCH-AND-INCREMENT). Consider a wait-free linearizable implemen-
tation A of a fetch-and-increment register, queue, or stack, in shared memory with read, write, test-and-set, and
compare-and-swap operations. If the algorithm A is deterministic, then, for any k ≥ 1, given n = Ω(k2

k

), there
exists an execution of A with 2k − 1 participants in which (1) each participant performs a single call to the object,
and (2) some process performs k RMRs (or steps).

7.3.2. A Time-Optimal One-Shot Non-Adaptive Mutex Algorithm. Another application of the lower bound argument is
that we can obtain an asymptotically optimal one-shot mutual exclusion algorithm from an AKS sorting network [Ajtai
et al. 1983]. We present this algorithm in the cache-coherent (CC) model.
Description. Processes share an AKS sorting network with n input (and output) ports, and a vector Done of boolean
bits, initially false. We replace each comparator in the network with a two-process test-and-set object with constant
RMR complexity [Golab et al. 2007]. In the mutual exclusion problem processes are assumed hold unique initial
identifiers vi from 1 to n, therefore we use these initial identifiers to assign unique input ports to processes. (Please see
Figure 12 for the pseudocode.) A process progresses through the network as described in Section 5.1.1. The process
adopts the index of the output port it reaches as a temporary name id. If id = 1, then it enters the critical section;
otherwise it busy-waits until the bit Done[id − 1] is set to true. Upon exiting the critical section, the process sets the
Done[id] bit to true.

The correctness of the algorithm above follows from Claim 4, given in Section 7.1. In particular, the asymptotic local
RMR complexity of the above algorithm is the same as the depth of the AKS sorting network (plus at most two RMRs
for reading the Done bits), i.e. O(log n), therefore the algorithm is optimal by the lower bound of Attiya et al. [Attiya
et al. 2008]. Anderson and Yang [heon Yang and Anderson 1994] presented an upper bound with the same asymptotic
complexity, but significantly better constants, using a different technique. The same construction can be used starting
from constuctible sorting networks, e.g. bitonic sorting networks [Knuth 1998], at the cost of increasing complexity
by a logarithmic factor. Notice that the linear RMR lower bound of Anderson and Kim [Kim and Anderson 2012] does
not yield a Ω(n) RMR lower bound for non-adaptive mutual exclusion (which would contradict the existence of our
algorithm).

7.4. Circumventing the Lower Bound

Intuitively, the lower bound shows that, if n processes could potentially participate, then, for k such that n ≥ k2
k

,
one can obtain a schedule with k participating processes in which one process takes a step for roughly every other
participating process. There are (at least) two ways for algorithms to circumvent the lower bound.
Randomization. As shown in Section 5, one can avoid the worst-case linear schedules with high probability by
allowing processes to flip coins as part of the execution. In particular, for renaming, the complexity of an operation is
O(log k) with high probability, i.e. exponentially less than the worst-case deterministic schedule.
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Shared:;
An AKS renaming network R, with n input and output ports;
An array Done of n registers, initially false;

procedure entry-section(vi);
w ← input wire corresponding to vi;
while w is not an output wire do

T ← next test-and-set on wire w;
res ← T.test-and-set( );
if res = 0 then

w ← output wire x′ of T ;
end
else

w ← output wire y′ of T ;
end

end
/* w is an output wire */
id i ← w.index ;
if id i = 1 then

execute critical section;
end
else

spin until Done[id i − 1] = true;
execute critical section;

end
return;

procedure exit-section( );
Done[id i]← true;
return;

Fig. 12: Pseudocode for the mutex algorithm.

Limiting the parameter n or the size of the initial namespace. Another way of circumventing the lower bound is
by assuming that processes already have unique names from 1 to n. (For example, this can be achieved by running a
renaming algorithm at the beginning of the execution.) An example of such an algorithm is the O(log n log v) counter
algorithm by Aspnes et al. [Aspnes et al. 2012a], where n is the number of processes, and v is the maximum value of
the counter. This algorithm assigns a unique “input port” in the data structure to each of the n processes. For fixed n, if
k = Θ(log n) processes are participating, each of them performs a number of operations which is at least linear in k,
although this number is in O(log n log v). Notice that, if n is small, linear contention in k could be seen as negligible.

8. A TIME LOWER BOUND FOR ADAPTIVE RANDOMIZED RENAMING
In this section, we present lower bounds on the expected total step complexity of randomized renaming and count-
ing. (Naturally, the result also applies to deterministic algorithms, yielding a worst-case total step complexity lower
bound.) The lower bound holds for algorithms using reads, writes, test-and-set, or compare-and-swap operations, and
is matched by the renaming network algorithm.
Strategy. We analyze an adversarial strategy that schedules the processes lock-step, and show that this limits the
amount of information that each process may gather throughout an execution. We then relate the amount of information
that each process must gather with the set of names that the process may return in an execution. For executions in which
everyone terminates and the adversary follows the lock-step strategy, we obtain a lower bound of Ω(k log(k/c)) for
c-loose renaming (i.e., the variant where processes may return names between 1 and ck, where c is a constant). We
then notice that a similar argument can be applied to obtain a lower bound for approximate counting (defined below).

Our argument generalizes a previous result by Jayanti [Jayanti 1998], which in turn is similar to a lower bound by
Cook, Dwork, and Reischuk [Cook et al. 1986] on the complexity of computing basic logical operations on PRAM
machines. Jayanti proved an Ω(log k) lower bound on the expected step complexity of shared counters, queues, and
stacks, which can be tweaked to apply to strong adaptive renaming. We generalize his result in two ways: first, we
consider total step complexity, and thus obtain a stronger Ω(log k) lower bound on the average worst-case expected
step complexity of the problem. Second, our results also apply to loose (approximate) versions of renaming and
counting, showing that the time complexity benefits of relaxing the object semantics in this way are at most constant.
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We begin by discussing some basic definitions and properties related to adversarial schedules in Section 8.1. We
then describe the adversarial scheduler and analyze its properties in Section 8.2. From these properties, we obtain the
lower bound for adaptive renaming in Section 8.3. We refine this argument to obtain a lower bound for approximate
counting in Section 8.4. We then discuss applications to more complex objects in Section 8.6.

8.1. Preliminaries
8.1.1. Loose Adaptive Renaming and Approximate Counting. We now define loose adaptive renaming and approxi-

mate counting. For c ≥ 1, the c-loose adaptive renaming problem requires processes to return unique names from 1 to
ck, where k is the contention in the execution.

Let C be a counter implementation, supporting operations read and increment. The counter is c-approximate if, for
any read operation R, its return value v satisfies the relation

γ/c ≤ v ≤ cγ,
where γ is the number of increment operations linearized before the read operation R.

8.1.2. Operations and Schedules. Recall that we consider a shared-memory model with atomic read, write, and
compare-and-swap operations (the test-and-set operation can be trivially replaced by compare-and-swap). Notice that
the read and write operations always succeed, whereas the compare-and-swap operation is conditional, meaning that
it may or may not change the value of the register on which it is called, depending on the value of the register when
the operation is called. Notice that certain operations change the value of the underlying object (such as a write with a
new value), whereas others are “invisible”, such as reads, and failed compare-and-swap operations. In the following,
we make this intuition precise, and analyze the existence of schedules in which few operations are visible. We follow
the presentation of [Attiya and Hendler 2010], where these notions were first defined.

Definition 8.1 (Invisible Operations [Attiya and Hendler 2010]). Let e be an operation applied by a process p to
an object O, in an execution E = E1eE2. We say that e is invisible in e if either the value of the object O is not
changed by e, or if E2 = E′e′E′′, where e′ is a write operation on O, and the prefix E′ contains no operations by p,
and no operation in the prefix E′ is applied to O. If e is not invisible in E, we say that it is visible in E.

Based on this definition, we now define a weakly-visible schedule, which minimizes the number of operations that
a process sees during an execution.

Definition 8.2 (Weakly-Visible Schedule [Attiya and Hendler 2010]). Let S = {e1, . . . , e`} be a set of operations
by different processes that are enabled after some execution prefix E, all about to apply write or compare-and-swap
operations. We say that an ordering of the operations in S is a weakly-visible schedule of S after E, denoted by
σ(E,S), if the following holds. Let E1 = Eσ(E,S).

— At most a single operation of S is visible on any one object in E1. If ej ∈ S is visible on a base object in E1, then
ej is issued by a process that is not aware of any event of S in E1.

— Any process is aware of at most a single event of S in E1.

Given these definitions, Attiya and Hendler [Attiya and Hendler 2010] proved the following result on the existence
of weakly-visible schedules. The proof follows by constructing a suitable ordering of the operations in S.

LEMMA 8.3 (WEAKLY-VISIBLE SCHEDULES [ATTIYA AND HENDLER 2010]). Let S = {e1, . . . , e`} be a set
of operations by different processes that are enabled after some execution E, all about to apply write or compare-and-
swap operations. Then there is a weakly-visible schedule of S after E.

8.1.3. Worst-case Expected Step Complexity. In the following lower bounds, we will use the following basic fact,
whose proof follows from the definition of the expectation of a random variable.

PROPOSITION 2 (EXPECTED COMPLEXITY). Fix constants α ∈ [0, 1] and γ > 0. Given an algorithm A that
terminates with probability α, if there exists an adversarial strategy S(A) such that, in every execution under S(A) in
which every process terminates, the processes take at least γ steps, then the (worst-case) expected step complexity of
A is at least αγ.

8.2. The Adversarial Scheduler
We consider an algorithm A in shared-memory allowing atomic read, write, and compare-and-swap operations. The
adaptive adversary follows the pseudocode described in Figure 13. The adversary schedules the processes in rounds:
in each round, each process that has not yet returned from A is scheduled to perform the next shared-memory op-
eration that they have enabled. More precisely, at the beginning of each round, the adversary allows each process to
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procedure adversarial-scheduler();
r ← 1;
while true do

for each process p do
schedule p to perform coin flips until it has enabled a shared-memory operation, or p returns;

end
R ← processes that have read operations enabled;
W ← processes that have write operations enabled;
C ← processes that have compare-and-swap operations enabled;
schedule all processes inR to perform their operations, in the order of their initial identifiers;
schedule all processes inW ∪ C to perform their operations, in the order defined by the weakly-visible schedule σr ;
r ← r + 1;

end

Fig. 13: The adversarial strategy for the global lower bound.

perform local coin flips until it either terminates or has to perform an operation that is either a read, a write, or a
compare-and-swap (lines 7-7).

In each round, the adversary partitions processes that have an operation enabled into three sets: R, the readers,
W , the writers, and C, the swappers. Processes in R are scheduled by the adversary to perform their enabled read
operations, in the order of their initial identifiers (line 7). Then, the adversary also schedules the updating processes
(writers and swappers) in the order given by a weakly-visible schedule σr for these operations in the round. (This
schedule, which minimizes information flow between processes, was defined and shown to exist in Lemma 8.3.) Once
every process has either been scheduled or has returned, the adversary moves on to the next round.

Before we proceed with the analysis, we explain the role of the weakly-visible schedule for the processes performing
write and compare-and-swap operations in round r. For example, if a set of processes all perform compare-and-swap
operations in a round, there exist interleavings of these operations such that the last scheduled process “finds out” about
all other processes after performing its compare-and-swap, by reading a value that these processes successively modi-
fied. However, the adversary can always break such interleavings and ensure that, given any set of compare-and-swap
operations, a process only finds out about one other operation, using a weakly-visible schedule, as described in Sec-
tion 8.1.2.
Analysis. First, notice that, since the algorithms we consider are randomized, the adversarial strategy we describe
creates a set of executions in which all processes take steps (if the algorithm is deterministic, then the strategy describes
a single execution). We denote the set of such executions by S(A). In the following, we study the flow of information
between the processes in executions from S(A).

We prove that the adversarial strategy described above prevents any process from “finding out” about more than 4r

active processes by the end of round r in any execution from S(A). More precisely, for each process p following the
algorithm A, each register R, and for every round r ≥ 0, we define the sets UP(p, r) and UP(R, r), respectively.
Intuitively, UP(p, r) is the set of processes that process p might know at the end of round r as having taken a step in
an execution resulting from the adversarial strategy. Similarly, UP(R, r) is the set of processes that can be inferred to
have taken a step in an execution resulting from the adversarial strategy, by reading the register R at the end of round
r. Our notation follows the one in [Jayanti 1998], which defines similar measures for a model in which LL/SC, move,
and swap operations are available.

Formally, we define these sets inductively, using the following update rules. Initially, for r = 0, we consider that
UP(p, 0) = {p} and UP(R, 0) = ∅, for all processes p and registers R. For any later round r ≥ 1, we define the
following update rules:

(1) At the beginning of round r ≥ 1, for each process p and register R, we set UP(p, r) = UP(p, r − 1) and
UP(R, r) = UP(R, r − 1);

(2) If process p performs a successful write operation on register R in round r, then UP(R, r) = UP(p, r − 1).
Informally, the knowledge that process p had at the end of round r − 1 is reflected in the contents of register
R at the end of round r. On the other hand, the writing process p gains no new knowledge from writing, i.e.
UP(p, r) = UP(p, r − 1);

(3) If process p performs a compare-and-swap operation which changes the value of register R in round r, then the
information contained in the register is merged with p’s information, that is UP(R, r) = UP(p, r−1)∪UP(R, r).
We also assume that the process p gets the information previously contained in the register UP(p, r) = UP(p, r−
1) ∪UP(R, r) (note that the contents of UP(R, r) might have been already updated in round r);
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(4) If process p performs a compare-and-swap operation that does not change the value of register R in round R,
then UP(R, r) remains unchanged. On the other hand, the process gets the information currently contained in the
register, i.e. UP(p, r) = UP(p, r − 1) ∪UP(R, r);

(5) If process p performs a successful read operation on register R in round r, then UP(R, r) remains unchanged,
and UP(p, r) = UP(R, r) ∪UP(p, r − 1).

Based on these update rules, we can compute an upper bound on the size of the UP sets for processes and registers,
as the rounds progress.

LEMMA 8.4 (BOUNDING INFORMATION). Given a run of the algorithm A controlled by the adversarial sched-
uler in Figure 13, for any round r ≥ 0, and for every process or shared register X , |UP(X, r)| ≤ 4r, where the set
UP is considered at the beginning of the round r.

PROOF. The proof follows by induction on the round number r ≥ 0. For r = 0, the claim holds by definition.
Given r > 0 for which the claim holds, we prove it for r+ 1. We first prove the claim for UP(R, r+ 1), where R is

a register. Obviously, read operations do not add information to the register. We therefore focus on update operations,
i.e. writes and compare-and-swaps. By Lemma 8.3, the schedule σr ensures that at most a single update operation
in this round is visible on the register. Therefore, by the update rules, the size of UP(R, r + 1) can be at most
|UP(R, r)|+ |UP(p, r)|, for some process p. This is at most 2r+1 < 4r+1, as claimed.

We now consider UP(p, r + 1) for a process p. If the process performs a read on a register R in the first part of the
phase, then the size of UP(p, r + 1) is at most |UP(p, r)|+ |UP(R, r)| ≤ 2r+1 < 4r+1, as claimed.

If the process performs a write or a compare-and-swap on a register R, then there are two cases. If the process
performs an event that is visible on the register, then, by Lemma 8.3, the process is not aware of any update on the
register R in this round. This implies that the size of the set UP(p, r+ 1) is at most |UP(p, r)|+ |UP(R, r)| < 4r+1,
as claimed.

If the process does not perform a visible event on the register, the process may see some other process’s update
on the register in this round. By Lemma 8.3, the process is aware of at most a single update on the register in this
round. Assume this update is performed by some process q. Therefore |UP(p, r + 1)| ≤ |UP(q, r)| + |UP(p, r)| +
|UP(R, r)| ≤ 3 · 4r < 4r+1. We have covered all cases, and hence the claim follows.

Indistinguishability. Let E be an execution of the algorithm obtained using the adversarial strategy above, i.e. E ∈
S(A). Given the previous construction, the intuition is that, for a process p and a round r, if UP(p, r) = S for some set
S, then p has no evidence that any process outside the set S has taken a step in the current execution E . Alternatively,
there exists a parallel execution E ′ in which only processes in the set S take steps, and p cannot distinguish between
the two executions.

We make this intuition precise. First, we define state(E , p, r) as the local state of process p at the end of round r
(i.e. the values of its local registers and its current program counter), and val(E , R, r) as the value of register R at the
end of round r. We also define numtosses(E , p, r) as the number of coin tosses that the process p performed by the
end of round r of E . Two executions E and E ′ are said to be indistinguishable to process p at the end of round r if (1)
state(E , p, r) = state(E ′, p, r), and (2) numtosses(E , p, r) = numtosses(E ′, p, r).

Starting from the execution E , the adversary can build an execution E ′ in which only processes in S participate,
that is indistinguishable from E from p’s point of view, by starting from execution E and only scheduling processes in
S = UP(p, r) up to the end of round r of E ′. The proof is identical to the one presented by Jayanti [Jayanti 1998] in
the context of local lower bounds for shared-memory with LL/SC operations. Therefore, we only give an overview of
the construction in this paper.

LEMMA 8.5 (INDISTINGUISHABILITY). Let E be an execution in S(A) and p be a process with UP(p, r) = S
at the end of round r. There exists an execution E ′ of A in which only processes in S take steps, such that E and E ′ are
indistinguishable to process p.

PROOF. To prove the claim, we provide an algorithm for the adversary to build an execution E ′ based on the
original execution E ∈ S(A), and prove that E ′ and E are indistinguishable for process p at the end of round r. The
construction is an adaptation to the read-write model of the one presented by Jayanti in [Jayanti 1998]. Given the
execution E , let coins(E , p, j) be the outcome of the jth coin toss that process p performs in execution E .
Constructing the execution. The procedure to build the desired execution E ′ of algorithm A in which only |S|
processes participate is described in Algorithm 14. The run is also structured in rounds. Of note, only processes that
are scheduled in round r are the processes in S that have not witnessed processes outside of S by the end of round r−1.
Each process is scheduled to perform local coin tosses until it has a shared-memory operation enabled. For every coin
toss j by a process q, the adversary feeds the outcome that occurred in the execution E , that is coins(E , q, j). Depending
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Parameters: the execution E , the set S;
procedure build(E , S);
r ← 1;
while true do

// we schedule processes that have not seen a process outside of S in the first
r − 1 rounds of E

Sr ← { processes q |UP(q, r − 1) ⊆ S };
for each process q in Sr do

process q performs coin tosses until it returns or has enabled a shared-memory operation;
the jth coin toss by process q is supplied with outcome coins(E , q, j);

end
R← processes in Sr that have read operations enabled;
W ← processes in Sr that have write operations enabled;
C ← processes that have compare-and-swap operations enabled;
schedule all processes inR to perform their operations, in the order of their initial identifiers;
schedule all processes inW ∪ C to perform their operations, in the order defined by the weakly-visible schedule σr;
r ← r + 1;

end

Fig. 14: The procedure for building the indistinguishable execution.

on their enabled shared-memory operation, the processes that have not yet terminated are then split into a set of readers,
a set of writers, and a set of swappers, that is processes having compare-and-swap operations enabled. The readers are
then scheduled in the order of their initial identifiers, after which the writers and the swappers are scheduled in the
order of their weakly visible schedule for that round. Finally, the adversary increments the round counter and moves
to the next round.
Correctness of the construction. The proof of correctness proceeds by induction on the round number r, and is
identical to the one outlined in [Jayanti 1998], Lemma 5.2. More precisely, the execution E is the (All,A) run, and
the execution E ′ is the (S,A)-run. We refer the reader to reference [Jayanti 1998] for the proof.

8.3. Renaming Lower Bound
We now prove an Ω(k log(k/c)) lower bound on the total step complexity of c-loose adaptive renaming algorithms.
In particular, this lower bound implies that we cannot gain more than a constant factor in terms of step complexity by
relaxing the tight namespace requirement by a constant factor. There are two key technical points: first, we relate the
amount of information that a process gathers with the set of names it may return (we show this relation holds even if
renaming is loose); second, for each process, we relate the number of steps it has taken with the amount of information
it has gathered.

THEOREM 8.6 (RENAMING). Fix c ≥ 1 constant. Given k participating processes, any c-loose adaptive renaming
algorithm that terminates with probability α has worst-case expected total step complexity Ω(αk log(k/c)).

PROOF. Let A be a c-loose adaptive renaming algorithm. We consider a terminating execution E ∈ S(A) with k
participating processes, i.e. every participating process returns in E . We first prove that a process that returns name
j ∈ [1, ck] in execution E has to perform Ω(log(j/c)) shared-memory operations.

First, notice that each execution E ∈ S(A) contains no process failures, so each process has to return a unique name
in the interval 1, . . . , ck in such an execution. Therefore, there exist distinct names m1, . . . ,mk ∈ {1, 2, . . . , ck} and
processes q1, . . . , qk such that process qi returns name mi in execution E . Without loss of generality, assume that the
names returned by processes q1, . . . , qk are in monotonically increasing order; since the names are distinct, we have
that mi ≥ i for i ∈ 1, . . . , k.

Consider process qi returning name mi in E . Let `i be the number of shared-memory operations that qi has per-
formed in E . Since the adversary schedules each process once in every round of E , until termination, it follows that
process qi has returned at the end of round `i. Let S = UP(qi, `i), as defined in Section 8.2. Since E ∈ S(A), by
Lemma 8.4, we have that |S| ≤ 4`i .

Assume for the sake of contradiction that the number of processes that qi “found out” about in this execution, |S|, is
less than mi/c. By Lemma 8.5, there exists an execution E ′ of A which is indistinguishable from E from qi’s point of
view at the end of round `i, in which only |S| < mi/c processes take steps. However, since the algorithm is c-loose,
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the highest name that process qi may return in execution E ′, and thus in E , is strictly less than c · (mi/c) = mi, a
contradiction.

Therefore, it has to hold that |S| ≥ mi/c, which implies that `i, the number of shared-memory operations that
process qi performs in E , is at least log4(mi/c) = (1/2) log(mi/c). Therefore, for any i ∈ 1, . . . , k, process qi
returning name mi has to perform at least (1/2) log(mi/c) shared memory operations. Then the total number of steps
that the k processes perform in execution E is

k∑
i=1

`i ≥ (1/2)

k∑
i=1

log(i/c) = Ω(k log(k/c)),

where in the last step we have used the standard Stirling approximation of k!. Since this complexity lower bound holds
for every execution resulting from the adversarial strategy, using Proposition 2, we obtain that the expected total step
complexity of the algorithm A is Ω(αk log(k/c)).

8.4. Counting Lower Bound
Using a similar argument, we can show that any c-approximate counter implementation has worst-case expected total
step complexity Ω(k log(k/c2)) in executions where each process performs one increment and one read.

One key difference from the proof in the previous section, which implies the extra c factor, is that processes may
return the same value from the read operation; we take this into account by studying the linearization order of the
increment operations.

THEOREM 8.7 (COUNTING). Fix c ≥ 1 constant. Let A be a linearizable c-approximate counter implementa-
tion that terminates with probability α. For any k, the algorithm A has worst-case expected total step complexity
Ω(αk log(k/c2)), in runs where each process performs an increment followed by a read operation.

PROOF. Let A be a c-approximate counting algorithm in this model. We consider terminating executions E with k
participating processes, in which each process performs an increment operation followed by a read operation, during
which the adversary applies the strategy described in Figure 13, i.e. E ∈ S(A).

Again, we start by noticing that, since no process crashes during E , each process has to return a value from the read
operation. Depending on the linearization order of the increment and read operations, the processes may return various
values from the read. Let γi be the number of increment operations linearized before the read operation by process pi,
and let vi be the value returned by process pi’s read. Without loss of generality, we will assume that the processes pi
and their return values vi are sorted in the increasing order of their γi values.

First, notice that, since every process calls increment before its read operation, for every 1 ≤ i ≤ k, γi ≥ i. Second,
by the c-approximation property of the counter implementation, vi ≥ γi/c. Therefore, vi ≥ i/c.

Second, consider process pi returning value vi in execution E . Let `i be the number of shared-memory operations
that pi has performed in E . Since the adversary schedules each process once in every round of E , it follows that process
pi has returned at the end of round `i. Let S = UP(pi, `i), as defined in Section 8.2. By Lemma 8.4, we have that
|S| ≤ 4`i .

Assume for the sake of contradiction that |S| < vi/c. By Lemma 8.5, there exists an execution E ′ of A which is
indistinguishable from E from qi’s point of view at the end of round `i, in which only |S| < vi/c processes take steps.
However, since the counter is c-approximate, the highest value that process pi can return in execution E ′, and thus in
E , is strictly less than c · (vi/c) = vi, a contradiction.

Therefore, |S| ≥ vi/c, and `i ≥ log4(vi/c) ≥ (1/2) log(i/c2), for every 1 ≤ i ≤ k. We obtain that the total number
of steps is bounded as follows.

k∑
i=1

`i ≥ (1/2)

k∑
i=1

log(i/c2) = Ω(k log(k/c2)).

8.5. Circumventing the Lower Bound
In brief, the lower bound in this chapter states that for implementations of adaptive renaming and related counting
objects, the average worst-case expected step complexity is logarithmic if the adversary is adaptive, i.e. may adapt
its schedule based on the results of the processes’ coin flips. Thus, this logarithmic threshold can be seen as stronger
than the linear deterministic one, since it cannot be avoided by the use of randomization in the presence of a strong
adversary.

33



On the other hand, if the adversary is weak, or oblivious, and may not adapt the schedule based on the results of the
processes coin flips (i.e. fixes the schedule before the execution), then there exist object implementations that avoid
this lower bound. In particular, the approximate counter of Bender and Gilbert [Bender and Gilbert 2011] guarantees
a constant approximation factor with expected running time O(log log n) against an oblivious adversary.

Another way of potentially circumventing the lower bound would be to allow the algorithm to break the approxima-
tion guarantee with small probability. Notice that the lower bound argument, as written, only applies to algorithms that
guarantee approximation within a factor of c in all executions. The counter of Bender and Gilbert [Bender and Gilbert
2011] is an example of such an object, since it guarantees the constant approximation only with high probability. An-
other example is the AdaptiveSearch renaming algorithm of [Alistarh et al. 2010], which only ensures a namespace
from 1 to ck with high probability in k.

8.6. Applications to Other Objects
Given that adaptive renaming can easily be solved using queues, stacks, or fetch-and-increment objects, as shown in
Section 7.3, the lower bound in Section 8.3 applies to these objects.

COROLLARY 8.8 (APPLICATIONS). Consider a wait-free linearizable (randomized) implementation A of a fetch-
and-increment register, queue, or stack, in shared memory with read, write, test-and-set and compare-and-swap op-
erations. Then, for any k ≥ 1, if A terminates with probability α, then its expected worst-case step complexity is
Ω(αk log k), where k is the number of participating processes.

9. CONCLUSION
We have given the first tight bounds on the complexity of the renaming problem in asynchronous shared-memory.
In particular, we showed that deterministic implementations of renaming have linear time complexity as long as they
ensure a polynomial-size namespace. Using randomization, we achieve a tight namespace in logarithmic expected
time, which is optimal.

Several open questions remain. First, our deterministic lower bound is matched by several algorithms in the litera-
ture. For algorithms using only reads and writes, which have been studied more extensively, the algorithm of Chlebus
and Kowalski [Chlebus and Kowalski 2008] matches the time lower bound, giving a namespace of size (8k−log k−1);
an elegant algorithm by Attiya and Fouren [Attiya and Fouren 2001] achieves a tighter namespace of size (6k − 1);
however, this last algorithm only matches the time lower bound within a logarithmic factor. The fastest known algo-
rithm to achieve an optimal namespace using only reads and writes (of size (2k − 1)) was given by Afek et al. [Afek
and Merritt 1999], with time complexity O(k2). Thus, obtaining a read-write deterministic algorithm which is optimal
both in terms of time complexity and namespace size is an intriguing open question.

We also presented a randomized renaming algorithm with logarithmic complexity with high probability, which
achieves a tight adaptive namespace. The total time complexity lower bound in Section 8 shows that this algorithm
is optimal against an adaptive adversary, and that no asymptotic time complexity gains may be obtained for adaptive
renaming by relaxing the namespace size within constant factors. This implies that our randomized solution is optimal
from two points of view: time complexity and namespace size.

One disadvantage of the renaming network algorithm is that it is based on an AKS sorting network [Ajtai et al.
1983], which has prohibitively high constants hidden inside the asymptotic notation [Knuth 1998]. Thus, it would be
interesting to see whether one can obtain constructible randomized solutions that are time-optimal and namespace-
optimal. On the other hand, the total lower bound holds only for adaptive algorithms; it is not known whether faster
non-adaptive algorithms exist, which could in theory go below the logarithmic threshold. We conjecture that Ω(log n)
steps is a lower bound for non-adaptive randomized algorithms as well.

The global lower bound applies to deterministic adaptive algorithms as well, implying an Ω(k log k) worst-case
global time complexity lower bound. On the other hand, the fastest known algorithm to rename into a namespace of
size ck for c ≥ 1 constant has O(k2) total step complexity [Chlebus and Kowalski 2008]. Closing the gap between
upper and lower bounds is still an open question.

Another open question concerns randomized shared-memory renaming in weaker adversarial models, in particular in
the oblivious adversary model, i.e. when the scheduler has knowledge of the algorithm but fixes the schedule without
knowing the results of random coin flips. In this case, there are indications that the logarithmic threshold could be
broken, since sub-logarithmic algorithms have been shown to exist for test-and-set [Alistarh and Aspnes 2011] and
approximate counters [Bender and Gilbert 2011] against the oblivious adversary.

One aspect of these concurrent data structures, which has been somewhat neglected by research is space complexity,
i.e. the number of registers necessary for correct shared-memory implementations. Our renaming network algorithm
uses O(k log k) registers assuming hardware test-and-set operations. The linear space complexity lower bounds of
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The splitter

[Moir & Anderson, 1995]
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Fig. 16: Randomized splitter.

Jayanti, Tan, and Toueg [Jayanti et al. 2000] apply to adaptive renaming, therefore the renaming network is space-
optimal within a logarithmic factor. Tight space complexity thresholds for renaming remain an open question.

Our lower bounds apply to implementations of more complex objects, such as queues, stacks, or fetch-and-increment
counters. The total step lower bound suggests that there are complexity thresholds which cannot be avoided even with
the use of randomization. In particular, the average step complexity for adaptive versions of these data structures is
logarithmic, even when using randomization. However, for many such objects there do not exist algorithms that match
this logarithmic lower bound. In terms of circumventing this bound, recent results [Alistarh and Aspnes 2011], [Bender
and Gilbert 2011] suggest that weaker adversarial models and relaxing object semantics, e.g. allowing approximate
implementations, could be used to go below this logarithmic threshold.

A. RANDOMIZED LOOSE RENAMING IN LOGARITHMIC EXPECTED TIME
In this section, we present a randomized algorithm that renames into a namespace of size polynomial in k. The
algorithm has logarithmic step complexity in expectation. It is a simple adaptation of the known RatRace test-and-set
algorithm of Alistarh et al. [Alistarh et al. 2010] to solve the renaming task. We present the structure of the algorithm;
the proof of correctness follows from the original analysis [Alistarh et al. 2010]. We present an abridged version of the
proof, for completeness.

A.1. The Randomized Splitter
The randomized splitter object is a weak synchronization primitive which allows a process to acquire it if running
alone, which splits the participants probabilistically if more than one process accesses the object. More precisely, a
randomized splitter has the following properties.

— At most one process returns stop.
— If a single correct process calls split, then the process returns stop.
— If a correct process does not return stop, then the probability that it returns left equals the probability that it returns

right, which equals 1/2.

The randomized splitter was introduced in [Attiya et al. 2006], where it was shown that it can be implemented
wait-free using registers. This construction is a variant of the deterministic splitter introduced by Lamport [Lamport
1987] for mutual exclusion, and was first used for deterministic renaming by Moir and Anderson [Moir and Anderson
1995].

A.2. The RatRace Adaptive Renaming Algorithm

Description. The algorithm is based on a binary tree structure, of unbounded height. Each node v in this tree contains
a randomized splitter object RSv . Each randomized splitter RSv has two pointers, referring to randomized splitter
objects corresponding to the left and right children of node v. Thus, if node v has children ` (left) and r (right),
the left pointer of RSv will refer to RS`, while the right pointer refers to RSr. Any process pi returning left from
the randomized splitter RSv will call the split procedure of RS`, while processes returning right will call the split
procedure of RSr.

Processes start at the root node of the primary tree, and proceed left or right (with probability 1/2) through the tree
until first returning stop at the randomized splitter RSv associated to some node v. We say that a process acquires a
randomized splitter s if it returns stop at the randomized splitter s. Once it acquires a randomized splitter, the process
stops going down the tree. We will show that every process reaches depth at most O(log k) in the tree before acquiring
a name, with high probability, and that every process returns, with probability 1.
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Decision. Each process that acquires a randomized splitter in the primary tree returns the label of the corresponding
node in a breadth-first search labelling of the primary tree.
Properties. The RatRace renaming algorithm ensures the following properties. The proof follows in a straightforward
manner from the analysis for the test-and-set version of RatRace [Alistarh et al. 2010]. We provide a short proof here
for completeness.

Name uniqueness follows since no two processes may stop at the same randomized splitter, as shown in [Attiya
et al. 2006]. We now provide a probabilistic upper bound on namespace size.

PROPOSITION 1 (RatRace RENAMING). For c ≥ 3 constant, the RatRace renaming algorithm described above
yields an adaptive renaming algorithm ensuring a namespace of size O(kc) in O(log k) steps, both with high proba-
bility in k. Every process eventually returns with probability 1.

PROOF. Pick a process p, and assume that the process reaches depth d in the binary tree without acquiring a
randomized splitter. By the properties of the randomized splitter, and by the structure of the algorithm, this implies
that there exists (at least) one other process q which follows exactly the same path through the tree as process p.
Necessarily, q must have made the same random choices as process p, at every randomized splitter on the path.

Let k be the number of participants in the execution, and pick d = c log k, where c ≥ 3 is a constant. The probability
that an arbitrary process makes exactly the same c log k random choices as p is (1/2)c log k = (1/k)c. By the union
bound, the probability that there exists another process q which makes the same choices as p is at most (k−1)(1/k)c ≤
(1/k)c−1. Applying the union bound again, we obtain that the probability that there exists a process p which takes
more than c log k steps is at most (1/k)c−2. This also implies that every process returns a name between 1 and kc with
probability 1− (1/k)c. The termination bound follows by the same argument, by taking d→∞.
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